JP2013198882A - Method and device for avoiding clogging of bubble dispersion device - Google Patents

Method and device for avoiding clogging of bubble dispersion device Download PDF

Info

Publication number
JP2013198882A
JP2013198882A JP2012069423A JP2012069423A JP2013198882A JP 2013198882 A JP2013198882 A JP 2013198882A JP 2012069423 A JP2012069423 A JP 2012069423A JP 2012069423 A JP2012069423 A JP 2012069423A JP 2013198882 A JP2013198882 A JP 2013198882A
Authority
JP
Japan
Prior art keywords
gas
bubble
clogging
hydrate generator
liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012069423A
Other languages
Japanese (ja)
Inventor
Toru Nagata
徹 永田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2012069423A priority Critical patent/JP2013198882A/en
Publication of JP2013198882A publication Critical patent/JP2013198882A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a means capable of eliminating clogging of a jetting port without reducing generation speed of hydrate.SOLUTION: A heating means 21a is installed near a jetting port 3 of a bubble dispersion device 2a for jetting gas g in a liquid w in a hydrate generator 1.

Description

本発明は、気泡分散装置の閉塞回避方法及び装置に関する。   The present invention relates to a blockage avoidance method and apparatus for a bubble dispersion device.

ハイドレートを大量、かつ、高速に製造しようとする場合、攪拌バブリングや気泡塔などのガスを生成器の液中に噴射するハイドレート生成技術において、気液接触を増進する目的で気泡分散装置を設置することがある。前述の装置では、ハイドレートの生成速度向上を狙うため、液温およびガス温度をハイドレート生成条件の平衡温度以下にして運転することが理想的である。   When producing a large amount of hydrate at a high speed, in the hydrate generation technology in which gas such as stirring bubbling or bubble column is injected into the liquid of the generator, a bubble dispersing device is used for the purpose of promoting gas-liquid contact. May be installed. In the above-described apparatus, in order to improve the hydrate generation speed, it is ideal to operate the liquid temperature and gas temperature below the equilibrium temperature of the hydrate generation conditions.

しかしながら、系内雰囲気、特に、気泡分散装置付近の液温がハイドレート生成条件下(平衡温度以下)にあることから、気泡分散装置出口(以下、噴射口と記す。)においてハイドレートが生成し、閉塞に至ることが多い。   However, since the temperature inside the system, particularly the liquid temperature in the vicinity of the bubble dispersion device, is under hydrate production conditions (equilibrium temperature or less), hydrate is produced at the bubble dispersion device outlet (hereinafter referred to as the injection port). Often leads to blockage.

閉塞回避策としては、従来、以下の2点の対応が行われていた。   Conventionally, as a blockage avoidance measure, the following two measures have been taken.

(a)噴射口にハイドレート生成が起こらないように、ガス温度を平衡温度以上に加熱して供給する(閉塞防止処置)。     (A) The gas temperature is heated to an equilibrium temperature or higher so as not to generate hydrate at the injection port (blocking prevention measure).

(b)噴射口の閉塞が起きた後、液温を平衡温度以上に加熱して閉塞を解消する(閉塞解除処置)。     (B) After the injection port is blocked, the liquid temperature is heated to an equilibrium temperature or higher to eliminate the blockage (blocking release treatment).

しかし、上記の閉塞回避策は、過剰な温熱を与えることによるハイドレート生成量の減少、閉塞の解消に当てる時間の無駄(正味の運転時間ロス)、および温熱によるエネルギー消費増加が問題であった。特に、装置規模が大きくなった場合のインパクトが大である。   However, the above-mentioned measures for avoiding clogging have been problematic in that the amount of hydrate produced is reduced by applying excessive heat, waste of time for netting clogging (net operating time loss), and energy consumption increase due to heat. . In particular, the impact when the device scale increases is great.

類似の案件としては、熱交換器閉塞防止の制御方法として、低温恒温槽内の冷媒を、熱交換器を閉塞しているハイドレートを融解する温度まで上昇させ、加熱された冷媒を低温恒温槽と熱交換器との間で循環させるようにした発明(例えば、特許文献1参照。)が提案されているが、この発明の場合も、上記のように、過剰な温熱を与えることによるハイドレート生成量の減少、閉塞の解消に当てる時間の無駄(正味の運転時間ロス)、および温熱によるエネルギー消費増加が問題であった。   As a similar project, as a control method for preventing heat exchanger blockage, the refrigerant in the low-temperature thermostatic chamber is raised to a temperature at which the hydrate blocking the heat exchanger is melted, and the heated refrigerant is cooled to the low-temperature thermostatic chamber. Has been proposed (see, for example, Patent Document 1) between the heat exchanger and the heat exchanger. In the case of this invention as well, as described above, a hydrate by applying excessive heat is also provided. Reductions in production amount, waste of time for clogging (net operating time loss), and increased energy consumption due to heat were problems.

