JP2013199560A - Method for reconstructing coke oven and reconstructed coke oven - Google Patents

Method for reconstructing coke oven and reconstructed coke oven Download PDF

Info

Publication number
JP2013199560A
JP2013199560A JP2012067973A JP2012067973A JP2013199560A JP 2013199560 A JP2013199560 A JP 2013199560A JP 2012067973 A JP2012067973 A JP 2012067973A JP 2012067973 A JP2012067973 A JP 2012067973A JP 2013199560 A JP2013199560 A JP 2013199560A
Authority
JP
Japan
Prior art keywords
chamber
coke oven
height
furnace
heat storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012067973A
Other languages
Japanese (ja)
Other versions
JP5867221B2 (en
Inventor
Hide Egawa
秀 江川
Kenji Kato
健次 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel and Sumitomo Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel and Sumitomo Metal Corp filed Critical Nippon Steel and Sumitomo Metal Corp
Priority to JP2012067973A priority Critical patent/JP5867221B2/en
Publication of JP2013199560A publication Critical patent/JP2013199560A/en
Application granted granted Critical
Publication of JP5867221B2 publication Critical patent/JP5867221B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To dismantle a coke oven and reconstruct a coke oven more improved in productivity compared to that before dismantlement.SOLUTION: A reconstruction method of a chamber type coke oven, in which a regenerative chamber is disposed on a hearth structure, and a carbonization chamber and a combustion chamber are alternately disposed thereon, comprises: (x) dismantling the carbonization chamber, combustion chamber and regenerative chamber, while leaving the hearth structure; (y) constructing a regenerative chamber with height lower than that before dismantlement on the hearth structure; and (z) constructing a carbonization chamber and a combustion chamber on the regenerative chamber by (z1) increasing the height by the decreased height of regenerative chamber.

Description

本発明は、老朽化したコークス炉を解体し、生産性の高いコークス炉を再構築する方法と、該方法で構築したコークス炉に関するものである。   The present invention relates to a method of dismantling an aging coke oven and reconstructing a coke oven with high productivity, and a coke oven constructed by the method.

通常、コークス炉においては、炉床構造体の上に蓄熱室を構築し、その上に、耐火煉瓦で構築した炭化室と燃焼室が交互に配置されている。炭化室と燃焼室を構築する耐火煉瓦は、コークス炉の稼動で損耗する。特に、炭化室と燃焼室を区画する炉壁の損耗は、コークス押出時のトラブルの原因となるので、炉壁の損耗程度を監視し、損耗の著しい部分には不定形耐火物を吹付けて補修する。   Usually, in a coke oven, a heat storage chamber is constructed on a hearth structure, and a carbonization chamber and a combustion chamber constructed with refractory bricks are alternately arranged thereon. The refractory bricks that make up the carbonization chamber and the combustion chamber are worn out by the operation of the coke oven. In particular, the wear of the furnace wall that separates the carbonization chamber and the combustion chamber causes troubles during coke extrusion, so the extent of wear of the furnace wall is monitored, and an amorphous refractory is sprayed on the markedly worn part. Repair.

炉壁の損耗が激しいと、コークス押出時に、炉壁の一部が脱落する破孔が生じることがある。炉壁に破孔が生じると、破孔部分に耐火煉瓦を積み上げて、破孔部分を補修する必要がある。   If the wall of the furnace wall is severely worn, a broken hole in which a part of the furnace wall falls off during coke extrusion may occur. When a hole breaks in the furnace wall, it is necessary to repair the broken hole part by stacking refractory bricks on the broken hole part.

いずれにしても、炉壁の補修には、所要の日数が必要で、その間、操業を停止しなければならないので、コークス炉の生産性は低下する。さらに、炉壁補修の頻度が高くなると、生産性は極度に低下する。そこで、コークス炉の補修方法が、これまで幾つか提案されている(特許文献1〜3、参照)。   In any case, since the required number of days is required for repairing the furnace wall, the operation must be stopped during that time, so the productivity of the coke oven decreases. Furthermore, if the frequency of furnace wall repair is increased, productivity is extremely reduced. Thus, several methods for repairing the coke oven have been proposed (see Patent Documents 1 to 3).

上記提案の補修方法により、炉寿命の延長を図ることができるが、近年、長期の稼動に加え、生産性の向上のため操業条件が過酷化し、コークス炉全体の老朽化が加速するとともに、炉壁補修の頻度が上昇している。それ故、長期稼動のコークス炉においては、炉壁補修による炉寿命の延長には限度があり、また、炉壁補修頻度の上昇で、生産性が極度に低下している。   The proposed repair method can extend the life of the furnace, but in recent years, in addition to long-term operation, the operating conditions have become harsher to improve productivity, and the aging of the coke oven has accelerated. The frequency of wall repairs is increasing. Therefore, in a coke oven operating for a long time, there is a limit to the extension of the furnace life by furnace wall repair, and the productivity is extremely reduced due to the increase in the frequency of furnace wall repair.

特開2000−002491号公報JP 2000-002491 A 特開2001−019968号公報JP 2001-019968 A 特開2004−231681号公報JP 2004-231681 A

本発明は、長期稼動のコークス炉の現状に鑑み、該コークス炉を解体し、再構築することを前提とするところ、単に、解体前と同じコークス炉を構築するのではなく、生産性が、解体前に比べより向上したコークス炉を構築することを課題とし、該課題を解決するコークス炉の再構築方法と、該方法で構築したコークス炉を提供することを目的とする。   The present invention is based on the premise of disassembling and reconstructing the coke oven in view of the current state of the coke oven operating for a long time, and not simply constructing the same coke oven as before demolition, An object is to construct a coke oven that is more improved than before dismantling, and an object is to provide a method for reconstructing a coke oven that solves the problem, and a coke oven constructed by the method.

