JP2013203047A - Hollow molded body and method for manufacturing hollow molded body - Google Patents

Hollow molded body and method for manufacturing hollow molded body Download PDF

Info

Publication number
JP2013203047A
JP2013203047A JP2012077649A JP2012077649A JP2013203047A JP 2013203047 A JP2013203047 A JP 2013203047A JP 2012077649 A JP2012077649 A JP 2012077649A JP 2012077649 A JP2012077649 A JP 2012077649A JP 2013203047 A JP2013203047 A JP 2013203047A
Authority
JP
Japan
Prior art keywords
container
lid
molded body
hollow molded
distance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012077649A
Other languages
Japanese (ja)
Inventor
Mitsuo Maeda
光男 前田
Takashi Suzuki
尚 鈴木
Hideaki Nezu
秀明 根津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP2012077649A priority Critical patent/JP2013203047A/en
Priority to PCT/JP2013/059308 priority patent/WO2013147044A1/en
Priority to US14/387,717 priority patent/US20150037525A1/en
Priority to CN201380016095.XA priority patent/CN104205322B/en
Priority to CN201611041184.1A priority patent/CN107030957B/en
Publication of JP2013203047A publication Critical patent/JP2013203047A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1635Laser beams characterised by the way of heating the interface at least passing through one of the parts to be joined, i.e. laser transmission welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1629Laser beams characterised by the way of heating the interface
    • B29C65/1654Laser beams characterised by the way of heating the interface scanning at least one of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1677Laser beams making use of an absorber or impact modifier
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7841Holding or clamping means for handling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1222Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a lapped joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/10Particular design of joint configurations particular design of the joint cross-sections
    • B29C66/12Joint cross-sections combining only two joint-segments; Tongue and groove joints; Tenon and mortise joints; Stepped joint cross-sections
    • B29C66/122Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section
    • B29C66/1224Joint cross-sections combining only two joint-segments, i.e. one of the parts to be joined comprising only two joint-segments in the joint cross-section comprising at least a butt joint-segment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/01General aspects dealing with the joint area or with the area to be joined
    • B29C66/05Particular design of joint configurations
    • B29C66/20Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines
    • B29C66/24Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight
    • B29C66/242Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours
    • B29C66/2424Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain
    • B29C66/24243Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral
    • B29C66/24244Particular design of joint configurations particular design of the joint lines, e.g. of the weld lines said joint lines being closed or non-straight said joint lines being closed, i.e. forming closed contours being a closed polygonal chain forming a quadrilateral forming a rectangle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/51Joining tubular articles, profiled elements or bars; Joining single elements to tubular articles, hollow articles or bars; Joining several hollow-preforms to form hollow or tubular articles
    • B29C66/53Joining single elements to tubular articles, hollow articles or bars
    • B29C66/534Joining single elements to open ends of tubular or hollow articles or to the ends of bars
    • B29C66/5346Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat
    • B29C66/53461Joining single elements to open ends of tubular or hollow articles or to the ends of bars said single elements being substantially flat joining substantially flat covers and/or substantially flat bottoms to open ends of container bodies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/50General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles
    • B29C66/65General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool
    • B29C66/652General aspects of joining tubular articles; General aspects of joining long products, i.e. bars or profiled elements; General aspects of joining single elements to tubular articles, hollow articles or bars; General aspects of joining several hollow-preforms to form hollow or tubular articles with a relative motion between the article and the welding tool moving the welding tool around the fixed article
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/71General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the composition of the plastics material of the parts to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/812General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/8126General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the composition, by the structure, by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps characterised by the intensive physical properties or by the optical properties of the material constituting the pressing elements, e.g. constituting the welding jaws or clamps
    • B29C66/81266Optical properties, e.g. transparency, reflectivity
    • B29C66/81267Transparent to electromagnetic radiation, e.g. to visible light
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/81General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps
    • B29C66/818General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps
    • B29C66/8181General aspects of the pressing elements, i.e. the elements applying pressure on the parts to be joined in the area to be joined, e.g. the welding jaws or clamps characterised by the cooling constructional aspects, or by the thermal or electrical insulating or conducting constructional aspects of the welding jaws or of the clamps ; comprising means for compensating for the thermal expansion of the welding jaws or of the clamps characterised by the cooling constructional aspects
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/82Pressure application arrangements, e.g. transmission or actuating mechanisms for joining tools or clamps
    • B29C66/824Actuating mechanisms
    • B29C66/8242Pneumatic or hydraulic drives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/80General aspects of machine operations or constructions and parts thereof
    • B29C66/83General aspects of machine operations or constructions and parts thereof characterised by the movement of the joining or pressing tools
    • B29C66/832Reciprocating joining or pressing tools
    • B29C66/8322Joining or pressing tools reciprocating along one axis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • B29C65/1603Laser beams characterised by the type of electromagnetic radiation
    • B29C65/1612Infrared [IR] radiation, e.g. by infrared lasers
    • B29C65/1616Near infrared radiation [NIR], e.g. by YAG lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/78Means for handling the parts to be joined, e.g. for making containers or hollow articles, e.g. means for handling sheets, plates, web-like materials, tubular articles, hollow articles or elements to be joined therewith; Means for discharging the joined articles from the joining apparatus
    • B29C65/7802Positioning the parts to be joined, e.g. aligning, indexing or centring
    • B29C65/7805Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features
    • B29C65/7814Positioning the parts to be joined, e.g. aligning, indexing or centring the parts to be joined comprising positioning features in the form of inter-cooperating positioning features, e.g. tenons and mortises
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C66/00General aspects of processes or apparatus for joining preformed parts
    • B29C66/70General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material
    • B29C66/73General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/739General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset
    • B29C66/7392General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic
    • B29C66/73921General aspects of processes or apparatus for joining preformed parts characterised by the composition, physical properties or the structure of the material of the parts to be joined; Joining with non-plastics material characterised by the intensive physical properties of the material of the parts to be joined, by the optical properties of the material of the parts to be joined, by the extensive physical properties of the parts to be joined, by the state of the material of the parts to be joined or by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of the parts to be joined being a thermoplastic or a thermoset characterised by the material of at least one of the parts being a thermoplastic characterised by the materials of both parts being thermoplastics

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Fluid Mechanics (AREA)
  • Thermal Sciences (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a hollow molded body with high hermetic properties, and a method for manufacturing the hollow molded body.SOLUTION: A hollow molded body 1 is manufactured by laser fusing a container 2 and a lid 3 for sealing the container 2. The container 2 and the lid 3 are injection molded bodies made of a forming material including a thermoplastic resin. The container and lid have gate marks 2x and 3x formed during injection molding. The thermoplastic resin is aligned in a flow direction of a melt condition and solidified. The gate mark 3x of the container 2 is located in a position outside the hollow molded body 1, the position excluding a region of 2/3 or less of a distance from the center of gravity based on a distance from the center of gravity of a shape of a bottom face of the container 2 to an outer periphery of the bottom face. The gate mark 3x of the lid 3 is located at a position excluding a region of 2/3 or less of a distance from the center of gravity of each face based on a distance from the center of gravity of each of upper and lower faces in plan view of the lid 3 to an outer periphery of each of the upper and lower faces in plan view.

Description

本発明は、中空成形体および中空成形体の製造方法に関するものである。   The present invention relates to a hollow molded body and a method for producing the hollow molded body.

従来、内部に収容空間を有し、気密に密閉された樹脂製の成形体(以下、中空成形体と称することがある)が知られている。このような成形体の具体例としては、絶縁性を有する容器内部に電子回路などの部品を封入し、キャップ(蓋)で密閉する中空パッケージを挙げることができる。   2. Description of the Related Art Conventionally, a resin molded body (hereinafter sometimes referred to as a hollow molded body) that has a housing space and is hermetically sealed is known. As a specific example of such a molded body, a hollow package in which a component such as an electronic circuit is enclosed in an insulating container and sealed with a cap (lid) can be mentioned.

このような中空成形体を製造する方法としては、容器とキャップとをレーザー溶着で一体化する方法が知られている(例えば、特許文献1参照)。   As a method for producing such a hollow molded body, a method of integrating a container and a cap by laser welding is known (for example, see Patent Document 1).

特開2004−235484号公報JP 2004-235484 A

このような中空成形体では、内部に封入する部品が大気中の水分や酸素により破損することを防ぐために、高い気密性が要求されることがあり、従来知られたものと比べ、さらなる改善が求められていた。   In such a hollow molded body, high airtightness may be required in order to prevent the components enclosed inside from being damaged by moisture and oxygen in the atmosphere, and further improvement compared to conventionally known ones. It was sought after.

本発明はこのような事情に鑑みてなされたものであって、高い気密性を有する中空成形体を提供することを目的とする。また、このような中空成形体の製造方法を提供することをあわせて目的とする。   This invention is made | formed in view of such a situation, Comprising: It aims at providing the hollow molded object which has high airtightness. It is another object to provide a method for producing such a hollow molded body.

上記の課題を解決するため、本発明の一態様は、容器と前記容器を密閉する蓋とをレーザー溶着させてなる中空成形体であって、前記容器および前記蓋は、熱可塑性樹脂を含む形成材料の射出成形体であり、それぞれ射出成形時のゲート跡を有し、前記熱可塑性樹脂は、溶融状態の流動方向に配向して固化する性質を有し、前記容器のゲート跡が、前記中空成形体の外側となる位置であって、前記容器の底面の形状の重心から前記底面の外周までの距離を基準として、前記重心から前記距離の3分の2以内の領域を除いた位置にあり、前記蓋のゲート跡が、前記蓋の上面および下面の平面視形状の重心から、それぞれの面における平面視形状の外周までの距離を基準として、それぞれの面の前記重心から前記距離の3分の2以内の領域を除いた位置にある中空成形体を提供する。   In order to solve the above problems, one embodiment of the present invention is a hollow molded body formed by laser welding a container and a lid that seals the container, and the container and the lid are formed of a thermoplastic resin. Injection moldings of materials, each having a gate trace at the time of injection molding, the thermoplastic resin has a property of being oriented and solidified in the flow direction of the molten state, and the gate trace of the container is the hollow It is a position that is outside the molded body, and is a position that excludes a region within two-thirds of the distance from the center of gravity based on the distance from the center of gravity of the shape of the bottom surface of the container to the outer periphery of the bottom surface. The gate trace of the lid is 3 minutes of the distance from the center of gravity of each surface on the basis of the distance from the center of gravity of the planar shape of the top and bottom surfaces of the lid to the outer periphery of the planar shape of each surface. Except for areas within 2 Providing a hollow molded body in position.

本発明の一態様においては、前記容器の底部の平均肉厚TBと、前記容器の側壁の平均肉厚TWとが、下記式(I)を満たすことが望ましい。
4TB≧TW>3/4TB …(I)
In one aspect of the present invention, it is desirable that the average thickness TB of the bottom of the container and the average thickness TW of the side wall of the container satisfy the following formula (I).
4TB ≧ TW> 3 / 4TB (I)

本発明の一態様においては、前記底面の形状が多角形であり、前記容器のゲート跡が、前記底面の角を中心として、前記底面の角から前記容器の隣接する角までの距離の6分の1以内の領域にあり、前記蓋のゲート跡が、前記蓋の上面および下面では、前記上面および前記下面の角を中心として、それぞれの角から同じ面内の前記蓋の隣接する角までの距離の6分の1以内の領域にあり、前記蓋の側面では、前記蓋の上面および下面の隣接する角同士を結ぶ稜線から、対向する稜線までの距離の6分の1以内の領域にあることが望ましい。   In one aspect of the present invention, the shape of the bottom surface is a polygon, and the gate trace of the container is 6 minutes of the distance from the corner of the bottom surface to the adjacent corner of the container with the corner of the bottom surface as the center. The gate traces of the lid are located on the upper and lower surfaces of the lid from the respective corners to the adjacent corners of the lid in the same plane with the corners of the upper and lower surfaces as the center. It is in the area within 1/6 of the distance, and on the side surface of the lid, it is in the area within 1/6 of the distance from the ridge line connecting adjacent corners of the upper surface and the lower surface of the lid to the opposing ridge line. It is desirable.

本発明の一態様においては、外形形状が直方体であることが望ましい。   In one embodiment of the present invention, the outer shape is preferably a rectangular parallelepiped.

本発明の一態様においては、前記熱可塑性樹脂が液晶ポリエステルであることが望ましい。   In one aspect of the present invention, the thermoplastic resin is preferably a liquid crystal polyester.

