JP2019171920A - Energy absorbing steering column - Google Patents

Energy absorbing steering column Download PDF

Info

Publication number
JP2019171920A
JP2019171920A JP2018059247A JP2018059247A JP2019171920A JP 2019171920 A JP2019171920 A JP 2019171920A JP 2018059247 A JP2018059247 A JP 2018059247A JP 2018059247 A JP2018059247 A JP 2018059247A JP 2019171920 A JP2019171920 A JP 2019171920A
Authority
JP
Japan
Prior art keywords
diameter
energy absorbing
cylindrical portion
small
diameter cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018059247A
Other languages
Japanese (ja)
Inventor
真 末吉
Makoto Sueyoshi
真 末吉
かおり 磯村
Kaori Isomura
かおり 磯村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin Corp
Original Assignee
Aisin Seiki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin Seiki Co Ltd filed Critical Aisin Seiki Co Ltd
Priority to JP2018059247A priority Critical patent/JP2019171920A/en
Publication of JP2019171920A publication Critical patent/JP2019171920A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Steering Controls (AREA)

Abstract

To provide an energy absorbing steering column capable of properly setting a load while moving by a simple and inexpensive structure and facilitating a loading on a vehicle.SOLUTION: An energy absorbing member 30 is placed between a first cylindrical member (inner tube 10) and a second cylindrical member (outer tube 20). This energy absorbing member includes: a small-diameter cylindrical portion 31 which is held in the second cylindrical member and which has an open end abutting a tip of the second cylindrical member; a large-diameter cylindrical portion 32 which is held in the second cylindrical member and which is locked by the second cylindrical member at a predetermined position; and an annular coupling member 33 that integrally couples the large-diameter portion and the small-diameter portion. The second cylindrical member has, for example, multiple pawls (23) that protrude inwardly, and the open end of the large-diameter cylindrical portion is locked by those pawls, and thus a movement of the large-diameter cylindrical portion in an axial direction is prevented.SELECTED DRAWING: Figure 1

Description

本発明は、エネルギー吸収ステアリングコラムに関し、特に、車両のステアリングシャフトに印加されるエネルギーを吸収するエネルギー吸収ステアリングコラムに係る。   The present invention relates to an energy absorbing steering column, and more particularly to an energy absorbing steering column that absorbs energy applied to a steering shaft of a vehicle.

車両に搭載されるエネルギー吸収ステアリングコラムは、ステアリングコラムに対しエネルギーを吸収する特性を付与する手段として広く知られており、種々の構造のものが採用されている。例えば、下記の特許文献1には「安価な構成で必要な剛性を確保しつつ、第1筒状部材と第2筒状部材との間の移動開始荷重及び移動中荷重を容易且つ適切に設定し得るエネルギー吸収ステアリングコラムを提供することを課題」(特許文献1の段落〔0006〕に記載)とし、特に、移動中荷重が付与される構成として、第1筒状部材が「周方向の一部が連続して縮径された縮径部と、該縮径部の外周面の一部が切除された平面部を有」し、「前記平面部に固定し車両後方開口端方向に延出する板状部材と、該板状部材に装着し相対的な移動時には摩擦力を付与しながら案内する摩擦係合部を有するエネルギー吸収ブロックとを備えること」(特許文献1の段落〔0007〕に記載)が提案されている。   2. Description of the Related Art An energy absorbing steering column mounted on a vehicle is widely known as a means for imparting energy absorbing characteristics to a steering column, and various structures are employed. For example, in Patent Document 1 below, “the movement starting load and the moving load between the first cylindrical member and the second cylindrical member are set easily and appropriately while ensuring the necessary rigidity with an inexpensive configuration. The problem is to provide an energy absorbing steering column that can be used as a problem ”(described in paragraph [0006] of Patent Document 1). A diameter-reduced portion whose diameter is continuously reduced, and a plane portion in which a part of the outer peripheral surface of the diameter-reduced portion is cut off ”, and“ is fixed to the plane portion and extends toward the rear opening end of the vehicle. And an energy absorbing block having a friction engagement portion that is attached to the plate member and guides the friction member while applying a friction force during relative movement ”(paragraph [0007] of Patent Document 1). Has been proposed).

また、車両に適用し得るエネルギー吸収手段として、下記の特許文献2には「金属製の管体に対し、該管体の一端側に大径部を形成し、該大径部から前記管体の他端側に向けて管径が漸減する部分を、前記大径部の内側に折曲して、折曲部が外方に拡開する重合部を形成し、該重合部に連続して前記大径部内に、前記重合部の管径の漸減割合より緩やかな勾配となる割合で前記管体の一端側に向けて管径が漸減し、前記管体と略同径となる位置で前記管体の他端側に折曲する連結部を形成することとした」(特許文献2の段落〔0006〕に記載)エネルギ吸収管が提案されている。   Further, as an energy absorbing means that can be applied to a vehicle, the following Patent Document 2 states that “a large-diameter portion is formed on one end side of the tubular body relative to a metallic tubular body, and the tubular body is formed from the large-diameter portion. The portion where the tube diameter gradually decreases toward the other end of the tube is bent to the inside of the large-diameter portion to form a superposed portion where the bent portion expands outward, and is continuously connected to the superposed portion. In the large diameter portion, the tube diameter gradually decreases toward one end side of the tube body at a rate that is a gentler gradient than the gradually decreasing rate of the tube diameter of the overlapping portion, and the position at which the tube body is approximately the same diameter as the tube body. An energy absorbing tube has been proposed (described in paragraph [0006] of Patent Document 2) where a connecting portion that is bent is formed on the other end of the tube.

特許第5228984号公報Japanese Patent No. 5228984 特許第3939792号公報Japanese Patent No. 3993979

上記の特許文献1の段落〔0009〕に記載のように、「エネルギー吸収ブロックによって板状部材を確実に保持し、摩擦力を付与しつつ案内すると共に、板状部材の塑性変形によってエネルギーを吸収しながら移動するので、所謂扱き荷重として、適切に移動中荷重を付与することができる」が、第1筒状部材(インナーチューブ)に「縮径部」及び「平面部」を形成する必要があり、また、エネルギー吸収ブロックは従前のステアリングコラムの外側に装着されることになるので、車両への搭載時に所定の空間が必要となる。一方、特許文献2に記載のエネルギ吸収管は、従前のステアリングコラムにそのまま装着し得るものではなく、特異な構造となるので、車両への搭載時に困難を伴う。   As described in paragraph [0009] of Patent Document 1 above, “the plate-like member is securely held by the energy absorption block, guided while applying a frictional force, and energy is absorbed by plastic deformation of the plate-like member. However, it is necessary to form a “reduced diameter portion” and a “planar portion” on the first tubular member (inner tube). In addition, since the energy absorption block is mounted outside the conventional steering column, a predetermined space is required when mounted on the vehicle. On the other hand, the energy absorption tube described in Patent Document 2 cannot be mounted on a conventional steering column as it is, and has a unique structure, which is difficult when mounted on a vehicle.