特開2009−243862号公報JP 2009-243862 A

このような問題を解消するため、本発明は、ハイドレート生成速度を落とすことなく、噴射口の閉塞又は閉塞の兆候を解消できる手段を提供すること、また、ハイドレート生成工程において、運転時間のロスおよびエネルギー消費を抑える手段を提供することにある。   In order to solve such a problem, the present invention provides a means capable of eliminating the blockage of the injection port or the sign of the blockage without reducing the hydrate generation speed, and in the hydrate generation process, The object is to provide a means to reduce loss and energy consumption.

本願に係る気泡分散装置の閉塞回避装置は、ハイドレート生成器の液中にガスを噴射する気泡分散装置の噴射口近傍に加熱手段を設置することを特徴とするものである。   The blockage avoidance device for a bubble dispersion device according to the present application is characterized in that a heating means is installed in the vicinity of an injection port of a bubble dispersion device for injecting a gas into a liquid of a hydrate generator.

本願に係る気泡分散装置の閉塞回避装置は、ハイドレート生成器の液中にガスを噴射する気泡分散装置の噴射口近傍に加熱手段を設置し、前記気泡分散装置にガスを供給するガス管に流量計を設け、前記ハイドレート生成器内とガス管内との差圧を計る差圧計を設け、更に、ハイドレート生成器内とガス管内との差圧が初期運転時よりも30%以上上昇した時及び/又はガス流量が初期運転時よりも20%以上ダウンした時、気泡分散装置の噴射口近傍を、閉塞又は閉塞の兆候が解消するまで加熱するように指令する制御装置を設けたことを特徴とするものである。   An obstruction avoidance device for a bubble dispersion device according to the present application is a gas pipe that supplies a gas to the bubble dispersion device by installing a heating means in the vicinity of an injection port of the bubble dispersion device that injects gas into the liquid of the hydrate generator. A flow meter is provided, a differential pressure gauge is provided for measuring the differential pressure between the hydrate generator and the gas pipe, and the differential pressure between the hydrate generator and the gas pipe is increased by 30% or more from the initial operation. When the time and / or the gas flow rate is reduced by 20% or more from the initial operation, a control device is provided to instruct the heating of the vicinity of the injection port of the bubble dispersion device until the blockage or the sign of the blockage is resolved. It is a feature.

本願に係る気泡分散装置の閉塞回避装置は、ハイドレート生成器の液中にガスを噴射する気泡分散装置が単管式又は多管式ノズルから成ることを特徴とするものである。   The blockage avoidance device for a bubble dispersion device according to the present application is characterized in that the bubble dispersion device for injecting gas into the liquid of the hydrate generator comprises a single tube type or a multi-tube type nozzle.

本願に係る気泡分散装置の閉塞回避装置は、ハイドレート生成器の液中にガスを噴射する気泡分散装置が断面凹形の加熱ジャケットの窪みにタイル状に形成した焼結金属製のノズルを装着して成ることを特徴とするものである。   The device for avoiding blockage of the bubble dispersion device according to the present application is equipped with a nozzle made of sintered metal formed in a tile shape in the recess of the heating jacket having a concave cross section by the bubble dispersion device that injects gas into the liquid of the hydrate generator. It is characterized by comprising.

本願に係る気泡分散装置の閉塞回避装置は、ハイドレート生成器の液中にガスを噴射する気泡分散装置が加熱ジャケットのガス噴射側に設けた多数の窪みに、同窪みと同形に形成した焼結金属製のノズルを装着して成ることを特徴とするものである。   The clogging avoidance device for a bubble dispersion device according to the present application is a firing device in which a bubble dispersion device for injecting gas into the liquid of a hydrate generator is formed in a number of depressions provided on the gas injection side of a heating jacket in the same shape as the depressions. It is characterized by being equipped with a nozzle made of sintered metal.

