JP2013194260A - Method of producing rare earth sintered magnet - Google Patents

Method of producing rare earth sintered magnet Download PDF

Info

Publication number
JP2013194260A
JP2013194260A JP2012060628A JP2012060628A JP2013194260A JP 2013194260 A JP2013194260 A JP 2013194260A JP 2012060628 A JP2012060628 A JP 2012060628A JP 2012060628 A JP2012060628 A JP 2012060628A JP 2013194260 A JP2013194260 A JP 2013194260A
Authority
JP
Japan
Prior art keywords
rare earth
molded body
sintered
magnet material
earth magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012060628A
Other languages
Japanese (ja)
Other versions
JP5888503B2 (en
Inventor
Keiichi Morimoto
圭一 森本
Shuji Azuma
修二 東
Kunio Miyahara
邦男 宮原
Akitsugu Miura
晃嗣 三浦
Ryuichi Sakamoto
龍一 坂本
Takeo Kawamata
健男 川又
Yutaka Takahashi
豊 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP2012060628A priority Critical patent/JP5888503B2/en
Publication of JP2013194260A publication Critical patent/JP2013194260A/en
Application granted granted Critical
Publication of JP5888503B2 publication Critical patent/JP5888503B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Powder Metallurgy (AREA)
  • Hard Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing a rare earth sintered magnet capable of reducing warping deformation of a molded body caused by sintering compared to the conventional technology without complicating a device configuration of a sintering furnace.SOLUTION: A rare earth magnet material molded body 5 is arranged in an inner part simply enclosed by sandwiching a spacer 4 by a bottom part sintering plate 2a and an upper part sintering plate 2b, and is sintered, and is liquefied at a temperature of 800°C or more, and especially neodymium (Nd) seeps to a front layer, and gasified neodymium stays in a space contacting with a surface of the rare earth magnet material molded body 5. Accordingly, a total amount of the gasified neodymium is reduced. A predetermined space is provided between the upper part sintering plate 2b and the rare earth magnet material molded body 5, and a mesh 3 is disposed under the rare earth magnet material molded body 5, and therefore, almost a same amount of neodymium is gasified from both of an upper surface and a lower surface of the rare earth magnet material molded body 5, and density difference between an upper part and a lower part (the front and back) of the rare earth magnet material molded body 5 is reduced, and warping deformation in a sintering process is suppressed.

Description

本発明は、ネオジム等の希土類元素を含有する希土類焼結磁石の製造方法に関する。   The present invention relates to a method for producing a rare earth sintered magnet containing a rare earth element such as neodymium.

例えばR−Fe−B系(RはYを含む希土類元素)の希土類焼結磁石を焼結する際には、通常、希土類磁石材料の成形体を焼結ケースの中に配置し、不活性雰囲気或いは真空の焼結炉内にその焼結ケースを配置して焼結処理する。なお、焼結は、固体粉末を成形して融点よりも低い温度で加熱すると固まって焼結体と呼ばれる物体になる現象を言い、焼結前と比較して焼結後では物体の外形寸法は収縮し、物体全体として見た密度は大きくなる。なお、焼結には固相焼結、液相焼結、気相焼結といった種類があるが、ここでは液相焼結について扱う。   For example, when a rare earth sintered magnet of R-Fe-B system (R is a rare earth element including Y) is sintered, a rare earth magnet material compact is usually placed in a sintered case, and an inert atmosphere is provided. Alternatively, the sintering case is placed in a vacuum sintering furnace and sintered. Sintering refers to a phenomenon in which solid powder is molded and heated at a temperature lower than the melting point to solidify into an object called a sintered body. The density shrinks and the density of the whole object increases. There are various types of sintering such as solid phase sintering, liquid phase sintering, and vapor phase sintering, but here, liquid phase sintering will be dealt with.

焼結ケースの材質としては、炭素のゲッター剤としての効果を期待してチタン(Ti)やジルコニウム(Zr)を用いたり(特許文献1)、あるいは酸素のゲッター剤としての効果を期待して熱伝導率に優れるとともに希土類磁石の焼結温度において再結晶化が生じない点からモリブデン(Mo)を用いることが知られている(特許文献2)。また、成形体を焼結ケースの中に複数個配置したり、図9に示すように平板状の成形体を多段積みして焼結ケース内へ配置することで積載効率を向上させることも行われている。   As the material of the sintered case, titanium (Ti) or zirconium (Zr) is used in the hope of an effect as a carbon getter agent (Patent Document 1), or heat is expected in an effect as an oxygen getter agent. It is known to use molybdenum (Mo) because it has excellent conductivity and does not cause recrystallization at the sintering temperature of the rare earth magnet (Patent Document 2). Also, it is possible to improve the loading efficiency by arranging a plurality of compacts in the sintered case, or by stacking flat shaped compacts in the sintered case as shown in FIG. It has been broken.

特許文献1は、希土類合金粉末を圧縮成形した成形体をカーボンのゲッター剤となる金属製容器に入れた状態で焼結炉内で焼結させることを特徴とする希土類合金焼結体の製造方法で、変形やクラックの防止のためにカーボンのゲッター剤となる金属がTi,Zr,Ta,Nbであることを開示している。   Patent Document 1 discloses a method for producing a rare earth alloy sintered body characterized in that a compact obtained by compression molding rare earth alloy powder is sintered in a sintering furnace in a state where it is placed in a metal container serving as a carbon getter agent. Therefore, it is disclosed that the metal used as a carbon getter agent for preventing deformation and cracking is Ti, Zr, Ta, Nb.