そこで、本発明は、簡単且つ安価な構成で適切に移動中荷重を設定し得ると共に、車両への搭載が容易なエネルギー吸収ステアリングコラムを提供することを課題とする。   SUMMARY OF THE INVENTION An object of the present invention is to provide an energy absorbing steering column that can appropriately set a moving load with a simple and inexpensive configuration and can be easily mounted on a vehicle.

上記の課題を達成するため、本発明は、ステアリングシャフトが収容され軸を中心に回転可能に支持される第1の筒状部材と、該第1の筒状部材が収容され常時は当該第1の筒状部材が所定位置に保持され、前記ステアリングシャフトに対し所定値以上の軸方向荷重が印加されたときには当該第1の筒状部材の相対移動を許容する第2の筒状部材と、前記第1の筒状部材と前記第2の筒状部材との間に介装されるエネルギー吸収部材であって、該エネルギー吸収部材が、前記第2の筒状部材に収容され前記第1の筒状部材の先端部に当接する開口端を有する小径筒部と、前記第2の筒状部材に収容され所定位置で前記第2の筒状部材に係止される大径筒部と、該大径筒部と前記小径筒部が一体的に連結される環状連結部とを備えることとしたものである。   In order to achieve the above object, the present invention provides a first cylindrical member in which a steering shaft is accommodated and supported rotatably around an axis, and the first cylindrical member is accommodated in the first cylindrical member. A second cylindrical member that allows the relative movement of the first cylindrical member when the axial load of a predetermined value or more is applied to the steering shaft; An energy absorbing member interposed between a first cylindrical member and the second cylindrical member, wherein the energy absorbing member is accommodated in the second cylindrical member and the first cylinder A small-diameter cylindrical portion having an open end that comes into contact with the tip of the cylindrical member, a large-diameter cylindrical portion that is accommodated in the second cylindrical member and is locked to the second cylindrical member at a predetermined position, A diameter tube portion and an annular connecting portion to which the small diameter tube portion is integrally connected are provided. Than is.

前記小径筒部は円筒形状とし得るが、前記第1の筒状部材の先端部に当接する小径開口端と、該小径開口端から外径が漸増し前記環状連結部に至る大径開口端を有する円錐台形状としてもよい。   The small-diameter cylindrical portion may have a cylindrical shape, and a small-diameter opening end that comes into contact with the distal end portion of the first cylindrical member, and a large-diameter opening end that gradually increases in outer diameter from the small-diameter opening end and reaches the annular coupling portion. It may be a truncated cone shape.

上記のエネルギー吸収ステアリングコラムにおいて、前記第2の筒状部材は、内側に突出する複数の切り起しが環状に並設されて成り、該複数の切り起しに前記大径筒部の開口端が係止されて前記大径筒部の軸方向移動が阻止されるように構成するとよい。   In the above energy absorption steering column, the second cylindrical member is formed by arranging a plurality of inwardly protruding cuts in an annular shape, and the plurality of cuts are provided at open ends of the large-diameter cylindrical portion. It is good to comprise so that axial movement of the said large diameter cylinder part may be prevented by latching.

更に、前記複数の切り起しの内側への突出量は、前記ステアリングシャフトに対し前記所定値を超える第2の所定値以上の軸方向荷重が印加されたときには、前記大径筒部の開口端が塑性変形して前記複数の切り起しから前記エネルギー吸収部材が離脱する突出量に設定されている構成とするとよい。   Further, when the axial load exceeding the second predetermined value exceeding the predetermined value is applied to the steering shaft, the projecting amount to the inside of the plurality of cut and raised portions is the open end of the large diameter cylindrical portion. It is good to set it as the structure which is set to the protrusion amount which the said energy absorption member detaches | leaves from a plurality of said cutting up by plastic deformation.

上記のエネルギー吸収部材は、例えば、前記環状連結部と前記大径筒部とが一体的に連結される外側環状角部と、前記環状連結部と前記小径筒部とが一体的に連結される内側環状角部とを備えたものとし、前記ステアリングシャフトから前記第1の筒状部材を介して前記小径筒部の開口端に付与される軸方向荷重による前記内側環状角部の塑性変形量が、前記外側環状角部の塑性変形量より大に設定されているものとするとよい。尚、前記外側環状角部及び内側環状角部は曲面に形成するとよい。   In the energy absorbing member, for example, an outer annular corner portion where the annular connecting portion and the large diameter cylindrical portion are integrally connected, and the annular connecting portion and the small diameter cylindrical portion are integrally connected. An inner annular corner portion, and an amount of plastic deformation of the inner annular corner portion due to an axial load applied from the steering shaft to the opening end of the small-diameter tubular portion via the first tubular member. The amount of plastic deformation of the outer annular corner is preferably set larger. The outer annular corner and the inner annular corner may be formed into curved surfaces.

本発明は上述のように構成されているので以下の効果を奏する。即ち、本発明のエネルギー吸収ステアリングコラムにおいては、前述の第1の筒状部材と第2の筒状部材との間にエネルギー吸収部材が介装され、このエネルギー吸収部材が、第2の筒状部材に収容され第1の筒状部材の先端部に当接する開口端を有する小径筒部と、第2の筒状部材に収容され所定位置で第2の筒状部材に係止される大径筒部と、大径筒部と小径筒部が一体的に連結される環状連結部とを備えたものであるので、簡単且つ安価な構成で適切に移動中荷重を設定し得ると共に、ステアリングコラムを大型化することなく、既存のステアリングコラムにも容易に組み付けることができる。特に、本発明に供されるエネルギー吸収部材は部品点数が少なく組み付けが容易であるのでコスト低減が可能となる。   Since this invention is comprised as mentioned above, there exist the following effects. That is, in the energy absorbing steering column of the present invention, the energy absorbing member is interposed between the first cylindrical member and the second cylindrical member, and the energy absorbing member is the second cylindrical member. A small-diameter cylindrical portion having an open end that is accommodated in the member and abuts against the tip of the first cylindrical member, and a large-diameter that is accommodated in the second cylindrical member and is locked to the second cylindrical member at a predetermined position. Since the cylindrical portion and the annular connecting portion to which the large diameter cylindrical portion and the small diameter cylindrical portion are integrally connected are provided, the load during movement can be appropriately set with a simple and inexpensive configuration, and the steering column Can be easily assembled to an existing steering column without increasing the size. In particular, since the energy absorbing member provided in the present invention has a small number of parts and is easy to assemble, the cost can be reduced.