本願に係る気泡分散装置の閉塞回避方法は、ハイドレート生成器の液中にガスを噴射する気泡分散装置の噴射口の閉塞又は閉塞の兆候が生じた時、閉塞又は閉塞の兆候が解消するまで気泡分散装置の噴射口近傍を加熱することを特徴とするものである。   The method for avoiding clogging of the bubble dispersing apparatus according to the present application is such that when the sign of clogging or clogging of the injection port of the bubble dispersing apparatus for injecting gas into the liquid of the hydrate generator occurs, the sign of clogging or clogging is resolved The vicinity of the injection port of the bubble dispersing apparatus is heated.

本願に係る気泡分散装置の閉塞回避方法は、ハイドレート生成器内の未反応ガスと供給ガスとの差圧が初期運転時よりも30%以上上昇した時及び/又はガス流量が初期運転時よりも20%以上ダウンした時、ハイドレート生成器の液中にガスを噴射する気泡分散装置の噴射口近傍を、閉塞又は閉塞の兆候が解消するまで加熱することを特徴とするものである。   The method for avoiding clogging of the bubble dispersing apparatus according to the present application is such that when the differential pressure between the unreacted gas and the supply gas in the hydrate generator is increased by 30% or more from the initial operation and / or the gas flow rate is higher than that at the initial operation. Further, when the temperature is lowered by 20% or more, the vicinity of the injection port of the bubble dispersing device that injects the gas into the liquid of the hydrate generator is heated until the blockage or the sign of the blockage is eliminated.

本発明によれば、完全閉塞に至らずにガス供給が滞りなく行えることにより、正味の運転時間を延ばすことが可能となる。また、閉塞箇所をピンポイントで加熱することで熱量を大幅に削減でき、熱的に高効率な生成プロセスを実現可能である。また、閉塞兆候が確認された時のみヒーティングを行ない、閉塞の兆候が解消された際にヒーティングを止めるため、ガスの主流が温まり難く、ハイドレート生成速度が落ちにくい。また、フィードバック制御機構が働かず完全閉塞した後でも閉塞箇所をピンポイントで加熱可能なため、従来の閉塞解消方法と比べて、短時間で復旧することが可能となる。   According to the present invention, it is possible to extend the net operation time because the gas supply can be performed without delay without being completely blocked. In addition, the amount of heat can be significantly reduced by heating the closed portion pinpoint, and a thermally highly efficient generation process can be realized. In addition, heating is performed only when an obstruction sign is confirmed, and heating is stopped when the obstruction sign is resolved, so that the main gas flow is difficult to warm and the hydrate generation rate is difficult to decrease. Further, even after the feedback control mechanism does not work and completely occludes, the occluded portion can be heated pinpointed, so that it is possible to recover in a shorter time compared to the conventional occlusion elimination method.

本発明の方法を適用したハイドレート生成装置の概略構成図である。It is a schematic block diagram of the hydrate production | generation apparatus to which the method of this invention is applied. ノズルの噴射口の閉塞状態を示す説明図であり、(a)は閉塞なし(理想状態)、(b)は閉塞兆候(過渡期)、(c)は閉塞状態を示す。It is explanatory drawing which shows the obstruction | occlusion state of the injection opening of a nozzle, (a) is no obstruction | occlusion (ideal state), (b) shows the obstruction | occlusion sign (transition period), (c) shows the obstruction | occlusion state. 単管式ノズルの拡大図である。It is an enlarged view of a single tube type nozzle. 焼結金属を用いた小型ノズルの断面図である。It is sectional drawing of the small nozzle using a sintered metal. 多管式ノズルの斜視図である。It is a perspective view of a multi-tube type nozzle. 焼結金属を用いた大型ノズルであり、(a)は平面図、(b)は斜視図である。It is the large sized nozzle using a sintered metal, (a) is a top view, (b) is a perspective view.