本発明者らは、上記課題を解決する手法について鋭意研究した。   The inventors of the present invention have intensively studied a method for solving the above-described problems.

その結果、コークス炉を保持する炉床構造体の上に、コークス炉を再構築する際、(a)蓄熱室の高さを低減し、(b)その低減分、炭化室及び燃焼室の炉高を高くすると、解体前と同じ総炉高(蓄熱室の高さを含む炉高)を維持しつつ、炭化室の容積を増加できるので、コークス炉の生産性が向上するとともに、炉上部に配置している既存の付帯設備がそのまま使用できることが判明した。   As a result, when reconstructing the coke oven on the hearth structure that holds the coke oven, (a) the height of the heat storage chamber is reduced, and (b) the reduction, the carbonization chamber and the combustion chamber furnace If the height is increased, the coke oven volume can be increased while maintaining the same total furnace height (furnace height including the heat storage chamber height) as before dismantling. It turned out that the existing ancillary equipment can be used as it is.

本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。   This invention was made | formed based on the said knowledge, and the summary is as follows.

(1)炉床構造体の上に蓄熱室を配置し、その上に炭化室と燃焼室を交互に配置した室式コークス炉の再構築方法において、
(x)炉床構造体を残して、炭化室、燃焼室、及び、蓄熱室を解体し、
(y)上記炉床構造体の上に、蓄熱室を、解体前の高さを低減して構築し、
(z)上記蓄熱室の上に、炭化室と燃焼室を、蓄熱室の高さの低減分、高くして構築することを特徴とするコークス炉の再構築方法。
(1) In a restructuring method of a chamber type coke oven in which a heat storage chamber is arranged on the hearth structure, and a carbonization chamber and a combustion chamber are alternately arranged thereon,
(X) dismantling the carbonization chamber, combustion chamber, and heat storage chamber, leaving the hearth structure;
(Y) On the hearth structure, a heat storage chamber is constructed with a reduced height before dismantling,
(Z) A coke oven restructuring method characterized in that a carbonization chamber and a combustion chamber are built on the heat storage chamber to be higher by a reduction in the height of the heat storage chamber.

(2)窯芯ピッチ(炭化室の幅+燃焼室の幅)を、解体前の窯芯ピッチより大きくして構築することを特徴とする前記(1)に記載のコークス炉の再構築方法。   (2) The method for reconstructing a coke oven according to (1), wherein the furnace core pitch (the width of the carbonization chamber + the width of the combustion chamber) is set larger than the furnace core pitch before dismantling.

(3)前記(1)又は(2)に記載のコークス炉の再構築方法で再構築したことを特徴とする再構築コークス炉。   (3) A reconstructed coke oven characterized by being reconstructed by the method for reconstructing a coke oven as described in (1) or (2) above.

本発明によれば、炭化室の容積が、解体前に比べ増加するので、生産性の高いコークス炉を提供することできる。また、本発明によれば、コークス炉の総炉高が解体前と同じであるので、炉上部に配置した既存の付帯設備をそのまま使用することができる。   According to the present invention, since the volume of the carbonization chamber is increased as compared with that before dismantling, a coke oven with high productivity can be provided. Further, according to the present invention, since the total furnace height of the coke oven is the same as that before the dismantling, the existing incidental equipment arranged in the upper part of the furnace can be used as it is.

室式コークス炉の基本構造を示す図である。(a)は、炉長方向の断面構造を示し、(b)は、炉幅方向の断面構造の一部を示す。It is a figure which shows the basic structure of a chamber type coke oven. (A) shows the cross-sectional structure in the furnace length direction, and (b) shows a part of the cross-sectional structure in the furnace width direction. 須賀・下川の式(式(1))で用いる記号の意味を示す図である。It is a figure which shows the meaning of the symbol used by the formula (Formula (1)) of Suga and Shimokawa. 蓄熱室内に置かれるスロット煉瓦の構造を模式的に示す図である。(a)は、従来型のスロット煉瓦構造を示し、(b)は、再構築に用いる高効率型のスロット煉瓦構造を示す。It is a figure which shows typically the structure of the slot brick placed in a thermal storage chamber. (A) shows the conventional slot brick structure, (b) shows the highly efficient slot brick structure used for reconstruction.

(第1の発明)
本発明は、炉床構造体の上に蓄熱室を配置し、その上に炭化室と燃焼室を交互に配置した室式コークス炉の再構築方法において、
(x)炉床構造体を残して、炭化室、燃焼室、及び、蓄熱室を解体し、
(y)上記炉床構造体の上に、蓄熱室を、解体前の高さを低減して構築し、
(z)上記蓄熱室の上に、炭化室と燃焼室を、(z1)高さは、蓄熱室の高さの低減分、高くして構築することを特徴とする。
(First invention)
The present invention is a method for reconstructing a coke oven in which a heat storage chamber is arranged on the hearth structure, and a carbonization chamber and a combustion chamber are alternately arranged thereon,
(X) dismantling the carbonization chamber, combustion chamber, and heat storage chamber, leaving the hearth structure;
(Y) On the hearth structure, a heat storage chamber is constructed with a reduced height before dismantling,
(Z) A charcoal chamber and a combustion chamber are constructed on the heat storage chamber, and (z1) height is constructed by increasing the height of the heat storage chamber.

