JP2013199416A - Glass precursor composition for ceramics bonding, and method of bonding ceramics using the glass precursor composition - Google Patents
Glass precursor composition for ceramics bonding, and method of bonding ceramics using the glass precursor composition Download PDFInfo
- Publication number
- JP2013199416A JP2013199416A JP2012069753A JP2012069753A JP2013199416A JP 2013199416 A JP2013199416 A JP 2013199416A JP 2012069753 A JP2012069753 A JP 2012069753A JP 2012069753 A JP2012069753 A JP 2012069753A JP 2013199416 A JP2013199416 A JP 2013199416A
- Authority
- JP
- Japan
- Prior art keywords
- bonding
- ceramics
- glass
- precursor composition
- glass precursor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000011521 glass Substances 0.000 title claims abstract description 97
- 239000000919 ceramic Substances 0.000 title claims abstract description 85
- 239000000203 mixture Substances 0.000 title claims abstract description 75
- 239000002243 precursor Substances 0.000 title claims abstract description 58
- 238000000034 method Methods 0.000 title abstract description 17
- 239000002245 particle Substances 0.000 claims abstract description 11
- 229910004298 SiO 2 Inorganic materials 0.000 claims description 8
- 238000010438 heat treatment Methods 0.000 abstract description 8
- 230000007547 defect Effects 0.000 abstract description 4
- 238000004519 manufacturing process Methods 0.000 abstract description 4
- 239000011148 porous material Substances 0.000 abstract description 4
- 239000000463 material Substances 0.000 abstract description 3
- 238000007796 conventional method Methods 0.000 abstract description 2
- 239000002994 raw material Substances 0.000 description 14
- 238000005304 joining Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 8
- 238000002844 melting Methods 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 239000002002 slurry Substances 0.000 description 8
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 7
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 7
- 239000011787 zinc oxide Substances 0.000 description 7
- 235000014692 zinc oxide Nutrition 0.000 description 7
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 6
- 239000011734 sodium Substances 0.000 description 6
- 239000000126 substance Substances 0.000 description 6
- 239000003960 organic solvent Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- 229910052500 inorganic mineral Inorganic materials 0.000 description 4
- 229910000464 lead oxide Inorganic materials 0.000 description 4
- 239000011707 mineral Substances 0.000 description 4
- 235000010755 mineral Nutrition 0.000 description 4
- YEXPOXQUZXUXJW-UHFFFAOYSA-N oxolead Chemical compound [Pb]=O YEXPOXQUZXUXJW-UHFFFAOYSA-N 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N Alumina Chemical compound [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 3
- 238000002425 crystallisation Methods 0.000 description 3
- 230000008025 crystallization Effects 0.000 description 3
- 239000000945 filler Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 2
- 235000011941 Tilia x europaea Nutrition 0.000 description 2
- XHCLAFWTIXFWPH-UHFFFAOYSA-N [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[V+5].[V+5] XHCLAFWTIXFWPH-UHFFFAOYSA-N 0.000 description 2
- AYJRCSIUFZENHW-DEQYMQKBSA-L barium(2+);oxomethanediolate Chemical compound [Ba+2].[O-][14C]([O-])=O AYJRCSIUFZENHW-DEQYMQKBSA-L 0.000 description 2
- 229910021538 borax Inorganic materials 0.000 description 2
- 239000005388 borosilicate glass Substances 0.000 description 2
- 239000004927 clay Substances 0.000 description 2
- 229910052570 clay Inorganic materials 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 239000010432 diamond Substances 0.000 description 2
- 229910003460 diamond Inorganic materials 0.000 description 2
- 235000019441 ethanol Nutrition 0.000 description 2
- 239000010433 feldspar Substances 0.000 description 2
- 238000000227 grinding Methods 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000004571 lime Substances 0.000 description 2
- 229910052573 porcelain Inorganic materials 0.000 description 2
- 239000011044 quartzite Substances 0.000 description 2
- 239000011347 resin Substances 0.000 description 2
- 229920005989 resin Polymers 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- 235000010339 sodium tetraborate Nutrition 0.000 description 2
- 239000004575 stone Substances 0.000 description 2
- 230000003746 surface roughness Effects 0.000 description 2
- 229910052714 tellurium Inorganic materials 0.000 description 2
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 description 2
- BSVBQGMMJUBVOD-UHFFFAOYSA-N trisodium borate Chemical compound [Na+].[Na+].[Na+].[O-]B([O-])[O-] BSVBQGMMJUBVOD-UHFFFAOYSA-N 0.000 description 2
- 229910001935 vanadium oxide Inorganic materials 0.000 description 2
- 239000010456 wollastonite Substances 0.000 description 2
- 229910052882 wollastonite Inorganic materials 0.000 description 2
- RUDFQVOCFDJEEF-UHFFFAOYSA-N yttrium(III) oxide Inorganic materials [O-2].[O-2].[O-2].[Y+3].[Y+3] RUDFQVOCFDJEEF-UHFFFAOYSA-N 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000004031 devitrification Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009477 glass transition Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 230000008646 thermal stress Effects 0.000 description 1
- 238000004017 vitrification Methods 0.000 description 1
Images
Landscapes
- Ceramic Products (AREA)
- Glass Compositions (AREA)
Abstract
Description
本発明は、耐熱性、耐摩耗性、耐食性、耐プラズマ性などに優れるセラミックスを容易に接合でき、且つ緻密で接合強度に優れたセラミックス接合用ガラス前駆体組成物と該ガラス前駆体組成物を用いるセラミックスの接合方法に関する。 The present invention provides a glass precursor composition for bonding ceramics, which can easily bond ceramics excellent in heat resistance, wear resistance, corrosion resistance, plasma resistance, etc., and is dense and excellent in bonding strength, and the glass precursor composition. The present invention relates to a ceramic bonding method to be used.
