JP2013202733A - Chip for cutting and friction work - Google Patents

Chip for cutting and friction work Download PDF

Info

Publication number
JP2013202733A
JP2013202733A JP2012074218A JP2012074218A JP2013202733A JP 2013202733 A JP2013202733 A JP 2013202733A JP 2012074218 A JP2012074218 A JP 2012074218A JP 2012074218 A JP2012074218 A JP 2012074218A JP 2013202733 A JP2013202733 A JP 2013202733A
Authority
JP
Japan
Prior art keywords
tip
workpiece
friction
cutting
processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012074218A
Other languages
Japanese (ja)
Other versions
JP5692864B2 (en
Inventor
Terutoshi Yakushiji
輝敏 薬師寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of National Colleges of Technologies Japan
Original Assignee
Institute of National Colleges of Technologies Japan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of National Colleges of Technologies Japan filed Critical Institute of National Colleges of Technologies Japan
Priority to JP2012074218A priority Critical patent/JP5692864B2/en
Publication of JP2013202733A publication Critical patent/JP2013202733A/en
Application granted granted Critical
Publication of JP5692864B2 publication Critical patent/JP5692864B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a chip for cutting and friction work, capable of reducing the generation amount of a cavity right below the surface of a workpiece and preventing generation of an annular metal piece in a burr state generated at an end point of friction work on the surface of the workpiece.SOLUTION: A side cutting blade is formed at the part on a chip feed side of a chip distal end part, so that a raised part on the surface of a workpiece is excised together with cracks by the side cutting blade, when a chip is moved in a feed direction accompanying friction work. Thus, the generation of a cavity right below the surface of the workpiece can be reduced. Also, the raised part is pertinent to a small burr part, so that an annular metal piece in a burr state that appears at the end part of the friction work on the surface accompanying the friction work is not generated, by successively excising the raised part by the side cutting blade immediately after being generated.

Description

この発明は、切削摩擦加工用チップ、詳しくは被加工材の表面から浅い領域に微細結晶粒層を形成可能な切削摩擦加工用チップに関する。   The present invention relates to a cutting friction processing chip, and more particularly to a cutting friction processing chip capable of forming a fine crystal grain layer in a shallow region from the surface of a workpiece.

近年、金属材の機械加工時にその表層が超強加工され、金属材の表面から厚さ数ミクロン〜数十ミクロン程度の浅い領域で、微細結晶組織が生成されることが発見された。微細結晶粒層は、母材に比べて高硬度で圧縮残留応力も高く、機械部品に好適な特性を有している。
微細結晶粒層の生成方法の1つとして、特許文献1に開示された摩擦加工が知られている。これは、例えば旋盤により回転中の被加工材(金属材)の外周面に、先端部の摩擦加工作用面がなだらかな湾曲面(丸面)の摩擦加工用チップを押し当てることで、被加工材の表層を微細結晶化するものである。
In recent years, it has been discovered that when a metal material is machined, the surface layer is processed extremely strongly, and a fine crystal structure is generated in a shallow region having a thickness of several microns to several tens of microns from the surface of the metal material. The fine crystal grain layer has higher hardness and higher compressive residual stress than the base material, and has characteristics suitable for machine parts.
As one of the methods for producing a fine crystal grain layer, friction processing disclosed in Patent Document 1 is known. This is because, for example, by pressing a tip for frictional machining (round surface) with a gently curved surface (round surface) on the outer peripheral surface of the workpiece (metal material) rotating by a lathe, the workpiece is processed. The surface layer of the material is finely crystallized.

特開2011−105991号公報JP 2011-105991 A

しかしながら、特許文献1で使用される摩擦加工用チップは、その被加工材の表面(加工面)と接触する摩擦加工作用面が、単に角部が存在しないなだらかな丸面となっているのみであった。そのため、摩擦加工時、チップ先端部の押し付け圧によって、チップ押し付け部分よりチップ送り方向の表面の一部が、(内部)亀裂を伴って盛り上がり、その直後、送り方向へ移動中のチップがこの盛り上がり部分を押しつぶすことで、表面改質後の表面直下の部分に、欠陥としての空洞が発生していた。しかも、このように表面から盛り上がって一部分が剥がれた金属片(付着物)が、摩擦加工の終点部分に迫り寄せられてササクレ状態で環状に付着していた。
また、摩擦加工後の被加工材の表面には、ツールマーク(摩擦加工痕)とは異なる深いキズ(窪み)が局所的に発生していた。これは、摩擦加工により表面が凹凸形状に荒れてしまい、そのうちの隆起部分(凸部)が剥がれて摩擦加工用チップの先端部に金属片として付着し、その後、このチップ先端部から剥がれた金属片が、摩擦加工中の被加工材とチップ先端部の摩擦加工作用面との間に挟み込まれ、被加工材の表面を傷つけたためと推察される。この局所的な深いキズは、被加工材の表面状態(表面粗さ)の悪化につながり、好ましくない。
However, in the friction processing chip used in Patent Document 1, the friction processing surface that comes into contact with the surface (processing surface) of the workpiece is simply a round surface with no corners. there were. Therefore, at the time of friction processing, due to the pressing pressure at the tip of the tip, a part of the surface in the tip feed direction rises with (internal) cracks from the tip pressing portion, and immediately after that, the tip moving in the feed direction rises up. By crushing the part, cavities as defects were generated in the part directly under the surface after the surface modification. In addition, the metal piece (attachment) that swelled from the surface and peeled off in this way was approached to the end point portion of the friction processing and attached in a ring shape in the sacrificial state.
In addition, deep flaws (dents) different from tool marks (friction processing marks) locally occurred on the surface of the workpiece after friction processing. This is because the surface is roughened by friction processing, and the raised portion (convex portion) is peeled off and attached as a metal piece to the tip of the tip for friction processing, and then the metal peeled off from the tip of the tip It is inferred that the piece was sandwiched between the workpiece being frictionally processed and the frictional working surface at the tip of the tip, thereby damaging the surface of the workpiece. This local deep scratch leads to deterioration of the surface condition (surface roughness) of the workpiece, which is not preferable.

そこで、発明者は、鋭意研究の結果、チップ先端部のうち、チップ送り側の部分に側方切れ刃を形成すれば、摩擦加工に伴い切削摩擦加工用チップを送り方向へ移動する際、側方切れ刃を使用して、チップ押し付け部分よりチップ送り方向の表面の盛り上がり部分を、亀裂(亀裂の一部または全部)ごと切除可能なことを知見し、この発明を完成させた。すなわち、あらかじめ側方切れ刃により盛り上がった部分を切除しておけば、その後、盛り上がった部分をチップ先端部が押しつぶすことで、被加工材の表面直下の亀裂を原因とした空洞の発生を低減できるとともに、摩擦加工に伴い表面の摩擦加工の終点部分に発生するササクレ状態の環状の金属片が発生しないように、摩擦加工しながら小さいササクレ部分を順次取り除くこともできる。
また発明者は、鋭意研究の結果、先端部の中央上側の部分に上方切れ刃を形成すれば、摩擦加工中に発生した金属片が被加工材に付着し、被加工材の回転に伴って摩擦加工中の被加工材とチップ先端部の摩擦加工作用面との間に(上方から)挟み込まれるのを防止できることを知見した。すなわち、従来チップによる摩擦加工では、摩擦加工により発生した金属片が摩擦加工用チップの先端部に付着し、その後、このチップ先端部から剥がれた金属片が、摩擦加工中の被加工材とチップ先端部の摩擦加工作用面との間に挟み込まれてしまい、その結果、ツールマークとは異なる深い傷が被加工材の表面に局所的に発生していたが、本発明ではこのような局所的な深いキズの発生を防止することができる。
Therefore, as a result of earnest research, the inventor has formed a side cutting edge at the tip feed side portion of the tip end portion, and when the tip for cutting friction machining is moved in the feed direction along with the friction machining, The present invention has been completed by discovering that it is possible to excise a bulge portion on the surface in the tip feed direction from the tip pressing portion with a crack (part or all of the crack) using a cutting edge. In other words, if the portion raised by the side cutting edge is cut in advance, then the tip end portion crushes the raised portion, thereby reducing the occurrence of cavities due to cracks directly under the surface of the workpiece. At the same time, it is possible to sequentially remove the small sacrificial portions while performing the friction processing so that the ring-shaped metal piece in the state of the brush generation generated in the end portion of the surface friction processing due to the friction processing does not occur.
In addition, as a result of earnest research, the inventor forms an upper cutting edge in the upper center portion of the tip, and the metal piece generated during the friction processing adheres to the workpiece, and as the workpiece rotates, It has been found that it can be prevented from being sandwiched (from above) between the workpiece during friction processing and the friction processing surface of the tip of the tip. In other words, in the friction processing using the conventional tip, the metal piece generated by the friction processing adheres to the tip end portion of the tip for friction processing, and then the metal piece peeled off from the tip end portion of the tip becomes the workpiece and the tip being friction processed. As a result, a deep flaw different from the tool mark is locally generated on the surface of the work material. Generation of deep scratches can be prevented.