以下、第1の発明について図面に基づいて説明する。   The first invention will be described below with reference to the drawings.

まず、図1に、室式コークス炉の基本構造を示す。図1(a)に、炉長方向の断面構造を示し、図1(b)に、炉幅方向の断面構造の一部を示す。コークス炉においては、炉床支持構造体1の上に蓄熱室2が配置され、その上に燃焼室3と炭化室4が交互に配置されている(図1(b)、参照)。燃焼室3と炭化室4は、天井壁5で覆われている。蓄熱室2には、燃料ガス供給路7から燃料ガスが送り込まれ、空気供給路8から空気が送り込まれる。空気と燃料ガスは、予熱された後、燃焼室で燃焼する。燃焼排ガスは、蓄熱室を通り、蓄熱煉瓦と熱交換をした後、煙道6を通して煙突から排出される。   First, FIG. 1 shows the basic structure of a chamber coke oven. FIG. 1A shows a sectional structure in the furnace length direction, and FIG. 1B shows a part of the sectional structure in the furnace width direction. In the coke oven, the heat storage chamber 2 is disposed on the hearth support structure 1, and the combustion chamber 3 and the carbonization chamber 4 are alternately disposed thereon (see FIG. 1B). The combustion chamber 3 and the carbonization chamber 4 are covered with a ceiling wall 5. Fuel gas is fed into the heat storage chamber 2 from the fuel gas supply path 7 and air is fed from the air supply path 8. Air and fuel gas are preheated and then burned in the combustion chamber. The combustion exhaust gas passes through the heat storage chamber, exchanges heat with the heat storage bricks, and then is discharged from the chimney through the flue 6.

次に、図2に示す各部の寸法を用いて、本発明のコークス炉の再構築方法(以下「本発明方法」ということがある。)を具体的に説明する。   Next, the coke oven rebuilding method of the present invention (hereinafter sometimes referred to as “the method of the present invention”) will be specifically described with reference to the dimensions of the respective parts shown in FIG.

本発明方法は、長期にわたり稼働して老朽化が進み、生産性が低下した室式コークス炉を対象とする。再構築の実施では、まず、炉床支持構造体(図1、参照)上の煉瓦構造物(蓄熱室、及び、燃焼室と炭化室)を解体し、次に、この炉床支持構造体の上に新たな蓄熱室、及び、炭化室と燃焼室を構築する。   The method of the present invention is intended for a room type coke oven that has been operating over a long period of time and has deteriorated and the productivity has decreased. In the implementation of the reconstruction, first, the brick structure (the heat storage chamber and the combustion chamber and the carbonization chamber) on the hearth support structure (see FIG. 1) is disassembled, and then the hearth support structure of the hearth support structure is disassembled. A new heat storage chamber, carbonization chamber and combustion chamber will be built on top.

このとき、総炉高H(=燃焼室又は炭化室の高さHb1+蓄熱室の高さHa1+炉頂デッキの高さHd1)は一定のまま、蓄熱室の高さHa2を、解体前の蓄熱室の高さHa1より、ΔHa(=Ha2−Ha1)低くして蓄熱室を構築する。 At this time, the total furnace height H (= the height Hb 1 of the combustion chamber or the carbonization chamber + the height Ha 1 of the heat storage chamber + the height Hd 1 of the furnace top deck) remains constant, and the height Ha 2 of the heat storage chamber is set to be constant. The heat storage chamber is constructed by reducing ΔHa (= Ha 2 −Ha 1 ) lower than the height Ha 1 of the heat storage chamber before dismantling.

なお、下付き添え字1は、解体前を意味し、下付き添え字2は、再構築後を意味する。以下、同じである。   Note that the subscript 1 means before dismantling, and the subscript 2 means after reconstruction. The same applies hereinafter.

蓄熱室の高さの低減分(ΔHa)にて、炭化室の高さ拡大(ΔHc)と炉頂デッキの増加(ΔHd)を行う。ΔHc、ΔHa、ΔHdの各寸法は、ΔHa=ΔHc+ΔHdを満足させ、総炉高を変えずに構築するのが、本発明の特徴である。   The height of the carbonization chamber (ΔHc) and the increase of the furnace top deck (ΔHd) are performed by the reduction in the height of the heat storage chamber (ΔHa). It is a feature of the present invention that the dimensions of ΔHc, ΔHa, and ΔHd satisfy ΔHa = ΔHc + ΔHd and are constructed without changing the total furnace height.

(蓄熱室の高さ(Ha)の決定方法)
蓄熱室は、燃焼排ガスと燃料ガスの熱交換を行い、排ガスの顕熱を有効に利用するために設置されており、蓄熱室内は多数のスロット煉瓦が配置されている。蓄熱室の熱交換性能は、主に、スロット煉瓦の伝熱面積と通過する気体の速度に依存して決まる。そこで、蓄熱室の高さを解体前より低くするために、高効率の耐火煉瓦を用いて熱交換効率を向上させる。
(Method for determining the height (Ha) of the heat storage chamber)
The heat storage chamber is installed for exchanging heat between the combustion exhaust gas and the fuel gas and effectively using the sensible heat of the exhaust gas, and a large number of slot bricks are arranged in the heat storage chamber. The heat exchange performance of the heat storage chamber is determined mainly depending on the heat transfer area of the slot brick and the velocity of the gas passing through. Therefore, in order to make the height of the heat storage chamber lower than before the dismantling, the heat exchange efficiency is improved by using a highly efficient firebrick.