以下、本発明の実施形態を図面を用いて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1に示すように、ハイドレート生成器1は、その底部近傍に気泡分散装置の一種である単管形のノズル2aを設け、このノズル2aからハイドレート生成器1内の水中にガスgを噴射するようになっている。ノズル2aから噴射されたガスgは、水wと水和反応してハイドレートhとなる。ハイドレートhは、スラリー供給管4を通って脱水装置(図示せず)に供給される。水wは、給水管5を通って補給され、ハイドレート生成器1の上部空間に溜まった未反応ガスg’は、戻し配管6を通ってガス管7に戻される。戻し配管6は、ブロア8を備えている。   As shown in FIG. 1, the hydrate generator 1 is provided with a single tube type nozzle 2a which is a kind of bubble disperser in the vicinity of the bottom thereof, and gas g is supplied from the nozzle 2a into the water in the hydrate generator 1. It comes to inject. The gas g injected from the nozzle 2a hydrates with the water w to become a hydrate h. Hydrate h is supplied to a dehydrator (not shown) through a slurry supply pipe 4. The water w is replenished through the water supply pipe 5, and the unreacted gas g ′ accumulated in the upper space of the hydrate generator 1 is returned to the gas pipe 7 through the return pipe 6. The return pipe 6 includes a blower 8.

ハイドレート生成器1は、その側方に設けた循環ライン9によってハイドレート生成器1内の水wを循環するようになっている。循環ライン9は、水wを循環させる循環ポンプ10および反応熱を除去する熱交換器11を備えている。また、ハイドレート生成器1内の攪拌は、攪拌機12によって行われる。   The hydrate generator 1 circulates the water w in the hydrate generator 1 through a circulation line 9 provided on the side thereof. The circulation line 9 includes a circulation pump 10 that circulates the water w and a heat exchanger 11 that removes reaction heat. Further, stirring in the hydrate generator 1 is performed by a stirrer 12.

上記ノズル2aは、先端部に加熱手段の一種である加熱ジャケット21aを設け、この加熱ジャケット21aによってノズル2aの噴射口近傍を加熱するようになっている。ノズル2aの噴射口近傍とは、気液接触が起こるノズル2aの噴射口(出口)3からノズル2aの入口側に向かって所定の距離Lだけ離れた位置13に至る範囲又は領域を云う(図2(c)参照)。所定の距離Lとしては、1cm程度が望ましい。   The nozzle 2a is provided with a heating jacket 21a as a kind of heating means at the tip, and the vicinity of the nozzle 2a is heated by the heating jacket 21a. The vicinity of the injection port of the nozzle 2a refers to a range or region from the injection port (outlet) 3 of the nozzle 2a where gas-liquid contact occurs to a position 13 that is a predetermined distance L toward the inlet side of the nozzle 2a (see FIG. 2 (c)). The predetermined distance L is desirably about 1 cm.

図2(a)に示すように、ガスgは、ノズル2aの噴射口(出口)3より気泡aとなって噴射されるが(閉塞無し(理想状態))、噴射口3がハイドレート生成環境下にあることから、図2(b)に示すように、徐々にノズル2aの内壁面にハイドレートhが付着するようになる(閉塞兆候(過渡期))。次いで、図2(c)に示すように、ハイドレートhが蓋のように噴射口3の全面を覆い、噴射口3が完全に閉塞される(閉塞状態)。このため、加熱手段の設置場所の選定が重要になる。   As shown in FIG. 2 (a), the gas g is injected as bubbles a from the injection port (exit) 3 of the nozzle 2a (no blockage (ideal state)), but the injection port 3 is in a hydrate generation environment. Since it exists below, as shown in FIG.2 (b), the hydrate h gradually adheres to the inner wall surface of the nozzle 2a (blocking sign (transition period)). Next, as shown in FIG. 2C, the hydrate h covers the entire surface of the injection port 3 like a lid, and the injection port 3 is completely closed (closed state). For this reason, selection of the installation place of a heating means becomes important.

上記ノズル2aは、図3に示すように、加熱手段として、噴出口(出口)3の近傍に加熱ジャケット21aを設置している。加熱ジャケット21aは、ノズル2aよりも大径の胴部22を有し、ノズル2aと胴部22間の隙間は、円環状の上端板23および下端板(図示ぜず)によって液密状に塞がれている。上端板23は、ノズル2aの噴射口(出口)3および胴部22の上端と同一水平面になっている。また、加熱ジャケット21aは、胴部22に加熱媒体の供給管24および流出管25を備え、供給管24は、バルブ14を備えている。   As shown in FIG. 3, the nozzle 2 a is provided with a heating jacket 21 a as a heating means in the vicinity of the ejection port (outlet) 3. The heating jacket 21a has a body portion 22 having a diameter larger than that of the nozzle 2a, and a gap between the nozzle 2a and the body portion 22 is liquid-tightly closed by an annular upper end plate 23 and a lower end plate (not shown). It is peeling off. The upper end plate 23 is flush with the injection port (exit) 3 of the nozzle 2 a and the upper end of the body portion 22. The heating jacket 21 a includes a heating medium supply pipe 24 and an outflow pipe 25 in the body portion 22, and the supply pipe 24 includes a valve 14.