上記のエネルギー吸収部材を構成する小径筒部は円筒形状としても、あるいは、第1の筒状部材の先端部に当接する小径開口端と、小径開口端から外径が漸増し環状連結部に至る大径開口端を有する円錐台形状としてもよく、装着対象等に応じて適宜選択することができる。但、円錐台形状のエネルギー吸収部材は環状連結部に応力が集中する構造となっているので、必要とする荷重・ストローク特性に応じた形状を選択することができる。   The small diameter cylindrical portion constituting the energy absorbing member may have a cylindrical shape, or may have a small diameter opening end that abuts on the distal end portion of the first cylindrical member, and the outer diameter gradually increases from the small diameter opening end to the annular coupling portion. The shape may be a truncated cone having a large-diameter opening end, and can be appropriately selected according to the mounting target. However, the frustoconical energy absorbing member has a structure in which stress is concentrated on the annular connecting portion, and therefore a shape corresponding to the required load / stroke characteristics can be selected.

上記のエネルギー吸収ステアリングコラムにおいて、第2の筒状部材が、内側に突出する複数の切り起しが環状に並設されて成り、複数の切り起しに大径筒部の開口端が係止されて大径筒部の軸方向移動が阻止されるように構成されておれば、第2の筒状部材に対し所定の位置にエネルギー吸収部材を容易に係止することができる。   In the above energy absorption steering column, the second cylindrical member is formed by arranging a plurality of protrusions protruding inward in a ring shape, and the opening end of the large-diameter cylindrical portion is locked to the plurality of protrusions. If the large diameter cylindrical portion is configured to be prevented from moving in the axial direction, the energy absorbing member can be easily locked at a predetermined position with respect to the second cylindrical member.

更に、複数の切り起しの内側への突出量が、ステアリングシャフトに対し所定値を超える第2の所定値以上の軸方向荷重が印加されたときには、大径筒部の開口端が塑性変形して複数の切り起しからエネルギー吸収部材が離脱する突出量に設定されている構成とすれば、容易且つ確実に移動中荷重付与後の状態とすることができる。   Further, when an axial load of a second predetermined value or more exceeding a predetermined value is applied to the steering shaft, the opening end of the large-diameter cylindrical portion is plastically deformed. If it is set as the protrusion amount which the energy absorption member detaches | leaves from several cutting | raising and raising, it can be set as the state after applying a load during movement easily and reliably.

上記のエネルギー吸収部材は、環状連結部と大径筒部とが一体的に連結される外側環状角部と、環状連結部と小径筒部とが一体的に連結される内側環状角部とを備えたものとし、ステアリングシャフトから第1の筒状部材を介して小径筒部の開口端に付与される軸方向荷重による内側環状角部の塑性変形量が、外側環状角部の塑性変形量より大に設定されているものとすれば、必要とする荷重・ストローク特性を容易且つ適切に設定することができる。例えば、前記突出量に設定された複数の切り起しが並設されておれば、ステアリングシャフトから第1の筒状部材を介して小径筒部の開口端に付与される軸方向荷重によるエネルギー吸収部材の塑性変形の結果、外側環状角部が縮径され、複数の切り起しによって形成される筒状空間の内径より外側環状角部の外径が小となり、複数の切り起しからエネルギー吸収部材が容易且つ確実に離脱し、所望の移動中荷重付与後の状態とすることができる。   The energy absorbing member includes an outer annular corner portion in which the annular coupling portion and the large diameter cylindrical portion are integrally coupled, and an inner annular corner portion in which the annular coupling portion and the small diameter cylindrical portion are integrally coupled. The amount of plastic deformation of the inner annular corner due to the axial load applied from the steering shaft to the opening end of the small-diameter tubular portion via the first tubular member is greater than the amount of plastic deformation of the outer annular corner. If it is set to a large value, the required load / stroke characteristics can be set easily and appropriately. For example, if a plurality of cuts and protrusions set to the protruding amount are arranged in parallel, energy absorption due to an axial load applied from the steering shaft to the opening end of the small-diameter cylindrical portion via the first cylindrical member. As a result of plastic deformation of the member, the outer annular corner is reduced in diameter, and the outer diameter of the outer annular corner is smaller than the inner diameter of the cylindrical space formed by the plurality of cuts, and energy is absorbed from the plurality of cuts. The member can be easily and reliably detached, and a desired state can be obtained after applying a load during movement.

本発明の一実施形態に係るエネルギー吸収ステアリングコラムの一部を示す断面図である。It is sectional drawing which shows a part of energy absorption steering column which concerns on one Embodiment of this invention. 本発明の一実施形態に供されるエネルギー吸収部材を示す斜視図である。It is a perspective view which shows the energy absorption member provided to one Embodiment of this invention. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態における荷重・ストローク特性を示すグラフである。It is a graph which shows the load and stroke characteristic in one embodiment of the present invention. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows plastic deformation when an axial load is applied with respect to the energy absorption member with which one Embodiment of this invention is provided. 本発明の一実施形態に供されるエネルギー吸収部材の他の態様を示す斜視図である。It is a perspective view which shows the other aspect of the energy absorption member provided to one Embodiment of this invention. 本発明の一実施形態に供されるエネルギー吸収部材の他の態様に対し軸方向荷重が印加されたときの塑性変形を示す断面図である。It is sectional drawing which shows a plastic deformation when an axial load is applied with respect to the other aspect of the energy absorption member with which one Embodiment of this invention is provided.

