JP2013200153A - 温度リーダ - Google Patents

温度リーダ Download PDF

Info

Publication number
JP2013200153A
JP2013200153A JP2012067374A JP2012067374A JP2013200153A JP 2013200153 A JP2013200153 A JP 2013200153A JP 2012067374 A JP2012067374 A JP 2012067374A JP 2012067374 A JP2012067374 A JP 2012067374A JP 2013200153 A JP2013200153 A JP 2013200153A
Authority
JP
Japan
Prior art keywords
antennas
reader
electromagnetic waves
temperature
caught
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012067374A
Other languages
English (en)
Inventor
Takahiro Soma
孝博 相馬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Terumo Corp
Original Assignee
Terumo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Terumo Corp filed Critical Terumo Corp
Priority to JP2012067374A priority Critical patent/JP2013200153A/ja
Publication of JP2013200153A publication Critical patent/JP2013200153A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】 表面弾性波を用いた温度センサによる熱流式体温計より、該温度センサにおける検出結果を読み取るリーダにおいて、短い時間で読み取ることができるようにする。
【解決手段】 複数のSAWセンサが配され、被検体の深部体温を測定可能な体温計200に対して、電磁波を放出し、該複数のSAWセンサから放出される電磁波をキャッチするリーダ210であって、同一平面内において、円周上に沿って配された複数の第1のアンテナと、前記第1のアンテナそれぞれの強度を識別する手段と、前記第1のアンテナそれぞれの方向と、前記識別された第1のアンテナそれぞれがキャッチした電磁波の強度とに基づいてベクトルを生成する手段と、前記ベクトルを合成し、合成ベクトルを算出することにより、体温計200が位置する方向を示す識別子を抽出する手段と、前記方向を示す識別子を表示する手段とを備える。
【選択図】 図2