上記ガス管7は、ガス流量計15を備えている。符号16は、差圧計であり、その一方の導管17はハイドレート生成器1の上部空間と連通し、他の一方の導管18はガス管7と連通している。また、符号19は、制御装置であり、少なくとも、次の三つの機能を備えている。   The gas pipe 7 includes a gas flow meter 15. Reference numeral 16 denotes a differential pressure gauge. One conduit 17 communicates with the upper space of the hydrate generator 1, and the other conduit 18 communicates with the gas pipe 7. Reference numeral 19 denotes a control device having at least the following three functions.

(a) 差圧計16で計測される差圧が初期運転時よりも30%以上上昇した時に加熱手段のバルブ14を開き、差圧計16で計測される差圧が初期運転時と同レベルに復帰した時、バルブ14を閉じる。   (A) The valve 14 of the heating means is opened when the differential pressure measured by the differential pressure gauge 16 rises by 30% or more from the initial operation, and the differential pressure measured by the differential pressure gauge 16 returns to the same level as during the initial operation. When this occurs, the valve 14 is closed.

(b) ガス管7内のガス流量が初期運転時よりも20%以上ダウンした時にバルブ14を開き、ガス管7内のガス流量が初期運転時と同レベルに復帰した時、バルブ14を閉じる。   (B) The valve 14 is opened when the gas flow rate in the gas pipe 7 is reduced by 20% or more from the initial operation, and the valve 14 is closed when the gas flow rate in the gas pipe 7 returns to the same level as in the initial operation. .

(c) 差圧計16で計測される差圧が初期運転時よりも10%上昇するとともに、ガス管7内のガス流量が初期運転時よりも10%ダウンした時にバルブ14を開き、差圧計16で計測される差圧が初期運転時と同レベルに復帰するとともに、ガス管7内のガス流量が初期運転時と同レベルに復帰した時、バルブ14を閉じる。   (C) When the differential pressure measured by the differential pressure gauge 16 is increased by 10% from the initial operation, and the gas flow rate in the gas pipe 7 is decreased by 10% from the initial operation, the valve 14 is opened, and the differential pressure gauge 16 When the differential pressure measured in step 1 returns to the same level as in the initial operation, and the gas flow rate in the gas pipe 7 returns to the same level as in the initial operation, the valve 14 is closed.

次に、差圧計16を用いて加熱手段のバルブ14を制御する場合について説明する。   Next, the case where the valve 14 of the heating means is controlled using the differential pressure gauge 16 will be described.

上記のように、ノズル2aから噴射されたガスgは、水wと水和反応してハイドレートhとなる。ハイドレートhは、スラリー供給管4を通って脱水装置(図示せず)に供給される。水wは、給水管5を通って補給される。ハイドレート生成器1の上部空間に溜まった未反応ガスg’は、戻し配管6を通ってガス管7に戻され、ハイドレート生成器1内の水wは、循環ライン9によって循環される。   As described above, the gas g ejected from the nozzle 2a hydrates with the water w to become a hydrate h. Hydrate h is supplied to a dehydrator (not shown) through a slurry supply pipe 4. Water w is supplied through the water supply pipe 5. The unreacted gas g ′ accumulated in the upper space of the hydrate generator 1 is returned to the gas pipe 7 through the return pipe 6, and the water w in the hydrate generator 1 is circulated by the circulation line 9.

ハイドレート生成器1内は、ハイドレート生成条件下にあることから、ノズル2aの噴射口(出口)3にハイドレートhが生成してノズル2aの噴射口(出口)3が次第に狭くなり(図2(b)参照)、閉塞に至ることが多い(図2(c)参照)。   Since the hydrate generator 1 is under hydrate generation conditions, a hydrate h is generated at the injection port (outlet) 3 of the nozzle 2a, and the injection port (outlet) 3 of the nozzle 2a is gradually narrowed (see FIG. 2 (b)), often leads to blockage (see FIG. 2 (c)).