セラミックスは形態が酸化物、非酸化物に拘わらず、耐熱性、耐摩耗性及び耐食性などの特性が優れていることから産業用構造部品等の分野では積極的に採用されている。
しかしながら、一般にセラミックスは加工性が悪いため複雑形状部品を一体成形すると加工コストが高くなるという問題がある。この問題を解決するために、単純形状の部品を成形し、それを接着固定することで複雑形状部品にすること等が検討されている。
本出願人は、この様なセラミックスの接合における従来からの問題点を解消し、且つ接合強度に優れたセラミックス接合体を得るために、接合部における欠陥の原因となる気孔を除き、接合部全体が均質で、接合強度に優れたセラミックス成形体同士の接合体及びその製造方法に関する技術を既に出願している(特許文献1)。
Ceramics are actively employed in the field of industrial structural parts and the like because of their excellent characteristics such as heat resistance, wear resistance and corrosion resistance, regardless of whether they are oxides or non-oxides.
However, since ceramics generally have poor workability, there is a problem that the processing cost increases when a complex shaped part is integrally formed. In order to solve this problem, it has been studied to form a simple-shaped part and to make it into a complex-shaped part by bonding and fixing it.
In order to eliminate the conventional problems in joining of such ceramics and obtain a ceramic joined body excellent in joining strength, the present applicant, except for pores that cause defects in the joined part, Has already filed a technology relating to a joined body of ceramic molded bodies having a uniform and excellent joint strength and a manufacturing method thereof (Patent Document 1).
しかしながら、セラミックス成形体同士の接合は、使用による局所的な劣化や破損に対して部分的な交換ができず、その場合は部品ごと交換する必要があり、結果的にコストが高くなるという問題があった。一方、セラミックス同士の接合方法として、ガラスフリット(粉末ガラス)とフィラーを用いて接着する方法が知られており、この方法はセラミックスを接合するコストは改善されていると推測されるが、接合に用いるガラスフリットのガラス転移点を下げるために、酸化鉛が多く含有されており、環境影響の観点から問題があった(特許文献2)。また、酸化鉛を含有しないガラスペースト組成物も知られているが、このガラスペースト組成物は、酸化鉛の代替として酸化バナジウムや酸化テルル等の高価な原料が使用されており、ガラスペースト組成物自体のコストが高く、結果的に接合コストが高くなるという問題があった。また、耐熱性が低く、高温での使用環境では接合界面が変質しやすいという問題もあった(特許文献3)。 However, the bonding between ceramic molded bodies cannot be partially replaced due to local deterioration or breakage due to use. In that case, it is necessary to replace each part, resulting in an increase in cost. there were. On the other hand, as a method for bonding ceramics, a method of bonding using glass frit (powder glass) and a filler is known, and it is estimated that this method has improved the cost of bonding ceramics. In order to lower the glass transition point of the glass frit to be used, a large amount of lead oxide is contained, which causes a problem from the viewpoint of environmental impact (Patent Document 2). Further, a glass paste composition containing no lead oxide is also known, but this glass paste composition uses an expensive raw material such as vanadium oxide or tellurium oxide as an alternative to lead oxide, and the glass paste composition There was a problem that the cost of itself was high, and as a result, the joining cost was high. In addition, there is a problem in that the heat resistance is low and the joining interface is easily deteriorated in a use environment at a high temperature (Patent Document 3).
さらに、有害物質や、酸化バナジウムや酸化テルルのような高価な原料を含まない結晶化ガラスによる接合方法も知られているが、結晶化ガラスであるため熱膨脹係数が小さく、接合できるセラミックスも熱膨脹係数が小さいものに限定されていた。このため、セラミックスの接合に用いられる接合材としては、耐熱ガラスとして知られるホウケイ酸ガラスが用いられることが多く、粉末状のホウケイ酸ガラスにフィラー、有機溶剤並びに樹脂バインダーを混合したものをセラミックス接合面にスクリーン印刷機で塗布し、大気中または真空中で熱処理し接合されていた。しかしながら、この方法によるセラミックス接合においては、接合部に気孔等の接合欠陥が生じやすく、接合強度やシール性が劣るなどの問題があった(特許文献4)。 In addition, bonding methods using crystallized glass that does not contain harmful substances or expensive raw materials such as vanadium oxide and tellurium oxide are also known. Was limited to small ones. For this reason, borosilicate glass known as heat-resistant glass is often used as a bonding material used for bonding ceramics, and ceramic bonding is performed by mixing powdered borosilicate glass with a filler, an organic solvent, and a resin binder. The surfaces were coated with a screen printing machine and heat-treated in air or in vacuum to be joined. However, in the ceramic bonding by this method, there is a problem that bonding defects such as pores are likely to occur in the bonded portion, and the bonding strength and sealing performance are inferior (Patent Document 4).
従来のセラミックスを接合する方法は、調合した原料をタンク窯などで一度熱処理して融液状態とし、冷却して得られる固形状ガラスをクラッシャーやボールミルなどで解砕して粉末状ガラスとし、そこにフィラー、有機溶剤並びに樹脂バインダーを混合して得られるペースト状のガラスをセラミックスの接合面に塗布し、再熱処理によりガラスの溶融を利用して接合するため、ガラスを作製する工程が多く、コストが高くなるだけでなく接合部に気孔等の接合欠陥が生じやすく、接合強度やシール性が劣るなどの課題があった。
本発明は、酸化鉛等の有害物質を含まず、且つ、高価な原料を使用せず、セラミックスを容易に接合でき、しかも緻密で接合強度に優れるセラミックス接合用ガラス前駆体組成物と該前駆体を用いるセラミックスの接合方法を提供する。
The conventional method of joining ceramics is to heat the blended raw material once in a tank kiln and make it into a molten state, crush the solid glass obtained by cooling with a crusher or ball mill to form powdered glass, Since the paste-like glass obtained by mixing the filler, organic solvent and resin binder is applied to the ceramic bonding surface and bonded by remelting using the melting of the glass, there are many steps to produce the glass, and the cost In addition to the increase in the thickness, there is a problem that bonding defects such as pores are easily generated in the bonded portion, and the bonding strength and the sealing performance are deteriorated.