Description

本発明は、温度センサにおける検出結果を読み取るリーダに関するものである。
被検体の体表面に貼り付け、被検体の深部の体温を測定する体温計として、従来より、非加熱型の体温計が知られている(例えば、特許文献1及び2参照)。
一般に、非加熱型の体温計には、被検体の体表面に貼り付けた際に、体表面に接触する第1の温度センサと、該第1の温度センサに断熱材を介して対向して配される第2の温度センサとから構成される温度センサのペアが少なくとも2組備えられている。そして、各温度センサのペアが配されたそれぞれの断熱材の熱伝導率が互いに異なるように構成し、各温度センサのペアにおける第1の温度センサと第2の温度センサとの温度差をそれぞれ検出することにより、深部からの熱流量を求め、深部の体温を算出することとしている。
このような体温計(以下、熱流式体温計と称す)においては、通常、温度センサとして、サーミスタや熱電対等が用いられる。
一方で、熱流式体温計の場合、被検体の体表面に貼り付けて用いられることが前提となっており、温度センサによる検出結果を外部に送信することが不可欠となってくる。しかしながら、サーミスタや熱電対等の温度センサの場合、一般に、ワイヤレス機能を備えていないため、これらの温度センサを熱流式体温計に適用するにあたっては、別途、ワイヤレス機能を付加する必要がある。このようなことから、熱流式体温計に適用する温度センサとしては、ワイヤレス機能を備えた温度センサであることがより好ましい。
また、熱流式体温計の場合、被検体の負担を軽減させるために、軽量・小型化することが不可欠であり、ワイヤレス機能を備えた温度センサとしては、能動的なワイヤレス機能を有する温度センサのように、デジタル変換機能等の信号処理機能や電源機能等を別途配する必要のある温度センサよりも、これらの機能を配する必要のない無給電な受動型の温度センサであることが好ましい。
このような温度センサとしては、例えば、表面弾性波(SAW)を用いた温度センサが挙げられる。表面弾性波とは、物質の表面を伝播する音響弾性波であり、表面弾性波を用いた温度センサとは、圧電結晶基板上に規定の距離だけ離して配置した2つの櫛形電極(IDT)の一方を電磁波で励振し、圧電結晶基板上を伝播した表面弾性波を他方の櫛形電極で受波することで電磁波を放出するセンサであり、温度変化に伴う弾性係数の変化に起因する表面弾性波の伝播速度の変化を測定することで温度を算出できる、ワイヤレス機能を備えた、無給電な受動型の温度センサである。
このような温度センサを適用すれば、CPU等を配し、デジタル信号への変換処理をはじめとする各種信号処理を熱流式体温計にて行う必要もなく、更に、信号を送信するためのワイヤレス機能や、これらを駆動する電源を配する必要もなくなるため、軽量・小型化できるといった利点がある。
特開2007−212407号公報 特開2009−222543号公報
しかしながら、表面弾性波を用いた温度センサを熱流式体温計に適用するにあたっては、他の測定器への影響や人体への影響を考慮し、櫛形電極を励磁するための電磁波を極力微弱に設定しておく必要がある。このため、ワイヤレス機能の利用に際しては、熱流式体温計に対してリーダをできるだけ近接した位置まで移動させることが不可欠となってくる。
一方で、上述したように、熱流式体温計は、被検体の体表面に貼り付けた状態で用いられるため、測定者は、被検者の衣服のうえから熱流式体温計の位置を特定しなければならない。このため、温度センサにおける検出結果をリーダを用いて読み取るにあたっては、熱流式体温計の貼り付け位置を探し出す必要があり、ある程度の時間を要することが考えられる。
本発明は上記課題に鑑みてなされたものであり、表面弾性波を用いた温度センサによる熱流式体温計より、該温度センサにおける検出結果を読み取るリーダにおいて、より短い時間で読み取ることができるようにすることを目的とする。
上記の目的を達成するために、本発明に係るリーダは以下のような構成を備える。即ち、
複数の表面弾性波型温度センサが配され、被検体の体表面に接触させた状態で、該複数の表面弾性波型温度センサにおいて検出された温度に基づいて、該被検体の深部体温を測定可能な体温計に対して、電磁波を放出し、該体温計からの電磁波をキャッチし、被検者の深部体温を算出するリーダであって、
同一平面内において、円周上に沿って配された複数の第1のアンテナと、
電磁波を放出する第2のアンテナから放出された電磁波に応答して、前記複数の表面弾性波型温度センサより放出された電磁波を前記複数の第1のアンテナによりキャッチし、該第1のアンテナそれぞれでキャッチされた電磁波の強度を識別する識別手段と、
前記円周の中心位置からの前記第1のアンテナそれぞれの位置する方向と、前記識別された前記第1のアンテナそれぞれでキャッチされた電磁波の強度とに基づいて、前記第1のアンテナそれぞれがキャッチした電磁波のベクトルを生成する生成手段と、
前記生成された第1のアンテナそれぞれのベクトルを合成し、合成ベクトルを算出することにより、前記体温計が位置する方向を示す識別子を抽出する抽出手段と、
前記抽出手段により抽出された前記方向を示す識別子を表示する表示手段とを備えることを特徴とする。
本発明によれば、表面弾性波を用いた温度センサによる熱流式体温計より、該温度センサにおける検出結果を読み取るリーダにおいて、より短い時間で読み取ることができるようになる。
より具体的には、表面弾性波を用いた温度センサによる熱流式体温計に対して、表面弾性波を励起する電磁波を放射し、該温度センサより放出される電磁波をキャッチすることで、遅れ時間に基づいて温度を測定するリーダにおいて、該熱流式体温計を目視できない着衣の上からでも、短時間で、該熱流式体温計の位置を探しだすことができ、かつ、深部体温を算出することができるようになる。
熱流式体温計の測定原理を説明するために、熱流式体温計における熱流を電気回路相似法を用いて電気回路として表現した図である。 熱流式体温計とリーダとを含む体温測定システムの全体構成を示す図である。 熱流式体温計の断面構成を示す図である。 各温度センサの構成を示す図である。 リーダの機能構成を示す図である。 検出結果読み取り処理の流れを示す図である。 位置検索処理の流れを示す図である。 方向指示処理の流れを示す図である。 指示方向の決定方法を説明するための図である。 指示方向の決定方法を説明するための図である。 強度を示す図である。 測定処理の流れを示す図である。 検出結果読み取り処理時のリーダの表示例を示す図である。
以下、本発明の各実施形態について図面を参照しながら説明する。なお、以下に述べる実施の形態は、本発明の好適な具体例であるから、技術的に好ましい種々の限定が付されているが、本発明の範囲は、以下の説明において特に本発明を限定する旨の記載がない限り、これらの態様に限られるものではない。
[第1の実施形態]
1.熱流式体温計による深部体温の測定原理
はじめに、熱流式体温計(被検体の体表面に貼り付け、被検体の深部の体温を測定する体温計であって、加熱機能を有していないタイプの体温計)における、深部体温の測定原理について簡単に説明する。