図3に、蓄熱室内に置かれるスロット煉瓦の構造を模式的に示す。図3(a)に、従来型のスロット煉瓦構造を示し、図3(b)に、再構築に用いる高効率型のスロット煉瓦構造を示す。図3(b)に示すように、単体のスロット煉瓦のスロット数を増加し、伝熱面積を増大した高効率スロット煉瓦を使用する。   FIG. 3 schematically shows the structure of the slot brick placed in the heat storage chamber. FIG. 3A shows a conventional slot brick structure, and FIG. 3B shows a high-efficiency slot brick structure used for reconstruction. As shown in FIG.3 (b), the slot number of a single slot brick is increased and the highly efficient slot brick which increased the heat-transfer area is used.

高効率スロット煉瓦を使用することにより、蓄熱室の高さを解体前より低くしても、解体前と同じ熱交換性能を得ることが可能である。例えば、伝熱面積が1.5倍の高効率型の煉瓦を用いることで、解体前の蓄熱室の高さHa1が2.4mであったものが、再構築後にはHa2を1.9mにできる。 By using the high-efficiency slot bricks, it is possible to obtain the same heat exchange performance as before the dismantling even if the heat storage chamber is lower than before the dismantling. For example, by using a highly efficient brick with a heat transfer area of 1.5 times, the heat storage chamber height Ha 1 before dismantling was 2.4 m, but after reconstruction, Ha 2 was changed to 1. Can be 9m.

(炭化室高さ(Hc)とデッキの高さ(Hd)の決定方法)
炉高を高くした場合、炭化室に装入した石炭の膨張圧及びコークス押出時の側圧が大きくなることから、炉壁強度不足が発生する。必要な炉壁強度は、炉頂デッキ厚(Hd、B)の増加で確保する。再構築するコークス炉の炭化室の寸法において、炉高のみを拡大する場合は、炉頂デッキ厚により炉壁強度を向上させることが経済的である。
(Method for determining the height (Hc) and deck height (Hd) of the carbonization chamber)
When the furnace height is increased, the expansion pressure of the coal charged into the carbonization chamber and the side pressure during coke extrusion increase, resulting in insufficient furnace wall strength. Necessary furnace wall strength is secured by increasing the furnace top deck thickness (Hd, B). In the case of expanding the height of the coke oven in the coke oven to be reconstructed, it is economical to improve the furnace wall strength by the thickness of the top deck.

再構築するコークス炉の炉頂デッキの厚みは、須賀・下川の式(下記式(1))(コークスサーキュラー,20(1971),No.2,p.111.)により算出する炉壁強度K値が10kPa以上となるように決める必要がある(Y. Suga, E. Shimokawa: Ironmaking Proceedings, A.I.M.E, vol.29,1970,p.9、参照)。   The thickness of the top deck of the coke oven to be reconstructed is the furnace wall strength K calculated by the Suga and Shimokawa equation (the following equation (1)) (Coke Circular, 20 (1971), No. 2, p. 111.). It is necessary to determine the value to be 10 kPa or more (see Y. Suga, E. Shimokawa: Ironmaking Proceedings, AIME, vol. 29, 1970, p. 9).

K=2(MT 1/2+MB 1/22/(EI2) ・・・(1)
ただし、MT=EABDSD
B=D[EABDSD+EDCDSL+2G(I−C)ESL
+(D−2G)F(I−H−C)SL]]
ここに、SD:炉頂デッキ部比
L:炉壁比重
なお、式(1)中の文字は、図2に示した箇所の長さを意味する。
K = 2 (M T 1/2 + M B 1/2 ) 2 / (EI 2 ) (1)
Where M T = EABDS D
M B = D [EABDS D + EDCDS L + 2G (I−C) ES L
+ (D-2G) F (I-H-C) S L ]]
Where S D : furnace deck ratio
S L : Furnace wall specific gravity The letters in the formula (1) mean the length of the portion shown in FIG.

通常、炭化室の容積を最大に採るので、須賀・下川の式のK値は最小の基準値そのもの(10kPa)を採用する。この時、炉高(Hc)と炉頂デッキ(Hd)の高さのそれぞれが、一意に決まる。これら数値に従って、燃焼室と炭化室の高さHb2を高くして、燃焼室と炭化室を構築する。 Usually, since the volume of the carbonization chamber is maximized, the minimum reference value itself (10 kPa) is adopted as the K value in the Suga and Shimokawa equation. At this time, each of the furnace height (Hc) and the height of the furnace top deck (Hd) is uniquely determined. According to these numerical values, by increasing the height Hb 2 of the combustion chamber and the coking chamber, to construct a carbonization chamber and the combustion chamber.

即ち、再構築したコークス炉においては、解体前と同じ総炉高Hかつ解体前と同じ窯芯ピッチのもとで、燃焼室3と炭化室4の高さ(Hc2)>解体前の燃焼室と炭化室の高さ(Hc1)である。この点が、本発明方法の特徴である。 That is, in the reconstructed coke oven, the height of the combustion chamber 3 and the carbonization chamber 4 (Hc 2 )> combustion before disassembly under the same total furnace height H as before disassembly and the same furnace core pitch as before disassembly. It is the height (Hc 1 ) of the chamber and the carbonization chamber. This is a feature of the method of the present invention.