特許文献2は、成形体焼結後の巣の発生を抑えるため、焼結用容器を、容器本体と蓋体との間に、モリブデン(Mo)のゲッター・スペーサにより流路を形成する構成とし、焼結用容器内に収められた成形体の温度上昇により、水素化物が熱分解することでガス化した水素および焼結用容器内の雰囲気が流路を介して焼結用容器外に流れ出るようにしている。また、ゲッター・スペーサを酸化ゲッターとし、酸素が焼結用容器内に侵入した場合にも、このゲッター・スペーサが酸化することで、成形体の酸化を防止するようにしたことが開示されている。   Patent Document 2 has a configuration in which a flow path is formed by a molybdenum (Mo) getter spacer between a container main body and a lid body in order to suppress generation of a nest after sintering a molded body. As a result of the temperature rise of the molded body housed in the sintering container, the hydrogenated hydrogenated gas and the atmosphere in the sintering container flow out of the sintering container through the flow path. I am doing so. Further, it is disclosed that the getter spacer is an oxidation getter, and even when oxygen enters the sintering container, the getter spacer is oxidized to prevent the molded body from being oxidized. .

特許文献3は、希土類磁石の焼結に使用される焼結ケースであって、開口部を有する本体フレームと、その開口部を開閉するドアとを備えており、希土類磁石を載せた焼結プレートが本体に取り付けられたロッド上を水平方向にスライドして本体内に挿入されることを開示している。   Patent Document 3 is a sintering case used for sintering rare earth magnets, and includes a main body frame having an opening and a door for opening and closing the opening, and a sintered plate on which the rare earth magnet is placed Is inserted into the main body by sliding horizontally on a rod attached to the main body.

特許文献4は、焼結温度が1400℃を超える領域においても、焼結体ターゲット、特にセラミックスターゲットの焼結に際して発生する反りを効果的に抑制し、また発生した反りを矯正することができ、さらに製造歩留りを向上することのできる焼結方法及び焼結体の矯正方法並びに装置として、被焼結体を回転させて遠心力を発生させ、焼結することを特徴とする反り発生を抑制する焼結方法を開示している。   Patent Document 4 can effectively suppress warpage that occurs during sintering of a sintered compact target, particularly a ceramic target, even in a region where the sintering temperature exceeds 1400 ° C., and can correct the generated warpage. Further, as a sintering method capable of improving the production yield and a method and apparatus for correcting the sintered body, it suppresses the occurrence of warping characterized by rotating the sintered body to generate centrifugal force and sintering. A sintering method is disclosed.

特開平5−171217号公報Japanese Patent Laid-Open No. 5-171217 特開2005−050915号公報JP-A-2005-050915 特開2000−315611号公報JP 2000-315611 A 特開2003−238258号公報JP 2003-238258 A

例えば直方形状の成形体を焼結すると、中央が凹状に窪む形に変形する。更に薄物平板成形体では、弓形状に変形する。このため、反り変形を許容しつつ、焼結後の成形体を研磨することで、設計された寸法に加工している。なお、ここで言う薄物平板成形体は、概略5mm以内の厚さを有する成形体とする。焼結での反り変形が大きいと、焼結後の研磨加工量が大きくなり、それを見積もった成形体厚み寸法の設計が必要となり、材料ロスが増大し、コスト高に繋がるといった問題が生じる。薄物平板成形体の場合、特許文献1及び2のようなゲッター剤による反り防止の効果は少なく、特に、積載効率向上のために多段積みした場合の最上段の成形体は変形が特に大きくなる。特許文献4のような手法で反り変形をなくすことが可能だとしても、炉を始めとする装置構成が大きく複雑化する。   For example, when a rectangular shaped compact is sintered, the center is deformed into a concave shape. Furthermore, in a thin flat plate molded body, it is deformed into a bow shape. For this reason, it is processed into the designed dimension by grind | polishing the molded object after sintering, accept | permitting curvature deformation. In addition, let the thin plate molded object said here be a molded object which has thickness within about 5 mm. If warping deformation during sintering is large, the amount of polishing after sintering becomes large, and it is necessary to design a molded body thickness dimension that estimates this, resulting in problems such as increased material loss and high costs. In the case of a thin flat plate molded body, the effect of preventing warpage by the getter agent as in Patent Documents 1 and 2 is small, and in particular, the uppermost molded body is particularly greatly deformed when stacked in multiple stages to improve the loading efficiency. Even if the warp deformation can be eliminated by the technique as in Patent Document 4, the apparatus configuration including the furnace is greatly complicated.

本発明はこうした状況を認識してなされたものであり、その目的は、焼結炉等の装置構成を複雑化しなくても従来と比較して焼結による成形体の反り変形を小さくすることが出来る、希土類焼結磁石の製造方法を提供することにある。   The present invention has been made in view of such a situation, and the object of the present invention is to reduce warping deformation of a molded body due to sintering as compared with the conventional case without complicating the apparatus configuration such as a sintering furnace. An object of the present invention is to provide a method for producing a rare earth sintered magnet.

本発明のある態様は、希土類焼結磁石の製造方法である。この方法は、
底部焼結プレートと、前記底部焼結プレート上に載置されたメッシュと、前記メッシュ上に載置された希土類磁石材料成形体と、前記底部焼結プレート上に配置されたスペーサと、前記スペーサに支持されて前記希土類磁石材料成形体の上方を空間を挟んで覆う上部焼結プレートとを備える積載形態を用いて、前記希土類磁石材料成形体を焼結する工程を有することを特徴とする。
One embodiment of the present invention is a method for producing a rare earth sintered magnet. This method
A bottom sintered plate, a mesh placed on the bottom sintered plate, a rare earth magnet material molded body placed on the mesh, a spacer disposed on the bottom sintered plate, and the spacer And a step of sintering the rare earth magnet material compact using a stacking form that is supported by the upper sintered plate and covers the rare earth magnet material compact over the space.

前記希土類磁石材料成形体の上面と前記上部焼結プレートの下面との距離が3mm以下であってもよい。   The distance between the upper surface of the rare earth magnet material molded body and the lower surface of the upper sintered plate may be 3 mm or less.

前記メッシュによって、前記希土類磁石材料成形体の下面と前記底部焼結プレートの上面との間に空間が設けられていてもよい。   A space may be provided between the lower surface of the rare earth magnet material compact and the upper surface of the bottom sintered plate by the mesh.