この発明は、被加工材の表面直下での空洞の発生を低減することができるとともに、被加工材の表面の摩擦加工の終点部分に生じるササクレ状態の環状の金属片の発生を防止することができる切削摩擦加工用チップを提供することを目的としている。
また、この発明は、上述した効果に加えて、チップ先端部から剥がれた金属片を原因とする被加工材の表面の局所的な深いキズの発生を防止できる切削摩擦加工用チップを提供することを目的としている。
The present invention can reduce the generation of cavities directly under the surface of the workpiece, and can prevent the generation of a ring-shaped metal piece in a crumpled state that occurs at the end point of friction processing on the surface of the workpiece. It aims at providing the chip | tip for cutting friction processing which can be performed.
In addition to the above-described effects, the present invention also provides a cutting friction cutting tip that can prevent the occurrence of local deep scratches on the surface of a workpiece caused by a metal piece peeled off from the tip end portion. It is an object.

請求項1に記載の発明は、先端部に摩擦加工作用面を有し、かつ軸線回りに回転中の金属からなる被加工材の表面に前記先端部を押し当てて、前記被加工材の軸線と平行なチップ送り方向へ送られることで、前記被加工材の表面の浅い領域に超強加工としての摩擦加工を施す切削摩擦加工用チップにおいて、前記先端部のチップ送り側の部分には、前記被加工材の表面のうち、前記先端部の押し当て位置よりチップ送り方向の領域で、摩擦加工に伴って前記表面の一部分が盛り上がった部分を切除する側方切れ刃が形成された切削摩擦加工用チップである。   According to the first aspect of the present invention, the tip of the workpiece is pressed against the surface of the workpiece made of a metal having a friction working surface at the tip and rotating around the axis, and the axis of the workpiece is In the tip for cutting friction processing that performs friction processing as super-strong processing in the shallow region of the surface of the workpiece by being fed in the tip feed direction parallel to the tip feed portion, Cutting friction in which a side cutting edge is formed in the surface of the workpiece to cut away a portion of the surface raised from the pressing position of the tip portion in the tip feed direction along with the friction processing. Chip for processing.

請求項1に記載の発明によれば、摩擦加工に伴って切削摩擦加工用チップを送る際、側方切れ刃によって被加工材の表面の盛り上がり部分を切除する。これにより、従来は、亀裂を伴って被加工材の表面から盛り上がった部分を、その後に送り方向(摩擦加工方向)へ移動中の摩擦加工用チップの先端部が押しつぶすことで、被加工材の表面直下に空洞が発生していた。しかしながら、本発明ではこの盛り上がり部分を切削摩擦加工用チップの上方通過がなされる前に側方切れ刃によって亀裂(亀裂の一部または全部)ごと切除するため、空洞の発生を低減(防止)できる。しかも、この盛り上がり部分は、見方を変えれば被加工材の表面の小さなササクレ部分となる。そこで、この盛り上がり部分を、その発生直後に側方切れ刃によって順次切除することで、従来品による摩擦加工の場合には、摩擦加工に伴い表面の摩擦加工の終点部分に現出していたササクレ状態の環状の金属片の発生を防止することができる。   According to the first aspect of the present invention, when the cutting friction processing chip is sent along with the friction processing, the raised portion on the surface of the workpiece is cut by the side cutting edge. Thus, conventionally, the tip of the tip for friction processing that is moving in the feed direction (friction processing direction) is then crushed at the portion that has risen from the surface of the workpiece with a crack, so that the workpiece There was a cavity directly under the surface. However, in the present invention, since this raised portion is excised together with a crack (a part or all of the crack) by the side cutting edge before the cutting friction processing tip is passed upward, the generation of a cavity can be reduced (prevented). . In addition, this bulging portion becomes a small crumpled portion on the surface of the workpiece, if viewed differently. Therefore, this raised part is cut off with the side cutting blades immediately after the occurrence, and in the case of friction processing with the conventional product, the brushed state that appeared at the end point of the friction processing on the surface with friction processing The generation of the annular metal piece can be prevented.

ここでいう摩擦加工とは、金属からなる被加工材の表面に、切削摩擦加工用チップの先端部のなだらかに湾曲した摩擦加工作用面を押し当てることにより、被加工材の表面から厚さ数ミクロンから数十ミクロン程度の表層(浅い領域)に、微細結晶組織への表面改質を伴う微細結晶粒層と、微細結晶組織への表面改質を伴わず、かつ摩擦加工による塑性変形により発生する加工硬化層とのうち、少なくとも加工硬化層を生成させる超強加工である。なお、被加工材の表層に微細結晶粒層と加工硬化層との両方が生成される摩擦加工では、被加工材の表面からその内部へ向かって微細結晶粒層と加工硬化層とが連続して生成される。摩擦加工を施す際には、例えば、金属研削加工用の旋盤を用い、バイトに固定される研削用チップ(刃)に代えて切削摩擦加工用チップを採用し、そのチップ先端部の摩擦加工作用面を被加工材の表面に押し当てて、被加工材の表層に微細結晶化等を施す。具体的には、被加工材の外周面(表面)を右片刃バイトに固定した切削摩擦加工用チップにより摩擦加工する場合が挙げられる。   The friction processing here refers to the number of thicknesses from the surface of the workpiece by pressing the gently curved friction processing surface of the tip of the cutting friction processing tip against the surface of the workpiece made of metal. The surface layer (shallow region) of micron to several tens of microns is generated by a fine grain layer with surface modification to a fine crystal structure and plastic deformation by friction processing without surface modification to the fine crystal structure. Among the work-hardened layers to be performed, at least a work-hardened layer is generated. In the friction processing in which both the fine crystal grain layer and the work hardened layer are generated on the surface layer of the work material, the fine crystal grain layer and the work hardened layer are continuous from the surface of the work material to the inside thereof. Generated. When performing friction processing, for example, using a lathe for metal grinding processing, adopting a cutting friction processing tip instead of a grinding tip (blade) fixed to a cutting tool, the friction processing action of the tip of the tip The surface is pressed against the surface of the workpiece, and the surface layer of the workpiece is finely crystallized. Specifically, there is a case where friction processing is performed by a cutting friction processing tip in which an outer peripheral surface (surface) of a workpiece is fixed to a right single-blade tool.

ここでいう「微細結晶粒層」とは、摩擦加工によって微細結晶組織に表面改質された領域をいう。微細結晶粒層の厚さは、厚いほど良好な結果が得られる。
摩擦加工による微細粒組織(微細結晶粒層)の生成もさることながら、摩擦加工による塑性変形によって発生する加工硬化を利用し、被加工材の表層の硬度を高めることができる。この領域(以下、加工硬化層)は微細結晶粒層が得られる最表面と加工の影響を受けない内部組織との間に位置し、被加工材の表層の高強度化(超強加工)に重要な役割を果たす。摩擦加工は、その加工条件によっては微細粒組織が得られない場合も生じるが、加工硬化層によって疲労強度を十分に高めることができる。
被加工材の外周面の摩擦加工の場合において、「被加工材の表面のうち、チップ先端部の押し当て位置よりチップ送り方向の領域」とは、例えば、切削摩擦加工用チップが被加工材の外周面の一端から他端に向かって移動する際、チップ先端部の押し当て位置より被加工材の他端側の領域(部分)をいう。
The term “fine crystal grain layer” as used herein refers to a region whose surface has been modified to a fine crystal structure by friction processing. As the thickness of the fine crystal grain layer is thicker, better results are obtained.
In addition to generating a fine grain structure (fine crystal grain layer) by friction processing, the hardness of the surface layer of the workpiece can be increased by utilizing work hardening generated by plastic deformation by friction processing. This region (hereinafter referred to as work hardened layer) is located between the outermost surface where the fine crystal grain layer is obtained and the internal structure that is not affected by processing. Play an important role. Friction processing may occur in some cases where a fine grain structure cannot be obtained depending on the processing conditions, but the work hardened layer can sufficiently increase the fatigue strength.
In the case of friction machining of the outer peripheral surface of the workpiece, the “region of the workpiece surface in the tip feed direction from the pressing position of the tip of the tip” refers to, for example, a cutting friction machining tip When moving from one end of the outer peripheral surface toward the other end, it refers to a region (part) on the other end side of the workpiece from the pressing position of the tip end portion of the chip.