そして、再構築コークス炉の総炉高Hは、解体前と同じであるので、コークス炉の上部に配置されている既存の付帯設備は、そのままの位置で使用することができる。   Since the total furnace height H of the reconstructed coke oven is the same as that before the dismantling, the existing incidental equipment arranged at the upper part of the coke oven can be used as it is.

(第2の発明)
再構築するコークス炉において、解体前のコークス炉に比べて炉温を上昇させることで、第1の発明に加えて、更に、窯芯ピッチW2(炭化室の幅Wc2+燃焼室の幅Wb2)を、解体前の窯芯ピッチW1より大きくして構築することが好ましい。これによって、炉高の拡大に加えて炭化室の幅の拡大も行え、さらなる生産性の向上が可能となる。
(Second invention)
In the reconstructed coke oven, the furnace temperature is raised compared to the coke oven before dismantling, and in addition to the first invention, the furnace core pitch W 2 (the width Wc 2 of the carbonization chamber + the width of the combustion chamber) It is preferable to construct Wb 2 ) larger than the kiln core pitch W 1 before dismantling. As a result, in addition to increasing the furnace height, the width of the carbonization chamber can also be increased, and the productivity can be further improved.

ここに、炭化室の幅Wcを拡大した場合においても、炉壁強度は低下するため、炉壁強度の向上が必要となる。再構築するコークス炉の炭化室の寸法において、炉高と炭化室の幅の両者を拡大する場合、窯芯ピッチの拡大により炉壁強度を向上させることがより経済的である。   Here, even when the width Wc of the carbonization chamber is expanded, the furnace wall strength is lowered, so that it is necessary to improve the furnace wall strength. When expanding both the furnace height and the width of the coking chamber in the dimensions of the carbonizing chamber of the coke oven to be reconstructed, it is more economical to improve the furnace wall strength by increasing the kiln core pitch.

また、再構築コークス炉において、炭化室の幅を拡大した場合、炭化室の中央で、コークス押出時のトラブルの原因となる乾留不足が生じることが懸念される。炭化室の幅の拡大により炭化室中央部への伝熱速度が低下し、乾留時間が延長する。   Moreover, in the reconstructed coke oven, when the width of the carbonization chamber is expanded, there is a concern that a shortage of dry distillation may occur in the center of the carbonization chamber, causing troubles during coke extrusion. The expansion of the width of the carbonization chamber decreases the heat transfer rate to the center of the carbonization chamber and extends the carbonization time.

これに対し、燃焼室への燃料ガスおよび空気量を増加し、燃焼室温度を従来の燃焼室温度より高くすることで、再構築コークス炉においても解体前と同等の乾留時間の確保が可能となる。   On the other hand, by increasing the amount of fuel gas and air to the combustion chamber and making the combustion chamber temperature higher than the conventional combustion chamber temperature, it is possible to secure the same dry distillation time in the rebuilt coke oven as before dismantling. Become.

この最高温度において、解体前と同等の乾留時間が確保可能な炭化室の幅Wc2を設定する。このWc2と、蓄熱室に高効率のスロット煉瓦を採用して、拡大した炉高Hb2に対して、窯芯ピッチを広げて炉壁強度を確保する。必要な炉壁強度は、第1の発明と同様に、須賀・下川の式により算出され、炉壁強度K値が10kPa以上となることが必要である。 At this maximum temperature, the width Wc 2 of the carbonization chamber that can ensure a dry distillation time equivalent to that before dismantling is set. Adopting high-efficiency slot bricks for the Wc 2 and the heat storage chamber, the furnace core pitch is expanded for the expanded furnace height Hb 2 to ensure the furnace wall strength. Similar to the first invention, the required furnace wall strength is calculated by the Suga and Shimokawa equation, and the furnace wall strength K value needs to be 10 kPa or more.

最高炉温から導かれるWc2とHb2を基準とし、須賀・下川の式から炉壁強度K値が10kPaとなる様にすると、窯芯ピッチW2が一意に決定される。 If the furnace wall strength K value is set to 10 kPa based on the Suga and Shimokawa equation based on Wc 2 and Hb 2 derived from the maximum furnace temperature, the kiln core pitch W 2 is uniquely determined.

これにより、燃焼室と炭化室の高さ(炉高)Hb2を高くし(その結果、コークス炉の総炉高Hは同じ)て、かつ、窯芯ピッチW2(=炭化室4の幅Wc2+燃焼室3の幅Wb2)を、解体前の窯芯ピッチW1(=炭化室4の幅Wc1+燃焼室3の幅Wb1)より大きくして燃焼室と炭化室を構築する。 Thereby, the height (furnace height) Hb 2 of the combustion chamber and the carbonization chamber is increased (as a result, the total furnace height H of the coke oven is the same), and the kiln core pitch W 2 (= the width of the carbonization chamber 4). Wc 2 + width Wb 2 of combustion chamber 3 is made larger than kiln core pitch W 1 before disassembly (= width Wc 1 of carbonization chamber 4 + width Wb 1 of combustion chamber 3) to construct a combustion chamber and a carbonization chamber. To do.

また、前記のように、燃料ガスおよび空気量を増加させて燃焼室温度を上昇させるには、炉壁煉瓦の物理性状を満足させるだけでなく、環境負荷などの制約を満足させる必要がある。   Further, as described above, in order to increase the combustion gas temperature by increasing the amount of fuel gas and air, it is necessary not only to satisfy the physical properties of the furnace wall brick but also to satisfy constraints such as environmental load.