以下、本発明の望ましい実施形態について図面を参照して説明する。図1は本発明の一実施形態に係るエネルギー吸収ステアリングコラムの構成を示すもので、ステアリングシャフト1は、後端部にステアリングホイール(図示せず)が接続され、アウタシャフトとも呼ばれる筒状のアッパシャフト1aと、このアッパシャフト1aの内筒面とスプライン結合され、インナシャフトとも呼ばれるロアシャフト1bから成る。即ち、アッパシャフト1aとロアシャフト1bが軸方向に相対移動可能で相対回転不能に連結されており、ロアシャフト1bの前端部が操舵機構(図示せず)に接続されている。このステアリングシャフト1は、車両の床面(図示せず)に対し所定角度をなすように、コラムハウジング2を介し、ブラケット(図示せず)によって車体(図示せず)に支持されている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 shows a configuration of an energy absorbing steering column according to an embodiment of the present invention. A steering shaft 1 is connected to a rear end portion of a steering wheel (not shown), and has a cylindrical upper shape also called an outer shaft. The shaft 1a is composed of a lower shaft 1b which is spline-coupled to the inner cylindrical surface of the upper shaft 1a and is also called an inner shaft. That is, the upper shaft 1a and the lower shaft 1b are connected so as to be relatively movable in the axial direction but not to be relatively rotatable, and the front end portion of the lower shaft 1b is connected to a steering mechanism (not shown). The steering shaft 1 is supported on a vehicle body (not shown) by a bracket (not shown) via a column housing 2 so as to form a predetermined angle with respect to a floor surface (not shown) of the vehicle.

コラムハウジング2内には、ステアリングシャフト1が収容され軸を中心に回転可能に支持される第1の筒状部材として、金属製のインナチューブ10が設けられている。即ち、インナチューブ10内に収容されたアッパシャフト1aが、インナチューブ10の後端部に軸受3を介して回転可能に支持されている。但し、アッパシャフト1aとインナチューブ10との間の軸方向相対移動は規制されており、アッパシャフト1aとインナチューブ10は一体となって軸方向移動し得るように構成されている。更に、第1の筒状部材が収容され常時は第1の筒状部材が所定位置に保持される第2の筒状部材として、金属製のアウタチューブ20が設けられ、軸受3a,3bを介してコラムハウジング2に支持されている。そして、ステアリングシャフト1に対し所定値以上の荷重が印加されたときには、アウタチューブ20に対するインナチューブ10の軸方向相対移動(ひいてはアッパシャフト1aの軸方向移動)を許容するように構成されている。   In the column housing 2, a metal inner tube 10 is provided as a first cylindrical member that accommodates the steering shaft 1 and is supported rotatably about an axis. That is, the upper shaft 1 a accommodated in the inner tube 10 is rotatably supported by the rear end portion of the inner tube 10 via the bearing 3. However, the relative movement in the axial direction between the upper shaft 1a and the inner tube 10 is restricted, and the upper shaft 1a and the inner tube 10 are configured to be able to move in the axial direction as a unit. Further, a metal outer tube 20 is provided as a second cylindrical member that accommodates the first cylindrical member and is normally held at a predetermined position, via the bearings 3a and 3b. Are supported by the column housing 2. And when the load more than predetermined value is applied with respect to the steering shaft 1, it is comprised so that the axial direction relative movement of the inner tube 10 with respect to the outer tube 20 (as a result, the axial direction movement of the upper shaft 1a) is permitted.

本実施形態のアウタチューブ20は、その車両後方の開口端(以下、後方開口端という)から軸方向に所定距離離隔した位置の内面に第1の保持部21が形成されると共に、後方開口端近傍の内面に第2の保持部22が形成されている。第1の保持部21は、アウタチューブ20の内周面に形成された環状凹部で構成され、第2の保持部22は、アウタチューブ20の内周面から軸芯方向に一体的に延出形成された環状凸部で構成されている。   The outer tube 20 of the present embodiment has a first holding portion 21 formed on the inner surface at a predetermined distance in the axial direction from the vehicle rear opening end (hereinafter referred to as the rear opening end), and the rear opening end. A second holding portion 22 is formed on the inner surface in the vicinity. The first holding portion 21 is configured by an annular recess formed on the inner peripheral surface of the outer tube 20, and the second holding portion 22 extends integrally from the inner peripheral surface of the outer tube 20 in the axial direction. It is comprised by the formed annular convex part.

また、本実施形態のインナチューブ10は、後方開口端から所定距離離隔した位置に外径段部11を有し、この外径段部11から車両前方に向かって相対的に小径に形成された小径部12と、この小径部12に対し外径段部11を介して隣接し、車両後方に向かって相対的に大径に形成された大径部13を有する。また、インナチューブ10の車両前方の開口端(以下、前方開口端という)近傍が拡径された第1の拡径部14を有すると共に、前方開口端から軸方向に所定距離離隔した部分が拡径された第2の拡径部15を有する。   Further, the inner tube 10 of the present embodiment has an outer diameter step portion 11 at a position spaced a predetermined distance from the rear opening end, and is formed with a relatively small diameter from the outer diameter step portion 11 toward the front of the vehicle. A small-diameter portion 12 and a large-diameter portion 13 that is adjacent to the small-diameter portion 12 via the outer-diameter step portion 11 and that has a relatively large diameter toward the rear of the vehicle. In addition, the inner tube 10 has a first enlarged-diameter portion 14 whose diameter is increased in the vicinity of the opening end (hereinafter referred to as the front opening end) in front of the vehicle, and a portion spaced apart from the front opening end by a predetermined distance in the axial direction is expanded. A second enlarged diameter portion 15 having a diameter is provided.

そして、図1に示すように第1の拡径部14と第1の保持部21との間に、弾性ブッシュ3cが介装されており、その弾性力により、弾性ブッシュ3cとインナチューブ10及びアウタチューブ20との間に摩擦力が確保されるので、インナチューブ10とアウタチューブ20の軸方向相対移動が阻止された状態でステアリングシャフト1が保持される。これに対し、第2の拡径部15は第2の保持部22に圧入されて保持されており、インナチューブ10の第2の拡径部15側は、インナチューブ10とアウタチューブ20の圧入代に対して軸方向荷重は相対的に敏感に反応し且つ外力に対し相対的に変位し難く設定されている。   As shown in FIG. 1, an elastic bush 3c is interposed between the first enlarged diameter portion 14 and the first holding portion 21, and the elastic bush 3c, the inner tube 10 and Since a frictional force is ensured between the outer tube 20 and the outer tube 20, the steering shaft 1 is held in a state where the relative movement in the axial direction between the inner tube 10 and the outer tube 20 is blocked. In contrast, the second enlarged diameter portion 15 is press-fitted and held in the second holding portion 22, and the second enlarged diameter portion 15 side of the inner tube 10 is press-fitted between the inner tube 10 and the outer tube 20. The axial load is set so that it reacts relatively sensitively to the margin and is relatively difficult to displace relative to the external force.