The present invention relates to a glass precursor composition for ceramic bonding, which does not contain harmful substances such as lead oxide, can be easily bonded without using expensive raw materials, and is dense and excellent in bonding strength, and the precursor. The present invention provides a method for bonding ceramics.
本発明は、従来のセラミックス接合方法の課題を解決するものとして、第1の発明によれば、SiO2含有量が35〜50重量%、CaO+MgO+BaO含有量が30〜40重量%、B2O3含有量が4〜12重量%、Na2O+K2O含有量が2〜10重量%、Al2O3含有量が1〜7重量%、ZnO含有量が0.5重量%未満の組成からなり、平均粒子径が5〜15μmであることを特徴とするセラミックス接合用ガラス前駆体組成物を提供する。
第2の発明によれば、上記のガラス前駆体組成物をセラミックスの接合面に塗布した後、貼り合わせて接合面を十分に乾燥し、850〜1200℃で熱処理して接合部をガラス化することを特徴とするセラミックスの接合方法を提供する。
According to the first invention, the present invention solves the problems of the conventional ceramic bonding method. According to the first invention, the SiO 2 content is 35 to 50% by weight, the CaO + MgO + BaO content is 30 to 40% by weight, and B 2 O 3 The content is 4 to 12% by weight, Na 2 O + K 2 O content is 2 to 10% by weight, Al 2 O 3 content is 1 to 7% by weight, and ZnO content is less than 0.5% by weight. The glass precursor composition for ceramic bonding, characterized in that the average particle size is 5 to 15 μm.
According to 2nd invention, after apply | coating said glass precursor composition to the joint surface of ceramics, it bonds together, fully dries the joint surface, and heat-processes at 850-1200 degreeC, and vitrifies a junction part. A method for joining ceramics is provided.
本発明のセラミックス接合用ガラス前駆体組成物は、同種または異種のセラミックスを容易に接合でき、且つ緻密で接合強度が優れるだけでなく、従来の接着用ガラスに比べて安価であるという特徴を有している。従って、セラミックスの接合に広く利用が可能である。 The glass precursor composition for bonding ceramics according to the present invention is characterized in that it can easily bond the same or different kinds of ceramics, is dense and excellent in bonding strength, and is less expensive than conventional bonding glass. doing. Therefore, it can be widely used for bonding ceramics.
本発明は前記のような現状を鑑み鋭意研究を重ねた結果、調合した原料を従来のように溶融してガラス化するのではなく、平均粒子径を特定範囲に制御することでガラス前駆体によるセラミックスの接合を可能とし、ガラス作製のための溶融および解砕といった従来工程を省略してコストの削減を可能にするものである。
また、本発明は、従来の単にガラスの再溶融を利用して接合するガラス接合方法とは異なり、下記(1)の組成で示される、特定組成及び特定形状のガラス前駆体組成物を熱処理時にセラミックス接合界面で初めてガラス化反応させることで、ガラス前駆体組成物がセラミックス接合界面と密着して、強固に接合できることを見出したものである。
(1)SiO2含有量が35〜50重量%、CaO+MgO+BaO含有量が30〜40重量%、B2O3含有量が4〜12重量%、Na2O+K2O含有量が2〜10重量%、Al2O3含有量が1〜7重量%、ZnO含有量が0.5重量%未満からなり、平均粒子径が5〜15μmからなるセラミックス接合用ガラス前駆体組成物。
In the present invention, as a result of intensive research in view of the above-described present situation, the compounded raw material is not melted and vitrified as in the prior art, but by controlling the average particle diameter to a specific range, the glass precursor is used. Ceramics can be joined, and costs can be reduced by omitting conventional processes such as melting and crushing for glass production.
In addition, the present invention is different from the conventional glass bonding method in which the glass is simply remelted, and the glass precursor composition having a specific composition and a specific shape shown by the following composition (1) is subjected to heat treatment. It has been found that by virtue of vitrification reaction for the first time at the ceramic bonding interface, the glass precursor composition is in close contact with the ceramic bonding interface and can be firmly bonded.
(1) SiO 2 content is 35-50% by weight, CaO + MgO + BaO content is 30-40% by weight, B 2 O 3 content is 4-12% by weight, and Na 2 O + K 2 O content is 2-10% by weight. A glass precursor composition for bonding ceramics, having an Al 2 O 3 content of 1 to 7 wt%, a ZnO content of less than 0.5 wt%, and an average particle size of 5 to 15 μm.