通常、再構築前から大気汚染防止法によるNOxの規制値があるので、再構築時に燃焼量を増加させてもかかる基準を満足させるために、低NOx燃焼技術、例えば、排ガスサーキュレーションや低NOxバーナーを採用して対処する。   Usually, there is a NOx regulation value based on the Air Pollution Control Law before the reconstruction, so low NOx combustion technology, for example, exhaust gas circulation or low NOx is used to satisfy these standards even if the combustion amount is increased during the reconstruction. Adopt a burner to deal with it.

次に、本発明の実施例について説明するが、実施例の条件は、本発明の実施可能性及び効果を確認するために採用した一条件例であり、本発明は、この一条件例に限定されるものではない。本発明は、本発明の要旨を逸脱せず、本発明の目的を達成する限りにおいて、種々の条件を採用し得るものである。   Next, examples of the present invention will be described. The conditions of the examples are one example of conditions adopted for confirming the feasibility and effects of the present invention, and the present invention is limited to this one example of conditions. Is not to be done. The present invention can adopt various conditions as long as the object of the present invention is achieved without departing from the gist of the present invention.

(実施例)
40年稼働した、総炉高約12m、炉高5.5m、窯芯ピッチ1300mm(炭化室の幅450mm、燃焼室の幅850mm)のコークス炉を解体し、総炉高約12m、炉高6.0m、窯芯ピッチ1380mm(炭化室の幅470mm、燃焼室の幅910mm)のコークス炉を再構築した。
(Example)
A coke oven with a total furnace height of approximately 12 m, a furnace height of 5.5 m, and a furnace core pitch of 1300 mm (carbonization chamber width 450 mm, combustion chamber width 850 mm), which has been in operation for 40 years, was dismantled. A coke oven of 0.0 m, kiln core pitch 1380 mm (carbonization chamber width 470 mm, combustion chamber width 910 mm) was reconstructed.

蓄熱室には、伝熱面積が従来の1.5倍となる高効率形のスロット煉瓦(図3(b)、参照)を採用することで、蓄熱室の高さを2.4mから1.9mに0.5m低減でき、その分、炉高を0.5m高くした。最構築したコークス炉の諸元は以下に従って決定した。   The heat storage chamber is made of high-efficiency slot brick (see Fig. 3 (b)), which has a heat transfer area 1.5 times that of the conventional one, so that the height of the heat storage chamber is increased from 2.4m to 1.m. The furnace height could be reduced by 0.5 m to 9 m, and the furnace height was increased by 0.5 m. The specifications of the newly built coke oven were determined according to the following.

解体前のコークス炉の蓄熱室の高さは2.4mで、蓄熱室内にはウェブ・スロットとも16mmのスロット煉瓦が配置されている。これに対して、ウェブ・スロットが11mmの高効率型のスロット煉瓦(伝熱面積1.5倍)を採用した場合、熱交換計算から必要な蓄熱室の高さは1.9mと算出される。この分、炉高を5.5mから6.0mに高くすることができた。   The heat storage chamber of the coke oven before dismantling is 2.4 m high, and 16 mm slot bricks are arranged in the heat storage chamber for both the web slot. On the other hand, when a high-efficiency slot brick with a web slot of 11 mm (heat transfer area 1.5 times) is adopted, the required heat storage chamber height is calculated as 1.9 m from the heat exchange calculation. . Therefore, the furnace height could be increased from 5.5 m to 6.0 m.

一方、解体前のコークス炉は、窯芯ピッチ1300mm、炭化室の幅450mm(燃焼室の幅850mm)であり、燃焼室温度1200℃にて操業を行っていた。このときの乾留時間は18.4時間であった。現在の技術において、炉壁煉瓦の物理性状および環境負荷などの制約から、燃焼室温度は1270℃での操業が可能である。   On the other hand, the coke oven before dismantling had a kiln core pitch of 1300 mm, a carbonization chamber width of 450 mm (combustion chamber width of 850 mm), and was operated at a combustion chamber temperature of 1200 ° C. The carbonization time at this time was 18.4 hours. In the current technology, operation at a combustion chamber temperature of 1270 ° C. is possible due to restrictions such as physical properties of furnace wall bricks and environmental loads.

この燃焼室温度1270℃において、乾留時間が約18.4時間となるのは、伝熱モデルによる計算から、炭化室の幅(仮の値)が510mmと算出される。   The reason why the carbonization time is about 18.4 hours at the combustion chamber temperature of 1270 ° C. is that the width (temporary value) of the carbonization chamber is calculated to be 510 mm from the calculation by the heat transfer model.

前述の炉高を0.5m高くし、炭化室の幅を60mm広げた場合、炉壁強度K値は約20%低下するが、この炉壁強度を解体前と同じにするためには、窯芯ピッチを1430mmに広げる必要がある。このとき、設置可能な窯数は解体前のコークス炉90門に対して82門となる。   When the furnace height is increased by 0.5 m and the width of the carbonization chamber is increased by 60 mm, the furnace wall strength K value decreases by about 20%. To make this furnace wall strength the same as before dismantling, It is necessary to increase the core pitch to 1430 mm. At this time, the number of kilns that can be installed is 82 with respect to 90 coke ovens before dismantling.

