JP2013199169A - Energy absorption steering column - Google Patents

Energy absorption steering column Download PDF

Info

Publication number
JP2013199169A
JP2013199169A JP2012067879A JP2012067879A JP2013199169A JP 2013199169 A JP2013199169 A JP 2013199169A JP 2012067879 A JP2012067879 A JP 2012067879A JP 2012067879 A JP2012067879 A JP 2012067879A JP 2013199169 A JP2013199169 A JP 2013199169A
Authority
JP
Japan
Prior art keywords
cylindrical member
diameter
step portion
friction
diameter portion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012067879A
Other languages
Japanese (ja)
Inventor
Tatsuya Oikawa
達也 及川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2012067879A priority Critical patent/JP2013199169A/en
Publication of JP2013199169A publication Critical patent/JP2013199169A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an energy absorption steering column capable of easily and surely imparting frictional load to absorb energy applied to a steering shaft.SOLUTION: A first cylindrical member (upper tube 10) has an outside diameter step part 11 in a position at a predetermined distance away from a vehicle rear opening end and a second cylindrical member (lower tube 20) has an inside diameter step part 21 of an inner circumferential surface smaller than the outside diameter of a large diameter part 13 of the first cylindrical member in the vehicle rear opening end part, and into that, the first cylindrical member is press-fitted. A friction member 30 is wound around the small diameter part 12 of the first cylindrical member to have an outside diameter smaller than the large diameter part and after the large diameter part of the first cylindrical member is removed from the inside diameter step part of the second cylindrical member, the outer circumferential surface of the friction member is arranged to be abutted to the inner circumferential surface of the inside diameter step part of the second cylindrical member.

Description

本発明は、エネルギー吸収ステアリングコラムに関し、特に、車両のステアリングシャフトに印加されるエネルギーを吸収するエネルギー吸収ステアリングコラムに係る。   The present invention relates to an energy absorbing steering column, and more particularly to an energy absorbing steering column that absorbs energy applied to a steering shaft of a vehicle.

車両に搭載されるエネルギー吸収ステアリングコラムは、ステアリングコラムに対しエネルギーを吸収する特性を付与しておき、ステアリングホイールに対する衝撃を緩和する手段として広く知られており、種々の構造のものが採用されている。例えば、下記の特許文献1には、「筒状の金属製第1コラムと、この第1コラムに圧入される筒状の金属製第2コラムとを有し、ステアリングホイールとドライバーとの衝突時の衝撃に基づく第1コラムと第2コラムとの軸方向相対移動により、その衝撃が吸収される衝撃吸収式ステアリング装置において、その第1コラムの内周および第2コラムの外周の中の少なくとも一方に、摩擦低減材が薄膜状に塗布され、その摩擦低減材と各コラムとの間の摩擦係数は、両コラム相互間の摩擦係数よりも、同一測定条件下においては小さく、その摩擦低減材を介して第1コラムに第2コラムが圧入されている」衝撃吸収式ステアリング装置が開示されている。   Energy absorption steering columns mounted on vehicles are widely known as a means to alleviate the impact on the steering wheel by giving the steering column the characteristic of absorbing energy, and various structures are adopted. Yes. For example, in Patent Document 1 below, “a cylindrical metal first column and a cylindrical metal second column that is press-fitted into the first column, and when the steering wheel collides with the driver, In the shock absorption type steering device in which the first column and the second column are moved relative to each other in the axial direction based on the shock of the shock, the shock is absorbed. At least one of the inner periphery of the first column and the outer periphery of the second column In addition, a friction reducing material is applied in a thin film, and the friction coefficient between the friction reducing material and each column is smaller under the same measurement conditions than the friction coefficient between both columns. A second column is press-fitted through the first column ”, an impact absorbing steering device is disclosed.

また、下記の特許文献2には、「第2筒状部材の内径段部の内周面及び第1筒状部材の小径部の外周面の何れか一方側に環状溝が形成されると共に、カラー部材の外周面及び内周面の何れか一方側に環状突起が形成され、この環状突起が環状溝に係合するとカラー部材が第2筒状部材及び第1筒状部材の一方に係止され、第1筒状部材の第2筒状部材に対する相対的な移動時には、第1筒状部材の少なくとも外径段部の外周面とカラー部材の内周面とが摩擦係合するように配置された」エネルギー吸収ステアリングコラムが提案されている。   Further, in Patent Document 2 below, an annular groove is formed on either one of the inner peripheral surface of the inner diameter step portion of the second cylindrical member and the outer peripheral surface of the small diameter portion of the first cylindrical member, An annular protrusion is formed on either the outer peripheral surface or the inner peripheral surface of the collar member. When the annular protrusion engages with the annular groove, the collar member is locked to one of the second cylindrical member and the first cylindrical member. When the relative movement of the first cylindrical member relative to the second cylindrical member is performed, the outer peripheral surface of at least the outer diameter step portion of the first cylindrical member and the inner peripheral surface of the collar member are frictionally engaged. An "energy absorbing" steering column has been proposed.