更に、インナチューブ10とアウタチューブ20との間には、エネルギー吸収部材30が介装されている。本実施形態のエネルギー吸収部材30は、図1及び図2に示すように、小径筒部31、大径筒部32、これらが一体的に連結される環状連結部33、この環状連結部33と大径筒部32とが曲面で一体的に連結される外側環状角部34、及び、環状連結部34と小径筒部31とが曲面で一体的に連結される内側環状角部35を備えており、アウタチューブ20に収容される。即ち、外側環状角部34及び内側環状角部35は図1乃至図3に示すように曲面に形成されている。小径筒部31は、その開口端がインナチューブ10の先端部に当接するように配設され、大径筒部32は所定位置でアウタチューブ20に係止されるが、この係止構造については後述する。   Further, an energy absorbing member 30 is interposed between the inner tube 10 and the outer tube 20. As shown in FIGS. 1 and 2, the energy absorbing member 30 of the present embodiment includes a small-diameter cylindrical portion 31, a large-diameter cylindrical portion 32, an annular coupling portion 33 in which these are integrally coupled, The outer annular corner portion 34 is integrally connected to the large diameter cylindrical portion 32 with a curved surface, and the inner annular corner portion 35 is integrally connected to the annular connecting portion 34 and the small diameter cylindrical portion 31 with a curved surface. And is accommodated in the outer tube 20. That is, the outer annular corner portion 34 and the inner annular corner portion 35 are formed as curved surfaces as shown in FIGS. The small-diameter cylindrical portion 31 is disposed so that the opening end thereof is in contact with the distal end portion of the inner tube 10, and the large-diameter cylindrical portion 32 is locked to the outer tube 20 at a predetermined position. It will be described later.

本実施形態においては、ステアリングシャフト1(インナチューブ10)を介して小径筒部31の開口端に付与される軸方向荷重による内側環状角部35の塑性変形量が、外側環状角部34の塑性変形量より大に設定されており、図2に示す小径筒部31及び大径筒部32の直径D1及びD2、軸方向寸法L1及びL2、並びに厚さ及び材料を適宜設定することによって、エネルギー吸収部材30による移動中荷重を適宜調整することができる。例えば、図4に示す荷重・ストローク特性における移動中荷重領域(M)を容易且つ適切に設定することができるが、これについては、図5乃至図14を参照して後述する。   In the present embodiment, the amount of plastic deformation of the inner annular corner 35 due to the axial load applied to the opening end of the small diameter cylindrical portion 31 via the steering shaft 1 (inner tube 10) is the plasticity of the outer annular corner 34. By setting appropriately the diameters D1 and D2, the axial dimensions L1 and L2, and the thickness and material of the small diameter cylindrical portion 31 and the large diameter cylindrical portion 32 shown in FIG. The moving load by the absorbing member 30 can be adjusted as appropriate. For example, the moving load region (M) in the load / stroke characteristics shown in FIG. 4 can be set easily and appropriately, which will be described later with reference to FIGS.

本実施形態のアウタチューブ20には、筒体部から内側に向けて突出する複数の切り起し(代表して23で示す)が形成されており、これらの切り起し23に大径筒部32の開口端が当接してアウタチューブ20に係止されるように構成されている。従って、アウタチューブ20に対し所定の位置にエネルギー吸収部材30を容易に係止することができる。本実施形態においては、複数の切り起し23の内側への突出量が、ステアリングシャフト1(インナチューブ10)に対し前述の所定値を超える第2の所定値以上の軸方向荷重が印加されたときには、大径筒部32の開口端が塑性変形して切り起し23からエネルギー吸収部材30が離脱する突出量に設定されている。これにより、容易且つ確実に移動中荷重付与後の状態とすることができる。   The outer tube 20 of the present embodiment is formed with a plurality of cuts and protrusions (typically indicated by 23) that protrude inward from the cylindrical body part. The opening ends of 32 are in contact with each other and are locked to the outer tube 20. Therefore, the energy absorbing member 30 can be easily locked at a predetermined position with respect to the outer tube 20. In the present embodiment, an axial load greater than or equal to the second predetermined value is applied to the steering shaft 1 (inner tube 10) so that the amount of protrusion to the inside of the plurality of cut-and-raised portions 23 exceeds the aforementioned predetermined value. In some cases, the opening end of the large-diameter cylindrical portion 32 is plastically deformed and cut and raised, and the amount of protrusion from which the energy absorbing member 30 is detached from the 23 is set. Thereby, it can be set as the state after applying the load during movement easily and reliably.

例えば、小径筒部31の開口端に付与される第2の所定値以上の軸方向荷重によるエネルギー吸収部材30の塑性変形の結果、外側環状角部34が縮径され、複数の切り起し23によって形成される筒状空間の内径より外側環状角部34の外径が小となり、エネルギー吸収部材31は切り起し23から容易且つ確実に離脱し、所望の移動中荷重付与後の状態とすることができる。尚、かしめやレーザ溶接によってエネルギー吸収部材30をアウタチューブ20に固定することとしてもよいが、その場合には、上記の移動中荷重付与後の状態を設定することはできない。   For example, as a result of plastic deformation of the energy absorbing member 30 due to an axial load greater than or equal to a second predetermined value applied to the opening end of the small diameter cylindrical portion 31, the outer annular corner portion 34 is reduced in diameter and a plurality of cuts 23 The outer diameter of the outer annular corner portion 34 is smaller than the inner diameter of the cylindrical space formed by the above, and the energy absorbing member 31 is easily and surely detached from the cut and raised 23 to be in a state after applying a desired load during movement. be able to. In addition, although it is good also as fixing the energy absorption member 30 to the outer tube 20 by caulking or laser welding, in that case, the state after the above-mentioned moving load application cannot be set.

上記の構成になるエネルギー吸収ステアリングコラムの作用を説明すると、常時は図1に示す状態にあって、インナチューブ10の第2の拡径部15がアウタチューブ20の第2の保持部22に圧入されると共に、弾性ブッシュ3cの弾性力によってインナチューブ10の第1の拡径部14とアウタチューブ20の第1の保持部21が押圧された状態で保持され、図1に示す位置で、インナチューブ10とアウタチューブ20の軸方向相対移動が阻止された状態で保持されている。   The operation of the energy absorbing steering column having the above-described configuration will be described. Normally, the second expanded portion 15 of the inner tube 10 is press-fitted into the second holding portion 22 of the outer tube 20 in the state shown in FIG. At the same time, the first expanded portion 14 of the inner tube 10 and the first holding portion 21 of the outer tube 20 are held in a pressed state by the elastic force of the elastic bush 3c. The tube 10 and the outer tube 20 are held in a state in which relative movement in the axial direction is prevented.