前記希土類磁石材料成形体を800℃乃至1200℃の焼結温度で焼結してもよい。   The rare earth magnet material compact may be sintered at a sintering temperature of 800 ° C. to 1200 ° C.

50kPa以下の減圧ないし真空雰囲気下で前記希土類磁石材料成形体を焼結してもよい。   The rare earth magnet material molded body may be sintered under a reduced pressure or vacuum atmosphere of 50 kPa or less.

前記積載形態を複数層積み重ね、ある層の上部焼結プレートを一つ上の層の底部焼結プレートとして兼用してもよい。   A plurality of stacked layers may be stacked, and an upper sintered plate of a certain layer may be used as a bottom sintered plate of an upper layer.

前記希土類磁石材料成形体が、R−Fe−B系(RはYを含む希土類元素)希土類磁石材料からなってもよい。   The rare earth magnet material molded body may be made of an R—Fe—B (R is a rare earth element including Y) rare earth magnet material.

前記希土類磁石材料成形体が薄物の平板形状ないし瓦状であってもよい。   The rare earth magnet material molded body may be a thin flat plate shape or a tile shape.

前記積層形態が前記希土類磁石材料成形体上に載置されたメッシュを備えてもよい。   The laminated form may include a mesh placed on the rare earth magnet material molded body.

なお、以上の構成要素の任意の組合せ、本発明の表現を方法やシステムなどの間で変換したものもまた、本発明の態様として有効である。   It should be noted that any combination of the above-described constituent elements, and those obtained by converting the expression of the present invention between methods and systems are also effective as aspects of the present invention.

本発明によれば、焼結炉等の装置構成を複雑化しなくても従来と比較して焼結による成形体の反り変形を小さくすることができる。このため、焼結後の研削加工量が減少し、材料ロス及びコストを低減できる。   According to the present invention, it is possible to reduce warping deformation of a molded body due to sintering as compared with the conventional case without complicating the configuration of an apparatus such as a sintering furnace. For this reason, the grinding amount after sintering decreases, and material loss and cost can be reduced.

本発明の実施の形態に係る希土類磁石材料成形体の積載形態1の分解斜視図。The disassembled perspective view of the stacking form 1 of the rare earth magnet material molded object which concerns on embodiment of this invention. 積載形態1の断面図。Sectional drawing of the loading form 1. FIG. 比較例に関し、焼結過程における希土類磁石材料成形体5の反り変形の発生原理の模式的説明図。The schematic explanatory drawing of the generation | occurrence | production principle of the curvature deformation of the rare earth magnet material molded object 5 in a sintering process regarding a comparative example. 実施の形態における、焼結過程における希土類磁石材料成形体5の反り変形の防止原理の模式的説明図。The typical explanatory view of the principle of prevention of warp deformation of rare earth magnet material fabrication object 5 in a sintering process in an embodiment. ひとつの底部焼結プレート2aに複数の希土類磁石材料成形体5を同じ平面内に配置する場合の配置説明図。Arrangement explanatory drawing in the case of arranging a plurality of rare earth magnet material moldings 5 in the same plane on one bottom sintered plate 2a. 希土類磁石材料成形体5が瓦状である場合の積載形態1の分解斜視図。The exploded perspective view of the loading form 1 in case the rare earth magnet material molded object 5 is tile shape. 希土類磁石材料成形体5の上面にメッシュ6を設ける場合の積載形態1の分解斜視図。The exploded perspective view of the loading form 1 in the case of providing the mesh 6 on the upper surface of the rare earth magnet material molded body 5. 同場合の積載形態1の断面図。Sectional drawing of the loading form 1 in the same case. 従来例に関し、平板状の成形体を多段積みして焼結ケース内へ配置する場合の斜視図(但し蓋は分離して示される)。FIG. 7 is a perspective view in a case where flat plate-shaped molded bodies are stacked in a multistage manner and arranged in a sintered case (however, the lid is shown separately).

以下、図面を参照しながら本発明の好適な実施の形態を詳述する。なお、各図面に示される同一または同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。また、実施の形態は発明を限定するものではなく例示であり、実施の形態に記述されるすべての特徴やその組み合わせは必ずしも発明の本質的なものであるとは限らない。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent component, member, etc. which are shown by each drawing, and the overlapping description is abbreviate | omitted suitably. In addition, the embodiments do not limit the invention but are exemplifications, and all features and combinations thereof described in the embodiments are not necessarily essential to the invention.

図1は、本発明の実施の形態に係る希土類磁石材料成形体の積載形態1の分解斜視図である。図2は、積載形態1の断面図である。この積載形態1を不図示の焼結ケースに収納して希土類磁石材料成形体5を焼結炉内で焼結する。焼結ケースは図9に示した従来のものと同じでよく、例えば上部が開口した焼結ケース本体と蓋とからなる。   FIG. 1 is an exploded perspective view of a stacking form 1 of rare earth magnet material molded bodies according to an embodiment of the present invention. FIG. 2 is a cross-sectional view of the loading form 1. The loading form 1 is housed in a sintering case (not shown), and the rare earth magnet material molded body 5 is sintered in a sintering furnace. The sintered case may be the same as the conventional case shown in FIG. 9, and is composed of, for example, a sintered case main body with an upper part opened and a lid.