特開2002−302048号公報JP 2002-302048 A 特開2010−221925号公報JP 2010-221925 A

上記の特許文献1に記載の衝撃吸収式ステアリング装置によれば、「摩擦低減材と各コラムとの間の摩擦係数は、両コラム相互間の摩擦係数よりも、同一測定条件下においては小さい。さらに、その摩擦力の大きさに影響するのは、第1コラムの内径、第2コラムの外径、摩擦低減材の塗布厚さのみである。すなわち、両コラム間に摩擦低減材を配置する構成において、その摩擦力の大きさに影響する寸法の種類は可及的に少なくなる。これにより、第1コラムの内径寸法、第2コラムの外径寸法、摩擦低減材の塗布厚さ寸法をそれほど高精度に管理することなく、その寸法の累積誤差を小さくして摩擦力の大きさを適正な一定範囲にできるので、衝突時にドライバーに作用する荷重のバラツキが小さくなる。」と記載されている。しかし、摩擦低減材の塗布厚さ寸法管理のコストは大であり、衝撃時の高荷重によって摩擦低減材の剥離が懸念される。また、衝撃時の荷重は軸方向に限らず複数の方向から荷重が印加されるので、塗布された摩擦低減材のみでは所望の衝撃吸収効果を奏し得ない場合も懸念される。   According to the shock absorbing steering device described in Patent Document 1, “the friction coefficient between the friction reducing material and each column is smaller than the friction coefficient between both columns under the same measurement conditions. Further, only the inner diameter of the first column, the outer diameter of the second column, and the coating thickness of the friction reducing material affect the magnitude of the friction force, that is, the friction reducing material is disposed between both columns. In the configuration, the types of dimensions that affect the magnitude of the frictional force are reduced as much as possible, so that the inner diameter dimension of the first column, the outer diameter dimension of the second column, and the coating thickness dimension of the friction reducing material can be reduced. Without the management with such high accuracy, the accumulated error of the dimension can be reduced and the magnitude of the frictional force can be set within an appropriate fixed range, so that the variation in the load acting on the driver at the time of collision is reduced. " Yes. However, the cost of managing the coating thickness dimension of the friction reducing material is large, and there is a concern that the friction reducing material may be peeled off due to a high load during impact. In addition, since the load at the time of impact is not limited to the axial direction but is applied from a plurality of directions, there is a concern that a desired impact absorbing effect cannot be obtained only by the applied friction reducing material.

これに対し、上記の特許文献2に記載のステアリングコラムによれば、「カラー部材によって摩擦力を容易に調整することができ、移動中荷重として、安定した摩擦荷重を適切に付与することができる。特に、カラー部材は合成樹脂によってC字状に形成されているので、容易に組み付けることができると共に、異径断面の装着対象に対する摺動時にも容易に追従することができる。」旨記載されており、所望のエネルギー吸収特性を確保することができる。しかし、ステアリングシャフトに印加されるエネルギーを吸収するためには、所定形状のカラー部材及びこれに関連する所定形状の筒状部材が必要であり、基本的には第1筒状部材及び第2筒状部材の両者の端部を所定形状に形成する必要があるので、より簡単な構成で、一層容易に摩擦荷重を付与し得るステアリングコラムが望まれる。   On the other hand, according to the steering column described in Patent Literature 2, “the frictional force can be easily adjusted by the collar member, and a stable frictional load can be appropriately applied as the moving load. In particular, since the collar member is formed in a C shape with a synthetic resin, it can be easily assembled and can easily follow when sliding against a mounting object having a different diameter cross section. Therefore, desired energy absorption characteristics can be ensured. However, in order to absorb the energy applied to the steering shaft, a collar member having a predetermined shape and a cylindrical member having a predetermined shape related thereto are required. Basically, the first cylindrical member and the second cylinder are required. Since it is necessary to form both ends of the shaped member into a predetermined shape, a steering column that can apply a friction load more easily with a simpler configuration is desired.

そこで、本発明は、車両のステアリングシャフトに印加されるエネルギーを吸収するための摩擦荷重を容易且つ確実に付与し得るエネルギー吸収ステアリングコラムを提供することを課題とする。   Therefore, an object of the present invention is to provide an energy absorbing steering column capable of easily and reliably applying a friction load for absorbing energy applied to a steering shaft of a vehicle.

上記の課題を達成するため、本発明は、車両のステアリングシャフトを収容し軸を中心に回転可能に支持する第1筒状部材と、該第1筒状部材に対して車両前方側に配置され、当該第1筒状部材を収容し常時は当該第1筒状部材を所定位置に保持する第2筒状部材と、前記ステアリングシャフトに対し所定値以上の荷重が印加されたときには前記第2筒状部材に対する前記第1筒状部材の軸方向相対移動を許容するように構成されたエネルギー吸収ステアリングコラムにおいて、前記第1筒状部材が、車両後方の開口端から所定距離離隔した位置に外径段部を有し、該外径段部から車両後方に向かって相対的に小径に形成した小径部と、該小径部に対し前記外径段部を介して隣接し、車両前方に向かって相対的に大径に形成した大径部を有すると共に、前記第2筒状部材が、車両後方の開口端部に前記第1筒状部材の大径部の外径より小の内周面の内径段部を有し、該内径段部に前記第1筒状部材の大径部が圧入されて成り、前記第1筒状部材の大径部より小の外径となるように前記第1筒状部材の小径部に巻装され、前記第1筒状部材の小径部に係止される摩擦部材を備え、前記第1筒状部材の前記第2筒状部材に対する相対的な移動時には、前記第1筒状部材の大径部が前記第2筒状部材の内径段部から離脱した後に、前記摩擦部材の外周面が前記第2筒状部材の内径段部の内周面に当接するように配置することとしたものである。   In order to achieve the above object, the present invention is arranged on the vehicle front side with respect to the first tubular member, which accommodates a steering shaft of the vehicle and supports the steering shaft rotatably about the shaft. A second cylindrical member that houses the first cylindrical member and normally holds the first cylindrical member in a predetermined position, and the second cylinder when a load greater than a predetermined value is applied to the steering shaft. In the energy absorption steering column configured to allow the axial movement of the first cylindrical member relative to the cylindrical member, the first cylindrical member has an outer diameter at a position spaced a predetermined distance from the opening end at the rear of the vehicle. A small-diameter portion that has a step portion and is formed with a relatively small diameter from the outer-diameter step portion toward the rear of the vehicle; adjacent to the small-diameter portion via the outer-diameter step portion; Has a large-diameter part formed to a large diameter In addition, the second cylindrical member has an inner diameter step portion of an inner peripheral surface smaller than the outer diameter of the large diameter portion of the first cylindrical member at an opening end portion at the rear of the vehicle, and the inner diameter step portion A large diameter portion of the first tubular member is press-fitted, and is wound around the small diameter portion of the first tubular member so as to have an outer diameter smaller than the large diameter portion of the first tubular member. A friction member that is locked to a small-diameter portion of one cylindrical member, and when the first cylindrical member is moved relative to the second cylindrical member, the large-diameter portion of the first cylindrical member is After detaching from the inner diameter step portion of the two cylindrical members, the outer peripheral surface of the friction member is arranged so as to contact the inner peripheral surface of the inner diameter step portion of the second cylindrical member.