次に、ステアリングシャフト1に荷重が印加され、ステアリングシャフト1がインナチューブ10と共に前進すると、インナチューブ10の第1の拡径部14がアウタチューブ20の第1の保持部21及び弾性ブッシュ3cから離脱すると共に、インナチューブ10の第2の拡径部15がアウタチューブ20の第2の保持部22から離脱する。このときの荷重がステアリングシャフト1の移動開始荷重であり、従って、第1及び第2の拡径部14及び15、第1及び第2の保持部21及び22、並びに弾性ブッシュ3cによって、移動開始荷重付加部が構成されている。   Next, when a load is applied to the steering shaft 1 and the steering shaft 1 moves forward together with the inner tube 10, the first enlarged diameter portion 14 of the inner tube 10 is removed from the first holding portion 21 and the elastic bush 3 c of the outer tube 20. At the same time, the second enlarged diameter portion 15 of the inner tube 10 is detached from the second holding portion 22 of the outer tube 20. The load at this time is the movement start load of the steering shaft 1, and therefore the movement is started by the first and second enlarged diameter portions 14 and 15, the first and second holding portions 21 and 22, and the elastic bush 3c. A load adding portion is configured.

ステアリングシャフト1に対し更に大きな荷重が印加され、インナチューブ10がアウタチューブ20内を前方に移動し、インナチューブ10の開口端がエネルギー吸収部材30の小径筒部31の開口端に当接した後は、図3の(A)から(B)に示すようにエネルギー吸収部材30が塑性変形しつつ、図1に示すインナチューブ10(及びステアリングシャフト1)が前進移動する。これによってインナチューブ10に対して摩擦荷重が付与されると共に、エネルギー吸収部材30の塑性変形によってエネルギーを吸収しながら移動し、図4の移動中荷重領域(M)に示すように変化する。尚、この移動中荷重の付与開始ストロークは、インナチューブ10の開口端と小径筒部31の開口端との間の間隔(図1にLsで示す)によって設定される。   After a larger load is applied to the steering shaft 1, the inner tube 10 moves forward in the outer tube 20, and the opening end of the inner tube 10 comes into contact with the opening end of the small diameter cylindrical portion 31 of the energy absorbing member 30. As shown in FIGS. 3A to 3B, the inner tube 10 (and the steering shaft 1) shown in FIG. 1 moves forward while the energy absorbing member 30 is plastically deformed. As a result, a frictional load is applied to the inner tube 10, and the inner tube 10 moves while absorbing energy by plastic deformation of the energy absorbing member 30, and changes as shown in a moving load region (M) in FIG. The moving load application start stroke is set by a distance (indicated by Ls in FIG. 1) between the opening end of the inner tube 10 and the opening end of the small-diameter cylindrical portion 31.

而して、上記の構成になるエネルギー吸収ステアリングコラムによって、所望のエネルギー吸収特性を確保することができる。先ず、ステアリングシャフト1に荷重が印加され、前述の移動開始荷重を超えると、インナチューブ10のアウタチューブ20に対する相対移動を開始する。即ち、インナチューブ10の第2の拡径部15とアウタチューブ20の第2の保持部22との間の摩擦力、並びに弾性ブッシュ3cと第1の拡径部14及び第1の保持部21との間の摩擦力に抗して、インナチューブ10とアウタチューブ20とが軸方向に相対移動し、所定のストロークを超えるとフリー状態となる。更に、ステアリングシャフト1のストロークが、インナチューブ10の外径段部11とアウタチューブ20の後端面との間の間隔(Ls)を移動した後は、エネルギー吸収部材30の塑性変形による荷重がステアリングシャフト1に付与された状態で、ステアリングシャフト1と共にインナチューブ10がアウタチューブ20に対して相対移動する。この結果、ステアリングシャフト1がストロークしているときにも、適切にエネルギーが吸収される。   Thus, a desired energy absorption characteristic can be ensured by the energy absorption steering column configured as described above. First, when a load is applied to the steering shaft 1 and exceeds the above-described movement start load, the inner tube 10 starts to move relative to the outer tube 20. That is, the frictional force between the second enlarged diameter portion 15 of the inner tube 10 and the second holding portion 22 of the outer tube 20, the elastic bush 3 c, the first enlarged diameter portion 14, and the first holding portion 21. The inner tube 10 and the outer tube 20 move relative to each other in the axial direction against the frictional force between them, and a free state occurs when a predetermined stroke is exceeded. Furthermore, after the stroke of the steering shaft 1 moves the distance (Ls) between the outer diameter step portion 11 of the inner tube 10 and the rear end surface of the outer tube 20, the load due to plastic deformation of the energy absorbing member 30 is steered. The inner tube 10 moves relative to the outer tube 20 together with the steering shaft 1 in a state of being applied to the shaft 1. As a result, energy is appropriately absorbed even when the steering shaft 1 is making a stroke.

図5乃至図14は、図2に示すエネルギー吸収部材30の小径筒部31の開口端に対し軸方向荷重(各図の右方向から小径筒部31の開口端に付与される荷重)が印加されたときのエネルギー吸収部材30の塑性変形をシミュレーションにより検証したもので、図5乃至図14の順に変化する塑性変形の状態を示している。尚、各図には曲面部を表すために細線を付している。図6では大径筒部32の開口端が内側に屈曲し、その外周縁で切り起し23に係止されている。そして、図10乃至図12では小径筒部31の開口端が外側に屈曲し、玉縁状に変形し始めており、更に、図13では大径筒部32の開口端が内側に屈曲し、切り起し23から離脱し始める様子を示しており、図14では、小径筒部31の開口端が玉縁状に変形し、大径筒部32は切り起し23から離脱している。即ち、図14は、移動中荷重付与後の状態(図4に示す領域Mの右側の状態)を示している。   5 to 14, an axial load (a load applied to the opening end of the small-diameter cylindrical portion 31 from the right direction in each figure) is applied to the opening end of the small-diameter cylindrical portion 31 of the energy absorbing member 30 shown in FIG. The plastic deformation of the energy absorbing member 30 at this time is verified by simulation, and shows the state of plastic deformation that changes in the order of FIGS. Each drawing is provided with a thin line to represent a curved surface portion. In FIG. 6, the open end of the large-diameter cylindrical portion 32 is bent inward, cut and raised at the outer peripheral edge, and locked to the 23. 10 to 12, the opening end of the small diameter cylindrical portion 31 bends outward and begins to deform into a bead shape, and further, in FIG. 13, the opening end of the large diameter cylindrical portion 32 bends inward and cuts. FIG. 14 shows a state in which the opening end of the small-diameter cylindrical portion 31 is deformed into a bead shape, and the large-diameter cylindrical portion 32 is cut up and separated from the 23. That is, FIG. 14 shows a state after applying a moving load (a state on the right side of the region M shown in FIG. 4).