積載形態1は、底部焼結プレート2aと、上部焼結プレート2bと、Moメッシュ3(網板)と、後述の上方空間Cbを形成するためのスペーサ4と、希土類磁石材料成形体5とを備える。底部焼結プレート2a及び上部焼結プレート2bは例えばMo板とする。希土類磁石材料成形体5は、例えばR−Fe−B系(RはYを含む希土類元素)の希土類磁石材料からなり、例えば概略5mm以内の厚さの薄物平板形状である。スペーサ4としては、希土類と反応しにくい及び熱膨張が少ない材料、例えばSUS材(ステンレス鋼)やMo、カーボンなどを使用できる。   The loading form 1 includes a bottom sintered plate 2a, an upper sintered plate 2b, a Mo mesh 3 (net plate), a spacer 4 for forming an upper space Cb described later, and a rare earth magnet material molded body 5. Prepare. The bottom sintered plate 2a and the upper sintered plate 2b are, for example, Mo plates. The rare earth magnet material molded body 5 is made of, for example, an R—Fe—B based (R is a rare earth element including Y) rare earth magnet material, and has a thin plate shape with a thickness of approximately 5 mm or less, for example. As the spacer 4, a material that hardly reacts with a rare earth and has a small thermal expansion, such as a SUS material (stainless steel), Mo, or carbon can be used.

Moメッシュ3は、スペーサ4の内側において底部焼結プレート2a上に載置される。希土類磁石材料成形体5はMoメッシュ3上に載置される。Moメッシュ3により、希土類磁石材料成形体5の下方空間Ca(希土類磁石材料成形体5の下面と底部焼結プレート2aとの間の空間)が設けられる。上部焼結プレート2bは、スペーサ4の上部開口を閉じるようにスペーサ4上に配置され、希土類磁石材料成形体5の上方を空間を挟んで覆う。換言すれば、スペーサ4は、希土類磁石材料成形体5の上方空間Cb(希土類磁石材料成形体5の上面と上部焼結プレート2bの下面との間の空間)が確保される高さ寸法である。希土類磁石材料成形体5の上方空間Cbの高さ(希土類磁石材料成形体5の上面と上部焼結プレート2bの下面との間の距離)は例えば0<Cb≦3mmとする。   The Mo mesh 3 is placed on the bottom sintered plate 2 a inside the spacer 4. The rare earth magnet material molded body 5 is placed on the Mo mesh 3. The Mo mesh 3 provides a lower space Ca (a space between the lower surface of the rare earth magnet material molded body 5 and the bottom sintered plate 2a) of the rare earth magnet material molded body 5. The upper sintered plate 2b is disposed on the spacer 4 so as to close the upper opening of the spacer 4, and covers the upper portion of the rare earth magnet material molded body 5 with a space in between. In other words, the spacer 4 has a height dimension that ensures an upper space Cb of the rare earth magnet material molded body 5 (a space between the upper surface of the rare earth magnet material molded body 5 and the lower surface of the upper sintered plate 2b). . The height of the upper space Cb of the rare earth magnet material molded body 5 (distance between the upper surface of the rare earth magnet material molded body 5 and the lower surface of the upper sintered plate 2b) is, for example, 0 <Cb ≦ 3 mm.

積層形態1を用いた焼結の際には、積載形態1を複数層積み重ね、焼結ケース(不図示)に収納して50kPa〜1×10-3Paの減圧ないし真空雰囲気下で焼結する。焼結は例えば800℃乃至1200℃の焼結温度にて行う。なお、0<Cbの理由は、希土類磁石材料成形体5と上部焼結プレート2bが接触した状態で積載形態1を複数層積み上げたときに、上層の希土類磁石材料成形体5の重さにより下層の希土類磁石材料成形体5ほど大きな荷重がかかり、層ごとに異なる荷重状態での焼結となることを防ぐためである。積載形態1を複数層積み重ねるとき、ある層の上部焼結プレート2bが一つ上の層の底部焼結プレート2aを兼ねてもよい。 When sintering using the laminated form 1, a plurality of stacked forms 1 are stacked, housed in a sintering case (not shown), and sintered in a reduced pressure or vacuum atmosphere of 50 kPa to 1 × 10 −3 Pa. . Sintering is performed at a sintering temperature of 800 ° C. to 1200 ° C., for example. The reason for 0 <Cb is that when the stacked form 1 is stacked in a state where the rare earth magnet material molded body 5 and the upper sintered plate 2b are in contact with each other, the weight of the upper rare earth magnet material molded body 5 is reduced. This is to prevent the rare earth magnet material molded body 5 from being subjected to a larger load and sintering under a different load state for each layer. When stacking multiple layers of the loading form 1, the upper sintered plate 2b of a certain layer may also serve as the bottom sintered plate 2a of the upper layer.

図3は、比較例に関し、焼結過程における希土類磁石材料成形体5の反り変形の発生原理の模式的説明図である。ここでは、Rがネオジム(Nd)である場合を例に説明する。この比較例は、上述の上部焼結プレート2b及びMoメッシュ3を設けずに希土類磁石材料成形体5を焼結した場合に相当する。希土類焼結磁石の焼結過程において希土類が800℃以上の温度で液相化し焼結される過程で希土類が気化蒸発する。成形体の組成の一部の希土類が気化蒸発すると、焼結時に成形体内部に疎密差が発生し、それが希土類磁石材料成形体5に反りや変形を発生させる原因となる。即ち密の部分は焼結が促進してその体積が縮小するが、疎の部分は焼結が促進せず体積変化は小さい。ひとつの物質の中で体積縮小部位と変化の少ない部位が共存し、反りや変形の発生に繋がる。   FIG. 3 is a schematic explanatory view of the principle of occurrence of warp deformation of the rare earth magnet material molded body 5 during the sintering process, regarding the comparative example. Here, a case where R is neodymium (Nd) will be described as an example. This comparative example corresponds to a case where the rare earth magnet material molded body 5 is sintered without providing the upper sintered plate 2b and the Mo mesh 3 described above. In the process of sintering the rare earth sintered magnet, the rare earth vaporizes and evaporates in the process where the rare earth is liquid phased and sintered at a temperature of 800 ° C. or higher. When a part of the rare earth in the composition of the compact is vaporized and evaporated, a density difference occurs inside the compact during sintering, which causes warpage and deformation of the rare earth magnet material compact 5. That is, sintering is promoted in the dense part and the volume thereof is reduced, but the sparse part is not promoted in sintering and the volume change is small. Within a single substance, a volume-reduced part and a part with little change coexist, leading to the occurrence of warping and deformation.