ノズル2aの噴射口(出口)3の閉塞が進行して、差圧計16で計測される差圧が初期運転時よりも30%以上上昇した際、差圧計16の信号を入力した制御装置19の指令によってバルブ14が開き、加熱媒体の一種である温水cが加熱ジャッケット21aに供給される。   When the closing of the injection port (outlet) 3 of the nozzle 2a progresses and the differential pressure measured by the differential pressure gauge 16 rises by 30% or more from the initial operation, the signal from the differential pressure gauge 16 is input. The valve 14 is opened by the command, and hot water c, which is a kind of heating medium, is supplied to the heating jacket 21a.

加熱ジャッケット21aに温水cが供給されると、ノズル2aの噴射口(出口)3を閉塞していたハイドレートhが加熱分解して消滅し、再度、ノズル2aの噴射口(出口)3からガスgが噴射する。そして、差圧計16で計測される差圧が初期運転時のレベルに復帰した時、制御装置19の指令によってバルブ14が閉じられる。   When the hot water c is supplied to the heating jack 21a, the hydrate h that has blocked the injection port (outlet) 3 of the nozzle 2a is thermally decomposed and disappears, and gas is again discharged from the injection port (outlet) 3 of the nozzle 2a. g sprays. When the differential pressure measured by the differential pressure gauge 16 returns to the initial operation level, the valve 14 is closed by a command from the control device 19.

以上の説明では、気泡分散装置として単管形のノズル2aを適用した場合について説明したが、単管形のノズル2aに限定されることはない。小型の気泡分散装置の場合は、単管形のノズル2aの代わりに焼結金属等を利用することができる。   In the above description, the case where the single tube type nozzle 2a is applied as the bubble dispersing device has been described. However, the present invention is not limited to the single tube type nozzle 2a. In the case of a small bubble disperser, sintered metal or the like can be used in place of the single tube nozzle 2a.

焼結金属利用の場合は、図4に示すように、断面凹形の加熱ジャケット21bの窪みにタイル状に形成した焼結金属製のノズル2bを装着する。この場合、ガス導管27は、加熱ジャケット21bの底部を貫通して焼結金属製のノズル2bの底面に達している。   In the case of using sintered metal, as shown in FIG. 4, a nozzle 2b made of sintered metal formed in a tile shape is mounted in a recess of the heating jacket 21b having a concave cross section. In this case, the gas conduit 27 passes through the bottom of the heating jacket 21b and reaches the bottom surface of the nozzle 2b made of sintered metal.

大型化してガス処理量を増す場合は、図5に示すように、径の大きな中空状の加熱ジャケット21dに多数のノズル2dの先端部を貫通装着させた形状とする(多管ノズル方式)。また、図6に示すように、径の大きな中空状の加熱ジャケット21eのガス噴射側に設けた六角形の多数の窪みに六角形に形成した焼結金属製のノズル2eを装着する。なお、窪みやノズル2eの形状は、六角形に限定するものではなく、任意の形状を選択することができる。この場合、各窪みにガス導管が連通している。   In the case of increasing the gas processing amount by increasing the size, as shown in FIG. 5, a configuration is adopted in which the distal end portions of a large number of nozzles 2d are inserted through a hollow heating jacket 21d having a large diameter (multi-tube nozzle method). Moreover, as shown in FIG. 6, the nozzle 2e made from the sintered metal formed in the hexagon in the hexagonal many hollow provided in the gas injection side of the hollow heating jacket 21e with a large diameter is mounted | worn. In addition, the shape of a hollow and the nozzle 2e is not limited to a hexagon, and arbitrary shapes can be selected. In this case, a gas conduit communicates with each recess.

上記のように、加熱手段に加熱ジャケット21a〜21eを用いる場合は、母液(ハイドレート生成器1内の水w)を、極力、温めたくないので、ガス導管や加熱手段の外側(母液と接触する面)に断熱材を巻き付ける等の措置を講ずることで、より高効率な閉塞解消機構となる。また、熱源に電気ヒーターを使用する場合も加熱手段外側に断熱材を巻き付ける等の措置をした方がよい。また、当然ながら、導線が液中に浸っているため、絶縁皮膜で覆われていなければならない。   As described above, when the heating jackets 21a to 21e are used as the heating means, the mother liquor (water w in the hydrate generator 1) is not desired to be heated as much as possible. By taking measures such as wrapping a heat insulating material around the surface), a higher-efficiency blocking mechanism can be obtained. Also, when an electric heater is used as the heat source, it is better to take measures such as wrapping a heat insulating material around the outside of the heating means. Of course, since the conducting wire is immersed in the liquid, it must be covered with an insulating film.