切削摩擦加工用チップの素材としては、炭化タングステン、サーメットなどを採用できる。
切削摩擦加工用チップは、被加工材の表面を先端が鋭角な旋削加工チップによって旋削加工するのではなく、摩擦加工を行うためにチップ先端部の摩擦加工作用面が、角部を有しないなだらかな丸面となっている。切削摩擦加工用チップの外観形状としては、例えば三角板形状、四角板形状などを採用できる。
切削摩擦加工用チップの先端部の厚さは、1.0mm以上20mm以下である。1.0mm未満では、摩擦加工押し当て部分の厚さが不十分となり、被加工材がはみ出す。また、20mmを超えれば、チップ先端部が厚すぎてしまい、摩擦加工に関係しない部分が必要以上に増大し、経済的でない。
Tungsten carbide, cermet, or the like can be used as the material for the cutting friction processing tip.
Cutting friction machining inserts do not turn the surface of the workpiece with a turning tip with a sharp tip, but the friction working surface at the tip of the tip does not have a corner in order to perform friction machining. It has a round surface. As the external shape of the cutting friction processing chip, for example, a triangular plate shape, a square plate shape, or the like can be adopted.
The thickness of the tip portion of the cutting friction processing tip is 1.0 mm or more and 20 mm or less. If it is less than 1.0 mm, the thickness of the friction processed pressing portion becomes insufficient, and the workpiece is protruded. On the other hand, if it exceeds 20 mm, the tip end of the tip becomes too thick, and the portion not related to friction processing increases more than necessary, which is not economical.

摩擦加工作用面の平面視した曲率半径は、0.1〜15.0mmである。0.1mm未満では、摩擦加工時にチップ先端部から被加工材の外周面に作用する面圧が高くなり過ぎてしまい、チップ先端が必要以上に被加工材にめり込む。また、15.0mmを超えれば、摩擦加工時の面圧が低くなり過ぎてしまい、被加工材の表層に対して必要な塑性加工度が得られない。これにより、摩擦加工後の被加工材の加工面の硬度上昇が十分でなくなる。摩擦加工作用面の平面視した際の好ましい曲率半径は、0.2〜15.0mmである。この範囲であれば、適度な押し付け圧(面圧)が得られ、被加工材の滑らかな加工面が得られる。
切削摩擦加工用チップの摩擦加工作用面を側面視(縦断面視)した形状は、平坦(平面)でも、円弧形状でもよい。
The radius of curvature of the friction working surface in plan view is 0.1 to 15.0 mm. If it is less than 0.1 mm, the surface pressure that acts on the outer peripheral surface of the workpiece from the tip end during friction processing becomes too high, and the tip end is deeply embedded in the workpiece. Moreover, if it exceeds 15.0 mm, the surface pressure at the time of friction processing will become low too much, and the required plastic work degree with respect to the surface layer of a workpiece will not be obtained. Thereby, the hardness increase of the processed surface of the workpiece after friction processing is not sufficient. A preferable radius of curvature when the friction working surface is viewed in plan is 0.2 to 15.0 mm. If it is this range, moderate pressing pressure (surface pressure) will be obtained and the smooth processed surface of a workpiece will be obtained.
The shape of the friction working surface of the cutting friction processing chip as viewed from the side (longitudinal section) may be flat (planar) or circular.

切削摩擦加工用チップの表面への押し当て荷重は、切削摩擦加工用チップの形状や被加工材の材質に応じて、最適な大きさに変更する必要がある。硬い被加工材の場合および切削摩擦加工用チップの平面視した曲率半径が大きい場合には、押し当て荷重は大きめとし、反対に柔らかい材質の場合やチップ曲率半径が小さい場合には、押し当て荷重を小さめとする。しかしながら、おおむね20〜2000Nである。20N未満では、十分な塑性加工が得られず、加工表面の硬度上昇が十分でなくなる。また、2000Nを超えれば、加工面の粗さが良好でなくなるとともに、被加工材のたわみも大きくなる。
切削摩擦加工用チップの送り速度は、材質やチップの曲率半径に応じて最適な値を選択する。チップノーズ半径が小さいほど、送りも小さくする必要があるが、おおむね0.01〜2.0mm/revである。0.01mm/rev未満では、摩擦加工の効率が低下し、焼き付きを起こし易い。また、2.0mm/revを超えれば、十分な被加工材の表層に塑性加工を施せず、被加工材の加工表面の硬度上昇が十分でなくなる。
被加工材と摩擦加工チップの相対速度は早い方が望ましいが、低速でも条件によっては良好な加工層を得ることができる。
The pressing load on the surface of the cutting friction machining tip needs to be changed to an optimum size according to the shape of the cutting friction machining tip and the material of the workpiece. In the case of a hard work material and when the radius of curvature of the cutting friction cutting insert in plan view is large, the pushing load is increased. On the contrary, in the case of a soft material or when the insert curvature radius is small, the pushing load is increased. Let be smaller. However, it is generally 20-2000N. If it is less than 20N, sufficient plastic working cannot be obtained, and the hardness of the processed surface will not be sufficiently increased. On the other hand, if it exceeds 2000 N, the roughness of the processed surface will not be good, and the deflection of the workpiece will also increase.
The feed speed of the cutting friction cutting insert is selected to be an optimum value according to the material and the radius of curvature of the insert. The smaller the tip nose radius is, the smaller the feed needs to be, but it is generally 0.01 to 2.0 mm / rev. If it is less than 0.01 mm / rev, the efficiency of friction processing is reduced and seizure is likely to occur. On the other hand, if it exceeds 2.0 mm / rev, the surface layer of the work material is not subjected to plastic working, and the hardness of the work surface of the work material is not sufficiently increased.
Although it is desirable that the relative speed between the workpiece and the friction processing chip is high, a good processed layer can be obtained even at a low speed depending on conditions.

側方切れ刃の形状は任意である。側方切れ刃は、切削摩擦加工用チップと一体的に形成されても、チップと別体でもよい。側方切れ刃の形成位置は、チップ先端部のチップ送り側の部分であり、少なくとも摩擦加工を行うチップ先端よりも、被加工物に対して離れた位置に配置される必要がある。切れ刃が先端に位置すれば切削加工が優先的になり、摩擦加工による表面改質の効果が薄れる。さらに、側方切れ刃は切削摩擦加工用チップの上面より下方位置に配置する必要がある。このように、摩擦加工は切削摩擦加工用チップの上面よりも下がった位置で行うため、摩擦加工に伴って切削摩擦加工用チップを送る際、側方切れ刃によって被加工材の表面の盛り上がり部分を切除する効果が生まれる。
側方切れ刃の形成数は1つでも2つ以上でもよい。また、側方切れ刃をチップ先端部の両側部分に形成すれば、チップ送り方向を左右反対にすることができる。
The shape of the side cutting edge is arbitrary. The side cutting edge may be formed integrally with the cutting friction machining tip or may be separate from the tip. The formation position of the side cutting edge is a portion on the tip feed side of the tip end portion and needs to be disposed at a position farther from the workpiece than at least the tip end that performs the friction processing. If the cutting edge is positioned at the tip, cutting will be prioritized and the effect of surface modification by friction processing will be diminished. Further, the side cutting edge needs to be disposed at a position below the upper surface of the cutting friction processing tip. In this way, since the friction processing is performed at a position lower than the upper surface of the cutting friction processing tip, when the cutting friction processing tip is sent along with the friction processing, the raised portion of the surface of the workpiece is cut by the side cutting edge. The effect of excision is born.
One or two or more side cutting edges may be formed. Further, if the side cutting edges are formed on both side portions of the tip end portion, the tip feed direction can be reversed left and right.

平面視してチップ最先端と側方切れ刃の最短距離は、0.1〜1.5mmである。0.1mm未満では切削加工が優先的になり、1.5mmを超えれば被加工材の部分的な盛り上がりを効果的に切除できない。
「摩擦加工に伴って表面の一部分が盛り上がった部分」とは、摩擦加工時、送り方向へ移動する切削摩擦加工用チップの大きな押し付け圧によって被加工材の表層が組成変形し、これに伴い、摩擦加工作用面のチップ先端部のチップ送り側の領域で発生する表面の隆起部分をいう。
The shortest distance between the tip edge and the side cutting edge in plan view is 0.1 to 1.5 mm. If it is less than 0.1 mm, cutting is preferential, and if it exceeds 1.5 mm, a partial rise in the workpiece cannot be effectively removed.
`` Part of the surface that swelled with friction processing '' means that the surface layer of the work material undergoes compositional deformation due to the large pressing pressure of the cutting friction processing tip moving in the feed direction during friction processing, This refers to the raised portion of the surface that occurs in the tip feed side region of the tip end of the friction working surface.