図4は、本実施の形態における、焼結過程における希土類磁石材料成形体5の反り変形の防止原理の模式的説明図である。本実施の形態では、底部焼結プレート2aと上部焼結プレート2bで略式に囲んだ内部に希土類磁石材料成形体5を配置しているため、800℃以上で液相化した希土類磁石材料成形体5の組成、特にネオジム(Nd)が表層に染み出て、気化蒸発したネオジム(Nd)が希土類磁石材料成形体5の表面に接する空間に留まる。このため、前記空間がネオジム(Nd)等の気化雰囲気で飽和状態となれば、更なるネオジム(Nd)の気化が無くなる。すなわち、気化するネオジム(Nd)の総量が図3に示した比較例と比較して少なくなる。また、上部焼結プレート2bと希土類磁石材料成形体5の間に所定の空間(0<Cb≦3mm)を設け、かつ希土類磁石材料成形体5の下方にメッシュ3を設置して希土類材料成形体5と下部焼結プレートの間に下部空間Caが設けたことにより、希土類磁石材料成形体5の上面の気化蒸発は少なくなる一方で下面の気化蒸発は多くなり、上面と下面の双方からほぼ同量のネオジム(Nd)が気化するため、希土類磁石材料成形体5の上部と下部(表と裏)の疎密差が低減される。したがって、上部焼結プレート2b及びMoメッシュ3を設けない場合(図3)と比較して焼結過程における希土類磁石材料成形体5の反り変形を小さくすることができる。また、反り変形を小さくするために焼結炉等の装置構成を複雑化する必要もない。このように、本実施の形態では、焼結の過程で希土類磁石材料成形体5の周囲にネオジム(Nd)等の気化雰囲気を作り、希土類磁石材料成形体5の組織内に疎密を発生させないようにすることで、希土類磁石材料成形体5の反り変形を抑制して焼結できる。   FIG. 4 is a schematic explanatory diagram of the principle of preventing warp deformation of the rare earth magnet material molded body 5 during the sintering process in the present embodiment. In the present embodiment, since the rare earth magnet material molded body 5 is disposed inside the bottom sintered plate 2a and the upper sintered plate 2b, the rare earth magnet material molded body liquidized at 800 ° C. or higher. 5, especially neodymium (Nd) oozes out to the surface layer, and the vaporized and evaporated neodymium (Nd) stays in the space in contact with the surface of the rare earth magnet material molded body 5. For this reason, if the space is saturated in a vaporizing atmosphere such as neodymium (Nd), further vaporization of neodymium (Nd) is eliminated. That is, the total amount of neodymium (Nd) to be vaporized is smaller than that in the comparative example shown in FIG. Further, a predetermined space (0 <Cb ≦ 3 mm) is provided between the upper sintered plate 2b and the rare earth magnet material molded body 5, and the mesh 3 is installed below the rare earth magnet material molded body 5, thereby forming the rare earth material molded body. Since the lower space Ca is provided between the lower sintered plate 5 and the lower sintered plate, the evaporation of evaporation on the upper surface of the rare earth magnet material molded body 5 is reduced while the evaporation of evaporation on the lower surface is increased. Since the amount of neodymium (Nd) is vaporized, the density difference between the upper part and the lower part (front and back) of the rare earth magnet material molded body 5 is reduced. Therefore, the warp deformation of the rare earth magnet material molded body 5 during the sintering process can be reduced as compared with the case where the upper sintered plate 2b and the Mo mesh 3 are not provided (FIG. 3). Further, it is not necessary to complicate the apparatus configuration such as a sintering furnace in order to reduce warping deformation. As described above, in the present embodiment, a vaporizing atmosphere such as neodymium (Nd) is created around the rare earth magnet material molded body 5 during the sintering process so as not to cause density in the structure of the rare earth magnet material molded body 5. By doing so, warp deformation of the rare earth magnet material molded body 5 can be suppressed and sintered.

なお、上記の説明ではひとつの底部焼結プレート2aに焼結対象の希土類磁石材料成形体5がひとつである例を示しているが、これに限定されない。ひとつの底部焼結プレート2a上に複数の希土類磁石材料成形体5が同じ平面内に配置されてもよい(図5参照)。   In the above description, an example is shown in which one rare-earth magnet material molded body 5 to be sintered is provided on one bottom sintered plate 2a, but the present invention is not limited to this. A plurality of rare earth magnet material molded bodies 5 may be arranged on the same plane on one bottom sintered plate 2a (see FIG. 5).

Nd−Fe−B系希土類磁石材料からなる3mm厚の薄物平板形状の希土類磁石材料成形体5(長さ60×幅30mm)を準備し、底部焼結プレート2a(Mo板)上にMoメッシュ3を敷板として配置してその上に希土類磁石材料成形体5を置くことにより下方空間Caを作成した。Moメッシュ3は#24、線形0.35mmのものを使用した。更にスペーサ4を用いて成形体の上方空間Cbが0.2mmになるように上部焼結プレート2b(Mo板)で覆いを作成した。底部焼結プレート2a及び上部焼結プレート2bはMo板を使用した。この積載形態1を複数層積み上げ(ここでは1段あたり18枚で6段、計108枚の成形体)、焼結ケースに収納して焼結し、得られた焼結磁石の反り変形量を測定して評価した。反り変形量は、0.08mm〜0.15mmであった。   A 3 mm-thick thin plate-shaped rare earth magnet material molded body 5 (length 60 × width 30 mm) made of Nd—Fe—B rare earth magnet material is prepared, and Mo mesh 3 is formed on the bottom sintered plate 2a (Mo plate). The lower space Ca was created by placing the rare earth magnet material molded body 5 thereon as a base plate. The Mo mesh 3 used was # 24, linear 0.35 mm. Further, a cover was formed with the upper sintered plate 2b (Mo plate) using the spacer 4 so that the upper space Cb of the molded body was 0.2 mm. Mo plates were used for the bottom sintered plate 2a and the upper sintered plate 2b. This stacking form 1 is stacked in multiple layers (here, 18 sheets per stage, 6 stages, a total of 108 molded bodies), housed in a sintering case and sintered, and the amount of warping deformation of the obtained sintered magnet is determined. Measured and evaluated. The amount of warp deformation was 0.08 mm to 0.15 mm.