設置門数が低下し、解体前のコークス炉と同一の乾留時間とした場合、既設の付帯設備を流用する場合に能力の不足が発生する。解体前のコークス炉に設置されている流用する設備の1つである移動機械は、押出本数が124本/日の能力を有している。   If the number of installed gates decreases and the carbonization time is the same as that of the coke oven before dismantling, the capacity will be insufficient when the existing incidental equipment is diverted. The moving machine, which is one of the diverted equipment installed in the coke oven before demolition, has a capacity of 124 extrusions / day.

新しく構築するコークス炉の門数が低下する場合、同じ移動機械を使用して、生産性を最も高めるには、解体前のコークス炉と同じ124本/日の押出を行うことが最も効率が良く、この押出本数を確保するためには、設置門数が低下した分の乾留時間を短縮する必要がある。この乾留時間の短縮には、炭化室の幅を、伝熱計算から求めた仮の値510mmより狭くする必要がある。   When the number of newly built coke ovens is reduced, the same efficiency can be maximized by using the same 124 k / day extrusion as the coke oven before demolition to maximize productivity. In order to secure the number of extrusions, it is necessary to shorten the carbonization time corresponding to the reduction in the number of installation gates. In order to shorten the carbonization time, it is necessary to make the width of the carbonization chamber narrower than the temporary value 510 mm obtained from the heat transfer calculation.

上記から、最高炉温から算出される炭化室の幅510mmを狭くして乾留時間を短縮し、かつ、押出本数124本/日、炉高6.0mを満たす炭化室の幅と窯芯ピッチ及び設置門数と乾留時間は、炭化室の幅470mm、窯芯ピッチ1380mm、乾留時間16.4時間、設置門数を84門となる。炭化室と炉芯ピッチのこの組み合わせが、最も生産効率が良くなる。   From the above, the width of the coking chamber calculated from the maximum furnace temperature is narrowed to shorten the carbonization time, the number of extrusions is 124 per day, and the width of the coking chamber satisfying the furnace height of 6.0 m, the kiln core pitch, and The number of installed gates and the carbonization time are 470 mm in width of the carbonization chamber, 1380 mm in kiln core pitch, 16.4 hours in the carbonization time, and 84 gates installed. This combination of carbonization chamber and furnace core pitch provides the best production efficiency.

この結果、コークス炉の総炉高および押出本数が同じであるので、既設の付帯設備を利用することができ、再構築後、直ちに、操業を開始することができた。   As a result, since the total furnace height and the number of extrusions of the coke oven were the same, the existing incidental facilities could be used, and the operation could be started immediately after the reconstruction.

さらに、再構築のコークス炉においては、コークスの押出回数は124回/日から109回/日に低下することから、発塵などの環境負荷の低減が期待できる。また、コークス炉の稼働率が低下するため、コークス炉の炉寿命の延長も期待できる。   Furthermore, in the reconstructed coke oven, the number of coke extrusions decreases from 124 times / day to 109 times / day, so that it is expected to reduce the environmental load such as dust generation. In addition, since the operating rate of the coke oven decreases, it can be expected to extend the life of the coke oven.

本手法は、コークス炉の装入する石炭の性状および装入する石炭の条件に応じて適用することができ、いずれの場合においても適用が可能である。   This technique can be applied according to the properties of the coal to be charged in the coke oven and the conditions of the coal to be charged, and can be applied in any case.

前述したように、本発明によれば、炭化室の容積が、解体前に比べ増加した、生産性の高いコークス炉を提供することできる。また、本発明によれば、総炉高が、解体前と同じコークス炉であるので、炉上部の既存の付帯設備をそのまま使用することができる。よって、本発明は、コークス製造産業において利用可能性が高いものである。   As described above, according to the present invention, it is possible to provide a coke oven with high productivity in which the volume of the carbonization chamber is increased as compared with that before dismantling. Moreover, according to this invention, since the total furnace height is the same coke oven as before dismantling, the existing incidental equipment of the furnace upper part can be used as it is. Therefore, the present invention has high applicability in the coke manufacturing industry.

1 炉床支持構造体
2 蓄熱室
3 燃焼室
4 炭化室
5 天井壁
6 煙道
7 燃料ガス供給路
8 空気供給路
H コークス炉の総炉高
Ha 蓄熱室の高さ
Hb、I 炉高(燃焼室または炭化室の高さ)
Hd、B 炉頂デッキの高さ
Wb 燃焼室の幅
Wc 炭化室の幅
W、A コークス炉の窯芯ピッチ(=Wb+Wc)
下付き添え字1:解体前であることを示す数字
下付き添え字2:再構築後であることを示す数字
DESCRIPTION OF SYMBOLS 1 Hearth support structure 2 Heat storage chamber 3 Combustion chamber 4 Coking chamber 5 Ceiling wall 6 Chimney 7 Fuel gas supply path 8 Air supply path H Coke furnace total furnace height Ha Heat storage chamber height Hb, I Furnace height (combustion) Chamber or carbonization chamber height)
Hd, B Height of furnace top deck Wb Width of combustion chamber Wc Width of carbonization chamber W, A Kiln core pitch of coke oven (= Wb + Wc)
Subscript 1: Number indicating that it is before dismantling Subscript 2: Number indicating that it is after reconstruction

Claims (3)