本発明のセラミックス接合用に好適なガラス前駆体組成物が特定の組成比と特定の形態を設けることの意義とその効果について、以下に詳細に説明する。
(a)SiO2含有量が35〜50重量%である点について
本発明におけるガラス前駆体組成物の組成は、SiO2含有量が35〜50重量%であることが必要であり、好ましくは40〜50重量%である。SiO2含有量が35重量%未満の場合、ガラス前駆体組成物の溶融温度が低くなり過ぎ、耐熱性が損なわれるとともに、熱膨脹係数が大きくなり過ぎるため好ましくない。一方、SiO2含有量が50重量%を超える場合は、溶融温度が高くなりガラス化しにくくなるため、ガラス前駆体組成物がセラミックス接合面に拡散しにくくなり接合強度が低下するので好ましくない。また、熱処理温度が高くなりエネルギーコストが高くなるので好ましくない。
(b)CaO+MgO+BaO含有量が30〜40重量%である点について
本発明におけるガラス前駆体組成物の組成は、CaO+MgO+BaO含有量が30〜40重量%であることが必要であり、好ましくは35〜40重量%である。CaO+MgO+BaO含有量が30重量%未満の場合は、ガラスが失透したり、結晶化を起こしやすくなってガラス接合層にクラックが生じやすくなるので好ましくなく、CaO+MgO+BaO含有量が40重量%を超える場合は、ガラスの熱膨脹係数が大きくなり過ぎ、セラミックス接合部にひずみが生じやすくなるので好ましくない。
(c)B2O3含有量が4〜12重量%である点について
本発明におけるガラス前駆体組成物の組成は、B2O3含有量が4〜12重量%であることが必要であり、好ましくは6〜10重量%である。B2O3が4重量%未満の場合は、ガラス前駆体組成物の溶融温度が高くなり、セラミックスとの濡れ性が悪くなるため好ましくなく、B2O3が12重量%を超える場合は、溶融温度が低くなり過ぎ、耐熱性が損なわれるので好ましくない。
The significance and effect of providing a specific composition ratio and a specific form for a glass precursor composition suitable for bonding ceramics according to the present invention will be described in detail below.
The composition of the glass precursor composition (a) the content of SiO 2 in the present invention for the points is 35 to 50 wt%, it is necessary that SiO 2 content of 35 to 50 wt%, preferably 40 ~ 50% by weight. When the SiO 2 content is less than 35% by weight, the melting temperature of the glass precursor composition becomes too low, the heat resistance is impaired, and the thermal expansion coefficient becomes too large, which is not preferable. On the other hand, when the SiO 2 content exceeds 50% by weight, the melting temperature becomes high and it is difficult to vitrify. Moreover, since the heat processing temperature becomes high and energy cost becomes high, it is not preferable.
(B) About the point that the content of CaO + MgO + BaO is 30 to 40% by weight The composition of the glass precursor composition in the present invention requires that the content of CaO + MgO + BaO is 30 to 40% by weight, preferably 35 to 40%. % By weight. When the content of CaO + MgO + BaO is less than 30% by weight, it is not preferable because the glass is devitrified or crystallization is liable to occur and the glass bonding layer is liable to crack. When the content of CaO + MgO + BaO exceeds 40% by weight This is not preferable because the thermal expansion coefficient of the glass becomes too large and distortion is likely to occur in the ceramic joint.
The composition of the glass precursor composition 2 O 3 content (c) B is in the present invention the points 4 to 12 wt%, B 2 O 3 content should be in the 4 to 12 wt% It is preferably 6 to 10% by weight. When B 2 O 3 is less than 4% by weight, the melting temperature of the glass precursor composition is increased and wettability with ceramics is deteriorated, and when B 2 O 3 exceeds 12% by weight, This is not preferable because the melting temperature becomes too low and the heat resistance is impaired.
(d)Na2O+K2O含有量が2〜10重量%である点について
本発明におけるガラス前駆体組成物の組成は、Na2O+K2O含有量が2〜10重量%であることが必要であり、好ましくは4〜8重量%である。Na2O+K2O含有量が2重量%未満の場合は、熱処理時のガラス前駆体組成物の流動性が低下し、セラミックスとの濡れ性が悪くなるとともに、ガラス前駆体組成物がガラス化する際に気泡が発生しやすくなり、緻密な接合ができなくなるので好ましくない。一方、Na2O+K2Oが10重量%を超える場合は、ガラス前駆体組成物の反応性が高くなり過ぎ、化学的耐久性が著しく低下するので好ましくなく、さらには熱膨脹係数が著しく増大するので好ましくない。
(e)Al2O3含有量が1〜7重量%である点について
本発明におけるガラス前駆体組成物の組成は、Al2O3含有量が1〜7重量%であることが必要であり、好ましくは3〜5重量%である。Al2O3含有量が1重量%未満の場合、ガラスの耐水性が低下しガラスの耐久性が低下するため好ましくなく、Al2O3含有量が7重量%を超える場合は、SiO2と同様にガラス前駆体組成物の溶融温度が高くなるため、ガラス前駆体組成物がセラミックス接合面に拡散しにくくなり接合強度が低下するので好ましくない。
(f)ZnO含有量が0.5重量%未満である点について
本発明におけるガラス前駆体組成物の組成は、ZnO含有量が0.5重量%未満であることが必要であり、好ましくは0.3重量%未満である。ZnOはガラス前駆体組成物の溶融温度の低下と失透抑制に効果があるが、0.5重量%を超えるとガラスの結晶化が進み、接合強度が著しく低下するので好ましくない。
(g) 平均粒子径が5〜15μmである点について
本発明のガラス前駆体組成物は、平均粒子径が5〜15μmであることが必要であり、好ましくは8〜12μmである。平均粒子径が5μm未満の場合は、ガラス前駆体組成物の流動性が低くなり、セラミックス接合面に均一に塗布することが困難となり、ガラス接合層が不均一となるため好ましくない。一方、平均粒子径が15μmを超える場合、ガラス前駆体組成物は原料粒子同士の隙間が大きくなるので緻密にパッキングしにくくなり、セラミックスを接合したガラス接合層に空隙が残りやすくなるため好ましくなく、また粉砕不十分のためにガラス組成がばらつく原因ともなるため好ましくない。
(D) About the point that the content of Na 2 O + K 2 O is 2 to 10% by weight The composition of the glass precursor composition in the present invention needs to have a content of Na 2 O + K 2 O of 2 to 10% by weight. And preferably 4 to 8% by weight. When the content of Na 2 O + K 2 O is less than 2% by weight, the fluidity of the glass precursor composition during heat treatment decreases, wettability with ceramics deteriorates, and the glass precursor composition vitrifies. In this case, bubbles are easily generated, and it is not preferable because dense bonding cannot be performed. On the other hand, when Na 2 O + K 2 O exceeds 10% by weight, the reactivity of the glass precursor composition becomes too high, and the chemical durability is remarkably lowered, and therefore, the thermal expansion coefficient is remarkably increased. It is not preferable.