上方空間Cbを3mmに変更した他は実施例1と同様に焼結磁石を作製した。反り変形量は、0.08mm〜0.15mmであった。   A sintered magnet was produced in the same manner as in Example 1 except that the upper space Cb was changed to 3 mm. The amount of warp deformation was 0.08 mm to 0.15 mm.

Nd−Fe−B系希土類磁石材料からなる1mm厚の薄物平板形状の希土類磁石材料成形体5(長さ50×幅10mm)を準備し、成形体の数を1段あたり8枚で2段、計16枚とした他は実施例1と同様にして焼結磁石を作製した(上方空間Cbを0.2mmにするためにスペーサ4の高さは実施例1より低くなる)。反り変形量は、0.05mm未満であった。   A 1 mm-thick thin plate-shaped rare earth magnet material molded body 5 (length 50 × width 10 mm) made of Nd—Fe—B rare earth magnet material is prepared, and the number of molded bodies is 8 in 2 stages, Sintered magnets were produced in the same manner as in Example 1 except that the total number was 16 (the height of the spacer 4 is lower than that in Example 1 in order to make the upper space Cb 0.2 mm). The amount of warpage deformation was less than 0.05 mm.

(比較例1)
上方空間を開放して(上部焼結プレート2b無し)、成形体を同一面内の3枚とした他は実施例1と同様に作製した。このときの成形体の上面と焼結ケースの蓋との距離は約5cmであった。反り変形量は、0.20〜0.40mmであった。
(Comparative Example 1)
It was produced in the same manner as in Example 1 except that the upper space was opened (without the upper sintered plate 2b) and the number of formed bodies was three in the same plane. At this time, the distance between the upper surface of the molded body and the lid of the sintered case was about 5 cm. The amount of warp deformation was 0.20 to 0.40 mm.

(比較例2)
Nd−Fe−B系希土類磁石材料からなる3mm厚の薄物平板形状の希土類磁石材料成形体(長さ60×30mm)を準備し、従来技術の製造法の段積み方式(上部焼結プレート2b及びMoメッシュ3無し)で焼結した。具体的には、焼結プレート上に付着の防止の敷粉を散布して、成形体を1段あたり24枚で4段積みした。その際、成形体同士が接する面にも、付着の防止の敷粉を散布した。焼結プレートはMo板を使用した。この積載形態を焼結ケースに収納(このときの最上段の成形体の上面と焼結ケースの蓋との距離は約2cm)して焼結し、得られた焼結磁石の反り変形量を測定して評価した。反り変形量は、0.15〜0.5mmであった。
(Comparative Example 2)
A 3 mm-thick thin plate-shaped rare earth magnet material molded body (length 60 × 30 mm) made of an Nd—Fe—B rare earth magnet material was prepared, and a stacking method (upper sintered plate 2b and Sintered with no Mo mesh 3). Specifically, spread powder for preventing adhesion was sprayed on the sintered plate, and the molded bodies were stacked in four stages at 24 sheets per stage. At that time, a covering powder for preventing adhesion was also sprayed on the surfaces where the compacts were in contact with each other. A Mo plate was used as the sintered plate. This loaded form is stored in a sintered case (the distance between the upper surface of the uppermost molded body and the lid of the sintered case is about 2 cm) and sintered, and the amount of warp deformation of the obtained sintered magnet is determined. Measured and evaluated. The amount of warp deformation was 0.15 to 0.5 mm.

本発明の実施例1,2は比較例1に対して約60%、比較例2に対して約45〜70%の反り抑制効果をあげることができ、焼結後の研磨加工量を削減することができ、材料ロスが低減し、コストダウンに繋がることとなる。また、実施例3から明らかなように、1mmの薄物の成形体の場合も反り変形量が小さく、同様の効果を得られる。   Examples 1 and 2 of the present invention can increase the warpage suppressing effect by about 60% compared to Comparative Example 1 and about 45-70% compared to Comparative Example 2, and reduce the amount of polishing after sintering. Therefore, material loss is reduced, leading to cost reduction. As is clear from Example 3, the amount of warpage deformation is small in the case of a 1 mm thin molded body, and the same effect can be obtained.

以上、実施の形態を例に本発明を説明したが、実施の形態の各構成要素や各処理プロセスには請求項に記載の範囲で種々の変形例が可能であることは当業者に理解されるところである。以下、変形例について触れる。   The present invention has been described above by taking the embodiment as an example, but it will be understood by those skilled in the art that various modifications can be made to each component and each processing process of the embodiment within the scope of the claims. It is a place. Hereinafter, modifications will be described.

希土類磁石材料成形体5は、薄物平板形状のみならず、瓦状その他の形状であってもよい。図6は、希土類磁石材料成形体5が瓦状である場合の積載形態1の分解斜視図である。本図に示す積層形態1は、図1に示したものと比較して、希土類磁石材料成形体5の湾曲形状に合わせて底部焼結プレート2aの上面及びMoメッシュ3が湾曲し、スペーサ4が底部焼結プレート2aの上面のうち湾曲していない平面部分に載置されている点で相違し、その他の点で一致する。   The rare earth magnet material molded body 5 may have a tile shape or other shapes as well as a thin flat plate shape. FIG. 6 is an exploded perspective view of the stacking form 1 when the rare earth magnet material molded body 5 has a tile shape. In the laminated form 1 shown in this figure, the upper surface of the bottom sintered plate 2a and the Mo mesh 3 are curved in accordance with the curved shape of the rare earth magnet material molded body 5, and the spacer 4 is compared with that shown in FIG. It differs in that it is placed on a flat surface portion of the upper surface of the bottom sintered plate 2a that is not curved, and is identical in other points.