被加工材の素材としては、S45Cなどの各種の鉄鋼、Ti−6Al−4V合金などの各種のチタン合金などのほとんどすべての金属を対象とすることができる。被加工材の形状としては、例えば丸棒、円筒などを採用することができる。切削摩擦加工用チップの摩擦加工作用面とは、チップの先端部のうち、被加工材の表面に押し当てられ、かつ角部が存在しない丸面の領域をいう。
切削摩擦加工用チップの素材としては、例えば超硬合金などを採用することができる。
切削摩擦加工用チップの先端部とは、研削用チップの刃部に該当し、かつチップ全長の3分の1以下となるチップ先側の部分をいう。ここでの「被加工材の表面の浅い領域」とは、被加工材のうち、摩擦加工が施される表面と、表面から深さ(厚さ)数ミクロンから数十ミクロン程度の浅い領域とからなる表層をいう。
As the material of the workpiece, almost all metals such as various steels such as S45C and various titanium alloys such as Ti-6Al-4V alloy can be targeted. As the shape of the workpiece, for example, a round bar, a cylinder, or the like can be adopted. The frictional working surface of the cutting frictional cutting tip refers to a region of a round surface that is pressed against the surface of the workpiece and has no corners in the tip portion of the tip.
For example, a cemented carbide can be used as the material for the cutting friction processing chip.
The tip portion of the cutting friction processing tip refers to a portion on the tip end side that corresponds to the blade portion of the grinding tip and that is equal to or less than one third of the total length of the tip. Here, “the shallow region of the surface of the workpiece” refers to the surface of the workpiece that is subjected to friction processing, and a shallow region with a depth (thickness) of several microns to several tens of microns from the surface. A surface layer consisting of

「先端部のチップ送り側の部分」とは、チップ先端部をチップ幅方向に左側部分、中央部分(中間部分)、右側部分と3等分したとき、摩擦加工中に切削摩擦加工用チップが移動する方向(送り方向)の端側の部分をいう。例えば、切削摩擦加工用チップが被加工材の先端(右端)から元端(左端)に送られる場合には、チップ先端部の左側の部分をいう。
ここでの「ササクレ状態」とは、被加工材の表面(加工面)が細かく裂けたり、めくれた状態をいう。小さな各ササクレ部分のサイズは、盛り上がり高さ0.1〜2.0mm、長さ1.0〜2.0mmである。多数の小さいササクレ部分が被加工材の周方向に連続して発生することで、被加工材の表面の摩擦加工の終点部分に、幅が0.1〜0.5mmの大きな「ササクレ状態の環状の金属片」が発生する。
The “tip feed side portion of the tip portion” means that the tip for cutting friction processing is performed during friction processing when the tip tip portion is equally divided into a left portion, a center portion (intermediate portion), and a right portion in the tip width direction. This is the end part of the moving direction (feeding direction). For example, when the tip for cutting friction processing is sent from the tip (right end) of the workpiece to the base end (left end), it means the left portion of the tip end portion.
The “sacrifice state” here refers to a state in which the surface (worked surface) of the workpiece is finely torn or turned. The size of each small crepe portion is a raised height of 0.1 to 2.0 mm and a length of 1.0 to 2.0 mm. A large number of small brush portions are continuously generated in the circumferential direction of the work piece, so that the end portion of the friction processing on the surface of the work piece has a large “roll shape in a state of 0.1 to 0.5 mm”. Metal piece ".

特に、請求項2に記載の発明は、前記先端部の摩擦加工作用面の形成部分のうち、チップ幅方向の中央部の上側の部分には、摩擦加工により発生して前記被加工材に付着した金属片が、軸線回りに回転中の前記被加工材と前記摩擦加工作用面との間に上方から挟み込まれる直前に、前記被加工材の表面の部分を切除する上方切れ刃が形成された請求項1に記載の切削摩擦加工用チップである。   In particular, in the invention according to claim 2, the portion formed on the upper end of the center portion in the chip width direction among the formation portions of the friction working surface of the tip portion is generated by friction processing and adheres to the workpiece. An upper cutting edge for cutting off a portion of the surface of the workpiece was formed immediately before the metal piece was sandwiched from above between the workpiece rotating around the axis and the friction working surface. It is a chip | tip for cutting friction processing of Claim 1.

請求項2に記載の発明によれば、摩擦加工に伴い、切削摩擦加工用チップの先端部を被加工材の表面に押し付けることで、圧力が高い場合、被加工材の表面が微細な凹凸形状に荒れ、一部は金属片となり被加工材に付着する。その後、被加工材の回転に伴い、この被加工材に付着した金属片が、摩擦加工中の被加工材とチップ先端部の摩擦加工作用面との間に上方から挟み込まれる直前に、この金属片を上方切れ刃により切除することができる。すなわち、従来チップによる摩擦加工では、この金属片が剥がれて摩擦加工用チップの先端部に付着し、その後、このチップ先端部から剥がれた金属片が、摩擦加工中の被加工材とチップ先端部の摩擦加工作用面との間に挟み込まれてしまい、その結果、ツールマークとは異なる深い傷が被加工材の表面に局所的に発生していたが、本発明ではこの局所的な深いキズの発生を防止することができる。   According to the second aspect of the present invention, when the pressure is high by pressing the tip portion of the cutting friction processing tip against the surface of the workpiece along with the friction processing, the surface of the workpiece has a fine uneven shape. Roughly, some become metal pieces and adhere to the workpiece. Thereafter, as the workpiece rotates, the metal piece adhering to the workpiece immediately before the metal piece is sandwiched from above between the workpiece being friction processed and the friction working surface of the tip of the tip. The piece can be excised with an upper cutting edge. That is, in the conventional friction processing by the tip, the metal piece is peeled off and attached to the tip of the tip for friction processing, and then the metal piece peeled off from the tip end of the tip is the workpiece and the tip end of the tip during friction processing. As a result, a deep flaw different from the tool mark locally occurred on the surface of the work material. In the present invention, this local deep flaw is Occurrence can be prevented.

「先端部の摩擦加工作用面の形成部分のうち、チップ幅方向の中央部の上側の部分」とは、切削摩擦加工用チップの先端部の摩擦加工作用面の形成部分のうち、摩擦加工に伴う切削摩擦加工用チップの送り方向の長さの中間領域の上側の部分(チップ先端部の幅方向の中間領域の上側の部分、または、チップ先端部のうち、チップ送り側の部分とこれとは反対側の部分との間に存在する中央部の上側の部分)をいう。切削摩擦加工用チップが旋削用チップに代えて使用される旋盤では、切削摩擦加工用チップに対する被加工材の回転方向が、一般に上方から下方に向かうように設定される。そのため、前記上方切れ刃は、摩擦加工により荒れて盛り上がった被加工材の表面の金属片を円滑に切除できるように、チップ先端部の摩擦加工作用面のうち、中央上側の部分に形成されている。
上方切れ刃の形状、大きさは任意である。例えばその形状は、円弧形状などを採用できる。
“Among the part of the tip of the friction working surface at the tip, the upper part of the center in the chip width direction” means that the part of the friction working surface of the tip of the cutting friction working tip is used for friction machining. The upper portion of the intermediate region in the feed direction length of the cutting friction machining tip (the upper portion of the intermediate region in the width direction of the tip end portion or the tip feed side portion of the tip tip portion and this portion Means the upper part of the central part between the opposite part). In a lathe in which the cutting friction machining tip is used instead of the turning tip, the rotation direction of the workpiece with respect to the cutting friction machining tip is generally set so as to be directed downward from above. Therefore, the upper cutting edge is formed in the upper part of the center of the friction processing surface of the tip end of the tip so that the metal piece on the surface of the workpiece rough and raised by friction processing can be cut smoothly. Yes.
The shape and size of the upper cutting edge are arbitrary. For example, an arc shape or the like can be adopted as the shape.

請求項3に記載の発明は、前記先端部の摩擦加工作用面は、チップ厚さ方向の中間部が内方へ凹んだ円弧形状に湾曲している請求項1または請求項2に記載の切削摩擦加工用チップである。   According to a third aspect of the present invention, in the cutting according to the first or second aspect, the friction working surface of the tip portion is curved in an arc shape in which an intermediate portion in the chip thickness direction is recessed inwardly. This is a tip for friction processing.

請求項3に記載の発明によれば、摩擦加工時、チップ先端部の摩擦加工作用面を、側面視して平面(平坦)でなく、チップ厚さ方向の中間部が内方へ凹んだ円弧形状(鼓形状)の湾曲面とした。これにより、切削摩擦加工用チップの先端部を(円柱形状または円筒形状の)被加工材の表面に押し付けたときの面圧を、摩擦加工作用面が単に切削摩擦加工用チップを平面視した際の湾曲のみの場合に比べて低下させることができる。その結果、例えば硬度が低い被加工材を摩擦加工する際、被加工材の加工面へのササクレおよび荒れの発生を抑制することができる。   According to the third aspect of the present invention, at the time of friction processing, the friction processing surface of the tip end portion of the tip is not flat (flat) when viewed from the side, but the arc in which the middle portion in the chip thickness direction is recessed inward The curved surface was shaped (drum shape). As a result, when the tip of the cutting friction machining tip is pressed against the surface of the workpiece (columnar or cylindrical), the friction working surface is simply a plan view of the cutting friction machining tip. This can be reduced compared to the case of only the curvature. As a result, for example, when friction processing is performed on a workpiece having low hardness, it is possible to suppress the occurrence of crust and roughness on the processed surface of the workpiece.