本実施形態では、小径筒部31の開口端に付与される軸方向荷重による内側環状角部35の塑性変形量が、外側環状角部34の塑性変形量より大に設定されているので、図5乃至図12に示すように、外側環状角部34の外径が保持された状態で、小径筒部31の軸方向寸法が順次縮小された後、大径筒部32の軸方向寸法が順次縮小され、図14に示すように最終的に大径筒部32が切り起し23から離脱するまで、外側環状角部34の外径が略保持された状態に維持される。   In the present embodiment, the plastic deformation amount of the inner annular corner portion 35 due to the axial load applied to the opening end of the small diameter cylindrical portion 31 is set larger than the plastic deformation amount of the outer annular corner portion 34. As shown in FIGS. 5 to 12, the axial dimension of the small-diameter cylindrical part 31 is sequentially reduced in the state where the outer diameter of the outer annular corner part 34 is maintained, and then the axial dimension of the large-diameter cylindrical part 32 is sequentially reduced. As shown in FIG. 14, the outer diameter of the outer annular corner portion 34 is maintained substantially until the large-diameter cylindrical portion 32 is finally cut and raised as shown in FIG.

以上のように、上記のエネルギー吸収ステアリングコラムにおいては、第1及び第2の拡径部14及び15、第1及び第2の保持部21及び22、並びに弾性ブッシュ3cによって移動開始荷重付加部が構成されると共に、エネルギー吸収部材30によって移動中荷重付加部が構成されるので、インナチューブ10とアウタチューブ20との軸方向相対移動における移動開始荷重と移動中荷重とを夫々個別に適切な値に設定することができる。更に、ステアリングシャフト1(インナチューブ10)に対し前述の第2の所定値以上の軸方向荷重が印加されると、大径筒部32の開口端が塑性変形して複数の切り起し23からエネルギー吸収部材30が離脱するので、所望の移動中荷重付与後の状態とすることができる。   As described above, in the energy absorbing steering column described above, the movement start load adding portion is formed by the first and second enlarged diameter portions 14 and 15, the first and second holding portions 21 and 22, and the elastic bush 3c. In addition, since the energy absorbing member 30 constitutes the moving load adding portion, the movement start load and the moving load in the axial relative movement between the inner tube 10 and the outer tube 20 are individually appropriate values. Can be set to Further, when an axial load equal to or greater than the second predetermined value is applied to the steering shaft 1 (inner tube 10), the open end of the large-diameter cylindrical portion 32 is plastically deformed and the plurality of cuts 23 are raised. Since the energy absorbing member 30 is detached, it can be in a state after applying a desired moving load.

図15及び図16は、エネルギー吸収部材30の他の態様を示すもので、小径筒部31xが円錐台形状で、インナチューブ10の先端部に当接する小径開口端と、この小径開口端から外径が漸増し環状連結部33に至る大径開口端を有し、他の構成は図2の構成と実質的に同じであるので同一の符号を付している。本実施形態では、小径筒部31xの開口端に付与される軸方向荷重による内側環状角部35の塑性変形量に対し外側環状角部34の塑性変形量を抑えるため、外側環状角部34が玉縁状(図16の(A)、(B)に示す)に変形するように形成されており、また、円錐台形状の小径筒部31xにより環状連結部33と内側環状角部35の接続部に応力が集中し、図16の(A)から(B)に示すように塑性変形する構成とされている。而して、エネルギー吸収部材30として、必要とする荷重・ストローク特性に応じて、図2又は図15に示す形状を選択することができる。   15 and 16 show another aspect of the energy absorbing member 30. The small-diameter cylindrical portion 31x has a truncated cone shape, and has a small-diameter opening end that comes into contact with the distal end portion of the inner tube 10, and an outside from the small-diameter opening end. It has a large-diameter opening end that gradually increases in diameter and reaches the annular connecting portion 33, and the other components are substantially the same as those in FIG. In the present embodiment, in order to suppress the plastic deformation amount of the outer annular corner portion 34 with respect to the plastic deformation amount of the inner annular corner portion 35 due to the axial load applied to the opening end of the small diameter cylindrical portion 31x, the outer annular corner portion 34 is It is formed so as to be deformed into a bead shape (shown in FIGS. 16 (A) and 16 (B)), and the annular connecting portion 33 and the inner annular corner portion 35 are connected by a small-diameter cylindrical portion 31x having a truncated cone shape. Stress is concentrated on the portion, and plastic deformation is performed as shown in FIGS. Thus, the shape shown in FIG. 2 or 15 can be selected as the energy absorbing member 30 according to the required load / stroke characteristics.

1 ステアリングシャフト
1b ロアシャフト
1a アッパシャフト
10 インナチューブ(第1の筒状部材)
20 アウタチューブ(第2の筒状部材)
30 エネルギー吸収部材
31、31x 小径筒部
32 大径筒部
33 環状連結部
34 外側環状角部
35 内側環状角部
DESCRIPTION OF SYMBOLS 1 Steering shaft 1b Lower shaft 1a Upper shaft 10 Inner tube (1st cylindrical member)
20 Outer tube (second cylindrical member)
30 Energy absorbing member 31, 31x Small diameter cylindrical portion 32 Large diameter cylindrical portion 33 Annular connecting portion 34 Outer annular corner 35 Inner annular corner

Claims (5)