図1は、熱流式体温計の測定原理を説明するために、熱流式体温計における熱流を電気回路相似法を用いて電気回路として表現した図である。
図1に示すように、熱流を電流I、温度を電圧T、熱抵抗を電気抵抗Rとすることで、熱流式体温計における熱流は、等価回路100により表現することができる。
図1において、Tbは深部体温を、Rtは被検体の皮下組織の熱抵抗を、Tt1は第1の温度センサ111において検出された温度を、Ta1は第2の温度センサ112において検出された温度を、Ra1は熱抵抗体113の熱抵抗値をそれぞれ示している。また、Tt2は第3の温度センサ121において検出された温度を、Ta2は第4の温度センサ122において検出された温度を、Ra2は熱抵抗体123の熱抵抗値をそれぞれ示している。更に、Tcは外部温度を、Rcは、外気側の測定温度を均一化させるための均一化部材130の熱抵抗値をそれぞれ示している。
ここで、深部体温が一定であると仮定すると、等価回路100では、一定の電圧Tbが印加されているものと置き換えることができることから、等価回路100内には一定の電流Iが流れると仮定することができる。
このうち、熱抵抗体113における熱流を電流I1、熱抵抗体123における熱流を電流I2とすると、電流I1及び電流I2は下式(1)、(2)のように表すことができる。
Figure 2013200153
そして、それぞれの式を変形すると、下式(3)、(4)のようになる。
Figure 2013200153
ここで、皮下組織の熱抵抗Rtは、個人ごと及び部位ごとに異なり、一定ではない。そこで、上式(3)、(4)からRtを削除すべく、Rtについて求めると、下式(5)のようになる。
Figure 2013200153
そして、上式(5)を上式(4)に代入することで、下式(6)が求められる。
Figure 2013200153
ここで、Ra1及びRa2は既知であるため、4つの温度(Tt1、Tt2、Ta1、Ta2)を検出すれば、一義的に深部体温Tbを求めることができる。
2.体温測定システムの全体構成
次に、熱流式体温計と、該熱流式体温計の各温度センサを励起する電磁波を放出し、該温度センサより放出された電磁波をキャッチすることで、遅れ時間に基づいて温度を測定するリーダとを含む体温測定システムの全体構成について説明する。図2は、本実施形態に係るリーダ及び熱流式体温計を含む体温測定システムの全体構成を示す図である。図2において、200は熱流式体温計である。また、210は、本実施形態に係るリーダであり、電磁波を放出することにより熱流式体温計200の第1乃至第4の温度センサ(111〜122)の一方の櫛形電極に表面弾性波を励起させるとともに、該第1乃至第4の温度センサ(111〜122)の他方の櫛形電極からアンテナを介して放出される電磁波をキャッチし、該第1乃至第4の温度センサ(111〜122)それぞれの櫛形電極間の表面弾性波の伝播時間を計測する。リーダ210では、既知の遅延時間−温度特性を利用して、計測した伝播時間より、第1乃至第4の温度センサ(111〜122)それぞれの温度を算出することで、被検者の深部体温を算出する。なお、リーダ210では、電源ボタン211が1回押圧されることにより、後述する各種処理が実行され、もう一回押圧されることで、電源がOFFとなるよう構成されているものとする。また、電源がONの状態で、開始SW212が押圧されることで、熱流式体温計200の位置を検索するための位置検索処理及び測定処理が実行されるよう構成されているものとする。
3.熱流式体温計の断面構成
次に、熱流式体温計200の断面構成について説明する。図3は、本実施形態に係る熱流式体温計200の断面構成を示す図である。
図3において、111、121は、被検体の体表面に貼り付けた状態で、体表面に接触する側に位置する第1の温度センサ及び第3の温度センサであり、112、122は第1の温度センサ111及び第3の温度センサ121に対向する側に配された第2の温度センサ及び第4の温度センサである。なお、第1乃至第4の温度センサ(111〜122)は、表面弾性波を用いた温度センサ(表面弾性波型温度センサ)により構成されているものとする。
113は第1の温度センサ111と第2の温度センサ112との間に配され、被検体の体表面からの熱流を通過させる熱抵抗体である。同様に、123は第3の温度センサ121と第4の温度センサ122との間に配され、被検体の体表面からの熱流を通過させる熱抵抗体である。
なお、熱抵抗体113は熱伝導率がおおよそ0.2W/mKの素材により構成され、熱抵抗体123は、熱抵抗体113の熱伝導率の2倍程度の熱伝導率を有する素材により構成されており、それぞれの素材は、ともに、柔軟性と十分な復元性とを有しているものとする。また、熱抵抗体113、123は、同じ形状に形成されており、例えば、厚さ1mmで直径が20mmの平板形状を有しているものとする。そして、第1の温度センサ111、第2の温度センサ112及び第3の温度センサ121、第4の温度センサ122はそれぞれ、熱抵抗体113及び熱抵抗体123内の中央位置に配置されているものとする。
更に、熱抵抗体113及び熱抵抗体123の上面には、熱伝導率236W/mKのアルミニウムからなる均一化部材130が配されており、熱抵抗体113及び熱抵抗体123の上面を覆っている。これにより、熱抵抗体123の上面及び熱抵抗体123の上面(つまり、熱流が放散される外気側)の温度は均一化されるとともに、(熱抵抗体113、123を通過する熱流の方向を、体表面に対して略垂直方向に向けることにより、)熱抵抗体113及び熱抵抗体123の側面からの熱流の放散を間接的に抑えることができる。
なお、図3に示すように、熱抵抗体113及び熱抵抗体123とは、1〜12mm程度(好ましくは6mm)の間隔をもって配置されており、熱抵抗体113を通過する熱流と熱抵抗体123を通過する熱流とが混ざり合うことがないように構成されているものとする。
熱抵抗体113及び熱抵抗体123はそれぞれの底面が同一平面を形成するように均一化部材130に固定されているものとする。これにより、被検体の体表面に貼り付けた状態で、熱抵抗体113の底面及び熱抵抗体123の底面はそれぞれ、被検体の体表面に対して隙間なく貼り付けられることとなる。
なお、第1の温度センサ111及び第3の温度センサ121の底面は、それぞれ、アルミテープ等の熱伝導性のよい熱伝導部材301、302により覆われており、更に、熱流式体温計200の体表面側は、貼り付けテープ(粘着層)303及び貼り付けテープ(剥離紙)304により覆われているものとする。なお、熱抵抗体113側の貼り付けテープ(粘着層)と熱抵抗体123側の貼り付けテープ(粘着層)とは、1〜2mm程度の間隔をもって分離されているものとする。
一方、熱抵抗体113及び熱抵抗体123の側面及び上面は、絶縁部材305−1、305−2により覆われているものとする。
4.熱流式体温計を構成する温度センサ
次に、熱流式体温計200を構成する温度センサについて説明する。図4は、第1乃至第4の温度センサ(111〜122)の構成を示す図である。