The composition of the glass precursor composition (e) Al 2 O 3 content in the present invention for the points 1 to 7 wt%, it is necessary that Al 2 O 3 content is 1 to 7 wt% , Preferably 3 to 5% by weight. When the Al 2 O 3 content is less than 1% by weight, the water resistance of the glass decreases and the durability of the glass decreases, which is not preferred. When the Al 2 O 3 content exceeds 7% by weight, SiO 2 and Similarly, since the melting temperature of the glass precursor composition becomes high, the glass precursor composition is difficult to diffuse to the ceramic bonding surface, which is not preferable because the bonding strength decreases.
(F) Regarding the point that the ZnO content is less than 0.5% by weight The composition of the glass precursor composition in the present invention requires that the ZnO content is less than 0.5% by weight, preferably 0. Less than 3% by weight. ZnO is effective in lowering the melting temperature of the glass precursor composition and suppressing devitrification, but if it exceeds 0.5% by weight, crystallization of the glass proceeds and the bonding strength is remarkably lowered, which is not preferable.
(G) About the point whose average particle diameter is 5-15 micrometers The average particle diameter of the glass precursor composition of this invention needs to be 5-15 micrometers, Preferably it is 8-12 micrometers. When the average particle diameter is less than 5 μm, the fluidity of the glass precursor composition is lowered, it becomes difficult to uniformly apply to the ceramic bonding surface, and the glass bonding layer becomes non-uniform. On the other hand, when the average particle diameter exceeds 15 μm, the glass precursor composition is not preferable because the gap between the raw material particles becomes large and it becomes difficult to pack densely, and voids tend to remain in the glass bonding layer bonded with ceramics. Further, it is not preferable because the glass composition varies due to insufficient grinding.
次に本発明のセラミックス接合用ガラス前駆体組成物の製造方法について説明する。
本発明では、セラミックス接合用ガラス前駆体組成物となる原料として、珪石、陶石、石灰、長石、粘土、珪灰石、硼酸ナトリウム、炭酸バリウム、亜鉛華から選ばれる1以上の鉱物原料を使用することが好ましい。原料としては、高度に組成制御された試薬も使用することはできるが、鉱物原料の方が低コストになるため好ましい。本発明はこの原料を前記する組成比となるように調合し、水または有機溶剤を溶媒として、ボールミルなどの適当な粉砕機でスラリーの平均粒子径が5〜15μmになるよう粉砕する。なお、本発明のガラス前駆体組成物のスラリーの粘性は100〜500cPであることが必要であり、200〜400cPがより好ましい。粘性が100cP未満の場合は流動性が高過ぎ、セラミックス接合面に塗布しても流れ落ちてしまうため好ましくない。
Next, the manufacturing method of the glass precursor composition for ceramic joining of this invention is demonstrated.
In the present invention, one or more mineral raw materials selected from quartzite, porcelain stone, lime, feldspar, clay, wollastonite, sodium borate, barium carbonate, and zinc white are used as the raw material for the ceramic bonding glass precursor composition. It is preferable. As the raw material, a highly composition-controlled reagent can be used, but a mineral raw material is preferable because it is low in cost. In the present invention, this raw material is prepared so as to have the above-described composition ratio, and pulverized with water or an organic solvent as a solvent so that the average particle diameter of the slurry becomes 5 to 15 μm by a suitable pulverizer such as a ball mill. The viscosity of the slurry of the glass precursor composition of the present invention needs to be 100 to 500 cP, and more preferably 200 to 400 cP. When the viscosity is less than 100 cP, the fluidity is too high, and even if it is applied to the ceramic joint surface, it will flow down, which is not preferable.
一方、粘性が500cPを超える場合は流動性が低過ぎ、泡切れが悪くなり気泡を巻き込みやすくなるので、セラミックスを接合したガラス接合層に気泡が残り、接合強度が低下しやすくなるので好ましくない。さらに粘性を調整する際のスラリーの濃度は65〜80重量%であることが必要であり、好ましくは70〜80重量%である。
スラリーの濃度が65重量%未満の場合は、スラリー中の原料が希薄になり過ぎ、緻密なガラス接合層が得られなくなるので好ましくない。なお、スラリーの粘性調整として必要に応じて界面活性剤、保存安定剤、消泡剤を適宜配合しても良く、さらに複雑形状のセラミックス部品を接合する際には、熱処理前品の接合強度を向上しハンドリング性を良好とするために有機バインダーを適宜配合しても良い。
On the other hand, when the viscosity exceeds 500 cP, the fluidity is too low, the bubble breakage is worsened, and the bubbles are likely to be entrained. Therefore, the bubbles remain in the glass bonding layer bonded with ceramics, and the bonding strength tends to be lowered. Furthermore, the concentration of the slurry when adjusting the viscosity needs to be 65 to 80% by weight, and preferably 70 to 80% by weight.