炉床構造体の上に蓄熱室を配置し、その上に炭化室と燃焼室を交互に配置した室式コークス炉の再構築方法において、
(x)炉床構造体を残して、炭化室、燃焼室、及び、蓄熱室を解体し、
(y)上記炉床構造体の上に、蓄熱室を、解体前の高さを低減して構築し、
(z)上記蓄熱室の上に、炭化室と燃焼室を、蓄熱室の高さの低減分、高くして構築することを特徴とするコークス炉の再構築方法。
In the restructuring method of the chamber coke oven in which the heat storage chamber is arranged on the hearth structure, and the carbonization chamber and the combustion chamber are alternately arranged thereon,
(X) dismantling the carbonization chamber, combustion chamber, and heat storage chamber, leaving the hearth structure;
(Y) On the hearth structure, a heat storage chamber is constructed with a reduced height before dismantling,
(Z) A coke oven restructuring method characterized in that a carbonization chamber and a combustion chamber are built on the heat storage chamber to be higher by a reduction in the height of the heat storage chamber.
窯芯ピッチ(炭化室の幅+燃焼室の幅)を、解体前の窯芯ピッチより大きくして構築することを特徴とする請求項1に記載のコークス炉の再構築方法。   2. The method of rebuilding a coke oven according to claim 1, wherein the furnace core pitch (carbonization chamber width + combustion chamber width) is set larger than the furnace core pitch before dismantling. 請求項1〜2のいずれか1項に記載のコークス炉の再構築方法で再構築したことを特徴とする再構築コークス炉。   A rebuilt coke oven, which is reconstructed by the coke oven reconstructing method according to claim 1.
JP2012067973A 2012-03-23 2012-03-23 How to rebuild a coke oven Active JP5867221B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067973A JP5867221B2 (en) 2012-03-23 2012-03-23 How to rebuild a coke oven

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067973A JP5867221B2 (en) 2012-03-23 2012-03-23 How to rebuild a coke oven

Publications (2)

Publication Number Publication Date
JP2013199560A true JP2013199560A (en) 2013-10-03
JP5867221B2 JP5867221B2 (en) 2016-02-24

Family

ID=49520039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067973A Active JP5867221B2 (en) 2012-03-23 2012-03-23 How to rebuild a coke oven

Country Status (1)

Country Link
JP (1) JP5867221B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014347A (en) * 2015-06-29 2017-01-19 新日鐵住金株式会社 Heat storage brick structure of coke oven regenerator and heat storage brick
CN110437854A (en) * 2019-09-06 2019-11-12 辽宁科技大学工程技术有限公司 A kind of clean and environmental protection all can measure intelligent heat recovery coke oven
JP2020070341A (en) * 2018-10-31 2020-05-07 株式会社メガテック Dismantling and constructing method of coke oven

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135945A (en) * 1997-07-17 1999-02-09 Sumitomo Metal Ind Ltd Coke oven regenerator and method for determining optimal shape thereof

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1135945A (en) * 1997-07-17 1999-02-09 Sumitomo Metal Ind Ltd Coke oven regenerator and method for determining optimal shape thereof

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JPN6014055173; 滝沢護: '次世代コークス技術の展望' 鉄と鋼 78巻7号, 1992, 15-22頁, 日本鉄鋼協会 *
JPN7014003782; '高炉各社、コークス炉を相次ぎ改修' 鉄鋼新聞 , 20140512 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017014347A (en) * 2015-06-29 2017-01-19 新日鐵住金株式会社 Heat storage brick structure of coke oven regenerator and heat storage brick
JP2020070341A (en) * 2018-10-31 2020-05-07 株式会社メガテック Dismantling and constructing method of coke oven
CN110437854A (en) * 2019-09-06 2019-11-12 辽宁科技大学工程技术有限公司 A kind of clean and environmental protection all can measure intelligent heat recovery coke oven

Also Published As

Publication number Publication date
JP5867221B2 (en) 2016-02-24

Similar Documents

Publication Publication Date Title
CN103666507B (en) Internally heated coal carbonization furnace, internally heated coal carbonization system and coal carbonization technical method
CN102424753B (en) Method for repairing bricks at bottom of carbonization chamber of large coke oven
JP5867221B2 (en) How to rebuild a coke oven
JP5867220B2 (en) How to rebuild a coke oven
CN102374773B (en) Modification method for carbon rotary kiln settling chamber
CN201844696U (en) Prefabricated member for laryngeal part of cement-kiln used grate type cooler
CN201266021Y (en) Roller kiln quench zone exhaust heat utilization apparatus
CN201217676Y (en) Water-sealed device of ball circular cooler
CN200999231Y (en) Coke oven door structure
CN102747177B (en) Blast furnace hot blast stove and construction method thereof
CN211823858U (en) Fused magnesium lump cooling and waste heat recovery system
CN107828928A (en) A kind of hot air duct
CN211170575U (en) Dry quenching furnace prestorage section anti-deformation inner wall
JP2018087288A (en) Method for maintaining coke oven
CN102645098B (en) Electric furnace structure and manufacturing method thereof
CN201037731Y (en) Structure integration high temperature kiln
CN201867064U (en) Combined type full fiber structure ignition and heat insulation furnace
JP5320926B2 (en) Regenerative burner method for heating furnace burners
CN103925801A (en) Graphitized furnace forced cooling mode
CN202216541U (en) Ignition furnace lining
JP2014091764A (en) Method for repairing coke oven by partial replacement
CN204185429U (en) A kind of annular air channel with high stability bearing structure
TWI457426B (en) Coke oven repair method
CN202885507U (en) Straight-through type assembling tunnel kiln
CN103394682B (en) Steel ladle transferring method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150309

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151221

R151 Written notification of patent or utility model registration

Ref document number: 5867221

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350