アンテナ400は、第1の温度センサ111の整合回路402と接続されている。これにより、リーダ210より放出された電磁波をアンテナ400がキャッチすることにより発生した高周波は、整合回路402により、櫛形電極403に供給される。
供給された高周波により、櫛形電極403に表面弾性波が励起され、圧電結晶基板401の表面を伝播する。伝播した表面弾性波は、櫛形電極403から距離L1だけ離れた位置に配置された櫛形電極404にて受波され、高周波を発生し、整合回路402を介して、アンテナ400より電磁波を放出する。放出された電磁波は、リーダ210によりキャッチされる。
ここで、櫛形電極403にて発生した表面弾性波が櫛形電極404にて受波されるまでの時間(遅延時間)は、温度が一定の場合、圧電結晶基板401の材質と距離L1とによって決まってくる。換言すると、圧電結晶基板401の材質及び距離L1が固定(既知)であった場合、遅延時間は、圧電結晶基板401の温度変化に依存して変化する。
つまり、圧電結晶基板401の材質及び距離L1を固定し、既知の温度での当該遅延時間をリーダ210側にて予め保持しておくことで、リーダ210では、測定された遅延時間に基づいて、第1の温度センサ111における温度を算出することができる。
なお、第2の温度センサ112、第3の温度センサ121、第4の温度センサ122についても同様の構成とすることで、各温度センサにおける温度を算出することができる。
5.リーダの構成
次にリーダ210の機能構成について説明する。図5は、本実施形態に係るリーダ210の機能構成を示す図である。
図5に示すように、リーダ210は、後述する測定処理を実行する測定部510と、位置検索処理を実行する位置検索部530と、リーダ210全体を制御する共通部520とを備える。
測定部510は、電磁波放出兼検知用アンテナ511と測定用回路部512とを備える。電磁波放出兼検知用アンテナ511は、測定処理時に、所定の周波数、例えば20MHzから数GHzの周波数の電磁波を発生させて、第1乃至第4の温度センサ(111〜122)に接続されたアンテナとの間で磁気結合することで、各温度センサの櫛形電極を励振させたり、各温度センサより放出された電磁波をキャッチしたりする。
測定用回路部512は、電磁波放出兼検出用アンテナ511を介して電磁波の放出及びキャッチを行うための回路である。制御部521において生成された高周波は、送受信回路514により電力増幅された後、整合回路513にてアンテナとインピーダンスを整合させるための変換が行われた後に、電磁波放出用アンテナを兼用している電磁波放出兼検出用アンテナ511より電磁波として放出される。
また、電磁波放出兼検出用アンテナ511が電磁波をキャッチすることで取得された信号は、整合回路513にてインピーダンスを整合させるための変換が行われた後、送受信回路514に送られ、増幅回路515にて増幅された後に、A/D変換器516にてデジタル信号に変換される。A/D変換器516にてデジタル信号に変換された信号は波形成形され、制御部521に送られた後、各種処理(電磁波を放出してからキャッチするまでの遅れ時間の測定、温度センサの弁別、各温度センサの温度検出、深部体温の算出等)が実行される。
共通部520は、制御部521、電源部522、操作部523、表示部524を備える。制御部521は、CPUとROMとRAMとを備える。ROMには、少なくとも、検出結果読み取り機能を実現するためのプログラムと、位置検索部530を制御し、位置検索部530からの信号に基づいて、熱流式体温計200の位置を算出する位置検索機能を実現するためのプログラムと、測定処理時に測定部510より放出される温度センサ励磁用の電磁波を生成したり、測定部510にてキャッチされた電磁波の遅れ時間より体温計の温度センサの温度を測定し、測定結果に基づいて被検者の深部体温を算出したりする測定処理機能を実現するためのプログラムが格納されている。ROMに格納されたこれらのプログラムは、CPUの制御のもと適宜RAMに取り込まれ、CPUによって実行される。
電源部522は、電池等の外部電源より供給される電力を安定化させるための安定化回路とを含む。電源部522より供給される電力は、リーダ210の各部に提供される。
操作部523は、リーダ210の電源をON/OFFするための電源ボタン211や位置検索機能及び測定処理機能を実現するためのプログラムを起動させる開始SW212の他、各種操作ボタンが含まれる。表示部524は、位置検索処理時においては、制御部521において算出された熱流式体温計200の位置を示す識別子を表示し、測定処理時においては、制御部521において算出された深部体温を表示する。
また、位置検索部530は、第1の位置検索用アンテナ531〜第3の位置検索用アンテナ533と、位置検索用回路部534とを備える。
第1の位置検索用アンテナ531〜第3の位置検索用アンテナ533は、同一平面内において円周上に120°ずつずらして配置されており、位置検索処理時において、切替回路535により、順次、切り替えられながら、第1乃至第4の温度センサ(111〜122)に対して電磁波を放出するとともに、該第1乃至第4の温度センサ(111〜122)より放出された電磁波をキャッチする。なお、第1の位置検索用アンテナ531〜第3の位置検索用アンテナ533において電磁波の放出、キャッチを行う際に用いられる、整合回路536、増幅回路537、A/D変換器538の動作は、測定用回路部512の整合回路513、増幅回路515、A/D変換器516と同様であるため、ここでは説明を省略する。
6.検出結果読み取り処理の流れ
次に、リーダ210における検出結果読み取り処理の流れを説明するリーダ210における検出結果読み取り処理は、リーダ210の電源がONされることにより自動的に開始される。なお、検出結果読み取り装置には、後述する位置検索処理及び測定処理が含まれる。
図6はリーダ210における検出結果読み取り処理の流れを示すフローチャートである。オルタネート式の電源スイッチ211が操作され、電源がONされると、ステップS601では、制御部521内のメモリ(RAM)をチェックする。
ステップS602では、ステップS601におけるチェック結果に基づいて、メモリが正常か否かを判定する。ステップS602において、正常でないと判定された場合には、ステップS609に進み、表示部524にメモリエラーメッセージを表示する。
一方、ステップS602において、正常であると判定された場合には、ステップS603に進み、電源部522の電池電圧をチェックする。ステップS604では、ステップS603におけるチェック結果に基づいて、電源電圧が正常か否かを判定する。ステップS604において、正常でないと判定された場合には、ステップS610に進み、表示部524に電源電圧が低下している旨の電源電圧低下メッセージを表示する。
なお、ステップS609においてメモリエラーメッセージを表示した場合、及び、ステップS610において電源電圧低下メッセージを表示した場合には、検出結果読み取り処理は終了する。電圧低下メッセージが表示された場合、測定者は、電池を交換するなどして電源電圧が低下している状態を回避する。測定者のこれらの作業は、検出結果読み取り処理に含まれないため、ここでは、詳細な説明は省略する。なお、電源スイッチ211が一度OFFされてから再度ONされると、ステップS601からの処理が再び開始されるものとする。