上記のエネルギー吸収ステアリングコラムにおいて、前記摩擦部材の車両前方側端部の外周面を、前記第1筒状部材の外径段部側を最小径とするテーパ状に形成するとよい。更に、前記第2筒状部材の内径段部における車両後方側端部の内周面を、前記摩擦部材に当接する側の端面を最大径とするテーパ状に形成することとしてもよい。   In the energy absorbing steering column, the outer peripheral surface of the vehicle front side end portion of the friction member may be formed in a tapered shape having a minimum diameter on the outer diameter step portion side of the first cylindrical member. Furthermore, it is good also as forming the inner peripheral surface of the vehicle rear side edge part in the internal diameter step part of the said 2nd cylindrical member in the taper shape which makes the end surface of the side contact | abutted to the said friction member the maximum diameter.

また、上記のエネルギー吸収ステアリングコラムにおいて、前記第1筒状部材は、前記外径段部を含み軸方向に延在する縮径部を有し、前記摩擦部材が前記第1筒状部材の小径部に巻装された後、前記摩擦部材を前記縮径部に係止する係止具を備えたものとするとよい。尚、係止具としてはリベットやピンがあり、摩擦部材を縮径部に溶接接合することとしてもよい。   In the energy absorbing steering column, the first cylindrical member includes a reduced diameter portion including the outer diameter step portion and extending in the axial direction, and the friction member is a small diameter of the first cylindrical member. It is good to provide the locking tool which locks the said friction member to the said reduced diameter part after being wound by the part. In addition, there exist a rivet and a pin as a locking tool, and it is good also as welding a friction member to a reduced diameter part.

更に、上記のエネルギー吸収ステアリングコラムにおいて、前記第1筒状部材は、前記外径段部を含み軸方向に延在する縮径部を有するものとし、該縮径部に形成した孔を介して樹脂材料を射出し、前記摩擦部材をアウトサート成形することとしてもよい。この場合において、ピンゲートとして縮径部に複数の孔を穿設し、あるいは、縮径部に長孔を形成し、これをゲートとしてアウトサート成形することとしてもよい。   Furthermore, in the above energy absorbing steering column, the first cylindrical member has a reduced diameter portion including the outer diameter step portion and extending in the axial direction, and through a hole formed in the reduced diameter portion. A resin material may be injected and the friction member may be outsert-molded. In this case, a plurality of holes may be formed in the reduced diameter portion as a pin gate, or a long hole may be formed in the reduced diameter portion, and outsert molding may be performed using this as a gate.

本発明は上述のように構成されているので以下の効果を奏する。即ち、本発明のエネルギー吸収ステアリングコラムにおいては、第1筒状部材が、車両後方の開口端から所定距離離隔した位置に外径段部を有し、この外径段部から車両後方に向かって相対的に小径に形成した小径部と、この小径部に対し前記外径段部を介して隣接し、車両前方に向かって相対的に大径に形成した大径部を有すると共に、第2筒状部材が、車両後方の開口端部に第1筒状部材の大径部の外径より小の内周面の内径段部を有し、この内径段部に第1筒状部材の大径部が圧入されて成り、第1筒状部材の大径部より小の外径となるように第1筒状部材の小径部に巻装され、第1筒状部材の小径部に係止される摩擦部材を備え、第1筒状部材の第2筒状部材に対する相対的な移動時には、第1筒状部材の大径部が第2筒状部材の内径段部から離脱した後に、摩擦部材の外周面が第2筒状部材の内径段部の内周面に当接するように配置することとされているので、第1筒状部材に巻装された摩擦部材によって、容易且つ確実に摩擦荷重を付与することができる。特に、第2筒状部材は従前の形状のままで、第1筒状部材に摩擦部材を巻装し得る構成とすればよいので、簡単且つ容易に製造することができる。しかも、第2筒状部材に対し第1筒状部材を組み付ける際、逆に、第1筒状部材に対し第2筒状部材を組み付ける際、両者の組付後であっても、摩擦部材を容易に第1筒状部材に装着することができる。あるいは、第1筒状部材及び第2筒状部材をコラムハウジングに組み付けた後でも、摩擦部材を第1筒状部材に装着することができるので、組付ラインの自由度が増し、組付性が向上する。   Since this invention is comprised as mentioned above, there exist the following effects. That is, in the energy absorbing steering column of the present invention, the first tubular member has an outer diameter step portion at a position spaced a predetermined distance from the opening end at the rear of the vehicle, and from the outer diameter step portion toward the rear of the vehicle. The second cylinder has a relatively small diameter portion, a large diameter portion that is adjacent to the small diameter portion via the outer diameter step portion, and has a relatively large diameter toward the front of the vehicle. The inner member has an inner diameter step portion on the inner peripheral surface that is smaller than the outer diameter of the larger diameter portion of the first cylindrical member at the opening end of the rear side of the vehicle, and the inner diameter step portion has a larger diameter of the first cylindrical member. The portion is press-fitted, wound around the small diameter portion of the first cylindrical member so as to have an outer diameter smaller than the large diameter portion of the first cylindrical member, and is locked to the small diameter portion of the first cylindrical member. And a large diameter portion of the first cylindrical member is located within the second cylindrical member when the first cylindrical member is moved relative to the second cylindrical member. Since the outer peripheral surface of the friction member is arranged so as to abut on the inner peripheral surface of the inner diameter step portion of the second cylindrical member after being detached from the step portion, it is wound around the first cylindrical member. A friction load can be easily and reliably applied by the friction member. In particular, the second tubular member can be manufactured easily and easily because the second tubular member can be configured to wind the friction member around the first tubular member while maintaining the conventional shape. Moreover, when the first cylindrical member is assembled to the second cylindrical member, conversely, when the second cylindrical member is assembled to the first cylindrical member, the friction member is attached even after both are assembled. It can be easily attached to the first tubular member. Alternatively, even after the first cylindrical member and the second cylindrical member are assembled to the column housing, the friction member can be mounted on the first cylindrical member, so that the degree of freedom of the assembly line is increased and the assembling property is increased. Will improve.