更に、加熱手段の制御方法として、差圧計を用いた場合について説明したが、加熱手段の制御方法としては、例えば、ガス流量計15で計測させるガス流量に基づいて制御してもよい。また、ガス流量計15で計測させるガス流量および差圧計16で計測される差圧の両方に基づいて制御してもよい。   Furthermore, although the case where a differential pressure gauge is used as the control method of the heating means has been described, for example, the control method of the heating means may be controlled based on the gas flow rate measured by the gas flow meter 15. Further, control may be performed based on both the gas flow rate measured by the gas flow meter 15 and the differential pressure measured by the differential pressure meter 16.

1 ハイドレート生成器
2a 気泡分散装置
3 噴射口
21a 加熱手段
g ガス
w 液
DESCRIPTION OF SYMBOLS 1 Hydrate generator 2a Bubble disperser 3 Injection port 21a Heating means g Gas w Liquid

Claims (7)

ハイドレート生成器の液中にガスを噴射する気泡分散装置の噴射口近傍に加熱手段を設置することを特徴とする気泡分散装置の閉塞回避装置。   A blockage avoidance device for a bubble dispersion device, wherein a heating means is installed in the vicinity of an injection port of a bubble dispersion device for injecting a gas into a liquid of a hydrate generator. ハイドレート生成器の液中にガスを噴射する気泡分散装置の噴射口近傍に加熱手段を設置し、前記気泡分散装置にガスを供給するガス管に流量計を設け、前記ハイドレート生成器内とガス管内との差圧を計る差圧計を設け、更に、ハイドレート生成器内とガス管内との差圧が初期運転時よりも30%以上上昇した時及び/又はガス流量が初期運転時よりも20%以上ダウンした時、気泡分散装置の噴射口近傍を、閉塞又は閉塞の兆候が解消するまで加熱するように指令する制御装置を設けたことを特徴とする気泡分散装置の閉塞回避装置。   A heating means is installed in the vicinity of the injection port of the bubble dispersing device for injecting gas into the liquid of the hydrate generator, a flow meter is provided in a gas pipe for supplying gas to the bubble dispersing device, and the inside of the hydrate generator A differential pressure gauge is provided to measure the differential pressure with the gas pipe. Further, when the differential pressure between the hydrate generator and the gas pipe is increased by 30% or more from the initial operation and / or the gas flow rate is higher than the initial operation. A clogging avoidance device for a bubble dispersal device, comprising a control device for instructing to heat the vicinity of an ejection port of the bubble dispersal device until the sign of clogging or clogging is eliminated when the bubble dispersal device is down by 20% or more. ハイドレート生成器の液中にガスを噴射する気泡分散装置が単管式又は多管式ノズルから成ることを特徴とする請求項1又は2記載の気泡分散装置の閉塞回避装置。   3. A clogging avoidance device for a bubble dispersion device according to claim 1, wherein the bubble dispersion device for injecting gas into the liquid of the hydrate generator comprises a single tube type or a multi-tube type nozzle. ハイドレート生成器の液中にガスを噴射する気泡分散装置が断面凹形の加熱ジャケットの窪みにタイル状に形成した焼結金属製のノズルを装着して成ることを特徴とする請求項1又は2記載の気泡分散装置の閉塞回避装置。   The bubble dispersing device for injecting gas into the liquid of the hydrate generator is formed by mounting a nozzle made of sintered metal formed in a tile shape in a recess of a heating jacket having a concave cross section. The blockage avoidance device for the bubble dispersion device according to 2. ハイドレート生成器の液中にガスを噴射する気泡分散装置が加熱ジャケットのガス噴射側に設けた多数の窪みに、同窪みと同形に形成した焼結金属製のノズルを装着して成ることを特徴とする請求項1又は2記載の気泡分散装置の閉塞回避装置。   A bubble disperser that injects gas into the liquid of the hydrate generator is formed by mounting sintered metal nozzles formed in the same shape as the recesses in a number of recesses provided on the gas injection side of the heating jacket. The blockage avoidance device for a bubble dispersion device according to claim 1 or 2, characterized in that: ハイドレート生成器の液中にガスを噴射する気泡分散装置の噴射口の閉塞又は閉塞の兆候が生じた時、閉塞又は閉塞の兆候が解消するまで気泡分散装置の噴射口近傍を加熱することを特徴とする気泡分散装置の閉塞回避方法。   When there is a sign of clogging or clogging of the outlet of the bubble dispersing device that injects gas into the hydrate generator liquid, heating the vicinity of the outlet of the bubble dispersing device until the sign of clogging or clogging is resolved A clogging avoidance method for a bubble dispersing apparatus. ハイドレート生成器内の未反応ガスと供給ガスとの差圧が初期運転時よりも30%以上上昇した時及び/又はガス流量が初期運転時よりも20%以上ダウンした時、ハイドレート生成器の液中にガスを噴射する気泡分散装置の噴射口近傍を、閉塞又は閉塞の兆候が解消するまで加熱することを特徴とする請求項6記載の気泡分散装置の閉塞回避方法。   When the differential pressure between the unreacted gas and the supply gas in the hydrate generator has increased by 30% or more from the initial operation and / or when the gas flow rate has decreased by 20% or more from the initial operation, the hydrate generator The method for avoiding clogging of a bubble dispersing apparatus according to claim 6, wherein the vicinity of the injection port of the bubble dispersing apparatus for injecting gas into the liquid is heated until the sign of clogging or clogging is resolved.
JP2012069423A 2012-03-26 2012-03-26 Method and device for avoiding clogging of bubble dispersion device Pending JP2013198882A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012069423A JP2013198882A (en) 2012-03-26 2012-03-26 Method and device for avoiding clogging of bubble dispersion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012069423A JP2013198882A (en) 2012-03-26 2012-03-26 Method and device for avoiding clogging of bubble dispersion device