また、本発明の一態様は、溶融状態の流動方向に配向して固化する性質を有する熱可塑性樹脂を含む形成材料を用いて、容器と蓋とを射出成形する工程と、前記容器の開口部を前記蓋で閉じ、前記容器と前記蓋との接触部をレーザー溶着する工程と、を有し、前記射出成形する工程において、前記容器を、前記容器の底面の重心から前記底面の外周までの距離を基準として、前記重心から前記距離の3分の2以内の領域を除いた位置で、かつ前記容器を前記蓋で閉じた中空成形体の外側となる位置にゲート位置を設定した金型を用いて射出成形し、前記蓋を、前記蓋の上面および下面の平面視形状の重心から、それぞれの面における平面視形状の外周までの距離を基準として、それぞれの面の前記重心から前記距離の3分の2以内の領域を除いた位置にゲート位置を設定した金型を用いて射出成形する中空成形体の製造方法を提供する。   Another embodiment of the present invention includes a step of injection-molding a container and a lid using a forming material containing a thermoplastic resin having a property of being oriented and solidified in a flow direction in a molten state, and an opening of the container Closing the lid with the lid and laser welding the contact portion between the container and the lid.In the injection molding step, the container is moved from the center of gravity of the bottom surface of the container to the outer periphery of the bottom surface. A mold having a gate position set at a position excluding a region within two thirds of the distance from the center of gravity with respect to the distance, and at a position outside the hollow molded body in which the container is closed with the lid. The lid is formed by using the distance from the center of gravity of each surface relative to the distance from the center of gravity of the top surface and the bottom surface of the lid to the outer periphery of the shape of the planar view on each surface. Exclude areas within 2/3 Using a mold in which set the gate position to positions to provide a method of manufacturing a hollow molded body to injection molding.

本発明によれば、高い気密性を有する中空成形体を提供することができる。また、このような中空成形体の製造方法を提供することができる。   According to the present invention, a hollow molded body having high airtightness can be provided. Moreover, the manufacturing method of such a hollow molded object can be provided.

本実施形態の中空成形体の一例を示す模式図である。It is a schematic diagram which shows an example of the hollow molded object of this embodiment. 本実施形態の中空成形体を製造可能な容器および蓋の説明図である。It is explanatory drawing of the container and lid | cover which can manufacture the hollow molded object of this embodiment. 容器および蓋のゲート跡の位置による効果を説明する図である。It is a figure explaining the effect by the position of the gate mark of a container and a lid. 容器および蓋のゲート跡の位置による効果を説明する図である。It is a figure explaining the effect by the position of the gate mark of a container and a lid. 直方体形状を呈する容器のゲート跡の好適な位置を示す模式図である。It is a schematic diagram which shows the suitable position of the gate trace of the container which exhibits a rectangular parallelepiped shape. 直方体形状を呈する蓋のゲート跡の好適な位置を示す模式図である。It is a schematic diagram which shows the suitable position of the gate trace of the lid | cover which exhibits a rectangular parallelepiped shape. 容器の概略断面図である。It is a schematic sectional drawing of a container. 蓋の概略断面図である。It is a schematic sectional drawing of a lid | cover. レーザー溶着に用いる溶着装置を説明する模式図である。It is a schematic diagram explaining the welding apparatus used for laser welding. レーザー溶着の工程図である。It is process drawing of laser welding. 実施例および比較例で成形した容器および蓋の形状を示す模式図である。It is a schematic diagram which shows the shape of the container shape | molded by the Example and the comparative example, and a lid | cover.

[中空成形体]
本実施形態の中空成形体は、容器と前記容器を密閉する蓋とをレーザー溶着させてなる中空成形体であって、前記容器および前記蓋は、熱可塑性樹脂を含む形成材料の射出成形体であり、それぞれ射出成形時のゲート跡を有し、前記熱可塑性樹脂は、溶融状態の流動方向に配向して固化する性質を有し、前記容器のゲート跡が、前記中空成形体の外側となる位置であって、前記容器の底面の形状の重心から前記底面の外周までの距離を基準として、前記重心から前記距離の3分の2以内の領域を除いた位置にあり、前記蓋のゲート跡が、前記蓋の上面および下面の平面視形状の重心から、それぞれの面における平面視形状の外周までの距離を基準として、それぞれの面の前記重心から前記距離の3分の2以内の領域を除いた位置にあるものである。
以下、順に説明する。
[Hollow molding]
The hollow molded body of the present embodiment is a hollow molded body formed by laser welding a container and a lid that seals the container, and the container and the lid are injection molded bodies of a forming material containing a thermoplastic resin. Yes, each of which has a gate mark at the time of injection molding, and the thermoplastic resin has a property of being oriented and solidified in the flow direction of the molten state, and the gate mark of the container is outside the hollow molded body. The position of the bottom surface of the container, excluding a region within two-thirds of the distance from the center of gravity on the basis of the distance from the center of gravity of the shape of the bottom surface of the container to the outer periphery of the bottom surface. Is a region within two-thirds of the distance from the center of gravity of each surface, based on the distance from the center of gravity of the top surface and the bottom surface of the lid to the outer periphery of the surface shape of each surface. In the excluded position That.
Hereinafter, it demonstrates in order.

図1は、本実施形態の中空成形体の一例を示す模式図であり、図1(a)は分解斜視図、図1(b)は概略断面図である。図1(a)(b)に示すように、本実施形態の中空成形体1は、射出成形により成形された成形体である容器2と蓋3とを有している。本実施形態の中空成形体1において、容器2と蓋3とは、レーザー溶着法を用いて接合されるものである。   1A and 1B are schematic views showing an example of a hollow molded body of the present embodiment, in which FIG. 1A is an exploded perspective view, and FIG. 1B is a schematic cross-sectional view. As shown in FIGS. 1A and 1B, the hollow molded body 1 of the present embodiment has a container 2 and a lid 3 which are molded bodies molded by injection molding. In the hollow molded body 1 of the present embodiment, the container 2 and the lid 3 are joined using a laser welding method.

容器2は、底部21と、底部21に交差する側壁22とで囲まれ、一面に開口部23が形成された収容空間Sを有する成形体である。容器2の形状は、収容空間Sに収容する部品の形状に応じて適宜設定することができる。例えば、一般に直方体の形状を有する半導体素子を収容空間Sに収容する場合は、図1(a)(b)に示すように、直方体の底部21と直交する側壁22とを有し、収容空間Sを直方体形状とすることが好ましい。その他、円柱状の外形や、底面の形状が多角形である多角柱状の外形を有する中空成形体としてもよい。さらには、円錐台や多角錘台の外形を有する中空成形体としても構わない。   The container 2 is a molded body having a housing space S surrounded by a bottom 21 and a side wall 22 intersecting the bottom 21 and having an opening 23 formed on one surface. The shape of the container 2 can be set as appropriate according to the shape of the components housed in the housing space S. For example, when a semiconductor element having a generally rectangular parallelepiped shape is accommodated in the accommodating space S, as shown in FIGS. 1A and 1B, the rectangular parallelepiped bottom 21 and the side wall 22 orthogonal to the accommodating space S are provided. Is preferably a rectangular parallelepiped shape. In addition, it is good also as a hollow molded object which has a column-shaped external shape and a polygonal column-shaped external shape whose bottom face shape is a polygon. Furthermore, a hollow molded body having an outer shape of a truncated cone or a polygonal truncated cone may be used.

容器2には、レーザー光を吸収しエネルギーを熱に変換する着色剤が含有されている。この着色剤としては、カーボンブラック、モノアゾ染料、アントラキノン染料、ペリレン染料、フタロシアニン染料、ニグロシン染料、チタン黒、黒色酸化鉄、黄色酸化鉄、赤色酸化鉄、カドミウム黄、ニッケルチタン黄、ストロンチウム黄、含水酸化クロム、酸化クロム、アルミン酸コバルト、ウルトラマリン青などが挙げられ、1種または2種以上を使用してもよい。これらの中でも、耐熱性が高いことから、カーボンブラック、チタン黒、黒色酸化鉄が好ましい。   The container 2 contains a colorant that absorbs laser light and converts energy into heat. As this colorant, carbon black, monoazo dye, anthraquinone dye, perylene dye, phthalocyanine dye, nigrosine dye, titanium black, black iron oxide, yellow iron oxide, red iron oxide, cadmium yellow, nickel titanium yellow, strontium yellow, water content Examples thereof include chromium oxide, chromium oxide, cobalt aluminate, and ultramarine blue, and one or more kinds may be used. Among these, carbon black, titanium black, and black iron oxide are preferable because of high heat resistance.

このような着色剤は、容器2の全量(100質量部)に対して、0.01質量部以上10質量部以下含まれていることが好ましく、0.05質量部以上5質量部以下含まれていることがより好ましい。   Such a colorant is preferably contained in an amount of 0.01 parts by mass or more and 10 parts by mass or less, and 0.05 parts by mass or more and 5 parts by mass or less with respect to the total amount (100 parts by mass) of the container 2. More preferably.

また、容器2には、本発明の効果を損なわない範囲で、無機フィラーや種々の添加剤などが含有されていてもよい。   Moreover, the container 2 may contain an inorganic filler, various additives, etc. in the range which does not impair the effect of this invention.

なお、容器2の射出成形時に、収容空間Sと容器2の外部とを接続する端子を側壁22に埋め込むこともできる。例えば、あらかじめ端子形状に加工したリードフレームを金型にインサートした後、射出成形することにより、外部接続端子を有する容器2とすることができる。   Note that a terminal for connecting the accommodation space S and the outside of the container 2 can be embedded in the side wall 22 at the time of injection molding of the container 2. For example, it is possible to obtain a container 2 having external connection terminals by inserting a lead frame that has been processed into a terminal shape in advance into a mold and then performing injection molding.

蓋3は、平面視で容器2と同じ形状を有する板状の成形体である。図では、蓋3は、平面視矩形の容器2と同じく、平面視矩形の形状を有している。また、蓋3において容器2と面する側には、中央部に容器2の開口部23に嵌合する凸部31が設けられている。図では、容器2の開口部23の形状に合わせて、凸部31も平面視矩形の形状を有している。   The lid 3 is a plate-like molded body having the same shape as the container 2 in plan view. In the figure, the lid 3 has a rectangular shape in plan view, like the rectangular container 2 in plan view. Further, on the side of the lid 3 facing the container 2, a convex portion 31 that fits into the opening 23 of the container 2 is provided at the center. In the figure, in accordance with the shape of the opening 23 of the container 2, the convex portion 31 also has a rectangular shape in plan view.

なお、本実施形態では、蓋3の形状が、容器2の平面視形状や開口部23の形状に応じて、同じ平面視形状とすることとしているが、容器2と蓋3との平面視形状が異なることとしてもよい。また、蓋3の中央部が上に盛り上がっていてもよく、窪んでいてもよい。もちろん、図で示した蓋3のような凸部31を有さない、平板状の蓋を用いることとしても構わない。   In the present embodiment, the shape of the lid 3 is the same as the planar view shape of the container 2 and the shape of the opening 23, but the planar view shape of the container 2 and the lid 3. May be different. Moreover, the center part of the lid | cover 3 may be rising up and it may be depressed. Of course, a flat lid that does not have the convex portion 31 like the lid 3 shown in the figure may be used.

なお、蓋3には、本発明の効果を損なわない範囲で、無機フィラーや種々の添加剤などが含有されていてもよい。   The lid 3 may contain an inorganic filler, various additives, and the like as long as the effects of the present invention are not impaired.

容器2と蓋3とは、容器2の開口部23に蓋3の凸部31が嵌合した状態で、容器2の側壁22の頂部24と、蓋3の凸部31の周囲(周縁部32)と、を接触させ、接触部がレーザー溶着法を用いて接合されている。本実施形態の中空成形体においては、レーザー溶着法で容器2および蓋3を溶着する場合、それぞれ一部を溶融させて接合させる。そのため、容器2および蓋3は、融点または流動開始温度が同一の形成材料を用いることが好ましく、上記着色剤の添加の有無以外は同じ材料を用いることがより好ましい。   The container 2 and the lid 3 are in a state where the convex portion 31 of the lid 3 is fitted into the opening 23 of the container 2, and the periphery (periphery portion 32) of the top portion 24 of the side wall 22 of the container 2 and the convex portion 31 of the lid 3. ), And the contact portion is joined using a laser welding method. In the hollow molded body of the present embodiment, when the container 2 and the lid 3 are welded by the laser welding method, each part is melted and joined. Therefore, it is preferable to use a forming material having the same melting point or flow start temperature for the container 2 and the lid 3, and it is more preferable to use the same material except for the presence or absence of the colorant.