例えば、摩擦部材の車両前方側端部の外周面を、第1筒状部材の外径段部側を最小径とするテーパ状に形成し、更に、第2筒状部材の内径段部における車両後方側端部の内周面を、摩擦部材に当接する側の端面を最大径とするテーパ状に形成することとすれば、所謂こじりやかじりを惹起することなく、第1筒状部材は第2筒状部材内を円滑に摺動し、安定したエネルギー吸収特性を確保することができる。   For example, the outer peripheral surface of the vehicle front side end portion of the friction member is formed in a tapered shape having a minimum diameter on the outer diameter step portion side of the first cylindrical member, and further, the vehicle in the inner diameter step portion of the second cylindrical member. If the inner peripheral surface of the rear side end portion is formed in a taper shape with the end surface on the side in contact with the friction member having the maximum diameter, the first cylindrical member will be the first cylindrical member without causing so-called galling or galling. The two cylindrical members can be smoothly slid to ensure stable energy absorption characteristics.

更に、第1筒状部材を、外径段部を含み軸方向に延在する縮径部を有する構成とし、摩擦部材が第1筒状部材の小径部に巻装された後、摩擦部材を縮径部に係止する係止具を備えたものとすれば、係止具によって摩擦部材を容易に第1筒状部材に装着することができる。しかも、第1筒状部材及び第2筒状部材をコラムハウジングに組み付けた後でも、係止具によって摩擦部材を容易に第1筒状部材に装着することができる。   Further, the first cylindrical member has a reduced diameter portion including the outer diameter step portion and extending in the axial direction, and after the friction member is wound around the small diameter portion of the first cylindrical member, the friction member is If it is assumed that a locking tool for locking to the reduced diameter portion is provided, the friction member can be easily attached to the first tubular member by the locking tool. Moreover, even after the first cylindrical member and the second cylindrical member are assembled to the column housing, the friction member can be easily attached to the first cylindrical member by the locking tool.

あるいは、第1筒状部材の縮径部に形成した孔を介して樹脂材料を射出し、摩擦部材をアウトサート成形することとすれば、樹脂製の摩擦部材を容易に第1筒状部材に装着することができる。   Alternatively, if the resin material is injected through the hole formed in the reduced diameter portion of the first cylindrical member and the friction member is outsert molded, the resin friction member can be easily formed into the first cylindrical member. Can be installed.

本発明の一実施形態に係るエネルギー吸収ステアリングコラムの横断面図である。1 is a cross-sectional view of an energy absorption steering column according to an embodiment of the present invention. 本発明の一実施形態におけるアッパチューブとロアチューブの連結部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection part of the upper tube and lower tube in one Embodiment of this invention. 本発明の一実施形態におけるアッパチューブとロアチューブの連結部を示す側断面図である。It is a sectional side view which shows the connection part of the upper tube and lower tube in one Embodiment of this invention. 本発明の一実施形態におけるアッパチューブ、ロアチューブ及び摩擦部材の常態時の関係を拡大して示す断面図である。It is sectional drawing which expands and shows the normal relationship of the upper tube, lower tube, and friction member in one Embodiment of this invention. 本発明の一実施形態におけるアッパチューブ、ロアチューブ及び摩擦部材のエネルギー吸収作動時の関係を拡大して示す断面図である。It is sectional drawing which expands and shows the relationship at the time of the energy absorption operation | movement of the upper tube, lower tube, and friction member in one Embodiment of this invention. 本発明の一実施形態におけるロアチューブと摩擦部材の接合部の他の態様を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other aspect of the junction part of the lower tube and friction member in one Embodiment of this invention. 本発明の一実施形態におけるロアチューブと摩擦部材の接合部の他の態様を示す側断面図である。It is a sectional side view which shows the other aspect of the junction part of the lower tube and friction member in one Embodiment of this invention. 本発明の一実施形態におけるロアチューブと摩擦部材の接合部の更に他の態様を示す縦断面図である。It is a longitudinal cross-sectional view which shows the other aspect of the junction part of the lower tube and friction member in one Embodiment of this invention. 本発明の一実施形態におけるロアチューブと摩擦部材の接合部の更に他の態様を示す側断面図である。It is a sectional side view which shows the other aspect of the junction part of the lower tube and friction member in one Embodiment of this invention. 本発明の他の実施形態におけるアッパチューブとロアチューブの連結部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection part of the upper tube and lower tube in other embodiment of this invention. 本発明の更に他の実施形態におけるアッパチューブとロアチューブの連結部を示す縦断面図である。It is a longitudinal cross-sectional view which shows the connection part of the upper tube and lower tube in other embodiment of this invention.

以下、本発明の望ましい実施形態について図面を参照して説明する。図1は本発明の一実施形態に係るエネルギー吸収ステアリングコラムの構成を示すもので、ステアリングシャフト1は、後端部にステアリングホイール(図示せず)が接続される筒状のアッパシャフト1aと、このアッパシャフト1aの内筒面とスプライン結合されるロアシャフト1bから成る。即ち、アッパシャフト1aとロアシャフト1bが軸方向に相対移動可能で相対回転不能に連結されており、ロアシャフト1bの前端部が操舵機構(図示せず)に接続されている。このステアリングシャフト1は、車両の床面(図示せず)に対し所定角度をなすように、コラムハウジング(メインハウジング、メインチューブとも呼ばれる)2を介し、ブラケット(図示せず)によって車体(図示せず)に支持されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of an energy absorbing steering column according to an embodiment of the present invention. A steering shaft 1 includes a cylindrical upper shaft 1a having a steering wheel (not shown) connected to a rear end portion thereof, The lower shaft 1b is spline-coupled to the inner cylindrical surface of the upper shaft 1a. That is, the upper shaft 1a and the lower shaft 1b are connected so as to be relatively movable in the axial direction but not to be relatively rotatable, and the front end portion of the lower shaft 1b is connected to a steering mechanism (not shown). The steering shaft 1 is mounted on a vehicle body (not shown) by a bracket (not shown) via a column housing (also called a main housing or main tube) 2 so as to form a predetermined angle with respect to a vehicle floor (not shown). Support).