ここでいう「チップ厚さ方向の中間部が内方へ凹んだ円弧形状」とは、摩擦加工チップを側面視(縦断面視)したときの摩擦加工作用面の形状である。
摩擦加工作用面の側面視した曲率半径は、少なくとも被加工材の半径よりも大きい必要がある。被加工材の半径よりも摩擦加工面を側面視した曲率半径が小さい場合、切削摩擦加工用チップと被加工材の接触部分が2か所となり好ましくない。しかしながら、被加工材の半径と摩擦加工面を側面視した曲率半径が近いほど、接触面圧を下げる効果が大きくなる。
The “arc shape in which the intermediate portion in the chip thickness direction is recessed inwardly” here is the shape of the friction working surface when the friction processing chip is viewed from the side (longitudinal section).
The radius of curvature of the friction working surface as viewed from the side needs to be at least larger than the radius of the workpiece. When the radius of curvature of the friction processing surface as viewed from the side is smaller than the radius of the workpiece, there are two contact portions between the cutting friction processing tip and the workpiece, which is not preferable. However, the closer the radius of the workpiece and the radius of curvature of the friction processed surface viewed from the side, the greater the effect of reducing the contact surface pressure.

請求項1に記載の発明によれば、チップ先端部のチップ送り側の部分に側方切れ刃を形成したため、摩擦加工に伴い、切削摩擦加工用チップを送り方向へ移動する際に、側方切れ刃によって被加工材の表面のうち、亀裂を含む盛り上がり部分を切除する。これにより、送り方向へ移動中の切削摩擦加工用チップの先端部がこの盛り上がり部分を押しつぶすことで、被加工材の表面直下に生じる空洞の発生を低減することができる。しかも、この盛り上がり部分は、見方を変えれば被加工材の表面の小さなササクレ部分となる。そこで、この盛り上がり部分を、その発生直後に側方切れ刃によって順次切除することで、従来品による摩擦加工の場合には、摩擦加工に伴い表面の摩擦加工の終点部分に現出していたササクレ状態の環状の金属片の発生を防止することができる。   According to the first aspect of the present invention, since the side cutting edge is formed at the tip feed side portion of the tip end portion, when the tip for cutting friction machining is moved in the feed direction along with the friction machining, A raised portion including a crack is cut out from the surface of the workpiece with a cutting edge. Thereby, the front-end | tip part of the chip | tip for cutting friction processing currently moving to a feed direction crushes this bulging part, and generation | occurrence | production of the cavity produced directly under the surface of a workpiece can be reduced. In addition, this bulging portion becomes a small crumpled portion on the surface of the workpiece, if viewed differently. Therefore, this raised part is cut off with the side cutting blades immediately after the occurrence, and in the case of friction processing with the conventional product, the brushed state that appeared at the end point of the friction processing on the surface with friction processing The generation of the annular metal piece can be prevented.

特に、請求項2に記載の発明によれば、摩擦加工に伴い、切削摩擦加工用チップの先端部が被加工材の表面に押し付けられて表面が微細な凹凸形状に荒れ、一部は金属片となり被加工材に付着する。この被加工材に付着した金属片が、被加工材の回転に伴って、摩擦加工中の被加工材とチップ先端部の摩擦加工作用面との間に上方から挟み込まれる直前に上方切れ刃により切除される。そのため、チップ先端部から剥がれた金属片を原因として被加工材の表面に生じる局所的な深いキズの発生を防止することができる。   In particular, according to the invention described in claim 2, with the friction processing, the tip of the cutting friction processing tip is pressed against the surface of the workpiece, and the surface is roughened into a fine uneven shape, and a part thereof is a metal piece. And adheres to the workpiece. The metal piece adhering to the workpiece is rotated by the upper cutting edge immediately before being sandwiched from above between the workpiece during friction processing and the friction processing surface of the tip of the tip as the workpiece rotates. Excised. Therefore, it is possible to prevent the occurrence of local deep scratches generated on the surface of the workpiece due to the metal piece peeled off from the tip end portion of the chip.

請求項3に記載の発明によれば、摩擦加工時、チップ先端部の摩擦加工作用面を、チップ厚さ方向の中間部が内方へ凹んだ円弧形状の湾曲面としたため、チップ先端部を被加工材の表面に押し付けた際の面圧を、摩擦加工作用面が単に切削摩擦加工用チップを平面視した際の湾曲のみの場合に比べて低下させることができる。これにより、例えば硬度が低い被加工材を摩擦加工するとき、被加工材の表面にササクレおよび荒れが発生するのを抑制することができる。   According to the third aspect of the present invention, at the time of friction processing, the friction working surface of the tip end portion is an arc-shaped curved surface in which the middle portion in the tip thickness direction is recessed inward, so that the tip end portion is The surface pressure when pressed against the surface of the workpiece can be reduced as compared with the case where the frictional working surface is simply curved when the cutting frictional machining tip is viewed in plan view. Accordingly, for example, when friction processing is performed on a workpiece having low hardness, it is possible to suppress occurrence of crust and roughness on the surface of the workpiece.

この発明の実施例1に係る切削摩擦加工用チップの使用状態を示す斜視図である。It is a perspective view which shows the use condition of the chip | tip for cutting friction processing which concerns on Example 1 of this invention. この発明の実施例1に係る切削摩擦加工用チップの使用状態を示す一部断面図を含む要部拡大平面図である。It is a principal part enlarged plan view containing the partial cross section figure which shows the use condition of the chip | tip for cutting friction processing which concerns on Example 1 of this invention. この発明の実施例1に係る切削摩擦加工用チップの使用状態を示す要部拡大縦断面図である。It is a principal part expanded vertical sectional view which shows the use condition of the chip | tip for cutting friction processing which concerns on Example 1 of this invention. この発明の実施例1に係る切削摩擦加工用チップと従来のチップとを用いて、摩擦加工を施した被加工材の外観と表面と加工条件との比較図である。It is a comparison figure with the external appearance of the workpiece which performed the friction processing using the chip | tip for cutting friction processing based on Example 1 of this invention, and the conventional chip | tip, and the processing conditions. この発明の実施例1に係る切削摩擦加工用チップおよび従来チップを用いて摩擦加工されたS45C調質材の被加工材に疲労試験を行った際のSN曲線のグラフである。It is a graph of the SN curve at the time of conducting a fatigue test on the workpiece of the S45C tempered material friction processed using the cutting friction processing tip according to Example 1 of the present invention and the conventional tip. 図5の摩擦加工時に使用された試験片のサイズを示す正面図である。It is a front view which shows the size of the test piece used at the time of the friction processing of FIG. この発明の実施例1に係る切削摩擦加工用チップを用いて摩擦加工されたTi−6Al−4V合金の被加工材と、単に旋削により製作された比較材に疲労試験を行った際のSN曲線のグラフである。SN curve when a fatigue test was performed on a workpiece of Ti-6Al-4V alloy that was friction processed using the cutting friction cutting tip according to Example 1 of the present invention and a comparative material simply manufactured by turning It is a graph of. 図7の摩擦加工時に使用された試験片のサイズを示す正面図である。It is a front view which shows the size of the test piece used at the time of the friction processing of FIG.

以下、この発明の実施例を具体的に説明する。   Examples of the present invention will be specifically described below.

図1および図2において、10はこの発明の実施例1に係る切削摩擦加工用チップで、旋盤の旋削用チップに代えてバイトに固定して使用され、被加工材11の表面を摩擦加工するチップである。切削摩擦加工用チップ10は、摩擦加工作用面10aが形成されたチップ先端部10bを有し、かつ軸線回りに回転中の金属からなる被加工材11の表面(外周面)11aにチップ先端部10bを押し当てて、この状態で切削摩擦加工用チップ10を被加工材11の軸線方向と平行な送り方向へ移動することにより、表面11aの浅い領域に微細結晶粒層11bと加工硬化層11eとを、被加工材11の表面からその内部に向かって連続して生成させるものである。なお、旋盤は、バイトに切削摩擦加工用チップ10を装着することで摩擦加工装置となる。被加工材11は、S45C調質材からなる図6に示す試験片である。   1 and 2, reference numeral 10 denotes a cutting friction machining tip according to Embodiment 1 of the present invention, which is used by being fixed to a cutting tool instead of a turning tip of a lathe and frictionally machining the surface of a workpiece 11. Chip. The cutting friction machining tip 10 has a tip tip portion 10b on which a friction working surface 10a is formed, and a tip tip portion on the surface (outer peripheral surface) 11a of a workpiece 11 made of metal rotating around an axis. 10b is pressed, and in this state, the cutting friction machining tip 10 is moved in a feed direction parallel to the axial direction of the workpiece 11, thereby the fine crystal grain layer 11b and the work hardened layer 11e are formed in a shallow region of the surface 11a. Are continuously generated from the surface of the workpiece 11 toward the inside thereof. The lathe becomes a friction processing device by mounting the cutting friction processing tip 10 on a cutting tool. The workpiece 11 is a test piece shown in FIG. 6 made of an S45C tempered material.