Publications (1)

Publication Number Publication Date
JP2013198882A true JP2013198882A (en) 2013-10-03

Family

ID=49519536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012069423A Pending JP2013198882A (en) 2012-03-26 2012-03-26 Method and device for avoiding clogging of bubble dispersion device

Country Status (1)

Country Link
JP (1) JP2013198882A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567362A (en) * 2016-01-16 2016-05-11 黑龙江科技大学 Gas-hydrate-separation bubbling reinforcing device gas-hydrate-separation purifying reinforcing device based on the same and gas purifying reinforcing method
JP2020081964A (en) * 2018-11-26 2020-06-04 株式会社Ihiプラント Hydrate production device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105567362A (en) * 2016-01-16 2016-05-11 黑龙江科技大学 Gas-hydrate-separation bubbling reinforcing device gas-hydrate-separation purifying reinforcing device based on the same and gas purifying reinforcing method
JP2020081964A (en) * 2018-11-26 2020-06-04 株式会社Ihiプラント Hydrate production device and method
JP7193316B2 (en) 2018-11-26 2022-12-20 株式会社Ihiプラント Hydrate manufacturing apparatus and hydrate manufacturing method

Similar Documents

Publication Publication Date Title
JP2010514567A (en) Apparatus and method for controlled cooling
JP2013198882A (en) Method and device for avoiding clogging of bubble dispersion device
JP2010000784A (en) Method of rapidly heating mold
JP6650521B2 (en) Cooling device and cooling method
KR20100052654A (en) Mold structure of rapid heating and cooling cycle system
JP6304893B2 (en) Pressure cooker with noodle bowl
JP6347200B2 (en) Top blowing lance device for RH vacuum degassing equipment
WO2012117355A1 (en) Channel type induction furnace
JP2008020135A (en) Storage type hot water supply method and storage type hot water supply device
KR101489333B1 (en) Draining and exhaust cooling system of combination steam oven and control method
JP2013159684A (en) Method and apparatus for preventing blockade of gas injection port
JP2008106947A (en) Water-cooled plug bar
CN202626691U (en) Novel water supply system of steam generator
JP6141308B2 (en) Heating device for bringing liquid to boiling, and beverage preparation device provided with the device
JP4943224B2 (en) Vacuum steam heater
JP4760303B2 (en) Secondary cooling method for continuous cast slabs
CN214926829U (en) Injection mold temperature control device
KR100837760B1 (en) the compound cooling system through water and air in continuous casting apron
KR101496165B1 (en) Water tank for cooling material
US20100103765A1 (en) Liquid injector for silicon production
RU2812625C1 (en) Batch-type vacuum deaerator for heating and hot water systems (two embodiments)
CN211781957U (en) Instant heating type heat pump heat exchange device
JP6217324B2 (en) Method of controlling the height of the pouring bath of the molten metal holding furnace for low pressure casting
KR20110010349A (en) Nozzle tep with cooler
JP2013224760A (en) Storage type water heater