コラムハウジング2内には、ステアリングシャフト1を収容し軸を中心に回転可能に支持する第1筒状部材として、金属製のアッパチューブ10が設けられている。即ち、アッパチューブ10内に収容されたアッパシャフト1aが、アッパチューブ10の後端部に軸受3を介して回転可能に支持されている。但し、アッパシャフト1aとアッパチューブ10との間の軸方向相対移動は規制されており、アッパシャフト1aとアッパチューブ10は一体となって軸方向移動し得るように構成されている。更に、第1筒状部材に対して車両前方側(図1の左側)に配置され、第1筒状部材を収容し常時は第1筒状部材を所定位置に保持する第2筒状部材として、金属製のロアチューブ20が設けられており、このロアチューブ20はコラムハウジング2に支持されている。そして、ステアリングシャフト1に対し所定値以上の荷重が印加されたときには、ロアチューブ20に対するアッパチューブ10の軸方向相対移動(ひいてはアッパシャフト1aの軸方向移動)を許容するように構成されており、本実施形態ではアッパチューブ10及びロアチューブ20はエネルギー吸収手段として機能する。   In the column housing 2, a metal upper tube 10 is provided as a first cylindrical member that houses the steering shaft 1 and supports the steering shaft 1 so as to be rotatable about the shaft. That is, the upper shaft 1 a accommodated in the upper tube 10 is rotatably supported by the rear end portion of the upper tube 10 via the bearing 3. However, the relative movement in the axial direction between the upper shaft 1a and the upper tube 10 is restricted, and the upper shaft 1a and the upper tube 10 are configured to be able to move in the axial direction integrally. Further, the second cylindrical member is disposed on the vehicle front side (left side in FIG. 1) with respect to the first cylindrical member, and accommodates the first cylindrical member and normally holds the first cylindrical member in a predetermined position. A metal lower tube 20 is provided, and the lower tube 20 is supported by the column housing 2. And when the load more than predetermined value is applied with respect to the steering shaft 1, it is comprised so that the axial direction relative movement of the upper tube 10 with respect to the lower tube 20 (hence, the axial direction movement of the upper shaft 1a) is permitted, In the present embodiment, the upper tube 10 and the lower tube 20 function as energy absorbing means.

本実施形態のアッパチューブ10はインナチューブとも呼ばれ、図2に示すように、車両後方の開口端から所定距離離隔した位置に外径段部11を有し、この外径段部11から車両後方に向かって相対的に小径に形成した小径部12と、この小径部に対し外径段部11を介して隣接し、車両前方に向かって相対的に大径に形成した大径部13を有する。また、ロアチューブ20はアウタチューブとも呼ばれ、その車両後方の開口端に、アッパチューブ10の大径部13の外径より小の内周面の内径段部21を有し、この内径段部21にアッパチューブ10の大径部13が圧入されるように構成されており、アッパチューブ10は、その大径部13に対してロアチューブ20の内径段部21の押圧荷重が付与された状態で保持される。   The upper tube 10 of this embodiment is also called an inner tube, and as shown in FIG. 2, has an outer diameter step portion 11 at a position spaced a predetermined distance from the opening end at the rear of the vehicle. A small-diameter portion 12 formed with a relatively small diameter toward the rear, and a large-diameter portion 13 that is adjacent to the small-diameter portion via an outer-diameter step portion 11 and formed with a relatively large diameter toward the front of the vehicle. Have. The lower tube 20 is also called an outer tube, and has an inner diameter step portion 21 having an inner peripheral surface smaller than the outer diameter of the large diameter portion 13 of the upper tube 10 at an opening end at the rear of the vehicle. 21 is configured such that the large-diameter portion 13 of the upper tube 10 is press-fitted into the upper tube 10, and the upper tube 10 is in a state in which the pressing load of the inner diameter step portion 21 of the lower tube 20 is applied to the large-diameter portion 13. Held in.

そして、アッパチューブ10の小径部12に摩擦部材30が巻装され、アッパチューブ10の大径部13より小の外径となるように、小径部12に係止される。本実施形態の摩擦部材30は弾性変形し得る金属材料で帯状に形成されており、その車両前方側端部の外周面が、アッパチューブ10の外径段部11側を最小径とするテーパ状に形成されている(図4に31で示す)。また、ロアチューブ20の内径段部21は、その車両後方側端部の内周面が、摩擦部材30に当接する側の端面を最大径とするテーパ状に形成されている(図4に22で示す)。   Then, the friction member 30 is wound around the small-diameter portion 12 of the upper tube 10 and is locked to the small-diameter portion 12 so that the outer diameter is smaller than that of the large-diameter portion 13 of the upper tube 10. The friction member 30 of the present embodiment is formed in a band shape with a metal material that can be elastically deformed, and the outer peripheral surface of the front end portion of the vehicle has a tapered shape with the outer diameter step portion 11 side of the upper tube 10 as the minimum diameter. (Indicated by 31 in FIG. 4). Further, the inner diameter step portion 21 of the lower tube 20 is formed such that the inner peripheral surface of the vehicle rear side end portion is tapered so that the end surface on the side in contact with the friction member 30 has the maximum diameter (22 in FIG. 4). ).

図2及び図3に示すように、アッパチューブ10は、その外径段部11を含み軸方向に延在する縮径部14を有し、摩擦部材30がアッパチューブ10の小径部12に巻装された後、係止具たる計4個のリベット(代表して41で表す)によって縮径部14に係止される。縮径部14の外周面は、図2及び図3に示すように平坦面であり、当該部分のアッパチューブ10は略D字断面に形成されているので、リベット41は、その先端部はアッパチューブ10内に突出するが、その頭部はロアチューブ20と縮径部14との間の空間に収容される。尚、係止具としてはピン等があり、また、溶接接合としてもよく、これらについては図6乃至図9を参照して後述する。   As shown in FIGS. 2 and 3, the upper tube 10 includes a reduced diameter portion 14 including the outer diameter step portion 11 and extending in the axial direction, and the friction member 30 is wound around the small diameter portion 12 of the upper tube 10. After being mounted, it is locked to the reduced diameter portion 14 by a total of four rivets (represented by 41) as locking tools. The outer peripheral surface of the reduced diameter portion 14 is a flat surface as shown in FIGS. 2 and 3, and the upper tube 10 of the portion is formed in a substantially D-shaped cross section. Although protruding into the tube 10, its head is accommodated in the space between the lower tube 20 and the reduced diameter portion 14. In addition, there exists a pin etc. as a latching tool, and it is good also as welding joining, and these are later mentioned with reference to FIG. 6 thru | or FIG.