本実施形態の容器2および蓋3の形成材料としては、主鎖骨格に芳香環を有し、構造が直線状となる樹脂材料を用いることができる。このような樹脂材料は、流動時に配向しやすいが、本実施形態の中空成形体では、このような樹脂材料を用いて、高い気密性を有する中空成形体とすることができる。   As a material for forming the container 2 and the lid 3 of the present embodiment, a resin material having an aromatic ring in the main chain skeleton and a linear structure can be used. Such a resin material is easily oriented when flowing, but in the hollow molded body of this embodiment, such a resin material can be used to form a hollow molded body having high airtightness.

用いることができる樹脂材料として、具体的には、ポリカーボネート樹脂、芳香族ポリアミド、ポリフェニレンエーテル樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリアリレート樹脂、ポリエーテルイミド樹脂、ポリエーテルスルホン樹脂、ポリエーテルケトン樹脂、液晶ポリエステル、ポリアミドイミド樹脂、ポリイミド樹脂などを例示することができるが、これらの中でも、流動性、耐熱性、剛性およびガスバリア性が良好であることから液晶ポリエステルが好ましい。   Specific examples of resin materials that can be used include polycarbonate resins, aromatic polyamides, polyphenylene ether resins, polyphenylene sulfide resins, polysulfone resins, polyarylate resins, polyetherimide resins, polyethersulfone resins, polyetherketone resins, Liquid crystal polyester, polyamideimide resin, polyimide resin and the like can be exemplified, but among these, liquid crystal polyester is preferable because of good fluidity, heat resistance, rigidity and gas barrier properties.

(液晶ポリエステル)
本実施形態の中空成形体の形成材料として使用可能な液晶ポリエステルは、溶融状態で液晶性を示す液晶ポリエステルであり、450℃以下の温度で溶融するものであることが好ましい。なお、液晶ポリエステルは、液晶ポリエステルアミドであってもよいし、液晶ポリエステルエーテルであってもよいし、液晶ポリエステルカーボネートであってもよいし、液晶ポリエステルイミドであってもよい。液晶ポリエステルは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリエステルであることが好ましい。
(Liquid crystal polyester)
The liquid crystalline polyester that can be used as a material for forming the hollow molded body of the present embodiment is a liquid crystalline polyester that exhibits liquid crystallinity in a molten state, and is preferably melted at a temperature of 450 ° C. or lower. The liquid crystal polyester may be a liquid crystal polyester amide, a liquid crystal polyester ether, a liquid crystal polyester carbonate, or a liquid crystal polyester imide. The liquid crystal polyester is preferably a wholly aromatic liquid crystal polyester using only an aromatic compound as a raw material monomer.

液晶ポリエステルの典型的な例としては、
(I)芳香族ヒドロキシカルボン酸と、芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合(重縮合)させてなるもの
(II)複数種の芳香族ヒドロキシカルボン酸を重合させてなるもの
(III)芳香族ジカルボン酸と、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンからなる群から選ばれる少なくとも1種の化合物と、を重合させてなるもの
(IV)ポリエチレンテレフタレート等のポリエステルと、芳香族ヒドロキシカルボン酸と、を重合させてなるもの
が挙げられる。ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、その一部又は全部に代えて、その重合可能な誘導体が用いられてもよい。
As a typical example of liquid crystal polyester,
(I) An aromatic hydroxycarboxylic acid, an aromatic dicarboxylic acid, and at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine are polymerized (polycondensed). (II) Polymerized from plural kinds of aromatic hydroxycarboxylic acids (III) At least one compound selected from the group consisting of aromatic dicarboxylic acids and aromatic diols, aromatic hydroxyamines and aromatic diamines (IV) Polyesters such as polyethylene terephthalate and aromatic hydroxycarboxylic acids are polymerized. Here, the aromatic hydroxycarboxylic acid, the aromatic dicarboxylic acid, the aromatic diol, the aromatic hydroxyamine, and the aromatic diamine are each independently replaced with a part or all of the polymerizable derivative. Also good.

芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸のようなカルボキシ基を有する化合物の重合可能な誘導体の例としては、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換してなるもの(エステル)、カルボキシ基をハロホルミル基に変換してなるもの(酸ハロゲン化物)、及びカルボキシ基をアシルオキシカルボニル基に変換してなるもの(酸無水物)が挙げられる。
芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシ基を有する化合物の重合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシル基に変換してなるもの(アシル化物)が挙げられる。
芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
Examples of polymerizable derivatives of a compound having a carboxy group such as an aromatic hydroxycarboxylic acid and an aromatic dicarboxylic acid include those obtained by converting a carboxy group into an alkoxycarbonyl group or an aryloxycarbonyl group (ester), carboxy Examples include those obtained by converting a group into a haloformyl group (acid halide), and those obtained by converting a carboxy group into an acyloxycarbonyl group (acid anhydride).
Examples of polymerizable derivatives of compounds having a hydroxy group such as aromatic hydroxycarboxylic acids, aromatic diols and aromatic hydroxyamines include those obtained by acylating a hydroxy group and converting it to an acyloxyl group (acylated product) ).
Examples of polymerizable derivatives of amino group-containing compounds such as aromatic hydroxyamines and aromatic diamines include those obtained by acylating an amino group and converting it to an acylamino group (acylated product).

液晶ポリエステルは、下記一般式(1)で表される繰返し単位(以下、「繰返し単位(1)」ということがある。)を有することが好ましく、繰返し単位(1)と、下記一般式(2)で表される繰返し単位(以下、「繰返し単位(2)」ということがある。)と、下記一般式(3)で表される繰返し単位(以下、「繰返し単位(3)」ということがある。)と、を有することがより好ましい。   The liquid crystalline polyester preferably has a repeating unit represented by the following general formula (1) (hereinafter sometimes referred to as “repeating unit (1)”). The repeating unit (1) and the following general formula (2) ) (Hereinafter sometimes referred to as “repeat unit (2)”) and a repeat unit represented by the following general formula (3) (hereinafter referred to as “repeat unit (3)”). More preferably).

(1)−O−Ar−CO−
(2)−CO−Ar−CO−
(3)−X−Ar−Y−
(式中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基であり;Ar及びArは、それぞれ独立にフェニレン基、ナフチレン基、ビフェニリレン基又は下記一般式(4)で表される基であり;X及びYは、それぞれ独立に酸素原子又はイミノ基であり;前記Ar、Ar及びAr中の一つ以上の水素原子は、それぞれ独立にハロゲン原子、アルキル基又はアリール基で置換されていてもよい。)
(4)−Ar−Z−Ar
(式中、Ar及びArは、それぞれ独立にフェニレン基又はナフチレン基であり;Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキリデン基である。)
(1) —O—Ar 1 —CO—
(2) —CO—Ar 2 —CO—
(3) -X-Ar 3 -Y-
(In the formula, Ar 1 is a phenylene group, a naphthylene group or a biphenylylene group; Ar 2 and Ar 3 are each independently a phenylene group, a naphthylene group, a biphenylylene group or a group represented by the following general formula (4): Yes; X and Y are each independently an oxygen atom or imino group; one or more hydrogen atoms in Ar 1 , Ar 2 and Ar 3 are each independently substituted with a halogen atom, an alkyl group or an aryl group May be.)
(4) -Ar 4 -Z-Ar 5-
(In the formula, Ar 4 and Ar 5 are each independently a phenylene group or a naphthylene group; Z is an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylidene group.)

Ar、Ar又はArで表される前記基にある水素原子と置換可能なハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。 Examples of the halogen atom that can be substituted for the hydrogen atom in the group represented by Ar 1 , Ar 2, or Ar 3 include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.

Ar、Ar又はArで表される前記基にある水素原子と置換可能なアルキル基の例としては、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基、イソブチル基、s−ブチル基、t−ブチル基、n−ヘキシル基、n−へプチル基、2−エチルヘキシル基、n−オクチル基、ノニル基及びn−デシル基等が挙げられ、その炭素数は、1〜10であることが好ましい。 Examples of the alkyl group that can be substituted for the hydrogen atom in the group represented by Ar 1 , Ar 2, or Ar 3 include a methyl group, an ethyl group, an n-propyl group, an isopropyl group, an n-butyl group, and an isobutyl group. , S-butyl group, t-butyl group, n-hexyl group, n-heptyl group, 2-ethylhexyl group, n-octyl group, nonyl group, n-decyl group, etc. 10 is preferable.

Ar、Ar又はArで表される前記基にある水素原子と置換可能なアリール基の例としては、フェニル基、o−トリル基、m−トリル基、p−トリル基等のような単環式芳香族基、1−ナフチル基及び2−ナフチル基等のような縮環式芳香族基が挙げられ、その炭素数は、6〜20であることが好ましい。 Examples of the aryl group that can be substituted for the hydrogen atom in the group represented by Ar 1 , Ar 2, or Ar 3 include a phenyl group, an o-tolyl group, an m-tolyl group, a p-tolyl group, and the like. Examples thereof include condensed aromatic groups such as a monocyclic aromatic group, 1-naphthyl group and 2-naphthyl group, and the carbon number thereof is preferably 6-20.

Ar、ArまたはArで表される前記基の水素原子がこれらの基で置換されている場合、その数は、Ar、Ar又はArで表される前記基毎に、それぞれ独立に、好ましくは1個または2個であり、より好ましくは1個である。 When the hydrogen atom of the group represented by Ar 1 , Ar 2 or Ar 3 is substituted with these groups, the number of each group is represented by Ar 1 , Ar 2 or Ar 3 , respectively. Independently, it is preferably one or two, more preferably one.

前記アルキリデン基の例としては、メチレン基、エチリデン基、イソプロピリデン基、n−ブチリデン基及び2−エチルヘキシリデン基等が挙げられ、その炭素数は1〜10であることが好ましい。   Examples of the alkylidene group include a methylene group, an ethylidene group, an isopropylidene group, an n-butylidene group, and a 2-ethylhexylidene group, and the number of carbon atoms is preferably 1 to 10.

繰返し単位(1)は、所定の芳香族ヒドロキシカルボン酸に由来する繰返し単位である。繰返し単位(1)としては、Arがp−フェニレン基であるもの(p−ヒドロキシ安息香酸に由来する繰返し単位)、及びArが2,6−ナフチレン基であるもの(6−ヒドロキシ−2−ナフトエ酸に由来する繰返し単位)が好ましい。 The repeating unit (1) is a repeating unit derived from a predetermined aromatic hydroxycarboxylic acid. As the repeating unit (1), Ar 1 is a p-phenylene group (repeating unit derived from p-hydroxybenzoic acid), and Ar 1 is a 2,6-naphthylene group (6-hydroxy-2). -Repeating units derived from naphthoic acid) are preferred.

繰返し単位(2)は、所定の芳香族ジカルボン酸に由来する繰返し単位である。繰返し単位(2)としては、Arがp−フェニレン基であるもの(テレフタル酸に由来する繰返し単位)、Arがm−フェニレン基であるもの(イソフタル酸に由来する繰返し単位)、Arが2,6−ナフチレン基であるもの(2,6−ナフタレンジカルボン酸に由来する繰返し単位)、及びArがジフェニルエ−テル−4,4’−ジイル基であるもの(ジフェニルエ−テル−4,4’−ジカルボン酸に由来する繰返し単位)が好ましい。 The repeating unit (2) is a repeating unit derived from a predetermined aromatic dicarboxylic acid. As the repeating unit (2), Ar 2 is a p-phenylene group (a repeating unit derived from terephthalic acid), Ar 2 is an m-phenylene group (a repeating unit derived from isophthalic acid), Ar 2 Is a 2,6-naphthylene group (a repeating unit derived from 2,6-naphthalenedicarboxylic acid), and Ar 2 is a diphenyl ether-4,4′-diyl group (diphenyl ether- 4,4′-dicarboxylic acid-derived repeating units) are preferred.

繰返し単位(3)は、所定の芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する繰返し単位である。繰返し単位(3)としては、Arがp−フェニレン基であるもの(ヒドロキノン、p−アミノフェノール又はp−フェニレンジアミンに由来する繰返し単位)、及びArが4,4’−ビフェニリレン基であるもの(4,4’−ジヒドロキシビフェニル、4−アミノ−4’−ヒドロキシビフェニル又は4,4’−ジアミノビフェニルに由来する繰返し単位)が好ましい。 The repeating unit (3) is a repeating unit derived from a predetermined aromatic diol, aromatic hydroxylamine or aromatic diamine. As the repeating unit (3), Ar 3 is a p-phenylene group (a repeating unit derived from hydroquinone, p-aminophenol or p-phenylenediamine), and Ar 3 is a 4,4′-biphenylylene group. Those (4,4′-dihydroxybiphenyl, 4-amino-4′-hydroxybiphenyl or repeating units derived from 4,4′-diaminobiphenyl) are preferred.