希土類磁石材料成形体5は、Nd−Fe−B系以外のR−Fe−B系、あるいはR−Fe−B系以外の希土類磁石材料であってもよい。   The rare earth magnet material molded body 5 may be an R—Fe—B system other than the Nd—Fe—B system, or a rare earth magnet material other than the R—Fe—B system.

Moメッシュ3に替えて、希土類と反応しにくい他の材料、例えばSUS材又はカーボンからなるメッシュを用いてもよい。   Instead of the Mo mesh 3, another material that hardly reacts with the rare earth, for example, a mesh made of SUS material or carbon may be used.

スペーサ4は一体の形態を成す形状としてもよいし、円柱等の柱形状としてもよい。スペーサ4は底部焼結プレート2a上に直接配置されてもよいし、Moメッシュ3を挟んで底部焼結プレート2a上に配置されてもよい。また、底部焼結プレート2aとスペーサ4とを一体としてもよい。   The spacer 4 may have an integral shape, or may have a columnar shape such as a cylinder. The spacer 4 may be disposed directly on the bottom sintered plate 2a, or may be disposed on the bottom sintered plate 2a with the Mo mesh 3 interposed therebetween. Further, the bottom sintered plate 2a and the spacer 4 may be integrated.

図7及び図8に示すように、積載形態1において、希土類磁石材料成形体5の上面にMoやSUS材、又はカーボンからなるメッシュ6を設けてもよい。この場合、希土類磁石材料成形体5の上面と下面の希土類等の気化蒸発の条件がより近づき、焼結時の上面と下面からの気化蒸発量の差が更に小さくなり、焼結による希土類磁石材料成形体5の反り変形防止に有利である。   As shown in FIGS. 7 and 8, in the stacking mode 1, a mesh 6 made of Mo, SUS, or carbon may be provided on the upper surface of the rare earth magnet material molded body 5. In this case, the conditions for vaporization and evaporation of the rare earth and the like on the upper surface and the lower surface of the rare earth magnet material molded body 5 are closer, and the difference in the amount of vaporization evaporation from the upper and lower surfaces during sintering is further reduced. This is advantageous for preventing warpage deformation of the molded body 5.

1 積載形態
2a 底部焼結プレート
2b 上部焼結プレート
3 Moメッシュ
4 スペーサ
5 希土類磁石材料成形体
Ca 下方空間
Cb 上方空間
1 Loading Form 2a Bottom Sintered Plate 2b Upper Sintered Plate 3 Mo Mesh 4 Spacer 5 Rare Earth Magnet Material Molded Body Ca Lower Space Cb Upper Space

Claims (9)

底部焼結プレートと、前記底部焼結プレート上に載置されたメッシュと、前記メッシュ上に載置された希土類磁石材料成形体と、前記底部焼結プレート上に配置されたスペーサと、前記スペーサに支持されて前記希土類磁石材料成形体の上方を空間を挟んで覆う上部焼結プレートとを備える積載形態を用いて、前記希土類磁石材料成形体を焼結する工程を有する、希土類焼結磁石の製造方法。   A bottom sintered plate, a mesh placed on the bottom sintered plate, a rare earth magnet material molded body placed on the mesh, a spacer disposed on the bottom sintered plate, and the spacer A rare earth sintered magnet having a step of sintering the rare earth magnet material molded body using a loading form including an upper sintered plate that is supported by and covers an upper portion of the rare earth magnet material molded body with a space interposed therebetween. Production method. 前記希土類磁石材料成形体の上面と前記上部焼結プレートの下面との距離が3mm以下である請求項1に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1, wherein the distance between the upper surface of the rare earth magnet material compact and the lower surface of the upper sintered plate is 3 mm or less. 前記メッシュによって、前記希土類磁石材料成形体の下面と前記底部焼結プレートの上面との間に空間が設けられている、請求項1又は2に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to claim 1 or 2, wherein a space is provided between the lower surface of the rare earth magnet material molded body and the upper surface of the bottom sintered plate by the mesh. 前記希土類磁石材料成形体を800℃乃至1200℃の焼結温度で焼結する請求項1から3のいずれか一項に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 1 to 3, wherein the rare earth magnet material compact is sintered at a sintering temperature of 800 ° C to 1200 ° C. 50kPa以下の減圧ないし真空雰囲気下で前記希土類磁石材料成形体を焼結する請求項1から4のいずれか一項に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 1 to 4, wherein the rare earth magnet material molded body is sintered in a reduced pressure or vacuum atmosphere of 50 kPa or less. 前記積載形態を複数層積み重ね、ある層の上部焼結プレートを一つ上の層の底部焼結プレートとして兼用する、請求項1から5のいずれか一項に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 1 to 5, wherein the stacking form is a stack of a plurality of layers, and an upper sintered plate of a certain layer is also used as a bottom sintered plate of an upper layer. . 前記希土類磁石材料成形体が、R−Fe−B系(RはYを含む希土類元素)希土類磁石材料からなる、請求項1から6のいずれか一項に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 1 to 6, wherein the rare earth magnet material molded body is made of an R-Fe-B-based (R is a rare earth element including Y) rare earth magnet material. 前記希土類磁石材料成形体が薄物の平板形状ないし瓦状である請求項1から7のいずれか一項に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 1 to 7, wherein the rare earth magnet material molded body is a thin flat plate shape or a tile shape. 前記積層形態が前記希土類磁石材料成形体上に載置されたメッシュを備える請求項1から8のいずれか一項に記載の希土類焼結磁石の製造方法。   The method for producing a rare earth sintered magnet according to any one of claims 1 to 8, wherein the laminated form includes a mesh placed on the rare earth magnet material molded body.
JP2012060628A 2012-03-16 2012-03-16 Manufacturing method of rare earth sintered magnet Active JP5888503B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012060628A JP5888503B2 (en) 2012-03-16 2012-03-16 Manufacturing method of rare earth sintered magnet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012060628A JP5888503B2 (en) 2012-03-16 2012-03-16 Manufacturing method of rare earth sintered magnet