上記のように、摩擦部材30はアッパチューブ10の小径部12に巻装され、リベット41によって縮径部14に固定されるように構成されているので、ロアチューブ20に対しアッパチューブ10を組み付ける際、逆に、アッパチューブ10に対しロアチューブ20を組み付ける際、両者の組付後であっても、摩擦部材30を容易に装着することができる。あるいは、アッパチューブ10及びロアチューブ20をコラムハウジング2に組み付けた後でも、摩擦部材30をアッパチューブ10の小径部12に装着することができるので、組付ラインの自由度が増し、組付性が向上する。   As described above, since the friction member 30 is wound around the small diameter portion 12 of the upper tube 10 and is fixed to the reduced diameter portion 14 by the rivet 41, the upper tube 10 is assembled to the lower tube 20. On the other hand, when the lower tube 20 is assembled to the upper tube 10, the friction member 30 can be easily mounted even after both are assembled. Alternatively, even after the upper tube 10 and the lower tube 20 are assembled to the column housing 2, the friction member 30 can be mounted on the small-diameter portion 12 of the upper tube 10, so that the degree of freedom of the assembly line is increased and the assembling property is increased. Will improve.

而して、アッパチューブ10のロアチューブ20に対する相対的な移動時には、アッパチューブ10の前進に伴い、ロアチューブ20の内径段部21の押圧荷重が付与された状態の大径部13に対し摩擦荷重(圧入荷重)が生じ、この摩擦荷重に抗して更にアッパチューブ10が前進駆動され、アッパチューブ10の大径部13がロアチューブ20の内径段部21との係合から離脱すると、ロアチューブ20の内径段部21は軸心方向に戻され摩擦部材30に当接する。この結果、ロアチューブ20の内径段部21の内周面と摩擦部材30の外周面が摩擦係合し、内径段部21に対する摩擦部材30の通過に伴い摩擦荷重が付与されるように構成されている。   Thus, during the relative movement of the upper tube 10 with respect to the lower tube 20, the upper tube 10 moves forward and friction is applied to the large-diameter portion 13 in a state where a pressing load is applied to the inner diameter step portion 21 of the lower tube 20. When a load (press-fit load) is generated, the upper tube 10 is further driven against this friction load, and the large diameter portion 13 of the upper tube 10 is disengaged from the engagement with the inner diameter step portion 21 of the lower tube 20, the lower The inner diameter step portion 21 of the tube 20 is returned in the axial direction and comes into contact with the friction member 30. As a result, the inner peripheral surface of the inner diameter step portion 21 of the lower tube 20 and the outer peripheral surface of the friction member 30 are frictionally engaged, and a friction load is applied as the friction member 30 passes through the inner diameter step portion 21. ing.

上記の構成になるエネルギー吸収ステアリングコラムの作用を説明すると、常時は図1乃至図4に示す状態にあって、アッパチューブ10の大径部13がロアチューブ20の内径段部21に圧入され、アッパチューブ10がロアチューブ20に押圧された状態で保持され、図4に拡大して示すように、アッパチューブ10とロアチューブ20の軸方向相対移動が阻止された状態で保持されている。   Explaining the operation of the energy absorbing steering column configured as described above, the large diameter portion 13 of the upper tube 10 is normally press-fitted into the inner diameter step portion 21 of the lower tube 20 in the state shown in FIGS. The upper tube 10 is held in a state of being pressed by the lower tube 20, and as shown in an enlarged view in FIG. 4, the upper tube 10 and the lower tube 20 are held in a state in which relative movement in the axial direction is prevented.

次に、ステアリングシャフト1に所定値以上の荷重が印加され、ステアリングシャフト1がアッパチューブ10と共に前進し、アッパチューブ10の大径部13がロアチューブ20の内径段部21から離脱すると、アッパチューブ10はその離脱速度を維持した状態で前進し、図5に示すように摩擦部材30がロアチューブ20の内径段部21に当接する。この後、ロアチューブ20の内径段部21の内周面と摩擦部材30の外周面とが摩擦係合状態となり、これによってアッパチューブ10に対して摩擦荷重が付与され、エネルギーを吸収しながら移動する。   Next, when a load of a predetermined value or more is applied to the steering shaft 1, the steering shaft 1 moves forward together with the upper tube 10, and when the large diameter portion 13 of the upper tube 10 is detached from the inner diameter step portion 21 of the lower tube 20, the upper tube 10 advances in a state where the separation speed is maintained, and the friction member 30 comes into contact with the inner diameter step portion 21 of the lower tube 20 as shown in FIG. Thereafter, the inner peripheral surface of the inner diameter step portion 21 of the lower tube 20 and the outer peripheral surface of the friction member 30 are in a frictional engagement state, whereby a friction load is applied to the upper tube 10 and moves while absorbing energy. To do.

本実施形態の摩擦部材30は、その車両前方側端部の外周面(図4の31)がテーパ状に形成されており、また、ロアチューブ20の内径段部21における車両後方側端部の内周面(図4の22)もテーパ状に形成されているので、所謂こじりやかじりを惹起することなく、アッパチューブ10はロアチューブ20内を円滑に摺動する。また、摩擦部材30は弾性変形領域で使用されるので、変形によるこじりや摩擦荷重のばらつきが抑えられ、エネルギー吸収荷重の変動が少なく安定する。而して、上記の構成になるエネルギー吸収ステアリングコラムによって、所望のエネルギー吸収特性を確保することができる。   The friction member 30 of the present embodiment has an outer peripheral surface (31 in FIG. 4) of the vehicle front side end portion formed in a taper shape, and a vehicle rear side end portion of the inner diameter step portion 21 of the lower tube 20. Since the inner peripheral surface (22 in FIG. 4) is also formed in a tapered shape, the upper tube 10 slides smoothly in the lower tube 20 without causing so-called twisting or galling. In addition, since the friction member 30 is used in the elastic deformation region, it is possible to suppress twisting and variation in friction load due to deformation, and to stabilize the energy absorption load with little fluctuation. Thus, a desired energy absorption characteristic can be ensured by the energy absorption steering column configured as described above.