繰返し単位(1)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量(液晶ポリエステルを構成する各繰返し単位の質量をその各繰返し単位の式量で割ることにより、各繰返し単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30〜80モル%、さらに好ましくは40〜70モル%、特に好ましくは45〜65モル%である。   The content of the repeating unit (1) is the total amount of all repeating units constituting the liquid crystal polyester (the substance of each repeating unit is obtained by dividing the mass of each repeating unit constituting the liquid crystal polyester by the formula weight of each repeating unit). The equivalent amount (mole) is obtained, and the total value thereof) is preferably 30 mol% or more, more preferably 30 to 80 mol%, still more preferably 40 to 70 mol%, particularly preferably 45 to 65. Mol%.

繰返し単位(2)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10〜35モル%、さらに好ましくは15〜30モル%、特に好ましくは17.5〜27.5モル%である。   The content of the repeating unit (2) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Most preferably, it is 17.5-27.5 mol%.

繰返し単位(3)の含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは35モル%以下、より好ましくは10〜35モル%、さらに好ましくは15〜30モル%、特に好ましくは17.5〜27.5モル%である。   The content of the repeating unit (3) is preferably 35 mol% or less, more preferably 10 to 35 mol%, still more preferably 15 to 30 mol%, based on the total amount of all repeating units constituting the liquid crystal polyester. Most preferably, it is 17.5-27.5 mol%.

例えば、液晶ポリエステルが繰返し単位(1)、繰返し単位(2)および繰返し単位(3)から構成される場合には、繰返し単位(1)の含有率が30モル%以上80モル%以下、繰返し単位(2)の含有率が10モル%以上35モル%以下、繰返し単位(3)の含有率が10モル%以上35モル%以下であることが好ましい。   For example, when the liquid crystalline polyester is composed of the repeating unit (1), the repeating unit (2), and the repeating unit (3), the content of the repeating unit (1) is 30 mol% or more and 80 mol% or less. The content of (2) is preferably 10 mol% or more and 35 mol% or less, and the content of the repeating unit (3) is preferably 10 mol% or more and 35 mol% or less.

液晶ポリエステルは、繰返し単位(1)の含有量が多いほど、溶融流動性、耐熱性、強度・剛性が向上し易いが、あまり多いと、溶融温度や溶融粘度が高くなり易く、成形に必要な温度が高くなり易い。   As the content of the repeating unit (1) increases, the liquid crystalline polyester tends to improve the melt fluidity, heat resistance, strength and rigidity. However, if the content is too large, the melting temperature and the melt viscosity tend to increase, which is necessary for molding. Temperature tends to be high.

繰返し単位(2)の含有量と繰返し単位(3)の含有量との割合は、[繰返し単位(2)の含有量]/[繰返し単位(3)の含有量](モル/モル)で表して、好ましくは0.9/1〜1/0.9、より好ましくは0.95/1〜1/0.95、さらに好ましくは0.98/1〜1/0.98である。   The ratio between the content of the repeating unit (2) and the content of the repeating unit (3) is expressed as [content of repeating unit (2)] / [content of repeating unit (3)] (mol / mol). The ratio is preferably 0.9 / 1 to 1 / 0.9, more preferably 0.95 / 1 to 1 / 0.95, and still more preferably 0.98 / 1 to 1 / 0.98.

なお、液晶ポリエステルは、繰返し単位(1)〜(3)を、それぞれ独立に2種以上有してもよい。また、液晶ポリエステルは、繰返し単位(1)〜(3)以外の繰返し単位を有してもよいが、その含有量は、液晶ポリエステルを構成する全繰返し単位の合計量に対して、好ましくは10モル%以下、より好ましくは5モル%以下である。   In addition, liquid crystalline polyester may have 2 or more types of repeating units (1)-(3) each independently. The liquid crystal polyester may have a repeating unit other than the repeating units (1) to (3), and the content thereof is preferably 10 with respect to the total amount of all repeating units constituting the liquid crystal polyester. The mol% or less, more preferably 5 mol% or less.

液晶ポリエステルは、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるものを有すること、すなわち、所定の芳香族ジオールに由来する繰返し単位を有することが好ましく、繰返し単位(3)として、X及びYがそれぞれ酸素原子であるもののみを有することがより好ましい。このようにすることで、液晶ポリエステルは、溶融粘度が低くなり易い。   The liquid crystal polyester preferably has, as the repeating unit (3), X and Y each having an oxygen atom, that is, a repeating unit derived from a predetermined aromatic diol. As the repeating unit (3), More preferably, X and Y each have only an oxygen atom. By doing in this way, liquid crystalline polyester tends to become low in melt viscosity.

液晶ポリエステルは、これを構成する繰返し単位に対応する原料モノマーを溶融重合させ、得られた重合物(プレポリマー)を固相重合させることにより、製造することが好ましい。これにより、耐熱性や強度・剛性が高い高分子量の液晶ポリエステルを操作性良く製造することができる。溶融重合は、触媒の存在下で行ってもよく、この場合の触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物や、4−(ジメチルアミノ)ピリジン、1−メチルイミダゾール等の含窒素複素環式化合物が挙げられ、含窒素複素環式化合物が好ましく用いられる。   The liquid crystal polyester is preferably produced by melt polymerization of raw material monomers corresponding to the repeating units constituting the liquid crystal polyester and solid-phase polymerization of the obtained polymer (prepolymer). Thereby, high molecular weight liquid crystal polyester having high heat resistance, strength and rigidity can be produced with good operability. Melt polymerization may be carried out in the presence of a catalyst. Examples of the catalyst in this case include metals such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide. Compounds, nitrogen-containing heterocyclic compounds such as 4- (dimethylamino) pyridine, 1-methylimidazole and the like can be mentioned, and nitrogen-containing heterocyclic compounds are preferably used.

液晶ポリエステルは、その流動開始温度が、好ましくは270℃以上、より好ましくは270℃以上400℃以下、さらに好ましくは280℃以上380℃以下である。流動開始温度が高いほど、耐熱性や強度・剛性が向上し易いが、あまり高いと、溶融させるために高温を要し、成形時に熱劣化しやすくなったり、溶融時の粘度が高くなり、流動性が低下したりする。   The liquid crystal polyester has a flow initiation temperature of preferably 270 ° C. or higher, more preferably 270 ° C. or higher and 400 ° C. or lower, and further preferably 280 ° C. or higher and 380 ° C. or lower. The higher the flow start temperature, the easier it is to improve heat resistance, strength and rigidity. However, if the flow start temperature is too high, a high temperature is required for melting, heat deterioration during molding is likely, and viscosity during melting increases. The sex will be reduced.

なお、流動開始温度は、フロー温度又は流動温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kgf/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリエステルを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4800Pa・s(48000ポイズ)の粘度を示す温度であり、液晶ポリエステルの分子量の目安となるものである(小出直之編、「液晶ポリマー−合成・成形・応用−」、株式会社シーエムシー、1987年6月5日、p.95参照)。 The flow start temperature is also called the flow temperature or flow temperature, and the liquid crystal polyester is heated at a rate of 4 ° C./min under a load of 9.8 MPa (100 kgf / cm 2 ) using a capillary rheometer. Is a temperature showing a viscosity of 4800 Pa · s (48000 poise) when extruded from a nozzle having an inner diameter of 1 mm and a length of 10 mm, and is a measure of the molecular weight of the liquid crystalline polyester (Naide Koide, “ “Liquid Crystal Polymer—Synthesis / Molding / Application—”, CMC Co., Ltd., June 5, 1987, p. 95).

(ゲート跡)
容器2と蓋3とは、それぞれ中空成形体1の外側となる位置に射出成形時のゲート跡を有している。図1(a)に示す容器2には、側壁の外面29の下部であって角の近傍に射出成形時のゲート跡2xがある。また、蓋3には、側面39の角の近傍に射出成形時のゲート跡3xがある。本実施形態の中空成形体1においては、このような位置にゲート跡を有する容器2及び蓋3を用いていることができる。
(Gate trace)
The container 2 and the lid 3 each have a gate mark at the time of injection molding at a position on the outside of the hollow molded body 1. In the container 2 shown in FIG. 1A, there is a gate mark 2x at the time of injection molding in the lower part of the outer surface 29 of the side wall and in the vicinity of the corner. The lid 3 has a gate mark 3x at the time of injection molding near the corner of the side surface 39. In the hollow molded body 1 of the present embodiment, the container 2 and the lid 3 having a gate mark at such a position can be used.

なお、本実施形態の中空成形体1を製造するための容器、蓋としては、ゲート跡が図1に示したような位置にあるものに限定されるものではない。図2は、本実施形態の中空成形体1を製造可能な容器および蓋の説明図であり、ゲート跡の位置を説明する図である。図2(a)は容器について底面側から見た概略斜視図、図2(b)は蓋について上面側から見た概略斜視図、図2(c)は蓋について下面側から見た概略斜視図である。   In addition, as a container and a lid | cover for manufacturing the hollow molded object 1 of this embodiment, it is not limited to what has a gate mark in the position as shown in FIG. FIG. 2 is an explanatory view of a container and a lid capable of producing the hollow molded body 1 of the present embodiment, and is a view for explaining the position of the gate mark. 2A is a schematic perspective view of the container as viewed from the bottom surface side, FIG. 2B is a schematic perspective view of the lid as viewed from the top surface side, and FIG. 2C is a schematic perspective view of the lid as viewed from the bottom surface side. It is.

図2(a)に示すように、本実施形態の中空成形体1を構成する容器2においては、ゲート跡が、容器2の底面の重心G1から底面25の外周までの距離L1を基準として、重心G1から距離L1の3分の2以内の領域AR1を除く位置にある。図2(a)においては、容器2のゲート跡が位置してはならない領域AR1を色づけして示している。   As shown in FIG. 2 (a), in the container 2 constituting the hollow molded body 1 of the present embodiment, the gate mark is based on the distance L1 from the center of gravity G1 of the bottom surface of the container 2 to the outer periphery of the bottom surface 25. It is in a position excluding the area AR1 within 2/3 of the distance L1 from the center of gravity G1. In FIG. 2A, the area AR1 where the gate mark of the container 2 should not be located is colored.

また、図2(b)に示すように、本実施形態の中空成形体1を構成する蓋3の上面33aにおいては、ゲート跡が、上面33aの重心G2から上面33aの外周までの距離L2を基準として、重心G2から距離の3分の2以内の領域を除いた位置にある。図2(b)においては、蓋3のゲート跡が位置してはならない領域AR2を色づけして示している。
Further, as shown in FIG. 2B, in the upper surface 33a of the lid 3 constituting the hollow molded body 1 of the present embodiment, the gate mark has a distance L2 from the center of gravity G2 of the upper surface 33a to the outer periphery of the upper surface 33a. As a reference, it is at a position excluding an area within 2/3 of the distance from the center of gravity G2. In FIG. 2B, the area AR2 where the gate mark of the lid 3 should not be located is shown in color.

さらに、図2(c)に示すように、本実施形態の中空成形体1を構成する蓋3の下面33bにおいては、ゲート跡が、蓋3の下面33bの重心G3から下面33bの外周までの距離L3を基準として、重心G3から距離の3分の2以内の領域を除いた位置にある。図2(c)においては、蓋3のゲート跡が位置してはならない領域AR3を色づけして示している。   Further, as shown in FIG. 2C, in the lower surface 33b of the lid 3 constituting the hollow molded body 1 of the present embodiment, the gate mark extends from the center of gravity G3 of the lower surface 33b of the lid 3 to the outer periphery of the lower surface 33b. With the distance L3 as a reference, it is at a position excluding an area within 2/3 of the distance from the center of gravity G3. In FIG. 2C, the area AR3 where the gate mark of the lid 3 should not be located is colored.

なお、容器2および蓋3において、これらのような位置にゲート跡がある場合、容器2および蓋3が、これらのゲート跡の位置に対応したゲートを有する金型を用いて、射出成形されたことを意味している。   In addition, in the container 2 and the lid 3, when there is a gate mark at such a position, the container 2 and the lid 3 were injection molded using a mold having a gate corresponding to the position of the gate mark. It means that.