ステアリングシャフトが収容され軸を中心に回転可能に支持される第1の筒状部材と、
該第1の筒状部材が収容され常時は当該第1の筒状部材が所定位置に保持され、前記ステアリングシャフトに対し所定値以上の軸方向荷重が印加されたときには当該第1の筒状部材の相対移動を許容する第2の筒状部材と、
前記第1の筒状部材と前記第2の筒状部材との間に介装されるエネルギー吸収部材であって、
該エネルギー吸収部材が、
前記第2の筒状部材に収容され前記第1の筒状部材の先端部に当接する開口端を有する小径筒部と、
前記第2の筒状部材に収容され所定位置で前記第2の筒状部材に係止される大径筒部と、
該大径筒部と前記小径筒部が一体的に連結される環状連結部とを備えた
エネルギー吸収ステアリングコラム。
A first tubular member that houses a steering shaft and is supported rotatably about the shaft;
The first cylindrical member is accommodated and is normally held at a predetermined position, and when an axial load of a predetermined value or more is applied to the steering shaft, the first cylindrical member is A second tubular member that allows relative movement of
An energy absorbing member interposed between the first tubular member and the second tubular member,
The energy absorbing member is
A small-diameter cylindrical portion having an open end that is accommodated in the second cylindrical member and abuts against a tip end portion of the first cylindrical member;
A large-diameter cylindrical portion housed in the second cylindrical member and locked to the second cylindrical member at a predetermined position;
An energy-absorbing steering column comprising the large-diameter cylindrical portion and an annular coupling portion to which the small-diameter cylindrical portion is integrally coupled.
前記小径筒部が、
前記第1の筒状部材の先端部に当接する小径開口端と、該小径開口端から外径が漸増し前記環状連結部に至る大径開口端を有する円錐台形状である
請求項1記載のエネルギー吸収ステアリングコラム。
The small diameter cylindrical portion is
2. The truncated cone shape according to claim 1, wherein the first cylindrical member has a truncated conical shape having a small-diameter opening end that comes into contact with a distal end portion, and a large-diameter opening end that gradually increases in outer diameter from the small-diameter opening end to reach the annular coupling portion. Energy absorbing steering column.
前記第2の筒状部材は、内側に突出する複数の切り起しが環状に並設されて成り、
該複数の切り起しに前記大径筒部の開口端が係止されて前記大径筒部の軸方向移動が阻止されるように構成されている
請求項1又は2記載のエネルギー吸収ステアリングコラム。
The second cylindrical member is formed by arranging a plurality of protrusions protruding inward in an annular shape,
The energy absorbing steering column according to claim 1 or 2, wherein an opening end of the large-diameter cylindrical portion is engaged with the plurality of cuts and raised so that axial movement of the large-diameter cylindrical portion is prevented. .
前記複数の切り起しの内側への突出量は、
前記ステアリングシャフトに対し前記所定値を超える第2の所定値以上の軸方向荷重が印加されたときには、前記大径筒部の開口端が塑性変形して前記複数の切り起しから前記エネルギー吸収部材が離脱する突出量に設定されている
請求項3記載のエネルギー吸収ステアリングコラム。
The amount of protrusion to the inside of the plurality of cut-ups is as follows:
When an axial load equal to or greater than a second predetermined value exceeding the predetermined value is applied to the steering shaft, the opening end of the large-diameter cylindrical portion is plastically deformed so that the energy absorbing member The energy absorption steering column according to claim 3, wherein the protrusion is set to a protruding amount from which the energy is released.
前記エネルギー吸収部材は、
前記環状連結部と前記大径筒部とが一体的に連結される外側環状角部と、
前記環状連結部と前記小径筒部とが一体的に連結される内側環状角部とを備え、
前記ステアリングシャフトから前記第1の筒状部材を介して前記小径筒部の開口端に付与される軸方向荷重による前記内側環状角部の塑性変形量が、前記外側環状角部の塑性変形量より大に設定されている
請求項1乃至4の何れか一項に記載のエネルギー吸収ステアリングコラム。
The energy absorbing member is
An outer annular corner to which the annular coupling portion and the large-diameter cylindrical portion are integrally coupled;
An inner annular corner portion where the annular coupling portion and the small-diameter cylindrical portion are integrally coupled;
The amount of plastic deformation of the inner annular corner due to the axial load applied from the steering shaft to the opening end of the small-diameter tubular portion via the first tubular member is greater than the amount of plastic deformation of the outer annular corner. The energy absorption steering column according to any one of claims 1 to 4, wherein the energy absorption steering column is set to be large.
JP2018059247A 2018-03-27 2018-03-27 Energy absorbing steering column Pending JP2019171920A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018059247A JP2019171920A (en) 2018-03-27 2018-03-27 Energy absorbing steering column

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018059247A JP2019171920A (en) 2018-03-27 2018-03-27 Energy absorbing steering column

Publications (1)

Publication Number Publication Date
JP2019171920A true JP2019171920A (en) 2019-10-10

Family

ID=68166359

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018059247A Pending JP2019171920A (en) 2018-03-27 2018-03-27 Energy absorbing steering column

Country Status (1)

Country Link
JP (1) JP2019171920A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111930029A (en) * 2020-06-01 2020-11-13 东风延锋汽车饰件系统有限公司 Promote little suspension panel structure that vibrations feedback experienced

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111930029A (en) * 2020-06-01 2020-11-13 东风延锋汽车饰件系统有限公司 Promote little suspension panel structure that vibrations feedback experienced
CN111930029B (en) * 2020-06-01 2023-12-19 东风延锋汽车饰件系统有限公司 Micro-suspension panel structure capable of improving vibration feedback experience

Similar Documents

Publication Publication Date Title
JP5369537B2 (en) Energy absorbing steering column
JP4868213B2 (en) Energy absorbing steering column
EP2025576B1 (en) Steering wheel position adjustment device
JP4529796B2 (en) Shock absorbing steering device
EP1661790A1 (en) Impact absorbing steering column device with telescopic mechanism
JP4940798B2 (en) Shock absorption structure
JP6621811B2 (en) Energy absorption module for vehicle steering column assembly
JP5228984B2 (en) Energy absorbing steering column
JPH11268655A (en) Swing support device of steering column for tile type steering unit
JP2016137797A (en) Steering gear
JP2019171920A (en) Energy absorbing steering column
JP5268027B2 (en) Energy absorbing steering column
JP2015083396A (en) Vehicular steering device
JP2008280002A (en) Impact absorbing steering device
JP5451435B2 (en) Energy absorbing steering column
JP6392442B2 (en) Gas pressure actuator
JP6361438B2 (en) Energy absorbing steering column
JP2000219139A (en) Steering device and shock energy absorber used for it
JP6842803B2 (en) Propeller shaft
KR102246687B1 (en) Steering Column for Vehicle
JP6713874B2 (en) Grommet for vehicle steering system
JP6481374B2 (en) Energy absorbing steering column
JP7021381B2 (en) Propeller shaft
JP7347140B2 (en) Intermediate shaft for steering device and steering device
JP6819253B2 (en) Intermediate shaft

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20200728