一方、ステップS604において、正常であると判定された場合には、ステップS605に進み、電源スイッチ211がOFFされたか否かがチェックされる。電源スイッチ211がOFFされたと判定された場合には、処理を終了する。一方、電源スイッチ211がOFFされていないと判定された場合には、ステップS606において開始スイッチ212が押圧されたか否かがチェックされる。
ステップS606において、開始スイッチ212が押圧されたと判定された場合には、ステップS607にて位置検索処理を実行する。なお、位置検索処理の詳細は、図7を用いて後述する。
一方、ステップS606において、開始スイッチ212が押圧されていないと判定された場合には、ステップS605に戻り、電源スイッチ211及び開始スイッチ212の状態をチェックする処理を繰り返す。
ステップS607における位置検索処理において、熱流式体温計200の第1乃至第4の温度センサ(111〜122)との通信が可能であると判定された場合には、ステップS608において、測定処理を実行する。なお、測定処理の詳細は、図12を用いて後述する。
7.位置検索処理の説明
次に、ステップS607の位置検索処理の詳細について、図7を用いて説明する。図7は、位置検索処理の流れを示すフローチャートである。位置検索処理が開始されると、ステップS701では、電磁波放出兼検出用アンテナ511より電磁波が放出され、切替回路535が切り替え処理を行うことにより、第1の位置検索用アンテナ531と位置検索用回路部534とが接続される。
ステップS702では、ステップS701において放出された電磁波に応答して、第1乃至第4の温度センサ(111〜122)より放出された電磁波を第1の位置検索用アンテナ531がキャッチした際の強度(1)を識別する。
ステップS703では、切替回路535が切り替え処理を行うことにより、第2の位置検索用アンテナ532と位置検索用回路部534とが接続される。
ステップS704では、ステップS701において放出された電磁波に応答して、第1乃至第4の温度センサ(111〜122)より放出された電磁波を第2の位置検索用アンテナ532がキャッチした際の強度(2)を識別する。
ステップS705では切替回路535が切り替え処理を行うことにより、第3の位置検索用アンテナ533と位置検索用回路部534とが接続される。
ステップS706では、ステップS701において放出された電磁波に応答して、第1乃至第4の温度センサ(111〜122)より放出された電磁波を第3の位置検索用アンテナ533がキャッチした際の強度(3)を識別する。
ステップS707では、ステップS702、704、706においてそれぞれ識別された強度(1)〜(3)のうちの2つが、方向指示可能なレベルに到達しているか否かを判定する。ステップS707において、方向指示可能なレベルに到達していないと判定された場合には、リーダ210の近傍に、熱流式体温計200が存在していないと判断し、ステップS710に進み、方向指示エラーメッセージ(方向指示が不可能である旨のメッセージ)を表示した後、ステップS701に戻る。
一方、ステップS707において、方向指示可能なレベルに到達していると判定された場合には、ステップS708に進む。ステップS708では、ステップS702、704、706においてそれぞれ識別された強度(1)〜(3)の1つ以上が、測定処理可能なレベルに到達しているか否かを判定する。
ステップS708において、いずれも測定処理可能なレベルに到達していないと判定された場合には、リーダ210の近傍に、熱流式体温計200は存在しているが、測定処理を実行するためには、更に、リーダ210を熱流式体温計200に近づける必要があると判断し、ステップS709に進む。
ステップS709では、ステップS702、704、706においてそれぞれ識別された強度(1)〜(3)に基づいて、熱流式体温計200が存在する方向及び距離を推測し、当該推測した方向を矢印(識別子)を用いて、また、当該推測した距離をレベルメータを用いて、それぞれ表示する方向指示処理を実行する。なお、方向指示処理の詳細は、図8を用いて後述する。
一方、ステップS708において、測定処理可能なレベルに到達していると判定された場合には、ステップS711に進み、矢印及びレベルメータを全灯し、測定処理が可能であることを表示部524に表示した後、自動的に測定処理を実行する。なお、測定処理の詳細は、図12を用いて後述する。
8.方向指示処理の詳細
次に、ステップS709の方向指示処理の詳細について説明する。図8は、方向指示処理の流れを示すフローチャートである。
ステップS801では、図7のステップS702においてキャッチした電磁波の強度(1)(第1の位置検索用アンテナ531においてキャッチした電磁波の強度)に基づいて、0°方向の信号ベクトルAを生成する。
上述したように、リーダ210の第1乃至第3の位置検索用アンテナ(531〜533)は、同一平面内の円周上において、円周の中心位置から見て互いに120°ずつずれて配置されている。図9(a)は、第1乃至第3の位置検索用アンテナ(531〜533)の当該配置を模式的に示した図である。
このため、ステップS801では、第1の位置検索用アンテナ531が配置された方向に、強度(1)に比例した長さの信号ベクトルAを生成する(図9(b)参照)。
ステップS802では、図7のステップS704においてキャッチした電磁波の強度(2)(第2の位置検索用アンテナ532においてキャッチした電磁波の強度)に基づいて、120°方向の信号ベクトルBを生成する。具体的には、図9(b)に示すように、第2の位置検索用アンテナ532が配置された方向に、強度(2)に比例した長さの信号ベクトルBを生成する。
更に、ステップS803では、図7のステップS706においてキャッチした電磁波の強度(3)(第3の位置検索用アンテナ533においてキャッチした電磁波の強度)に基づいて、240°方向の信号ベクトルCを生成する。具体的には、図9(b)に示すように、第3の位置検索用アンテナ533が配置された方向に、強度(3)に比例した長さの信号ベクトルCを生成する。
ステップS804では、ステップS801〜S803において生成された信号ベクトルA〜Cのうち、スカラ量(キャッチした電磁波の強度)が1番目(最大)の信号ベクトルと、2番目の信号ベクトルとを選択し、該選択した信号ベクトルを合成することで、合成ベクトルVを生成する。図9(c)は、スカラ量が1番目の信号ベクトルCと、2番目の信号ベクトルAとを合成することで生成された合成ベクトルVの一例を示している。なお、2番目が2つ存在する場合には、いずれか一方を選択するものとする。
ステップS805では、生成された合成ベクトルVに対応する矢印を表示部524上に表示する。ここで、本実施形態に係るリーダ210では、方向指示を行うにあたり、図10に示すように、円周方向を8つの領域に区分している。