図3、4は、容器および蓋のゲート跡の位置による効果を説明する図である。図3は、図2で示す領域AR1,AR2内にゲート跡がある場合を示す模式図であり、図4は、図2で示す領域AR1,AR2の外側にゲート跡がある場合を示す模式図である。図4で示す容器および蓋は、図1で示したものに相当する。なお、図3,4においては、成形時の溶融樹脂の流れを矢印で示している。   3 and 4 are diagrams for explaining the effect of the position of the gate mark on the container and the lid. FIG. 3 is a schematic diagram showing a case where gate traces are present in the areas AR1, AR2 shown in FIG. 2, and FIG. 4 is a schematic diagram showing a case where gate traces are present outside the areas AR1, AR2 shown in FIG. It is. The container and lid shown in FIG. 4 correspond to those shown in FIG. 3 and 4, the flow of the molten resin at the time of molding is indicated by arrows.

まず、図3に示すように、容器2Aの底面の中心となる位置にゲート位置(図中、符号2yで示す)を設定した金型を用いて射出成形すると、溶融樹脂は、ゲートから放射状に広がった後、例えば符号α1で示す矢印のように、側壁22Aの頂部24Aに向かって流れる。一方、蓋3Aの上面33Aの中心にゲート位置(図中、符号3yで示す)を設定した金型を用いて射出成形すると、溶融樹脂は、ゲートから放射状に広がり、例えば符号β1で示す矢印のように周縁部32Aに向かって流れる。   First, as shown in FIG. 3, when injection molding is performed using a mold in which a gate position (indicated by 2y in the figure) is set at the center of the bottom surface of the container 2A, the molten resin is radiated from the gate. After spreading, it flows toward the top 24A of the side wall 22A, for example, as indicated by an arrow denoted by α1. On the other hand, when injection molding is performed using a mold in which the gate position (indicated by reference numeral 3y in the figure) is set at the center of the upper surface 33A of the lid 3A, the molten resin spreads radially from the gate, for example, the arrow indicated by reference numeral β1. So as to flow toward the peripheral portion 32A.

すると、符号α1、β1で示す矢印のように、容器2Aと蓋3Aとを溶着する部分である、容器2Aの頂部24Aと、蓋3Aの周縁部32Aとにおいて、成形時の樹脂の流動方向が交差する部分が多く発生することとなる。   Then, as indicated by arrows α1 and β1, the flow direction of the resin at the time of molding is the top 24A of the container 2A and the peripheral part 32A of the lid 3A, which are portions where the container 2A and the lid 3A are welded. Many intersections will occur.

本実施形態の中空成形体で形成材料として用いる樹脂は、溶融時に樹脂の流動方向に配向して固化する。そのため、図3に示すようなゲート位置の場合、容器2Aと蓋3Aとを溶着する部分である、容器2Aの頂部24Aと、蓋3Aの周縁部32Aとにおいて、互いの樹脂の配向方向が異なっていることとなる。発明者らは、樹脂がこのような配向状態となっている部材同士を溶着させた場合には、溶着部分の強度が出にくく、結果、破損しやすく気密性が低い中空成形体となることを見出した。   The resin used as the forming material in the hollow molded body of the present embodiment is oriented and solidified in the flow direction of the resin when melted. Therefore, in the case of the gate position as shown in FIG. 3, the resin orientation directions of the top portion 24A of the container 2A and the peripheral portion 32A of the lid 3A are different from each other in the portion where the container 2A and the lid 3A are welded. Will be. The inventors have found that when the members in which the resin is in such an orientation state are welded together, the strength of the welded portion is difficult to be obtained, resulting in a hollow molded body that is easily damaged and has low airtightness. I found it.

一方、図4に示すように、容器2のゲート跡2xとなる位置にゲート位置を設定した金型を用いて射出成形すると、溶融樹脂は、ゲートに対して対角側の角(符号26)に向けて流れる。すると、側壁22の頂部24の近傍を流動する樹脂の多くは、符号α2で示す矢印のように、頂部24に沿って頂部24の面方向に流動する。   On the other hand, as shown in FIG. 4, when injection molding is performed using a mold in which the gate position is set at a position that becomes the gate mark 2x of the container 2, the molten resin has a diagonal angle (reference numeral 26) with respect to the gate. It flows toward. Then, most of the resin that flows in the vicinity of the top 24 of the side wall 22 flows along the top 24 in the surface direction of the top 24 as indicated by an arrow α2.

また、蓋3のゲート跡3xとなる位置にゲート位置を設定した金型を用いて射出成形すると、溶融樹脂は、ゲートに対して対角側の角(符号34)に向けて流れる。すると、周縁部32の近傍を流動する樹脂の多くは、符号β2で示す矢印のように、蓋3の外周に沿って流動する。   Further, when injection molding is performed using a mold in which the gate position is set to the position of the gate mark 3x of the lid 3, the molten resin flows toward a corner (reference numeral 34) on the diagonal side with respect to the gate. Then, most of the resin that flows in the vicinity of the peripheral edge portion 32 flows along the outer periphery of the lid 3 as indicated by an arrow denoted by β2.

すると、符号α2、β2で示す矢印のように、容器2と蓋3とを溶着する部分である、容器2の頂部24と、蓋3の周縁部32とにおいて、成形時の樹脂の流動方向が同方向となる部分が多く発生することとなる。このような箇所では、互いの樹脂の配向方向がそろっていることとなる。発明者らは、このような樹脂配向状態の容器2と蓋3とを溶着させた場合には、溶着部分の強度が出やすく、結果、破損しにくく気密性が高い中空成形体とすることができることを見出した。   Then, as indicated by arrows α2 and β2, the flow direction of the resin at the time of molding at the top 24 of the container 2 and the peripheral edge 32 of the lid 3, which is a portion where the container 2 and the lid 3 are welded, is as follows. Many portions in the same direction will occur. In such places, the orientation directions of the resins are aligned. When the inventors have welded the container 2 and the lid 3 in such a resin-oriented state, the strength of the welded portion is likely to be obtained, and as a result, a hollow molded body that is hard to break and has high airtightness is obtained. I found out that I can do it.

図5は、直方体形状を呈する容器のゲート跡の好適な位置(すなわち、成形時のゲート位置の好適な位置)を示す模式図である。   FIG. 5 is a schematic diagram showing a suitable position of the gate mark of the container having a rectangular parallelepiped shape (that is, a suitable position of the gate position at the time of molding).

図5に示すように、容器2は、容器2のゲート跡が、容器2の底面25側の角27を中心として、底面25側の角27から隣接する角までの距離の6分の1以内の領域にあることが好ましい。図では、容器2においてゲート跡が位置すると好ましい領域を、符号28で示している。なお、図5では、容器2の幅、奥行き、高さを、それぞれ符号W,D,H1で示している。   As shown in FIG. 5, the container 2 has a gate trace of the container 2 within one-sixth of the distance from the corner 27 on the bottom surface 25 side to the adjacent corner, with the corner 27 on the bottom surface 25 side of the container 2 as the center. It is preferable that it exists in the area | region. In the figure, a region where the gate mark is preferably located in the container 2 is indicated by reference numeral 28. In addition, in FIG. 5, the width | variety, depth, and height of the container 2 are each shown with the code | symbol W, D, and H1.

また、図6は、直方体形状を呈する蓋のゲート跡の好適な位置(すなわち、成形時のゲート位置の好適な位置)を示す模式図である。   FIG. 6 is a schematic diagram showing a preferred position of the gate trace of the lid having a rectangular parallelepiped shape (that is, a preferred position of the gate position during molding).

図に示すように、蓋3の上面33aおよび下面33bでは、蓋3のゲート跡が、蓋3の上面33a側の角35を中心として、上面33a側の角35から隣接する角までの距離の6分の1以内、および蓋3の下面33b側の角36を中心として、下面33b側の角36から隣接する角までの距離の6分の1以内の領域であって、円弧または楕円弧で囲まれる領域にあることが好ましい。さらには、蓋のゲート跡は、気密性を高める観点から、容器と蓋との接触部分以外の領域にあることが好ましい。   As shown in the figure, on the upper surface 33a and the lower surface 33b of the lid 3, the gate trace of the lid 3 is centered on the corner 35 on the upper surface 33a side of the lid 3 and the distance from the corner 35 on the upper surface 33a side to the adjacent corner. An area within one-sixth and within one-sixth of the distance from the corner 36 on the lower surface 33b side to the adjacent corner, centered on the corner 36 on the lower surface 33b side of the lid 3, and surrounded by an arc or elliptical arc It is preferable that it exists in the area | region. Furthermore, the gate trace of the lid is preferably in a region other than the contact portion between the container and the lid, from the viewpoint of improving airtightness.

また、蓋3の側面39では、蓋3のゲート跡が、蓋3の上面33aおよび下面33bの隣接する角同士を結ぶ稜線(例えば、符号37で示す稜線)から、対向する稜線までの距離の6分の1以内の領域にあることが好ましい。   Further, on the side surface 39 of the lid 3, the gate trace of the lid 3 has a distance from the ridge line (for example, the ridge line indicated by reference numeral 37) connecting adjacent corners of the upper surface 33 a and the lower surface 33 b of the lid 3 to the opposite ridge line. It is preferable that it exists in the area | region within 1/6.

図では、蓋3においてゲート跡が位置すると好ましい領域を、符号38で色づけして示している。なお、図6では、蓋3の幅、奥行き、高さを、それぞれ符号W,D,H2で示している。   In the figure, the region where the gate mark is preferably located on the lid 3 is indicated by the reference numeral 38. In FIG. 6, the width, depth, and height of the lid 3 are indicated by symbols W, D, and H2, respectively.

容器2および蓋3において、これらの位置にゲート跡がある場合、容器2および蓋3が、これらの位置にゲートが配置された金型を用いて射出成形されたことを意味する。このような成形体(容器2、蓋3)では、容器2と蓋3とを溶着する部分である、容器2の頂部24と、蓋3の周縁部32とにおいて、成形時の樹脂の流動方向が同方向となる部分が多く発生し、樹脂の配向方向が揃いやすくなる。そのため、容器2と蓋3とを溶着させた場合に、溶着部分の強度が出やすく、結果、破損しにくく気密性が高い中空成形体とすることができる。また、このように角近傍から樹脂を射出して成形する場合、目的とする中空成形体の外形形状が本実施形態のように直方体であると、容器2と蓋3とを溶着する部分において樹脂の配向方向が揃いやすく好ましい。   In the container 2 and the lid 3, when there is a gate mark at these positions, it means that the container 2 and the lid 3 are injection-molded using a mold in which the gate is disposed at these positions. In such a molded body (container 2 and lid 3), the resin flow direction at the time of molding at the top portion 24 of the container 2 and the peripheral edge portion 32 of the lid 3, which are portions where the container 2 and the lid 3 are welded. Are generated in the same direction, and the orientation direction of the resin is easily aligned. Therefore, when the container 2 and the lid 3 are welded, the strength of the welded portion is easily obtained, and as a result, a hollow molded body that is hard to break and has high airtightness can be obtained. Further, when the resin is injected and molded from the vicinity of the corner as described above, if the outer shape of the target hollow molded body is a rectangular parallelepiped as in this embodiment, the resin is welded at the portion where the container 2 and the lid 3 are welded. It is preferable that the orientation directions are easily aligned.

図7は、容器2の概略断面図である。ゲート位置は、射出成形の金型の割り位置に応じて定まるところ、図に示す容器2においては、底面25の端部であって側壁の外面29の面方向(符号L)、底面25の端部であって底面方向(符号M)、底部21の収容空間S側の面と同じ高さであって底面方向(符号N)に樹脂を射出する位置のゲートを例示することができる。また、側壁22の頂部24において頂部24の面方向に樹脂を流動させるという観点からは、頂部24と同じ高さであって頂部24の面方向(符号X)に樹脂を射出する位置のゲートであってもよい。   FIG. 7 is a schematic cross-sectional view of the container 2. The gate position is determined according to the split position of the injection mold. In the container 2 shown in the figure, it is the end portion of the bottom surface 25, the surface direction of the outer surface 29 of the side wall (symbol L), and the end of the bottom surface 25. It is possible to exemplify a gate at a position where the resin is injected in the bottom surface direction (symbol M), the same height as the surface of the bottom portion 21 on the side of the accommodation space S, and in the bottom surface direction (symbol N). Further, from the viewpoint of flowing the resin in the surface direction of the top 24 at the top 24 of the side wall 22, the gate is located at the same height as the top 24 and injecting the resin in the surface direction (reference numeral X) of the top 24. There may be.