図6及び図7は、係止具として、上記のリベット41に代えて計4個のピン(代表して42で表す)を用いた態様を示すもので、その先端部はアッパチューブ10内に突出するが、その頭部はアッパチューブ10の縮径部14とロアチューブ20との間の空間に収容される。図8及び図9は、摩擦部材30がアッパチューブ10の縮径部14に溶接接合される態様を示すもので、計5箇所の溶接部(代表して43で表す)で接合されている。このうち、図8の右側上下に示す溶接部43は、摩擦部材30の車両後方側端部が全周に亘って縮径部14に溶接接合された状態を表している。何れの態様においても、帯状の摩擦部材30がアッパチューブ10の小径部12に巻装された後に、その両端部を若干の空隙を以って衝合させた状態で、ピン42により、あるいは溶接(43)によって縮径部14に固定される。尚、図6乃至図9に示す態様におけるその他の構成は図1と同様である。   FIG. 6 and FIG. 7 show a mode in which a total of four pins (represented by 42) are used in place of the rivet 41 as a locking tool, and the tip thereof is located in the upper tube 10. Although protruding, the head is accommodated in the space between the reduced diameter portion 14 of the upper tube 10 and the lower tube 20. 8 and 9 show a mode in which the friction member 30 is welded to the reduced diameter portion 14 of the upper tube 10 and is joined by a total of five welds (represented by 43). Among these, the welding part 43 shown on the upper right and lower sides of FIG. 8 represents the state by which the vehicle rear side edge part of the friction member 30 was weld-joined to the reduced diameter part 14 over the perimeter. In any embodiment, after the belt-shaped friction member 30 is wound around the small-diameter portion 12 of the upper tube 10, both ends thereof are brought into contact with each other with a slight gap, and the pin 42 or welding is performed. It is fixed to the reduced diameter portion 14 by (43). In addition, the other structure in the aspect shown in FIG. 6 thru | or FIG. 9 is the same as that of FIG.

図10及び図11は、本発明の他の実施形態に係るもので、樹脂材料で形成された摩擦部材30xの構成を示しており、他の構成は図1と同様である。図10に示す実施形態においては、アッパチューブ10の縮径部14に、ピンゲートとして複数の孔(代表して15で表す)が穿設されており、これらの孔15を介して樹脂材料が射出され、摩擦部材30xがアウトサート成形される。この場合において、摩擦部材30xの成形後、外周面にゲート跡が残らないように、アッパチューブ10の内側から孔15を介して射出成形される。   10 and 11 relate to another embodiment of the present invention, and show the configuration of a friction member 30x formed of a resin material, and the other configuration is the same as that of FIG. In the embodiment shown in FIG. 10, a plurality of holes (typically indicated by 15) are formed as pin gates in the reduced diameter portion 14 of the upper tube 10, and the resin material is injected through these holes 15. Then, the friction member 30x is outsert-molded. In this case, after the friction member 30x is formed, injection molding is performed from the inside of the upper tube 10 through the hole 15 so that a gate mark does not remain on the outer peripheral surface.

また、図11に示す実施形態においては、アッパチューブ10の縮径部14に長孔16が形成され、これをゲートとして樹脂材料が射出され、摩擦部材30xがアウトサート成形される。これにより、キー形状のゲートとなるので、図10に示す実施形態に比し、断面係数が向上し、抜け荷重発生時の剪断応力が強化される。   In the embodiment shown in FIG. 11, a long hole 16 is formed in the reduced diameter portion 14 of the upper tube 10, a resin material is injected using this as a gate, and the friction member 30x is outsert molded. Thereby, since it becomes a key-shaped gate, compared with embodiment shown in FIG. 10, a section modulus improves and the shear stress at the time of generating a missing load is strengthened.

1 ステアリングシャフト
1a アッパシャフト
1b ロアシャフト
10 アッパチューブ(第1筒状部材)
20 ロアチューブ(第2筒状部材)
11 外径段部
12 小径部
13 大径部
14 縮径部
21 内径段部
30,30x 摩擦部材
1 Steering shaft 1a Upper shaft 1b Lower shaft 10 Upper tube (first tubular member)
20 Lower tube (second cylindrical member)
11 Outer diameter step portion 12 Small diameter portion 13 Large diameter portion 14 Reduced diameter portion 21 Inner diameter step portion 30, 30x Friction member

Claims (5)