第1の領域は、リーダ210の上方向を0°とした場合の、337.5°以上22.5°未満の範囲であり、対応する矢印として矢印1001が割り当てられている。また、第2の領域は、22.5°以上45°未満の範囲であり、対応する矢印として矢印1002が割り当てられている。以下、同様に、第3の領域から、第8の領域まで、それぞれ45°分の範囲が定義されており、それぞれ、矢印1003〜1008が割り当てられている。
このため、ステップS805では、生成された合成ベクトルVが属する領域が、第1乃至第8の領域のいずれであるかを判定し、判定された領域に割り当てられた矢印を抽出し、表示部524にて点滅表示する。
なお、ガウス平面にて虚数軸のプラス方向を、リーダ210のA方向(図2参照)とし、スカラ量が1番目(最大)の信号ベクトルと2番目の信号ベクトルとの合成ベクトルをZ(a,b)とすると、上記区分の角度は、下式により算出される。
Figure 2013200153
ただし、角度≧360°のときは、算出された角度より360°を減じた角度の区分となる。
ステップS806では、図7のステップS702、704、706においてキャッチした信号の強度(1)〜(3)のうち、スカラ量が1番目(最大)の信号ベクトルと、2番目の信号ベクトルを合成した合成ベクトルVのスカラ量を算出し、合計強度を算出する。
ステップS807では、ステップS806において算出された合計強度に対応するレベルメータ(識別子)を表示部524に表示する。図11は、表示部524に表示されるレベルメータの一例を示す図である。
図11に示すように、合計強度を5段階に区分し、それぞれの区分に応じたメータを表示する。このように、矢印に加えてレベルメータを表示する構成とすることで、測定者は、熱流式体温計200が存在する方向に加えて、熱流式体温計200が存在する位置までの距離を認識することができるようになる。
例えば、矢印1001が点滅表示され、レベルメータ1101が点灯表示されていた場合、測定者は、現在、保持しているリーダ210の向きに対して、熱流式体温計200が、リーダ210の上端部方向であって、やや離れた位置に存在していると認識することができる。また、当該方向にリーダ210を動かすことにより、レベルメータのレベルが上昇した場合には、リーダ210を動かした方向が正しい方向である(熱流式体温計200に近づいている)と認識することができる。
9.測定処理の詳細
次に、ステップS608の測定処理の詳細について説明する。図12は、測定処理の流れを示すフローチャートである。
ステップS708において強度(1)〜(3)の1つ以上が測定可能レベルに到達したと判定された場合には、位置検索処理(ステップS608)が終了し、ステップS608の測定処理が開始される。
ステップS608の測定処理が開始されると、ステップS1201では、電磁波放出兼検出用アンテナ511より電磁波が放出されたことに応答して、熱流式体温計200の第1乃至第4の温度センサ(111〜122)より電磁波が放出されるため、リーダ210では、当該電磁波をキャッチする。
ステップS1202では、第1乃至第4の温度センサ(111〜122)それぞれの信号の遅延時間を測定し、ステップS1203では、当該遅延時間に基づいて、第1乃至第4の温度センサ(111〜122)それぞれにて検出された温度を算出する。
ステップS1204では、ステップS1203において算出された温度に基づいて、上式(6)を用いて被検者の深部体温を算出し、ステップS1205では、算出した深部体温を表示部524に表示する。なお、算出した深部体温は、測定日時及び熱流式体温計の識別番号と対応付けて、メモリに格納されるものとする。
10.実施例
図13は、リーダ210を用いて、検索結果読み取り処理を実行した場合の、表示部524の表示例を示す図である。
電源ボタン211をONした後、開始スイッチ212を押圧し、リーダ210を被検者に近づけることにより、方向指示処理が実行され、図13(a)に示すように、表示部524には、矢印1002とレベルメータ1103とが表示される。当該表示に基づいて、測定者が、リーダ210を動かすことで、リーダ210が測定処理可能な位置に到達すると、自動的に測定処理が開始され、表示部524には、算出された被検者の深部体温が表示される(1301参照)。
以上の説明から明らかなように、本実施形態に係るリーダでは、測定処理用のアンテナに加え、位置検索用のアンテナを複数配し、それぞれの位置検索用アンテナにおいてキャッチした電磁波の強度をベクトル合成することで、熱流式体温計が存在する方向を示す構成とした。
また、それぞれの位置検索用アンテナにおいてキャッチした電磁波の強度のスカラ量が最大の信号ベクトルと2番目の信号ベクトルとを合成し、合成ベクトルのスカラ量を表示することで、熱流式体温計が存在する位置までの距離を、レベルメータとして表示する構成とした。
更に、測定可能なレベルとなるまでリーダが熱流式体温計に近づいたと判定した場合には、自動的に、測定処理を実行し、算出した深部体温を表示部に表示する構成とした。
この結果、表面弾性波を用いた温度センサによる熱流式体温計に対して、表面弾性波を励起する電磁波を放射し、該温度センサより放出される電磁波をキャッチすることで、遅れ時間に基づいて温度を測定するリーダにおいて、該熱流式体温計を目視できない着衣の上からでも、短時間で、該熱流式体温計の位置を探しだすことができ、かつ、深部体温を算出することができるようになる。
[第2の実施形態]
上記第1の実施形態では、電磁波放出兼検出用アンテナと位置検索用アンテナとを別々に設け、それぞれ、測定用回路部と位置検索用回路部とを設ける構成としたが、本発明はこれに限定されず、電磁波放出兼検出用アンテナと位置検索用アンテナとを共用させる構成としてもよい。
また、上記第1の実施形態では、位置検索用アンテナを3つ配置する構成としたが、本発明はこれに限定されず、4つ以上配置するようにしてもよい。
また、上記第1の実施形態では、熱流式体温計が存在する方向を矢印で示し、熱流式体温計が存在する位置までの距離をレベルメータで示す構成としたが、本発明はこれに限定されず、例えば、熱流式体温計が存在する方向を矢印の向きで示し、熱流式体温計が存在する位置までの距離を矢印の大きさで示すように(距離が近づくにつれて、矢印の大きさが大きくなるように)構成してもよい。
また、上記第1の実施形態では、矢印の向きを、第1〜第8の領域の8区分から抽出する構成としたが、本発明はこれに限定されず、更に、細かい区分から抽出する構成としてもよい。
100:等価回路、111:第1の温度センサ、112:第2の温度センサ、113:熱抵抗体、121:第3の温度センサ、122:第4の温度センサ、123:熱抵抗体、200:熱流式体温計、210:リーダ、301:熱伝導部材、302:熱伝導部材、303:貼付テープ(剥離紙)、304:貼付テープ(粘着層)、305−1:絶縁部材、305−2:絶縁部材、400:アンテナユニット、400:アンテナ、401(411、421、431):圧電結晶基板、402(412、422、432):整合回路、403(413、423、433):櫛形電極、404(414、424、434):櫛形電極