なお、容器2は、底部21の平均肉厚TBと、側壁22の平均肉厚TWとは、以下の式(I)に示す関係を示すことが好ましい。
4TB≧TW>3/4TB …(I)
In the container 2, it is preferable that the average thickness TB of the bottom portion 21 and the average thickness TW of the side wall 22 show a relationship represented by the following formula (I).
4TB ≧ TW> 3 / 4TB (I)

TBとTWとは、好ましくは4TB≧TW≧TBである。TBとTWとがTW>3/4TBであると、容器2においてウェルドラインが底部21に位置しにくくなり、ウェルドラインが底部21にあることで発生しやすい気密の漏れを防止し、所望の樹脂の配向状態を得ることができる。また、4TB≧TWであると、容器2に反りが発生しにくい。   TB and TW are preferably 4 TB ≧ TW ≧ TB. If TB and TW satisfy TW> 3 / 4TB, the weld line in the container 2 is less likely to be located at the bottom 21, and the weld line is located at the bottom 21 to prevent airtight leakage that is likely to occur. The orientation state can be obtained. Further, when 4TB ≧ TW, the container 2 is unlikely to warp.

図8は、蓋3の概略断面図である。周縁部32の厚みTFは、図7に示す側壁22の頂部24の幅をLAとすると、LAに対して、0.2≦TF/LA≦1であることが好ましく、0.2≦TF/LA≦0.5であることがより好ましい。TF/LA≧0.2であると、得られる中空成形体の強度が十分なものとなる。TF/LA≦1であると、側壁22の頂部24に達する光量の減衰を抑制できる。これは、レーザー溶着時に周縁部32を透過させるレーザー光は、一部が周縁部32で散乱しレーザー光の光線軸と交差する方向に照射される成分が増えるところ、TF/LA≦1であると、散乱したとしてもレーザー光が広がる前に頂部24に照射されやすいためである。   FIG. 8 is a schematic cross-sectional view of the lid 3. The thickness TF of the peripheral edge 32 is preferably 0.2 ≦ TF / LA ≦ 1 with respect to LA, where LA is the width of the top 24 of the side wall 22 shown in FIG. 7, and 0.2 ≦ TF / More preferably, LA ≦ 0.5. When TF / LA ≧ 0.2, the strength of the obtained hollow molded article is sufficient. When TF / LA ≦ 1, attenuation of the amount of light reaching the top 24 of the side wall 22 can be suppressed. This is because TF / LA ≦ 1 when the laser light transmitted through the peripheral portion 32 at the time of laser welding has a component that is partially scattered at the peripheral portion 32 and irradiated in a direction intersecting the beam axis of the laser light. This is because even if the light is scattered, the top portion 24 is likely to be irradiated before the laser light spreads.

なお、蓋3においてレーザー光を照射しない凸部31は、平均厚みTRが、周縁部32の厚みTFに対し、0.8≦TF/TR≦1.2であることが好ましい。TF/TR≦1.2であると溶着部の溶着強度や気密性が出やすく、0.8≦TF/TRであると蓋3での反りの発生を抑制することができる。
本実施形態の中空成形体は、以上のような構成となっている。
In addition, it is preferable that the convex part 31 which does not irradiate the laser beam in the lid 3 has an average thickness TR of 0.8 ≦ TF / TR ≦ 1.2 with respect to the thickness TF of the peripheral part 32. When TF / TR ≦ 1.2, the weld strength and airtightness of the welded portion are easily obtained, and when 0.8 ≦ TF / TR, the occurrence of warpage at the lid 3 can be suppressed.
The hollow molded body of the present embodiment is configured as described above.

[中空成形体の製造方法]
本実施形態の中空成形体の製造方法は、溶融状態の流動方向に配向して固化する性質を有する熱可塑性樹脂を含む形成材料を用いて、容器と蓋とを射出成形する工程と、前記容器の開口部を前記蓋で閉じ、前記容器と前記蓋との接触部をレーザー溶着する工程と、を有し、前記射出成形する工程において、前記容器を、前記容器の底面の重心から前記底面の外周までの距離を基準として、前記重心から前記距離の3分の2以内の領域を除いた位置で、かつ前記容器を前記蓋で閉じた中空成形体の外側となる位置にゲート位置を設定した金型を用いて射出成形し、前記蓋を、前記蓋の上面および下面の平面視形状の重心から、それぞれの面における平面視形状の外周までの距離を基準として、それぞれの面の前記重心から前記距離の3分の2以内の領域を除いた位置にゲート位置を設定した金型を用いて射出成形するものである。
[Method for producing hollow molded body]
The method for producing a hollow molded body according to the present embodiment includes a step of injection-molding a container and a lid using a forming material containing a thermoplastic resin having a property of being oriented and solidified in a flow direction in a molten state, and the container Closing the opening of the container with the lid and laser welding the contact portion between the container and the lid, and in the injection molding step, the container is moved from the center of gravity of the bottom surface of the container to the bottom surface of the container. Based on the distance to the outer periphery, the gate position was set at a position excluding a region within 2/3 of the distance from the center of gravity and outside the hollow molded body with the container closed by the lid. From the center of gravity of the planar view shape of the upper surface and the lower surface of the lid to the outer periphery of the planar view shape of each surface as a reference, from the center of gravity of each surface More than two-thirds of the distance A position excluding the area in which injection molding using a mold in which set the gate position.

まず、容器および蓋は、上述したように、所定の領域を除いた位置に設定したゲートから射出成形して形成する。次いで、得られた容器と蓋とを、容器の開口部を蓋で閉じるように接触させた後、接触部をレーザー溶着して形成する。   First, as described above, the container and the lid are formed by injection molding from a gate set at a position excluding a predetermined region. Next, the obtained container and the lid are brought into contact with each other so that the opening of the container is closed with the lid, and then the contact portion is formed by laser welding.

図9は、レーザー溶着に用いる溶着装置を説明する模式図である。
図に示す溶着装置100は、レーザー溶着すべき容器2および蓋3を載置する載置台101と、容器2および蓋3を載置台101との間で挟持するヒートシンク102と、開口部103aを有しヒートシンク102を抑える枠体103と、を備えている。枠体103の開口部103aには、光透過性材料で形成された透明部材が嵌合していてもよい。
FIG. 9 is a schematic diagram illustrating a welding apparatus used for laser welding.
The welding apparatus 100 shown in the figure has a mounting table 101 on which the container 2 and the lid 3 to be laser welded are mounted, a heat sink 102 that holds the container 2 and the lid 3 between the mounting table 101, and an opening 103a. And a frame body 103 that holds down the heat sink 102. A transparent member made of a light transmissive material may be fitted in the opening 103a of the frame 103.

載置台101は、金属材料や無機材料などの材料を用いて形成された板状の部材である。   The mounting table 101 is a plate-like member formed using a material such as a metal material or an inorganic material.

ヒートシンク102は、後述するレーザー光の透過率が50%以上であるとともに、熱伝導率が1W/mK以上であるものである。ヒートシンク102は、レーザー光の透過率が90%以上であると好ましい。また、熱伝導率が5W/mK以上であると好ましい。このようなヒートシンク102の形成材料としては、例えば、透明アルミナ、透明ベリリア、透明マグネシウム、石英ガラス、サファイア、シリコン等を挙げることができる。   The heat sink 102 has a laser light transmittance of 50% or more, which will be described later, and a thermal conductivity of 1 W / mK or more. The heat sink 102 preferably has a laser light transmittance of 90% or more. Moreover, it is preferable in thermal conductivity being 5 W / mK or more. Examples of the material for forming the heat sink 102 include transparent alumina, transparent beryllia, transparent magnesium, quartz glass, sapphire, and silicon.

載置台101は、ばねや油圧シリンダーのような昇降機104により昇降自在に設けられており、載置台101と枠体103とは、複数(図では4本)の支柱105で接続されている。図では、昇降機104が油圧シリンダーであることとして示している。   The mounting table 101 is provided so as to be movable up and down by an elevator 104 such as a spring or a hydraulic cylinder. The mounting table 101 and the frame body 103 are connected by a plurality of (four in the figure) support columns 105. In the figure, the elevator 104 is shown as a hydraulic cylinder.

また、レーザー光を射出するレーザー光源106は、水平方向に走査可能に設けられ、載置台101の方向(下方向)にレーザー光を射出可能に設けられている。レーザー光源106は、光学ミラー、光ファイバー、レンズなどを用いることにより、レーザー光を微小領域に選択的に照射したり、レーザー光の焦点距離をずらして照射したりするなど、用途に応じてレーザー光の伝達経路を変えることができる構成であるとよい。   The laser light source 106 that emits laser light is provided so as to be able to scan in the horizontal direction, and is provided so that laser light can be emitted in the direction of the mounting table 101 (downward). The laser light source 106 uses an optical mirror, an optical fiber, a lens, or the like to selectively irradiate a laser beam to a minute region or to irradiate the laser beam with a different focal length. It is preferable that the transmission path can be changed.

レーザー光源106から照射するレーザー光の種類としては、色素レーザー、エキシマレーザー、アルゴンレーザー、クリプトンレーザー、ヘリウムーネオンレーザーなどの気体レーザー、ルビーレーザー、YAGレーザーなどの固体レーザー、半導体レーザー等が挙げられる。これらの中でも、800〜1200nmの範囲の波長を有するレーザー光が、容器2および蓋3を劣化させず、容器2と蓋3とを安定的に溶着させることができるため好ましい。   Examples of the type of laser light emitted from the laser light source 106 include gas lasers such as dye lasers, excimer lasers, argon lasers, krypton lasers, helium-neon lasers, solid lasers such as ruby lasers and YAG lasers, and semiconductor lasers. . Among these, laser light having a wavelength in the range of 800 to 1200 nm is preferable because the container 2 and the lid 3 can be stably welded without deteriorating the container 2 and the lid 3.

なお、図に示す溶着装置100では、昇降機104が接続された載置台101を昇降する構成としたが、載置台101とヒートシンク102との離間距離を相対的に変化させることが可能であれば、他の構成も採用できる。例えば、載置台101を固定し、ヒートシンク102と枠体103とを昇降させる構成としても構わない。   In the welding apparatus 100 shown in the figure, the mounting table 101 to which the elevator 104 is connected is moved up and down. However, if the separation distance between the mounting table 101 and the heat sink 102 can be relatively changed, Other configurations can also be employed. For example, the mounting table 101 may be fixed and the heat sink 102 and the frame 103 may be moved up and down.

図10は、レーザー溶着の工程図である。
まず、図10(a)に示すように、必要に応じて容器2の収容空間Sに半導体素子などを収容した後、容器2および蓋3を重ね合わせ、載置台101に載置する。
FIG. 10 is a process diagram of laser welding.
First, as shown in FIG. 10A, a semiconductor element or the like is accommodated in the accommodation space S of the container 2 as necessary, and then the container 2 and the lid 3 are overlapped and placed on the placing table 101.

次いで、昇降機104により載置台101を上昇させる。載置台101の上昇により、蓋3がヒートシンク102に当接し、容器2および蓋3は載置台101と枠体103との間に挟持され加圧される。これにより、容器2および蓋3が密着し固定される。この際の圧力は、容器2および蓋3の形状を損なわないためにも、10MPa以下が好ましい。なお、載置台101と容器2の間に、シリコーンゴムなどで形成された弾性部材を挟むこととしてもよい。   Next, the mounting table 101 is raised by the elevator 104. As the mounting table 101 rises, the lid 3 comes into contact with the heat sink 102, and the container 2 and the lid 3 are sandwiched and pressed between the mounting table 101 and the frame body 103. Thereby, the container 2 and the lid | cover 3 contact | adhere and are fixed. The pressure at this time is preferably 10 MPa or less so as not to impair the shapes of the container 2 and the lid 3. An elastic member made of silicone rubber or the like may be sandwiched between the mounting table 101 and the container 2.

次いで、図10(b)に示すように、レーザー光源106から容器2と蓋3との接触部にレーザー光LBを照射する。レーザー光LBのエネルギーは、容器2の分解・劣化や変形を抑制するため、100W以下であるとよい。また、レーザー光源106の走査速度は、2mm/秒以上が好ましい。   Next, as illustrated in FIG. 10B, the laser light LB is irradiated from the laser light source 106 to the contact portion between the container 2 and the lid 3. The energy of the laser beam LB is preferably 100 W or less in order to suppress decomposition / deterioration and deformation of the container 2. The scanning speed of the laser light source 106 is preferably 2 mm / second or more.