Publications (2)

Publication Number Publication Date
JP2013194260A true JP2013194260A (en) 2013-09-30
JP5888503B2 JP5888503B2 (en) 2016-03-22

Family

ID=49393589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012060628A Active JP5888503B2 (en) 2012-03-16 2012-03-16 Manufacturing method of rare earth sintered magnet

Country Status (1)

Country Link
JP (1) JP5888503B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102451909A (en) * 2010-10-20 2012-05-16 宁波科宁达工业有限公司 Method for sintering and tempering sintered neodymium-iron-boron permanent-magnet material
JP2021015941A (en) * 2019-07-16 2021-02-12 株式会社アライドマテリアル Bottom board

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760180A (en) * 1980-09-30 1982-04-10 Kyoto Ceramic Ceramic baking jig
JPS59166604A (en) * 1983-03-12 1984-09-20 Tokyo Tungsten Co Ltd Baking jig
JPS60135597U (en) * 1984-02-17 1985-09-09 住友特殊金属株式会社 Rare earth magnet heat treatment base plate
JPH02137208A (en) * 1988-11-17 1990-05-25 Kubota Ltd Method of heat treating permanent magnet containing rare earth element
JP2002025842A (en) * 2000-05-02 2002-01-25 Sumitomo Special Metals Co Ltd Method for manufacturing rare-earth sintered magnet
JP2005183810A (en) * 2003-12-22 2005-07-07 Tdk Corp Method for manufacturing rare earth sintered magnet
JP2007220824A (en) * 2006-02-15 2007-08-30 Tdk Corp Sintering tool of rare earth permanent magnet and process for producing rare earth permanent magnet
JP2007239032A (en) * 2006-03-09 2007-09-20 Tdk Corp Sintering vessel and method for producing rare earth magnet
JP2009135393A (en) * 2007-10-31 2009-06-18 Ulvac Japan Ltd Method for manufacturing permanent magnet

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5760180A (en) * 1980-09-30 1982-04-10 Kyoto Ceramic Ceramic baking jig
JPS59166604A (en) * 1983-03-12 1984-09-20 Tokyo Tungsten Co Ltd Baking jig
JPS60135597U (en) * 1984-02-17 1985-09-09 住友特殊金属株式会社 Rare earth magnet heat treatment base plate
JPH02137208A (en) * 1988-11-17 1990-05-25 Kubota Ltd Method of heat treating permanent magnet containing rare earth element
JP2002025842A (en) * 2000-05-02 2002-01-25 Sumitomo Special Metals Co Ltd Method for manufacturing rare-earth sintered magnet
JP2005183810A (en) * 2003-12-22 2005-07-07 Tdk Corp Method for manufacturing rare earth sintered magnet
JP2007220824A (en) * 2006-02-15 2007-08-30 Tdk Corp Sintering tool of rare earth permanent magnet and process for producing rare earth permanent magnet
JP2007239032A (en) * 2006-03-09 2007-09-20 Tdk Corp Sintering vessel and method for producing rare earth magnet
JP2009135393A (en) * 2007-10-31 2009-06-18 Ulvac Japan Ltd Method for manufacturing permanent magnet

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102451909A (en) * 2010-10-20 2012-05-16 宁波科宁达工业有限公司 Method for sintering and tempering sintered neodymium-iron-boron permanent-magnet material
CN102451909B (en) * 2010-10-20 2015-11-25 宁波科宁达工业有限公司 A kind of sintering of sintered Nd-Fe-B permanent magnetic material and tempering method
JP2021015941A (en) * 2019-07-16 2021-02-12 株式会社アライドマテリアル Bottom board

Also Published As

Publication number Publication date
JP5888503B2 (en) 2016-03-22

Similar Documents

Publication Publication Date Title
US8375891B2 (en) Vacuum vapor processing apparatus
CN103140902B (en) The manufacture method of R-T-B class sintered magnet
JP6248925B2 (en) Method for producing RTB-based sintered magnet
JP6084718B2 (en) Tungsten sintered sputtering target and tungsten film formed using the target
JP5888503B2 (en) Manufacturing method of rare earth sintered magnet
EP3417471B1 (en) Non-porous cathode and sputter ion vacuum pump system containing the same
JP2007305878A (en) Permanent magnet and manufacturing method therefor
JP5818137B2 (en) Method for producing RTB-based sintered magnet
TW200849294A (en) Permanent magnet and method for producing permanent magnet
JP2009200179A (en) Manufacturing method of sintered compact
JP2002025842A (en) Method for manufacturing rare-earth sintered magnet
JP5117219B2 (en) Method for manufacturing permanent magnet
JP4600690B2 (en) Manufacturing method of rare earth sintered magnet
JP2013197558A (en) Method of manufacturing rare earth sintered magnet
JP6848464B2 (en) Mold for manufacturing sintered magnets and method for manufacturing sintered magnets using the mold
CN107076133A (en) Getter pumping system
JP5871172B2 (en) Method for producing RTB-based sintered magnet
JP4600689B2 (en) Manufacturing method of rare earth sintered magnet
JP7438812B2 (en) Oxidation-resistant alloy and method for producing oxidation-resistant alloy
JP2008071904A (en) Permanent magnet and manufacturing method of permanent magnet
JP2014135441A (en) Method for manufacturing permanent magnet
JP2008248265A (en) Method for producing rare earth sintered magnet
TW201736020A (en) Sintering container of NdFeB magnet and sintering method thereof
JP6669047B2 (en) Rare earth magnet manufacturing method
JP4208073B2 (en) Housing structure for sintering and method for producing rare earth sintered magnet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151028

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R150 Certificate of patent or registration of utility model

Ref document number: 5888503

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150