切削摩擦加工用チップ10は、超合金製で、厚さが3.0mmの平面視して菱形の板片である。切削摩擦加工用チップ10は両端面を上下に配置し、チップ中央部の止め孔10cを介して、旋盤のバイトの先端部に通常の旋削用バイトと同じ方法で止められる。チップ先端部10bとは、切削摩擦加工用チップ10の長さが異なる対角線のうち、長尺側の対角線の一端側の角部をいう。チップ先端部10bの周側面の上部は、平面視して円弧形状(曲率半径0.8mm)の前記摩擦加工作用面10aとなっている。このように、チップ先端部10bの周側面の上部のみを摩擦加工作用面10aとしたのは、上方切れ刃13を有効に作用させるためである。この摩擦加工作用面10aは、チップ厚さ方向の中間部が内方へ凹んだ円弧形状の湾曲面である。これにより、チップ先端部10bを円柱形状の被加工材11の表面に押し付けたときの面圧を、摩擦加工作用面10aが平面の場合に比べて低下させることができる(摩擦加工作用面10aは平面でも可能)。その結果、例えば硬度が低い被加工材11を摩擦加工する際、被加工材11の加工面へのササクレおよび荒れの発生を抑制することができる。摩擦加工において、切削摩擦加工用チップ10は、旋盤加工時のように旋削用チップの鋭角な先端を旋削加工材の外周面に突き当てるのではなく、チップ先端部10bの厚さ方向の中間部付近の摩擦加工作用面10aを、被加工材11の表面11aに押し当てて使用される。   The cutting friction processing chip 10 is made of a superalloy and is a diamond-shaped plate piece in plan view with a thickness of 3.0 mm. Both ends of the cutting friction machining tip 10 are arranged vertically, and are stopped at the tip of the lathe tool by the same method as a normal turning tool through a stop hole 10c at the center of the chip. The tip end portion 10b refers to a corner portion on one end side of the diagonal line on the long side among the diagonal lines having different lengths of the cutting friction processing tip 10. The upper part of the peripheral side surface of the tip end portion 10b is the friction working surface 10a having an arc shape (curvature radius of 0.8 mm) in plan view. Thus, the reason why only the upper part of the peripheral side surface of the tip end portion 10b is the friction working surface 10a is to make the upper cutting edge 13 act effectively. The friction working surface 10a is an arc-shaped curved surface in which an intermediate portion in the chip thickness direction is recessed inward. Thereby, the surface pressure when the tip end portion 10b is pressed against the surface of the columnar workpiece 11 can be reduced as compared with the case where the friction processing surface 10a is flat (the friction processing surface 10a is (Even on a flat surface). As a result, for example, when friction processing is performed on the workpiece 11 having low hardness, it is possible to suppress the occurrence of roughing and roughening on the processed surface of the workpiece 11. In the friction machining, the cutting friction machining tip 10 is not an abutting tip of the turning tip which is brought into contact with the outer peripheral surface of the turning material as in lathe machining, but is an intermediate portion in the thickness direction of the tip tip portion 10b. The nearby friction working surface 10a is pressed against the surface 11a of the workpiece 11 and used.

チップ先端部10bの上端部のチップ送り側の部分には、被加工材11の表面11aのうち、チップ先端部10bの押し当て位置よりチップ送り方向の領域で、摩擦加工に伴い表面11aの一部分が、亀裂を伴って隆起した盛り上がり部分11cを切除する側方切れ刃12が、1つだけ形成されている(図1および図2)。側方切れ刃12は、平面視して略菱形で、かつチップ先端部10bのチップ送り側の端部を、チップ上面と平行に陥没形成したものである。
また、チップ先端部10bの中央上側の部分(チップ先端部10bの摩擦加工作用面10aの形成部分のうち、チップ厚さ方向の上側の部分)には、摩擦加工により表面が荒れて盛り上がった被加工材11の表面11aから剥がれた金属片11dを切除する横長な上方切れ刃13が、1つだけ形成されている(図1および図2)。上方切れ刃13は、チップ先端部10bの上部を、その全長にわたり一定幅で、かつ断面円弧形状(略鼓形状)に切欠して摩擦加工作用面10aを形成することで得られる。これにより、上方切れ刃13の刃先の角度をこの断面円弧形状にしない場合に比べて鋭角(75°〜89°)にすることができ、金属片11dの切除が容易となる。
A portion on the tip feed side of the upper end portion of the tip tip portion 10b is a part of the surface 11a of the workpiece 11 in the tip feed direction from the pressing position of the tip tip portion 10b in the surface 11a of the workpiece 11 due to friction processing. However, only one side cutting edge 12 that cuts the raised portion 11c raised with a crack is formed (FIGS. 1 and 2). The side cutting edge 12 has a substantially rhombus shape in plan view, and has an end portion on the tip feed side of the tip end portion 10b that is recessed in parallel with the top surface of the tip.
Further, the center upper portion of the tip end portion 10b (the portion of the tip end portion 10b on which the friction working surface 10a is formed, the upper portion in the chip thickness direction) has a rough surface that has been raised by friction processing. Only one horizontally long upper cutting edge 13 that cuts off the metal piece 11d peeled off from the surface 11a of the workpiece 11 is formed (FIGS. 1 and 2). The upper cutting edge 13 is obtained by cutting the upper portion of the tip end portion 10b with a constant width over the entire length thereof into a circular arc shape (substantially drum shape) to form the friction working surface 10a. Thereby, the angle of the cutting edge of the upper cutting edge 13 can be set to an acute angle (75 ° to 89 °) as compared with the case where the cross-sectional arc shape is not formed, and the metal piece 11d can be easily cut.

次に、図1〜図4を参照して、この発明の実施例1に係る切削摩擦加工用チップ10による被加工材11の摩擦加工方法を説明する。
まず、被加工材11を旋盤のチャックに固定し、被加工材11の軸線を中心にして、チャックとともに被加工材11を摩擦加工速度が44.0m/minになるように回転させる。この回転中、チップ先端部10bの摩擦加工作用面10aの部分を、被加工材11の表面11aに荷重315Nで押し当て、この状態を維持して切削摩擦加工用チップ10を0.05mm/revで送り方向(被加工材11の軸線方向)へ移動させる。これにより、被加工材11の表面11aから深さ5μmの浅い領域において、被加工材11の表層が微細結晶組織に表面改質(微細結晶粒層11b)され、被加工材11の表面から5〜40μmの間(表層)で塑性変形(加工硬化層11e)による硬度上昇が認められた。このように、被加工材11の表層を微細結晶粒層11bだけでなく、微細結晶粒層11bと加工硬化層11eとによって表面変質させたことで、結果的により以上に厚い硬化相が得られる。
Next, with reference to FIGS. 1-4, the friction processing method of the workpiece 11 by the chip | tip 10 for cutting friction processing which concerns on Example 1 of this invention is demonstrated.
First, the work material 11 is fixed to a chuck of a lathe, and the work material 11 is rotated together with the chuck so that the friction processing speed becomes 44.0 m / min, with the axis of the work material 11 as the center. During this rotation, the portion of the tip end portion 10b of the friction working surface 10a is pressed against the surface 11a of the workpiece 11 with a load 315N, and this state is maintained and the cutting friction processing tip 10 is 0.05 mm / rev. To move in the feed direction (axial direction of the workpiece 11). As a result, the surface layer of the work material 11 is surface-modified to a fine crystal structure (fine crystal grain layer 11b) in a shallow region having a depth of 5 μm from the surface 11a of the work material 11, and the surface of the work material 11 is 5 An increase in hardness due to plastic deformation (work hardening layer 11e) was observed between ˜40 μm (surface layer). As described above, the surface layer of the workpiece 11 is altered not only by the fine crystal grain layer 11b but also by the fine crystal grain layer 11b and the work hardened layer 11e. As a result, a thicker hardened phase can be obtained. .