レーザー光LBは、蓋3を透過して容器2に照射される。容器2にはレーザー光LBを吸収し発熱する着色剤が含有されているため、容器2における蓋3との接触部にレーザー光LBが照射されたときに、接触部が加熱され容器2および蓋3が互いに溶融する。その後、溶融した樹脂が冷却され固化することにより、容器2が蓋3で密閉された本実施形態の中空成形体1を得ることができる。   The laser beam LB passes through the lid 3 and is irradiated to the container 2. Since the container 2 contains a colorant that absorbs the laser beam LB and generates heat, the contact portion is heated when the contact portion of the container 2 with the lid 3 is irradiated with the laser beam LB. 3 melt together. Thereafter, the molten resin is cooled and solidified, whereby the hollow molded body 1 of the present embodiment in which the container 2 is sealed with the lid 3 can be obtained.

その際、本実施形態の容器2と蓋3との接触部では、樹脂の配向方向がそろっている部分が多いため、溶着部分の強度が出やすく、結果、破損しにくく気密性が高い中空成形体1とすることができる。
本実施形態の中空成形体の製造方法は、以上のような構成となっている。
At that time, in the contact portion between the container 2 and the lid 3 of the present embodiment, since there are many portions where the orientation directions of the resin are aligned, the strength of the welded portion is easily obtained, and as a result, the hollow molding that is hard to break and has high airtightness. The body 1 can be obtained.
The manufacturing method of the hollow molded object of this embodiment becomes the above structures.

以上のような構成の中空成形体によれば、高い気密性を有する中空成形体を提供することができる。   According to the hollow molded body having the above configuration, a hollow molded body having high airtightness can be provided.

また、以上のような製造方法によれば、高い気密性を有する中空成形体を容易に製造することができる。   Moreover, according to the above manufacturing method, the hollow molded object which has high airtightness can be manufactured easily.

なお、本実施形態の中空成形体は、内部の収容空間に半導体素子を封入することにより、半導体素子収納用ケースとして使用することができる。その他、半導体素子以外にも、イメージセンサー、加速度センサーなどのセンサー、振動子などを封入した電子部品収納用ケースとして使用することもできる。   In addition, the hollow molded object of this embodiment can be used as a case for housing a semiconductor element by enclosing the semiconductor element in an internal housing space. In addition to the semiconductor element, it can also be used as a case for storing an electronic component in which a sensor such as an image sensor or an acceleration sensor, a vibrator, or the like is enclosed.

以下、本発明の実施例について説明する。なお、本発明は実施例に限定されるものではない。   Examples of the present invention will be described below. In addition, this invention is not limited to an Example.

[実施例1〜6、比較例1〜6]
着色剤を含有する液晶ポリエステル(住友化学製、スミカスーパーLCP E6808THF BZ、流動開始温度306℃、分解開始温度499℃)を射出成形して容器を成形し、着色剤を含有しない液晶ポリエステル(住友化学製、スミカスーパーLCP E6808THF Z、流動開始温度306℃、分解開始温度499℃)を射出成形して蓋を成形した。容器と蓋との形状は図1に示すものと同様のものである。
[Examples 1-6, Comparative Examples 1-6]
Liquid crystalline polyester containing a colorant (Sumitomo Chemical, Sumika Super LCP E6808THF BZ, flow start temperature 306 ° C., decomposition start temperature 499 ° C.) is injection molded to form a container, and liquid crystal polyester containing no colorant (Sumitomo Chemical) Manufactured by Sumika Super LCP E6808THF Z, flow start temperature 306 ° C., decomposition start temperature 499 ° C.) was injection molded to form a lid. The shape of the container and the lid is the same as that shown in FIG.

図11は、実施例および比較例で成形した容器および蓋の形状を示す模式図である。図11(a)(b)は、容器の概略斜視図および断面図であり、図11(c)(d)は、蓋の概略斜視図および断面図である。   FIG. 11 is a schematic view showing shapes of containers and lids molded in Examples and Comparative Examples. 11A and 11B are a schematic perspective view and a cross-sectional view of the container, and FIGS. 11C and 11D are a schematic perspective view and a cross-sectional view of the lid.

作成した容器の寸法は、外寸(Wa×Da×Ha)が8.6mm×8.6mm×1.44mm、収容空間内寸(Wb×Db×Hb)6.8mm×6.8mm×0.94mmであった。
蓋の寸法は、9mm×9mm角(Wc×Dc)、内側の凸部の厚み(Hc)は0.35mm、周縁部の厚み(Hd)は0.3mm、幅(Wd)は1.2mmであった。
The dimensions of the prepared container are 8.6 mm x 8.6 mm x 1.44 mm for the outer dimensions (Wa x Da x Ha), and 6.8 mm x 6.8 mm x 0.00 for the inner dimensions of the housing space (Wb x Db x Hb). It was 94 mm.
The dimensions of the lid are 9 mm x 9 mm square (Wc x Dc), the thickness of the inner convex part (Hc) is 0.35 mm, the thickness of the peripheral part (Hd) is 0.3 mm, and the width (Wd) is 1.2 mm. there were.

溶着装置の載置台の上に、容器を蓋で閉じた状態で容器と蓋とを載置し、さらに蓋に石英ガラスからなるヒートシンクを載置した状態で、ばねで付勢して容器、蓋、ヒートシンクを互いに密着させた。容器と蓋との接触部に、レーザー発振器((株)ファインディバイス製、FD−200−50)から、10mm/秒の速度で走査させながらレーザー光(波長940nm、焦点におけるレーザー径0.2mm、レーザー出力9.7W)を照射した。その際、レーザー光の焦点の中心が、容器の側壁の頂部における中心線を通るように照射しながら走査した。
その後、容器および蓋を冷却し中空成形体を得た。中空成形体は合計10個作製した。
On the mounting table of the welding apparatus, the container and the lid are placed in a state where the container is closed with a lid, and the heat sink made of quartz glass is placed on the lid, and the container and the lid are energized by a spring. The heat sinks were brought into close contact with each other. Laser light (wavelength 940 nm, laser diameter 0.2 mm at the focus, while scanning at a speed of 10 mm / second from a laser oscillator (FD-200-50, manufactured by Fine Devices Co., Ltd.) at the contact portion between the container and the lid. The laser output was 9.7 W). At that time, scanning was performed while irradiating the center of the focus of the laser light so as to pass through the center line at the top of the side wall of the container.
Thereafter, the container and the lid were cooled to obtain a hollow molded body. A total of 10 hollow molded articles were produced.

中空成形体は、以下の方法(バブルリークテスト)で気密性を確認した。   The hollow molded body was confirmed to be airtight by the following method (bubble leak test).

(バブルリークテスト)
125℃に加温したフロリナート中に、中空成形体を浸漬させ、1分間の間に気泡の発生の有無を確認し、気泡の発生がなければ合格とした。合格数が0〜3のものは「×」、合格数が4〜6のものは「△」、合格数が7〜10のものは「○」と評価し、「×」のものを不合格と評価した。
(Bubble leak test)
The hollow molded body was immersed in Fluorinert heated to 125 ° C., and the presence or absence of bubbles was confirmed in 1 minute. Those with a pass number of 0-3 are evaluated as “×”, those with a pass number of 4-6 are evaluated as “△”, those with a pass number of 7-10 are evaluated as “◯”, and those with a “×” are rejected. It was evaluated.

[実施例7]
容器の外寸のうち高さ(Ha)を1.19mmとしたこと以外は、実施例1と同様にして中空成形体を作製し、気密性の評価を行った。
[Example 7]
A hollow molded body was produced in the same manner as in Example 1 except that the height (Ha) of the outer dimensions of the container was 1.19 mm, and hermeticity was evaluated.

[実施例8]
容器の外寸のうち高さ(Ha)を1.84mmとしたこと以外は、実施例1と同様にして中空成形体を作製し、気密性の評価を行った。
[Example 8]
A hollow molded body was produced in the same manner as in Example 1 except that the height (Ha) of the outer dimensions of the container was 1.84 mm, and the airtightness was evaluated.

[実施例9]
容器の外寸のうち高さ(Ha)を2.14mmとしたこと以外は、実施例1と同様にして中空成形体を作製し、気密性の評価を行った。
[Example 9]
A hollow molded body was produced in the same manner as in Example 1 except that the height (Ha) of the outer dimensions of the container was 2.14 mm, and hermeticity was evaluated.

実施例1〜9および比較例1〜6において、容器のゲート跡は、図に示す符号A〜Dのいずれかに位置していた。符号A〜Dのゲート位置は、詳しくは以下のような位置であった。また、射出成形に用いた金型において、ゲート径は0.3mmであった。
A:ゲート中心が、容器の垂直方向の稜線(符号200)上であって、容器底面から0.25mmの位置となるように設定されたゲートの位置
B:ゲート中心が、容器側壁の中間位置(稜線200から1/2Daの位置)であって、容器底面から0.25mmの位置となるように設定されたゲートの位置
C:ゲート中心が、容器底面の角近傍であって2辺からの距離が0.7mmの位置となるように設定されたゲートの位置
D:ゲート中心が、容器底面の中心となるように設定されたゲートの位置
In Examples 1-9 and Comparative Examples 1-6, the gate trace of the container was located in any one of the signs A to D shown in the figure. Specifically, the gate positions indicated by reference signs A to D were as follows. In the mold used for injection molding, the gate diameter was 0.3 mm.
A: The gate center is located on the vertical ridge line (reference numeral 200) of the container and is set to be 0.25 mm from the bottom surface of the container. B: The gate center is the intermediate position of the container side wall. (Position of the ridge line 200 to 1/2 Da) and the position of the gate set to be 0.25 mm from the container bottom surface C: the gate center is near the corner of the container bottom surface and from two sides The position of the gate set so that the distance is 0.7 mm D: The position of the gate set so that the center of the gate is the center of the bottom of the container

また、実施例1〜9および比較例1〜6において、蓋のゲート位置は、図に示す符号I〜IIIのいずれかに位置していた。符号I〜IIIのゲート位置は、詳しくは以下のような位置であった。また、射出成形に用いた金型において、ゲート径は0.2mmであった。
I:ゲート中心が、蓋の垂直方向の稜線(符号300)上であって、図11(d)に符号310で示す基準面から0.15mm上方の位置となるように設定されたゲートの位置
II:ゲート中心が、蓋側壁の中間位置(稜線300から1/2Dcの位置)であって、基準面310から0.15mmの位置となるように設定されたゲートの位置
III:ゲート中心が、蓋上面の中心となるように設定されたゲートの位置
Moreover, in Examples 1-9 and Comparative Examples 1-6, the gate position of the lid | cover was located in either of the code | symbols I-III shown to a figure. Specifically, the gate positions indicated by symbols I to III were as follows. In the mold used for injection molding, the gate diameter was 0.2 mm.
I: The position of the gate set so that the gate center is on the vertical ridgeline (reference numeral 300) of the lid and is 0.15 mm above the reference plane indicated by reference numeral 310 in FIG.
II: The position of the gate that is set so that the center of the gate is the middle position of the lid side wall (position of the ridgeline 300 to 1 / 2Dc) and the position of 0.15 mm from the reference plane 310
III: Gate position set so that the center of the gate is the center of the top of the lid

実施例1〜9および比較例1〜6において、得られた中空成形体についてのバブルリークテストの結果を表1に示す。   In Examples 1 to 9 and Comparative Examples 1 to 6, Table 1 shows the results of the bubble leak test for the obtained hollow molded bodies.

Figure 2013203047
Figure 2013203047

評価の結果、比較例1〜6のように、ゲート跡が容器の底面中心となる成形条件(条件D)、または蓋の上面中心となる成形条件(条件III)の部材のいずれかを用いた中空成形体は、気密性が低くなった。   As a result of the evaluation, as in Comparative Examples 1 to 6, either a molding condition (condition D) in which the gate mark is the center of the bottom surface of the container or a molding condition (condition III) in which the top surface of the lid is the center is used. The hollow molded body had low airtightness.

対して、実施例1〜9のように、容器のゲート跡が条件A〜Cのもの、および蓋のゲート位置が条件I、IIのものを用いた中空成形体は、高い気密性を有することが分かった。   On the other hand, as in Examples 1 to 9, the hollow molded body using the container gate traces in the conditions A to C and the lid gate position in the conditions I and II has high airtightness. I understood.

さらに、容器の底部の肉厚(TB)と側壁の肉厚(TW)とが、4TB≧TW≧TBを満たす実施例7,8の中空成形体は、この関係を満たさない実施例9の中空成形体よりも、高い気密性を有することが分かった。   Further, the hollow molded bodies of Examples 7 and 8 in which the thickness (TB) of the bottom of the container and the thickness (TW) of the side wall satisfy 4TB ≧ TW ≧ TB are hollow in Example 9 that does not satisfy this relationship. It turned out that it has airtightness higher than a molded object.