Claims (6)

  1. 複数の表面弾性波型温度センサが配され、被検体の体表面に接触させた状態で、該複数の表面弾性波型温度センサにおいて検出された温度に基づいて、該被検体の深部体温を測定可能な体温計に対して、電磁波を放射し、該温度センサより放出される電磁波をキャッチすることで、遅れ時間に基づいて温度を測定するリーダであって、
    同一平面内において、円周上に沿って配された複数の第1のアンテナと、
    電磁波を放出する第2のアンテナから放出された電磁波に応答して、前記複数の表面弾性波型温度センサより放出された電磁波を前記複数の第1のアンテナによりキャッチし、該第1のアンテナそれぞれでキャッチされた電磁波の強度を識別する識別手段と、
    前記円周の中心位置からの前記第1のアンテナそれぞれの位置する方向と、前記識別された前記第1のアンテナそれぞれでキャッチされた電磁波の強度とに基づいて、前記第1のアンテナそれぞれがキャッチした電磁波のベクトルを生成する生成手段と、
    前記生成された第1のアンテナそれぞれのベクトルを合成し、合成ベクトルを算出することにより、前記体温計が位置する方向を示す識別子を抽出する抽出手段と、
    前記抽出手段により抽出された前記方向を示す識別子を表示する表示手段と
    を備えることを特徴とするリーダ。
  2. 前記識別された第1のアンテナそれぞれがキャッチした電磁波の強度のうちの少なくとも2つが、第1のレベルに到達したか否かを判定する第1の判定手段を更に備え、
    前記第1の判定手段により、前記第1のレベルに到達していないと判定された場合、前記表示手段は、前記方向を示す識別子の表示が不可能である旨のメッセージを表示することを特徴とする請求項1に記載のリーダ。
  3. 前記生成手段は、前記第1の判定手段により、前記第1のレベルに到達していると判定された場合に、前記ベクトルを生成することを特徴とする請求項2に記載のリーダ。
  4. 前記識別された第1のアンテナそれぞれがキャッチした電磁波の強度のうちのいずれかが、前記第1のレベルより高い第2のレベルに到達したか否かを判定する第2の判定手段と、
    前記複数の表面弾性波型温度センサに温度の検出を実行させるために、該複数の表面弾性波型温度センサに対して電磁波を放出するとともに、該電磁波に応答して該複数の表面弾性波型温度センサより放出された電磁波をキャッチする前記第2のアンテナと、
    前記第2のレベルに到達していると判定されることで、前記第2のアンテナを介して、前記複数の表面弾性波型温度センサに対して放出された電磁波に応答して、該複数の表面弾性波型温度センサより放出された電磁波が前記第2のアンテナにおいてキャッチされた場合に、該第2のアンテナにおいてキャッチした電磁波に基づいて、前記複数の表面弾性波型温度センサにおいて検出された温度を算出する第1の算出手段と、
    前記第1の算出手段により算出された温度に基づいて、被検体の深部体温を算出する第2の算出手段と
    を更に備えることを特徴とする請求項3に記載のリーダ。
  5. 前記表示手段は、更に、前記識別された第1のアンテナそれぞれがキャッチした電磁波の強度のうち、最も大きい強度と2番目に大きい強度を有する2つのベクトルを合成することにより得られた合成ベクトルの合計強度を示す識別子を表示することを特徴とする請求項3に記載のリーダ。
  6. 前記表示手段は、前記第2の算出手段により算出された被検者の深部体温を表示することを特徴とする請求項4に記載のリーダ。
JP2012067374A 2012-03-23 2012-03-23 温度リーダ Pending JP2013200153A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067374A JP2013200153A (ja) 2012-03-23 2012-03-23 温度リーダ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067374A JP2013200153A (ja) 2012-03-23 2012-03-23 温度リーダ