摩擦加工に伴って切削摩擦加工用チップ10を送る際、チップ先端部10bの押し付け圧によって、チップ押し付け部分よりチップ送り方向の表面11aの一部が、亀裂を伴って盛り上がる(図2)。このとき、平面視してチップ最先端と側方切れ刃12の最短距離dは0.5mmである。この盛り上がり部分11cは、発生直後に、チップ送り方向へ移動してきた側方切れ刃12によって切除される。これにより、従来は、被加工材11の亀裂を含む盛り上がり部分11cを、その後に送り方向へ移動中の摩擦加工用チップのチップ先端部が押しつぶすことで、被加工材11の表面直下に空洞が発生していたが、ここでは、この盛り上がり部分11cの上方を切削摩擦加工用チップ10が通過する前に、側方切れ刃12によって、一部または全部の亀裂ごと盛り上がり部分11cを切除するため、空洞の発生を防止できる。
しかも、摩擦加工しながら、側方切れ刃12を用いて、小さなササクレ部分に該当する盛り上がり部分11cを発生直後に順次切除する(図4(b))。これにより、従来品の場合には摩擦加工に伴って被加工材11の表面11aの摩擦加工の終点部分に生じていたササクレ状態の環状の金属片11f(図4(a))が発生しない。
When the cutting friction processing chip 10 is fed along with the friction processing, a part of the surface 11a in the chip feeding direction rises with a crack from the chip pressing portion due to the pressing pressure of the tip end portion 10b (FIG. 2). At this time, the shortest distance d between the tip of the chip and the side cutting edge 12 in plan view is 0.5 mm. Immediately after the occurrence, the raised portion 11c is cut off by the side cutting edge 12 that has moved in the tip feed direction. As a result, conventionally, the bulging portion 11c including the crack of the workpiece 11 is crushed by the tip end portion of the tip for friction processing that is moving in the feed direction, so that a cavity is formed immediately below the surface of the workpiece 11. However, here, before the cutting friction machining tip 10 passes above the raised portion 11c, the side cutting edge 12 cuts out the raised portion 11c together with some or all cracks. The generation of cavities can be prevented.
In addition, while the friction processing is performed, the raised portion 11c corresponding to the small crumpled portion is sequentially cut out immediately after the occurrence using the side cutting edge 12 (FIG. 4B). As a result, in the case of the conventional product, the ring-shaped metal piece 11f (FIG. 4 (a)) in the crumpled state that is generated at the end point of the friction processing on the surface 11a of the workpiece 11 is not generated.

さらに、摩擦加工に伴い、切削摩擦加工用チップ10のチップ先端部10bを被加工材11の表面11aに押し付けることで、従来品の場合、この表面11aは微細な凹凸形状に荒れ、一部は金属片11cとなり被加工材11に付着する(図4(a))。しかしながら、ここでは、この荒れた面の金属片(微細隆起部分)11dが、被加工材11の回転に伴って上方切れ刃13により切除されるため(図1および図3)、チップ先端部10bから剥がれた金属片11dによる表面11aの局所的な深いキズ11gが発生し難くなる(図4(b))。すなわち、被加工材11の表面11aが荒れた場合、従来は、荒れた面の微細隆起部分がこの外周面から剥がれてチップ先端部に金属片11dとして付着し、その後、この金属片11dがチップ先端部10bから剥がれて被加工材11とチップ先端部10bの摩擦加工作用面10aとの間に挟まれて被加工材11の外周面を傷つけていたが(図4(a))、ここでは上方切れ刃13がその原因部分を除去するため、この局所的な深いキズ11gの発生を防止できる。なお、図4の加工条件の欄に記載されたYは切削摩擦加工チップ10の上面と被加工材11の軸線とのずれを表す。HVは被加工材11のビッカース硬さ、Raは被加工材11の表面11aの算術平均粗さ、Rzは被加工材11の表面11aの十点平均粗さである。   Furthermore, with the friction processing, by pressing the tip end portion 10b of the cutting friction processing tip 10 against the surface 11a of the workpiece 11, in the case of the conventional product, the surface 11a is roughened into a fine concavo-convex shape, and a part thereof It becomes the metal piece 11c and adheres to the workpiece 11 (FIG. 4A). However, here, the metal piece (fine raised portion) 11d of the rough surface is cut by the upper cutting edge 13 as the workpiece 11 rotates (FIGS. 1 and 3), and therefore the tip end portion 10b. The local deep scratch 11g of the surface 11a due to the metal piece 11d peeled off is less likely to occur (FIG. 4B). That is, when the surface 11a of the workpiece 11 is rough, conventionally, the finely raised portion of the rough surface is peeled off from the outer peripheral surface and adheres to the tip of the chip as a metal piece 11d, and then the metal piece 11d is chipped. Although it peeled off from the front-end | tip part 10b and was pinched | interposed into the friction processing surface 10a of the to-be-processed material 11 and the chip | tip front-end | tip part 10b, the outer peripheral surface of the to-be-processed material 11 was damaged (FIG. 4 (a)), but here Since the upper cutting edge 13 removes the causal portion, the generation of the local deep scratch 11g can be prevented. In addition, Y described in the column of the processing conditions of FIG. 4 represents the deviation | shift between the upper surface of the cutting friction processing chip | tip 10, and the axis line of the workpiece 11. FIG. HV is the Vickers hardness of the workpiece 11, Ra is the arithmetic average roughness of the surface 11 a of the workpiece 11, and Rz is the ten-point average roughness of the surface 11 a of the workpiece 11.

ここで、図5のS−N曲線のグラフを参照して、実施例1の切削摩擦加工用チップ10を用い、S45C調質材(被加工材)の外周面を図6に示すサイズに摩擦加工して得られた試験片について、JIS Z2273(金属材料の疲れ試験方法)に則って疲労試験を行った結果を報告する。
図5のグラフから明らかなように、S45C調質材からなる試験片は、応力振幅の限界となる疲労限度が870MPaであった。これにより、870MPa以下の繰り返し応力では破断しない安定した強度の試験片が得られた。この試験片は、従来の摩擦加工材と比較して疲労に対しての強度は同等であるが、寿命のばらつきが大幅に抑えられていた。寿命のばらつきは内部破壊が原因であり、これは内部欠陥に起因する。そのため、実施例1の切削摩擦加工用チップ10を採用したことで、内部欠陥の発生が抑えられたと推測される。
Here, referring to the SN curve graph of FIG. 5, the cutting friction machining tip 10 of Example 1 was used, and the outer peripheral surface of the S45C tempered material (work material) was rubbed to the size shown in FIG. We report the results of a fatigue test conducted on test pieces obtained by processing in accordance with JIS Z2273 (a fatigue test method for metal materials).
As is clear from the graph of FIG. 5, the test piece made of the S45C tempered material had a fatigue limit of 870 MPa, which is the limit of the stress amplitude. Thereby, the test piece of the stable intensity | strength which does not fracture | rupture with the repeated stress of 870 Mpa or less was obtained. Although this test piece has the same strength against fatigue as compared with the conventional friction processed material, the variation in life was greatly suppressed. Variations in life are due to internal destruction, which is due to internal defects. Therefore, it is presumed that the occurrence of internal defects was suppressed by adopting the cutting friction machining tip 10 of Example 1.

次に、図7のS−N曲線のグラフを参照して、実施例1の切削摩擦加工用チップ10を用い、実施例1のTi−6Al−4V合金からなる被加工材11の表面11aを摩擦加工して得られた試験片(形状,寸法は図8に示す)と、これと同サイズの摩擦加工しない比較例の試験片(以下、比較片)について、JIS Z2273に則り疲労試験を実施した結果を報告する。
図7のグラフから明らかなように、比較片の疲労限度は480MPaで、試験片の疲労度は490MPaであり、10回を基準とした疲労強度において、これらにほとんど差はなかった。しかしながら、有限寿命域での疲労寿命は、比較片に比べて試験片の方が顕著に長くなっていた。この点から、試験片の疲労強度は比較片に比べて高いと評価できる。
Next, with reference to the SN curve graph of FIG. 7, the surface 11 a of the workpiece 11 made of the Ti-6Al-4V alloy of Example 1 is used using the cutting friction machining tip 10 of Example 1. Fatigue tests were conducted in accordance with JIS Z2273 for test pieces obtained by friction processing (shape and dimensions are shown in FIG. 8) and comparative test pieces of the same size that are not subjected to friction processing (hereinafter referred to as comparison pieces). Report the results.
As is clear from the graph of FIG. 7, the fatigue limit of the comparative specimen was 480 MPa, the fatigue strength of the test specimen was 490 MPa, and there was almost no difference in the fatigue strength based on 10 7 times. However, the fatigue life in the finite life region was significantly longer for the test piece than for the comparative piece. From this point, it can be evaluated that the fatigue strength of the test piece is higher than that of the comparative piece.