When the concentration of the slurry is less than 65% by weight, the raw material in the slurry becomes too dilute and a dense glass bonding layer cannot be obtained, which is not preferable. If necessary, surfactants, storage stabilizers, and antifoaming agents may be added as necessary to adjust the viscosity of the slurry. When bonding ceramic parts with complex shapes, the bonding strength of the product before heat treatment may be increased. In order to improve and improve the handling property, an organic binder may be appropriately blended.
本発明で使用するセラミックス接合用ガラス前駆体組成物は、熱処理によって溶融するまではガラス化していないスラリー状態である点に特徴を有するものであり、従来のように単にガラスの再溶融を利用してセラミックスを接合するのではなく、ガラス前駆体がセラミックス接合面で直接ガラス化反応するために、セラミックス接合面とガラス前駆体組成物の密着性が高く強固に接合できる。また、熱膨脹係数が異なるセラミックスを接合する場合であっても、ガラス前駆体組成物が各々のセラミックス接合面でガラス化反応し密着するので、接合面でガラス前駆体組成物自体が熱応力を緩和しやすくなり、セラミックス接合部にひずみが発生しにくくなる。
なお、本発明のセラミックス接合用ガラス前駆体組成物を用いてセラミックスを接合するに際しては、セラミックスの接合面にスラリー状のガラス前駆体組成物を塗布して貼り合わせる。そして、該ガラス前駆体組成物を溶融してガラス化するために、セラミックスの種類によって異なるが、850℃〜1200℃、より好ましくは900℃〜1100℃で、60〜240分程度熱処理することが必要である。
The glass precursor composition for bonding ceramics used in the present invention is characterized in that it is in a slurry state that is not vitrified until it is melted by heat treatment, and simply uses remelting of glass as in the past. In this case, the glass precursor directly vitrifies at the ceramic bonding surface instead of bonding the ceramics, so that the adhesion between the ceramic bonding surface and the glass precursor composition is high and can be bonded firmly. Even when ceramics with different coefficients of thermal expansion are bonded, the glass precursor composition vitrifies and adheres to each ceramic bonding surface, so the glass precursor composition itself relieves thermal stress at the bonding surface. This makes it easier to cause distortion at the ceramic joint.
In addition, when bonding ceramics using the glass precursor composition for bonding ceramics of the present invention, the slurry-like glass precursor composition is applied and bonded to the bonding surface of the ceramics. And, in order to melt and vitrify the glass precursor composition, although it varies depending on the type of ceramic, it is heat-treated at 850 ° C. to 1200 ° C., more preferably 900 ° C. to 1100 ° C. for about 60 to 240 minutes. is necessary.
熱処理温度が850℃未満の場合は、ガラス前駆体組成物が十分にガラス化せず、セラミックス接合面とガラス前駆体組成物との密着性が低下するので好ましくない。一方、熱処理温度が1200℃を超える場合は、ガラス前駆体組成物自体が揮発しやすくなり、ガラス接合層の組成が変化し、接合強度が低下するので好ましくない。
尚、セラミックスが大型品で接合面が大きい場合は、ガラス前駆体組成物から発生する結晶水などの揮発性物質によって生じる気泡がガラス接合層に残存しやすくなり、接合強度の低下をまねき易い。その場合は、各鉱物原料を調合し、湿式で分散混合し、乾燥後650〜800℃の温度で10〜300分程度予備加熱する。それから、水または有機溶剤を溶媒としてボールミルなどの適当な粉砕機で粉砕し、上記の範囲となるようなガラス前駆体組成物とする。そして、セラミックス接合面に塗布し850〜1200℃で熱処理すると、ガラス前駆体組成物からは揮発性物質による気泡を生じること無く、接合面積が大きい大型のセラミックスも接合できる。
そして、セラミックス接合体のガラス接合層の厚みは5〜90μm、より好ましくは10〜50μmである。ガラス接合層の厚みが5μm未満の場合はガラス接合層が薄すぎ、ガラス接合層の強度低下をまねくので好ましくなく、90μmを超える場合にはガラス接合層に気泡が多く残存しやすくなったり、ガラス接合層にひずみが生じて強度低下をまねいたり、さらにはクラックが生じやすくなるので好ましくない。
When the heat treatment temperature is lower than 850 ° C., the glass precursor composition is not sufficiently vitrified, and the adhesion between the ceramic bonding surface and the glass precursor composition is lowered, which is not preferable. On the other hand, when the heat treatment temperature exceeds 1200 ° C., the glass precursor composition itself tends to volatilize, the composition of the glass bonding layer changes, and the bonding strength decreases, which is not preferable.
When the ceramic is a large product and the bonding surface is large, bubbles generated by a volatile substance such as crystallization water generated from the glass precursor composition are likely to remain in the glass bonding layer, which tends to decrease the bonding strength. In that case, each mineral raw material is prepared, dispersed and mixed in a wet manner, and after heating, preheated at a temperature of 650 to 800 ° C. for about 10 to 300 minutes. Then, using a water or organic solvent as a solvent, the mixture is pulverized by a suitable pulverizer such as a ball mill to obtain a glass precursor composition within the above range. And if it apply | coats to a ceramic joint surface and heat-processes at 850-1200 degreeC, a large sized ceramic with a large joining area can also be joined without producing the bubble by a volatile substance from a glass precursor composition.
And the thickness of the glass joining layer of a ceramic joined body is 5-90 micrometers, More preferably, it is 10-50 micrometers. If the thickness of the glass bonding layer is less than 5 μm, the glass bonding layer is too thin, which leads to a decrease in the strength of the glass bonding layer, which is not preferable, and if it exceeds 90 μm, many glass bubbles are likely to remain in the glass bonding layer. This is not preferable because the bonding layer is distorted to cause a decrease in strength and cracks are easily generated.