これらの結果から、本発明の中空成形体は気密性が高いものとなることが確かめられ、本発明の中空成形体の製造方法では、気密性が高い中空成形体を提供できることが分かった。   From these results, it was confirmed that the hollow molded body of the present invention has high airtightness, and it was found that the method for producing a hollow molded body of the present invention can provide a hollow molded body with high airtightness.

1…中空成形体、2…容器、2x…ゲート跡、3…蓋、3x…ゲート跡、21…底部、22…側壁、23…開口部、24…頂部、25…底面、27…角、28…領域、29…外面、31…凸部、32…周縁部、33a…上面、35,36…角、37…稜線、38…領域、39…側面、100…溶着装置、101…載置台、102…ヒートシンク、103a…開口部、103…枠体、104…昇降機、105…支柱、106…レーザー光源、AR1…領域、AR2…領域、G1…重心、G2…重心、L1…距離、L2…距離、S…収容空間 DESCRIPTION OF SYMBOLS 1 ... Hollow molded object, 2 ... Container, 2x ... Gate trace, 3 ... Lid, 3x ... Gate trace, 21 ... Bottom part, 22 ... Side wall, 23 ... Opening part, 24 ... Top part, 25 ... Bottom, 27 ... Corner, 28 ... Area, 29 ... Outer surface, 31 ... Projection, 32 ... Peripheral part, 33a ... Upper surface, 35, 36 ... Corner, 37 ... Edge line, 38 ... Area, 39 ... Side, 100 ... Welding device, 101 ... Mounting table, 102 DESCRIPTION OF SYMBOLS ... Heat sink, 103a ... Opening part, 103 ... Frame, 104 ... Elevator, 105 ... Strut, 106 ... Laser light source, AR1 ... Area, AR2 ... Area, G1 ... Center of gravity, G2 ... Center of gravity, L1 ... Distance, L2 ... Distance, S ... Containment space

Claims (6)

容器と前記容器を密閉する蓋とをレーザー溶着させてなる中空成形体であって、
前記容器および前記蓋は、熱可塑性樹脂を含む形成材料の射出成形体であり、それぞれ射出成形時のゲート跡を有し、
前記熱可塑性樹脂は、溶融状態の流動方向に配向して固化する性質を有し、
前記容器のゲート跡が、前記中空成形体の外側となる位置であって、前記容器の底面の形状の重心から前記底面の外周までの距離を基準として、前記重心から前記距離の3分の2以内の領域を除いた位置にあり、
前記蓋のゲート跡が、前記蓋の上面および下面の平面視形状の重心から、それぞれの面における平面視形状の外周までの距離を基準として、それぞれの面の前記重心から前記距離の3分の2以内の領域を除いた位置にある中空成形体。
A hollow molded body formed by laser welding a container and a lid for sealing the container,
The container and the lid are injection molded bodies of a forming material containing a thermoplastic resin, each having a gate mark at the time of injection molding,
The thermoplastic resin has the property of being oriented and solidified in the flow direction in the molten state,
The gate trace of the container is a position on the outside of the hollow molded body, and the distance from the center of gravity of the shape of the bottom surface of the container to the outer periphery of the bottom surface is set to 2/3 of the distance from the center of gravity. It is in a position excluding the area within
The gate trace of the lid is a third of the distance from the center of gravity of each surface on the basis of the distance from the center of gravity of the top view and the bottom surface of the lid to the outer periphery of the shape of the plan view on each surface. A hollow molded body in a position excluding a region within 2.
前記容器の底部の平均肉厚TBと、前記容器の側壁の平均肉厚TWとが、下記式(I)を満たす請求項1に記載の中空成形体。
4TB≧TW>3/4TB …(I)
The hollow molded body according to claim 1, wherein the average thickness TB of the bottom of the container and the average thickness TW of the side wall of the container satisfy the following formula (I).
4TB ≧ TW> 3 / 4TB (I)
前記底面の形状が多角形であり、
前記容器のゲート跡が、前記底面の角を中心として、前記底面の角から前記容器の隣接する角までの距離の6分の1以内の領域にあり、
前記蓋のゲート跡が、前記蓋の上面および下面では、前記上面および前記下面の角を中心として、それぞれの角から同じ面内の前記蓋の隣接する角までの距離の6分の1以内の領域にあり、
前記蓋の側面では、前記蓋の上面および下面の隣接する角同士を結ぶ稜線から、対向する稜線までの距離の6分の1以内の領域にある請求項1または2に記載の中空成形体。
The shape of the bottom surface is a polygon;
The gate trace of the container is in a region within one-sixth of the distance from the corner of the bottom surface to the adjacent corner of the container centering on the corner of the bottom surface;
The gate trace of the lid is within one-sixth of the distance from the respective corners to the adjacent corners of the lid in the same plane, with the corners of the upper and lower surfaces being the center at the upper and lower surfaces of the lid. In the area,
The hollow molded body according to claim 1 or 2, wherein the side surface of the lid is in a region within one-sixth of the distance from the ridge line connecting adjacent corners of the upper surface and the lower surface of the lid to the opposing ridge line.
外形形状が直方体である請求項1から3のいずれか1項に記載の中空成形体。   The hollow molded body according to any one of claims 1 to 3, wherein the outer shape is a rectangular parallelepiped. 前記熱可塑性樹脂が液晶ポリエステルである請求項1から4のいずれか1項に記載の中空成形体。   The hollow molded body according to any one of claims 1 to 4, wherein the thermoplastic resin is a liquid crystal polyester. 溶融状態の流動方向に配向して固化する性質を有する熱可塑性樹脂を含む形成材料を用いて、容器と蓋とを射出成形する工程と、
前記容器の開口部を前記蓋で閉じ、前記容器と前記蓋との接触部をレーザー溶着する工程と、を有し、
前記射出成形する工程において、前記容器を、前記容器の底面の重心から前記底面の外周までの距離を基準として、前記重心から前記距離の3分の2以内の領域を除いた位置で、かつ前記容器を前記蓋で閉じた中空成形体の外側となる位置にゲート位置を設定した金型を用いて射出成形し、
前記蓋を、前記蓋の上面および下面の平面視形状の重心から、それぞれの面における平面視形状の外周までの距離を基準として、それぞれの面の前記重心から前記距離の3分の2以内の領域を除いた位置にゲート位置を設定した金型を用いて射出成形する中空成形体の製造方法。
A step of injection-molding the container and the lid using a forming material containing a thermoplastic resin having the property of being oriented and solidified in the flow direction in the molten state;
Closing the opening of the container with the lid, and laser welding the contact portion between the container and the lid,
In the injection molding step, the container is located at a position excluding a region within two-thirds of the distance from the center of gravity with reference to the distance from the center of gravity of the bottom surface of the container to the outer periphery of the bottom surface, and Injection molding using a mold in which the gate position is set at a position on the outside of the hollow molded body closed with the lid,
With respect to the distance from the center of gravity of the plan view shape of the top and bottom surfaces of the lid to the outer periphery of the plan view shape of each surface, the lid is within two-thirds of the distance from the center of gravity of each surface. A method for producing a hollow molded body, wherein injection molding is performed using a mold in which a gate position is set at a position excluding an area.
JP2012077649A 2012-03-29 2012-03-29 Hollow molded body and method for manufacturing hollow molded body Pending JP2013203047A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2012077649A JP2013203047A (en) 2012-03-29 2012-03-29 Hollow molded body and method for manufacturing hollow molded body
PCT/JP2013/059308 WO2013147044A1 (en) 2012-03-29 2013-03-28 Method for manufacturing hollow molded article, hollow molded article and manufacturing device
US14/387,717 US20150037525A1 (en) 2012-03-29 2013-03-28 Method for manufacturing hollow molded article, hollow molded article, and manufacturing apparatus
CN201380016095.XA CN104205322B (en) 2012-03-29 2013-03-28 The manufacture method of blow moldings, blow moldings and manufacture device
CN201611041184.1A CN107030957B (en) 2012-03-29 2013-03-28 Manufacturing method, blow moldings and the manufacturing device of blow moldings

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012077649A JP2013203047A (en) 2012-03-29 2012-03-29 Hollow molded body and method for manufacturing hollow molded body

Publications (1)

Publication Number Publication Date
JP2013203047A true JP2013203047A (en) 2013-10-07

Family

ID=49522660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012077649A Pending JP2013203047A (en) 2012-03-29 2012-03-29 Hollow molded body and method for manufacturing hollow molded body

Country Status (1)

Country Link
JP (1) JP2013203047A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130383A (en) * 2014-01-06 2015-07-16 三菱電機株式会社 Semiconductor device
JP2016066452A (en) * 2014-09-24 2016-04-28 アルプス電気株式会社 Jack
WO2016088555A1 (en) * 2014-12-05 2016-06-09 オムロン株式会社 Mesh manufacturing method and mesh
WO2018003164A1 (en) * 2016-06-29 2018-01-04 日本電気硝子株式会社 Airtight package and method for manufacturing same
JP2018060989A (en) * 2016-10-04 2018-04-12 日本特殊陶業株式会社 Frame member, light-emitting device, and manufacturing method thereof
KR102136076B1 (en) * 2020-03-24 2020-07-21 주식회사 링크라인 Assemble and dissemble equipment of the closed container
JP2021022495A (en) * 2019-07-29 2021-02-18 日本電産コパル電子株式会社 Electronic component and manufacturing method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015130383A (en) * 2014-01-06 2015-07-16 三菱電機株式会社 Semiconductor device
JP2016066452A (en) * 2014-09-24 2016-04-28 アルプス電気株式会社 Jack
WO2016088555A1 (en) * 2014-12-05 2016-06-09 オムロン株式会社 Mesh manufacturing method and mesh
JP2016107515A (en) * 2014-12-05 2016-06-20 オムロン株式会社 Mesh manufacturing method and mesh
US10525658B2 (en) 2014-12-05 2020-01-07 Omron Corporation Method for producing mesh, and mesh
WO2018003164A1 (en) * 2016-06-29 2018-01-04 日本電気硝子株式会社 Airtight package and method for manufacturing same
JP2018006456A (en) * 2016-06-29 2018-01-11 日本電気硝子株式会社 Airtight package and manufacturing method thereof
US10586745B2 (en) 2016-06-29 2020-03-10 Nippon Electric Glass Co., Ltd. Airtight package and method for manufacturing same
JP2018060989A (en) * 2016-10-04 2018-04-12 日本特殊陶業株式会社 Frame member, light-emitting device, and manufacturing method thereof
JP2021022495A (en) * 2019-07-29 2021-02-18 日本電産コパル電子株式会社 Electronic component and manufacturing method thereof
KR102136076B1 (en) * 2020-03-24 2020-07-21 주식회사 링크라인 Assemble and dissemble equipment of the closed container

Similar Documents

Publication Publication Date Title
JP2013203047A (en) Hollow molded body and method for manufacturing hollow molded body
WO2013147044A1 (en) Method for manufacturing hollow molded article, hollow molded article and manufacturing device
JP6071122B2 (en) Hollow molded body manufacturing method, hollow molded body and manufacturing apparatus
TWI634145B (en) Electron ray curable resin composition, resin frame for reflector, reflector, semiconductor light-emitting device and process for manufacturing molded article
US20090262520A1 (en) Backlight unit using a thermoplastic resin board
KR20130094308A (en) Optoelectronic semiconductor element and associated method of production by direct welding of glass housing components by means of ultra short pulsed laser without glass solder
TWI294696B (en) Side-emission type led package related application
US20080254242A1 (en) Method for producing welded resin material and welded resin material
JP2008239950A (en) Resin molded article and method for producing the same
JP2006522466A5 (en)
CN101653040A (en) Electronic device and method for manufacturing the same
JP2013203026A (en) Hollow molded body and method for manufacturing the same
JP2015109354A (en) Light-emitting device
JP2013203057A (en) Method for manufacturing hollow molded body and apparatus for manufacturing hollow molded body
KR102142388B1 (en) Led light source package
JP2011207056A (en) Method of manufacturing composite body
WO2015068585A1 (en) Sealing member, sealed substrate sealed by sealing member, and method for manufacturing same
JP2011107556A (en) Method of manufacturing display device, and the display device
JP2013203054A (en) Method for manufacturing hollow molded body, and hollow molded body
CN109071325A (en) Sealing device comprising transparent laser welding region
TWI614846B (en) Optical system and substrate sealing method
JP2013203027A (en) Method for manufacturing hollow molded body
TW201249625A (en) Liquid crystalline polymer molded article
US20100034070A1 (en) Optical pickup device and laser welding structure of optical components
CN110707199A (en) Deep ultraviolet LED device and packaging method thereof