また、破面観察の結果、長寿命で破断した試験片のほとんどから、内部破壊のフィッシュアイが観察された。フィッシュアイの起点は、いずれも摩擦加工により強化された表層(微細結晶粒層)より深い位置に存在したα粒の割れである。破壊の起点となった領域の公称応力は460〜560MPaで、この数値範囲は比較片の疲労限度近くか、それよりも高いレベルであった。すなわち、摩擦加工によって強化されていない領域を起点とする破壊が支配的であった。また、上述したように、試験片は疲労寿命にバラつきがあるものの、バラつきの原因は内部破壊であり、側方切れ刃12が未搭載の従来の摩擦加工用チップによる摩擦加工時に問題となった表面欠陥(局所的な深いキズ11g)を起点とする破断ではない。その結果、チップ先端部10bに形成された上方切れ刃13の効果が、図7のグラフに示す疲労試験の結果から実証された。すなわち、摩擦加工によって、被加工材11の少なくとも表面は充分に強化されていると考えられる。   Moreover, as a result of the fracture surface observation, fish eyes of internal fracture were observed from most of the test pieces that had a long life and fractured. The starting point of the fish eye is a crack of α grains existing in a deeper position than the surface layer (fine crystal grain layer) reinforced by friction processing. The nominal stress in the region where fracture occurred was 460 to 560 MPa, and this numerical range was near or higher than the fatigue limit of the comparative specimen. That is, the destruction starting from the region not strengthened by the friction processing was dominant. In addition, as described above, although the test piece has a variation in fatigue life, the cause of the variation is internal destruction, which causes a problem during friction processing with a conventional friction processing tip in which the side cutting edge 12 is not mounted. It is not a rupture starting from a surface defect (local deep flaw 11 g). As a result, the effect of the upper cutting edge 13 formed on the tip end portion 10b was verified from the result of the fatigue test shown in the graph of FIG. That is, it is considered that at least the surface of the workpiece 11 is sufficiently strengthened by the friction processing.

この発明は、旋盤により製作される金属部品の表面硬度を高め、製品の耐摩耗性、耐疲労特性を向上させる摩擦加工用のチップとして有用である。   The present invention is useful as a tip for friction processing that increases the surface hardness of a metal part manufactured by a lathe and improves the wear resistance and fatigue resistance characteristics of a product.

10 切削摩擦加工用チップ、
10a 摩擦加工作用面、
10b チップ先端部(先端部)、
11 被加工材、
11a 外周面(表面)、
11b 微細結晶粒層、
11c 盛り上がり部分、
11d 金属片、
12 側方切れ刃、
13 上方切れ刃。
10 Cutting friction processing tips,
10a Friction working surface,
10b Tip end (tip),
11 Work material
11a outer peripheral surface (surface),
11b Fine grain layer,
11c Swelling part,
11d metal piece,
12 side cutting edge,
13 Upper cutting edge.

Claims (3)

先端部に摩擦加工作用面を有し、かつ軸線回りに回転中の金属からなる被加工材の表面に前記先端部を押し当てて、前記被加工材の軸線と平行なチップ送り方向へ送られることで、前記被加工材の表面の浅い領域に超強加工としての摩擦加工を施す切削摩擦加工用チップにおいて、
前記先端部のチップ送り側の部分には、前記被加工材の表面のうち、前記先端部の押し当て位置よりチップ送り方向の領域で、摩擦加工に伴って前記表面の一部分が盛り上がった部分を切除する側方切れ刃が形成された切削摩擦加工用チップ。
The tip is pressed against the surface of the workpiece made of metal that has a friction working surface at the tip and is rotating around the axis, and is fed in a chip feed direction parallel to the axis of the workpiece. Thus, in a cutting friction processing chip for performing friction processing as super-strong processing in a shallow region of the surface of the workpiece,
The portion on the tip feed side of the tip portion is a portion of the surface of the workpiece that is part of the surface raised in accordance with friction processing in a region in the tip feed direction from the pressing position of the tip portion. Cutting friction cutting tip with side cutting edges to be cut.
前記先端部の摩擦加工作用面の形成部分のうち、チップ幅方向の中央部の上側の部分には、摩擦加工により発生して前記被加工材に付着した金属片が、軸線回りに回転中の前記被加工材と前記摩擦加工作用面との間に上方から挟み込まれる直前に、前記被加工材の表面の部分を切除する上方切れ刃が形成された請求項1に記載の切削摩擦加工用チップ。   Of the formation part of the frictional working surface of the tip part, a metal piece generated by frictional processing and attached to the workpiece is rotating around the axis in the upper part of the center part in the chip width direction. 2. The cutting friction machining tip according to claim 1, wherein an upper cutting edge for cutting off a portion of the surface of the workpiece is formed immediately before being sandwiched from above between the workpiece and the friction working surface. . 前記先端部の摩擦加工作用面は、チップ厚さ方向の中間部が内方へ凹んだ円弧形状に湾曲している請求項1または請求項2に記載の切削摩擦加工用チップ。   The tip for frictional friction processing according to claim 1 or 2, wherein the frictional working surface of the tip portion is curved in an arc shape in which an intermediate portion in the tip thickness direction is recessed inwardly.
JP2012074218A 2012-03-28 2012-03-28 Cutting friction insert Active JP5692864B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074218A JP5692864B2 (en) 2012-03-28 2012-03-28 Cutting friction insert

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074218A JP5692864B2 (en) 2012-03-28 2012-03-28 Cutting friction insert

Publications (2)

Publication Number Publication Date
JP2013202733A true JP2013202733A (en) 2013-10-07
JP5692864B2 JP5692864B2 (en) 2015-04-01

Family

ID=49522402

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074218A Active JP5692864B2 (en) 2012-03-28 2012-03-28 Cutting friction insert

Country Status (1)

Country Link
JP (1) JP5692864B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205827A (en) * 2016-05-18 2017-11-24 リコーエレメックス株式会社 Burnishing tool pressing member and burnishing tool
JP2020163545A (en) * 2019-03-29 2020-10-08 三菱マテリアル株式会社 Cutting insert and processing method

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563108A (en) * 1979-06-21 1981-01-13 Toyoda Mach Works Ltd Diamond tool
JPS6357058U (en) * 1986-10-02 1988-04-16
JPH02109611A (en) * 1988-10-20 1990-04-23 Konica Corp Diamond tool for cutting specular face
JP2001030101A (en) * 1999-07-16 2001-02-06 Aisin Aw Co Ltd Cutting tip, cutting method, and machining member
WO2007039944A1 (en) * 2005-10-06 2007-04-12 Sumitomo Electric Hardmetal Corp. Cutting tool for high quality and high efficiency machining and cutting method using the cutting tool
JP2011105991A (en) * 2009-11-17 2011-06-02 Neturen Co Ltd Method for reforming surface of metallic material and metallic material having high hardness surface layer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS563108A (en) * 1979-06-21 1981-01-13 Toyoda Mach Works Ltd Diamond tool
JPS6357058U (en) * 1986-10-02 1988-04-16
JPH02109611A (en) * 1988-10-20 1990-04-23 Konica Corp Diamond tool for cutting specular face
JP2001030101A (en) * 1999-07-16 2001-02-06 Aisin Aw Co Ltd Cutting tip, cutting method, and machining member
WO2007039944A1 (en) * 2005-10-06 2007-04-12 Sumitomo Electric Hardmetal Corp. Cutting tool for high quality and high efficiency machining and cutting method using the cutting tool
JP2011105991A (en) * 2009-11-17 2011-06-02 Neturen Co Ltd Method for reforming surface of metallic material and metallic material having high hardness surface layer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017205827A (en) * 2016-05-18 2017-11-24 リコーエレメックス株式会社 Burnishing tool pressing member and burnishing tool
JP2020163545A (en) * 2019-03-29 2020-10-08 三菱マテリアル株式会社 Cutting insert and processing method
WO2020203557A1 (en) * 2019-03-29 2020-10-08 三菱マテリアル株式会社 Cutting insert and machining method
JP7378717B2 (en) 2019-03-29 2023-11-14 三菱マテリアル株式会社 Cutting inserts and processing methods

Also Published As

Publication number Publication date
JP5692864B2 (en) 2015-04-01

Similar Documents

Publication Publication Date Title
JP5764181B2 (en) Hard film coated cutting tool
JP5803647B2 (en) End mill
JP2009056533A (en) Long neck radius endmill
JP4975395B2 (en) Ball end mill
JP5692864B2 (en) Cutting friction insert
JP5914446B2 (en) Cutting tool and workpiece machining method using the same
US11141801B2 (en) Cutting tool having partially-removed film formed thereon
JP5403480B2 (en) Small diameter CBN end mill
JP4831568B2 (en) End mill, processing apparatus, cutting method, and workpiece
TWI775155B (en) Rotary cutting tool
JP2020104143A (en) Punching method of punching workpiece, and punching die for punching workpiece
JP2013013962A (en) Cbn end mill
JP2022031207A (en) Shear processing device and manufacturing method of processed material using the same
JP5906838B2 (en) Square end mill
Mohid et al. Chip pattern, burr and surface roughness in laser assisted micro milling of Ti6Al4V using micro ball end mill
JP4610102B2 (en) Ball end mill
JP2008030173A (en) Band saw blade
JP5177982B2 (en) End mill
JP3935450B2 (en) Bottom finishing end mill
JP3734465B2 (en) Radius end mill for high feed cutting
US11376675B2 (en) Cutting tool having partially-removed film formed thereon
JP2012066352A (en) Cutting tool
JP7040039B2 (en) Radius end mill
JP2006224217A (en) Cutting tool, surface cutting method of aluminum ingot, and manufacturing method of surface cut aluminum ingot
JP2012045663A (en) Cutting tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131024

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141021

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150130

R150 Certificate of patent or registration of utility model

Ref document number: 5692864

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250