以下に実施例及び比較例を挙げて本発明を説明するが、本発明はこれにより何ら限定されるものではない。
まず、珪石、陶石、石灰、長石、粘土、珪灰石、硼酸ナトリウム、炭酸バリウム、亜鉛華から選ばれる1以上の鉱物原料を使用し、セラミックス接合用ガラス前駆体組成物を表1の組成(重量%)に示す割合になるように、調合、均一混合した。なお、揮発性物質を除去する必要がある場合は、650〜800℃で10〜300分間の予備加熱を行った。そして、エチルアルコールとイソプロピルアルコールの混合物(混合比88:12)を溶媒としてボールミルで湿式粉砕し、スラリー状のガラス前駆体組成物を得た。接合面積が15cm2の同形のセラミックス焼結体を2枚用意し、前記ガラス前駆体組成物を、セラミックス焼結体の両方の接合面に塗布して貼り合わせた後、接合部からはみ出した余剰のスラリーをエチルアルコールとイソプロピルアルコールの混合物で湿らせた手拭いで除去した。接合面を十分に乾燥した後、表1に示す温度(800〜1250℃)で180分熱処理し接合部をガラス化することによりセラミックス接合体を得た。
Hereinafter, the present invention will be described with reference to examples and comparative examples, but the present invention is not limited thereto.
First, one or more mineral raw materials selected from quartzite, porcelain stone, lime, feldspar, clay, wollastonite, sodium borate, barium carbonate, zinc white are used, and the glass precursor composition for bonding ceramics is composed of the composition shown in Table 1 ( (% By weight) was prepared and uniformly mixed. In addition, when it was necessary to remove a volatile substance, the preheating for 10 to 300 minutes was performed at 650-800 degreeC. Then, a mixture of ethyl alcohol and isopropyl alcohol (mixing ratio 88:12) was wet pulverized with a ball mill using a solvent to obtain a slurry-like glass precursor composition. Two pieces of ceramic sintered bodies having the same shape with a bonding area of 15 cm 2 were prepared, and the glass precursor composition was applied to both bonding surfaces of the ceramic sintered bodies and bonded together, and then the excess protruding from the bonded portion The slurry was removed with a hand dampened with a mixture of ethyl alcohol and isopropyl alcohol. After the joint surface was sufficiently dried, a ceramic joined body was obtained by heat treating for 180 minutes at a temperature (800 to 1250 ° C.) shown in Table 1 to vitrify the joint.
接合するセラミックスには、Al2O3を99.6重量%、MgOを0.05重量%含有し、熱膨脹係数が8×10ー6/℃のアルミナセラミックスと、Y2O3を99.9重量%含有し熱膨脹係数が7×10-6/℃のイットリアセラミックスを用い、接合面を♯140のダイヤモンド砥石で研削し、表面粗さの最大高さRyを7μmとした後に有機溶剤で洗浄したものを用いた。尚、表面粗さはJIS B 0601−1994に準拠し、超深度カラー3D測定顕微鏡(株式会社キーエンス製 VK−9500)により測定した。
そして、実施例1〜5、7〜9、11〜14及び比較例1〜5、7〜11、13〜17についてはアルミナセラミックス同士を接合し、実施例6、10及び比較例6、12についてはアルミナセラミックスとイットリアセラミックスを接合した。
また、セラミックス接合体の接合強度の評価方法は、図1に示すように、セラミックス接合体を、ガラス接合層を挟んで厚み5mm、幅10mm、長さ50mmに#140のダイヤモンド砥石で加工して、支点間距離を30mmとし、上から20kgf/mm2になるよう荷重を加えた時に、セラミックス接合部が外れなかった場合を「OK」とし、セラミックス接合部が外れた場合若しくはガラス接合層が破損した場合を「NG」とした。
この評価をそれぞれにつき10回ずつ行い、全てOKのものを実施例、一つでもNGがあったものを比較例とした。詳細を表1に示す。
The ceramics to be joined contain 99.6% by weight of Al 2 O 3 and 0.05% by weight of MgO, an alumina ceramic having a thermal expansion coefficient of 8 × 10 −6 / ° C., and 99.9% of Y 2 O 3 . Using yttria ceramics containing 5% by weight and having a thermal expansion coefficient of 7 × 10 −6 / ° C., the bonding surface was ground with a # 140 diamond grinding wheel, the maximum height Ry of the surface roughness was set to 7 μm, and then washed with an organic solvent. A thing was used. The surface roughness was measured with an ultra-depth color 3D measurement microscope (VK-9500, manufactured by Keyence Corporation) in accordance with JIS B 0601-1994.
And about Examples 1-5, 7-9, 11-14 and Comparative Examples 1-5, 7-11, 13-17, alumina ceramics are joined together, About Examples 6, 10 and Comparative Examples 6, 12 Joined alumina ceramics and yttria ceramics.
In addition, as shown in FIG. 1, a method for evaluating the bonding strength of a ceramic bonded body is obtained by processing a ceramic bonded body with a # 140 diamond grindstone to a thickness of 5 mm, a width of 10 mm, and a length of 50 mm with a glass bonding layer interposed therebetween. When the distance between the fulcrums is 30 mm and a load is applied so as to be 20 kgf / mm 2 from the top, the case where the ceramic joint does not come off is “OK”, and the case where the ceramic joint is removed or the glass joint layer is broken. In this case, the result was “NG”.
This evaluation was performed 10 times for each, and all of the examples were OK as examples, and at least one was NG as a comparative example. Details are shown in Table 1.