Publications (1)

Publication Number Publication Date
JP2013200153A true JP2013200153A (ja) 2013-10-03

Family

ID=49520516

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067374A Pending JP2013200153A (ja) 2012-03-23 2012-03-23 温度リーダ

Country Status (1)

Country Link
JP (1) JP2013200153A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100814A1 (ja) * 2018-11-13 2020-05-22 株式会社村田製作所 貼付型体温計

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020100814A1 (ja) * 2018-11-13 2020-05-22 株式会社村田製作所 貼付型体温計
JPWO2020100814A1 (ja) * 2018-11-13 2021-10-14 株式会社村田製作所 貼付型体温計
JP7092207B2 (ja) 2018-11-13 2022-06-28 株式会社村田製作所 貼付型体温計
US11982572B2 (en) 2018-11-13 2024-05-14 Murata Manufacturing Co., Ltd. Stick-on thermometer

Similar Documents

Publication Publication Date Title
US10048134B2 (en) Non-contact medical thermometer with distance sensing and compensation
KR101779761B1 (ko) 거리 측정 센서를 이용한 온도 보정 체온계 및 방법
US10241066B2 (en) Microfluidic sensing device
US9198607B2 (en) Armband for a detection device for the detection of a blood count parameter
EP2519143B1 (en) Temperature-measurement probe
US8165682B2 (en) Surface acoustic wave probe implant for predicting epileptic seizures
JP6019581B2 (ja) 検知装置、検知システム、送電装置、非接触電力伝送システム及び検知方法
US10101187B2 (en) Flowmeter, dialysis machine and medicinal solution injection device
JP6081983B2 (ja) 体温計及び体温測定システム
WO2013140711A1 (ja) 体温計
KR20200145710A (ko) 전자기파를 이용하여 생체 정보를 측정하기 위한 폴디드 암을 포함하는 안테나 장치
US9028408B2 (en) Detection device for the detection of a blood count parameter
JP2013200152A (ja) 体温計
US11193901B2 (en) Thermal conductivity measuring device, thermal conductivity measuring method and vacuum evaluation device
CN106716090B (zh) 具有无线功能的温度计
WO2012042759A1 (ja) 体温計
JP2013044624A (ja) 体温計
JP2013200153A (ja) 温度リーダ
JP2005098982A (ja) 電子体温計
US20170215741A1 (en) Device for measuring the temperature in the anus or vagina of an animal
JPWO2013140720A1 (ja) 体温計及び体温計のアンテナユニットならびにその製造方法
US10292659B2 (en) Vehicle operating element and method for noninvasively measuring biomolecules
US20170112393A1 (en) Measurement apparatus and measurement method
JP2012073127A (ja) 体温計
JP2013170907A (ja) 体温計