車両のステアリングシャフトを収容し軸を中心に回転可能に支持する第1筒状部材と、該第1筒状部材に対して車両前方側に配置され、当該第1筒状部材を収容し常時は当該第1筒状部材を所定位置に保持する第2筒状部材と、前記ステアリングシャフトに対し所定値以上の荷重が印加されたときには前記第2筒状部材に対する前記第1筒状部材の軸方向相対移動を許容するように構成されたエネルギー吸収ステアリングコラムにおいて、前記第1筒状部材が、車両後方の開口端から所定距離離隔した位置に外径段部を有し、該外径段部から車両後方に向かって相対的に小径に形成した小径部と、該小径部に対し前記外径段部を介して隣接し、車両前方に向かって相対的に大径に形成した大径部を有すると共に、前記第2筒状部材が、車両後方の開口端部に前記第1筒状部材の大径部の外径より小の内周面の内径段部を有し、該内径段部に前記第1筒状部材の大径部が圧入されて成り、前記第1筒状部材の大径部より小の外径となるように前記第1筒状部材の小径部に巻装され、前記第1筒状部材の小径部に係止される摩擦部材を備え、前記第1筒状部材の前記第2筒状部材に対する相対的な移動時には、前記第1筒状部材の大径部が前記第2筒状部材の内径段部から離脱した後に、前記摩擦部材の外周面が前記第2筒状部材の内径段部の内周面に当接するように配置したことを特徴とするエネルギー吸収ステアリングコラム。   A first cylindrical member that receives a steering shaft of a vehicle and supports the vehicle so as to be rotatable around an axis, and is disposed on the vehicle front side with respect to the first cylindrical member, and stores the first cylindrical member at all times. A second cylindrical member that holds the first cylindrical member in a predetermined position, and an axial direction of the first cylindrical member with respect to the second cylindrical member when a load greater than a predetermined value is applied to the steering shaft. In the energy absorbing steering column configured to allow relative movement, the first tubular member has an outer diameter step portion at a position spaced a predetermined distance from the opening end at the rear of the vehicle, and the outer diameter step portion A small-diameter portion that is relatively small in diameter toward the rear of the vehicle, and a large-diameter portion that is adjacent to the small-diameter portion via the outer diameter step portion and that has a relatively large diameter toward the front of the vehicle. And the second cylindrical member Has an inner diameter step portion having an inner peripheral surface smaller than the outer diameter of the large diameter portion of the first cylindrical member, and the large diameter portion of the first cylindrical member is press-fitted into the inner diameter step portion. And is wound around the small-diameter portion of the first cylindrical member so as to have an outer diameter smaller than the large-diameter portion of the first cylindrical member, and is locked to the small-diameter portion of the first cylindrical member. A friction member, and when the first tubular member is moved relative to the second tubular member, the large-diameter portion of the first tubular member is separated from the inner-diameter step portion of the second tubular member. An energy absorbing steering column, wherein the outer peripheral surface of the friction member is disposed so as to contact the inner peripheral surface of the inner diameter step portion of the second cylindrical member. 前記摩擦部材の車両前方側端部の外周面が、前記第1筒状部材の外径段部側を最小径とするテーパ状に形成されていることを特徴とする請求項1記載のエネルギー吸収ステアリングコラム。   2. The energy absorption according to claim 1, wherein an outer peripheral surface of a vehicle front side end portion of the friction member is formed in a taper shape having a minimum diameter on an outer diameter step portion side of the first cylindrical member. Steering column. 前記第2筒状部材の内径段部における車両後方側端部の内周面が、前記摩擦部材に当接する側の端面を最大径とするテーパ状に形成されていることを特徴とする請求項2記載のエネルギー吸収ステアリングコラム。   The inner peripheral surface of the vehicle rear side end portion of the inner diameter step portion of the second cylindrical member is formed in a taper shape having an end surface on the side in contact with the friction member as a maximum diameter. 2. The energy absorbing steering column according to 2. 前記第1筒状部材が、前記外径段部を含み軸方向に延在する縮径部を有し、前記摩擦部材が前記第1筒状部材の小径部に巻装された後、前記摩擦部材を前記縮径部に係止する係止具を備えたことを特徴とする請求項1乃至3の何れか一項に記載のエネルギー吸収ステアリングコラム。   The first cylindrical member has a reduced diameter portion including the outer diameter step portion and extending in the axial direction, and the friction member is wound around the small diameter portion of the first cylindrical member, and then the friction The energy absorbing steering column according to any one of claims 1 to 3, further comprising a locking member that locks a member to the reduced diameter portion. 前記第1筒状部材が、前記外径段部を含み軸方向に延在する縮径部を有し、該縮径部に形成した孔を介して樹脂材料を射出し、前記摩擦部材をアウトサート成形して成ることを特徴とする請求項1乃至3の何れか一項に記載のエネルギー吸収ステアリングコラム。   The first cylindrical member includes a reduced diameter portion including the outer diameter step portion and extending in the axial direction, and a resin material is injected through a hole formed in the reduced diameter portion, and the friction member is out. The energy absorbing steering column according to any one of claims 1 to 3, wherein the energy absorbing steering column is formed by sart molding.
JP2012067879A 2012-03-23 2012-03-23 Energy absorption steering column Pending JP2013199169A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012067879A JP2013199169A (en) 2012-03-23 2012-03-23 Energy absorption steering column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012067879A JP2013199169A (en) 2012-03-23 2012-03-23 Energy absorption steering column

Publications (1)

Publication Number Publication Date
JP2013199169A true JP2013199169A (en) 2013-10-03

Family

ID=49519753

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012067879A Pending JP2013199169A (en) 2012-03-23 2012-03-23 Energy absorption steering column

Country Status (1)

Country Link
JP (1) JP2013199169A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523071A (en) * 2014-05-13 2017-08-17 グーグル インコーポレイテッド Device to absorb power

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017523071A (en) * 2014-05-13 2017-08-17 グーグル インコーポレイテッド Device to absorb power
CN110077310A (en) * 2014-05-13 2019-08-02 伟摩有限责任公司 Device for absorbability

Similar Documents

Publication Publication Date Title
JP6037092B1 (en) Steering device
JP5856204B2 (en) Steering device
JP5369537B2 (en) Energy absorbing steering column
US7527295B2 (en) Energy absorbing steering column
US8051742B2 (en) Steering wheel position adjustment device
US9834245B2 (en) Steering device
US10479394B2 (en) Steering device of vehicle
JP5950072B1 (en) Shock absorbing steering device
US20110041643A1 (en) Steering column
JP6621811B2 (en) Energy absorption module for vehicle steering column assembly
JP5228984B2 (en) Energy absorbing steering column
JP5268027B2 (en) Energy absorbing steering column
JP6179347B2 (en) Vehicle steering device
JP2013199169A (en) Energy absorption steering column
JP5451435B2 (en) Energy absorbing steering column
KR102246687B1 (en) Steering Column for Vehicle
JP6409551B2 (en) Vehicle steering device
JP6481374B2 (en) Energy absorbing steering column
JP2019171920A (en) Energy absorbing steering column
CN216374710U (en) Steering device
JP7122222B2 (en) Damper mount mounting structure
JP6842803B2 (en) Propeller shaft
JP2018062213A (en) Steering device
KR20150024553A (en) Rack and Pinion Type Steering Apparatus
JP2009191950A (en) Telescopic shaft