表1に示されているように、本発明のセラミックス接合用ガラス前駆体組成物を使用したセラミックス接合品の接合強度は全てOKであり、接合強度が高いことが明らかであるが、本発明の要件を1つでも満足しない条件ではNGが多く接合強度が不安定であった。 As shown in Table 1, it is clear that the bonding strength of the ceramic bonded product using the glass precursor composition for ceramic bonding of the present invention is all OK and the bonding strength is high. Under a condition that does not satisfy even one requirement, there was a lot of NG and the bonding strength was unstable.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012069753A JP5816585B2 (en) | 2012-03-26 | 2012-03-26 | Glass precursor composition for bonding ceramics and method for bonding ceramics using the glass precursor composition |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012069753A JP5816585B2 (en) | 2012-03-26 | 2012-03-26 | Glass precursor composition for bonding ceramics and method for bonding ceramics using the glass precursor composition |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013199416A true JP2013199416A (en) | 2013-10-03 |
JP5816585B2 JP5816585B2 (en) | 2015-11-18 |
Family
ID=49519949
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012069753A Active JP5816585B2 (en) | 2012-03-26 | 2012-03-26 | Glass precursor composition for bonding ceramics and method for bonding ceramics using the glass precursor composition |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5816585B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112608164A (en) * | 2020-11-12 | 2021-04-06 | 中广核研究院有限公司 | Connection brazing filler metal, preparation method thereof and silicon carbide cladding connection method |
CN113121116A (en) * | 2021-05-11 | 2021-07-16 | 景德镇陶瓷大学 | Microcrystalline glass solder, preparation method thereof and method for connecting alumina ceramics |
WO2021242714A1 (en) * | 2020-05-26 | 2021-12-02 | Heraeus Conamic North America Llc | Plasma resistant ceramic body formed from multiple pieces |
CN116535095A (en) * | 2023-03-21 | 2023-08-04 | 广东道氏陶瓷材料有限公司 | Transparent particle for ceramic and ceramic tile thereof |
-
2012
- 2012-03-26 JP JP2012069753A patent/JP5816585B2/en active Active
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021242714A1 (en) * | 2020-05-26 | 2021-12-02 | Heraeus Conamic North America Llc | Plasma resistant ceramic body formed from multiple pieces |
CN112608164A (en) * | 2020-11-12 | 2021-04-06 | 中广核研究院有限公司 | Connection brazing filler metal, preparation method thereof and silicon carbide cladding connection method |
CN112608164B (en) * | 2020-11-12 | 2021-08-27 | 中广核研究院有限公司 | Connection brazing filler metal, preparation method thereof and silicon carbide cladding connection method |
CN113121116A (en) * | 2021-05-11 | 2021-07-16 | 景德镇陶瓷大学 | Microcrystalline glass solder, preparation method thereof and method for connecting alumina ceramics |
CN116535095A (en) * | 2023-03-21 | 2023-08-04 | 广东道氏陶瓷材料有限公司 | Transparent particle for ceramic and ceramic tile thereof |
CN116535095B (en) * | 2023-03-21 | 2024-05-24 | 广东道氏陶瓷材料有限公司 | Transparent particle for ceramic and ceramic tile thereof |
Also Published As
Publication number | Publication date |
---|---|
JP5816585B2 (en) | 2015-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4769854B2 (en) | Coating material for platinum material, platinum material coated with the coating material, and glass manufacturing apparatus | |
EP1971559B1 (en) | Glaze compositions | |
JP5816585B2 (en) | Glass precursor composition for bonding ceramics and method for bonding ceramics using the glass precursor composition | |
JP2010228998A (en) | Glass member with sealing material layer, electronic device using the same, and production method thereof | |
KR20070100955A (en) | Method of producing metal to glass, metal to metal or metal to ceramic connections | |
JP5349694B2 (en) | Bonding material | |
TW201635603A (en) | Method for producing hermetic package | |
JP2006137637A (en) | Low melting glass, sealing composition and sealing paste | |
JP2010052990A (en) | Lead-free glass material for sealing and organic el display panel using the same | |
TWI586623B (en) | Lead free glass and sealing material | |
JPWO2016051577A1 (en) | Vanadium-based glass material for local heating sealing, flat display using the same, and method for manufacturing the display | |
WO2014073594A1 (en) | Molten glass conveying equipment element, method for manufacturing molten glass conveying equipment element, glass manufacturing apparatus comprising molten glass conveying equipment element and method for manufacturing glass product | |
JP2009298673A (en) | Sealing material | |
FR2990940A1 (en) | REFRACTORY MIXTURE NOT MADE. | |
CN111170638B (en) | Super stain-resistant ceramic tile color-preserving glaze, stain-resistant ceramic tile and preparation process thereof | |
CN103232216B (en) | Inner coating for improving glazing property of turned carbon-containing fireproof material and coating method thereof | |
JP6031846B2 (en) | Glass substrate with sealing material layer and organic EL device using the same | |
KR100693938B1 (en) | High temperature sealiong material for solid oxide fuel cell | |
KR20090052566A (en) | A sealing materials contained alumina particle for solid oxide fuel cell | |
JP5920513B2 (en) | Lead-free glass for sealing, sealing material, sealing material paste | |
JP4864430B2 (en) | Coke oven coking chamber hearth powder repair agent and repair method | |
JP2008308393A (en) | Lead-free low softening point glass, lead-free low softening point glass composition, lead-free low softening point glass paste, and fluorescent display tube | |
TW201728546A (en) | Crystalline glass sealing material | |
JP2016222473A (en) | Glass powder for glaze | |
TW202132233A (en) | Sealing/coating glass with low thermal expandability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150310 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150827 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20150901 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20150928 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5816585 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |