JP2013194137A - Prepreg including polyphenylene ether particle - Google Patents

Prepreg including polyphenylene ether particle Download PDF

Info

Publication number
JP2013194137A
JP2013194137A JP2012062728A JP2012062728A JP2013194137A JP 2013194137 A JP2013194137 A JP 2013194137A JP 2012062728 A JP2012062728 A JP 2012062728A JP 2012062728 A JP2012062728 A JP 2012062728A JP 2013194137 A JP2013194137 A JP 2013194137A
Authority
JP
Japan
Prior art keywords
ppe
mass
dispersion
particles
resin composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012062728A
Other languages
Japanese (ja)
Other versions
JP6092520B2 (en
Inventor
Masao Endo
正朗 遠藤
Takamitsu Utsumi
貴光 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2012062728A priority Critical patent/JP6092520B2/en
Publication of JP2013194137A publication Critical patent/JP2013194137A/en
Application granted granted Critical
Publication of JP6092520B2 publication Critical patent/JP6092520B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a dispersion liquid containing a resin composition including PPE particles, which gives low dielectric constant and dielectric loss tangent which polyphenylene ether (PPE) originally has, and excellent heat resistance and adhesiveness; a prepreg manufactured by using the dispersion liquid; and a printed wiring board manufactured from the prepreg.SOLUTION: In a dispersion liquid containing a resin composition including PPE particles and a solvent, (1) PPE particles have such a size that the major axis is ≤30 μm, (2) ≥60% of the total particle number of the PPE particles has such a size that the major axis is ≥3 μm and ≤20 μm, (3) the PPE particles include ≥70 mass% PPE, and (4) the number average molecular weight of PPE included in the PPE particles is 8,000-40,000.

Description

本発明は、電子基板材料として好適な、ポリフェニレンエーテル(以下、PPEともいう。)粒子を含む硬化性樹脂組成物と基材から構成されるプリプレグ、及び該プリプレグを用いて形成される電気、電子部品用の積層板、プリント配線板に関する。   The present invention is a prepreg composed of a curable resin composition containing polyphenylene ether (hereinafter also referred to as PPE) particles and a base material, which is suitable as an electronic substrate material, and electricity and electrons formed using the prepreg. The present invention relates to a laminated board for components and a printed wiring board.

近年、情報ネットワーク技術の著しい進歩、情報ネットワークを活用したサービスの拡大により、電子機器には情報量の大容量化、処理速度の高速化求められている。デジタル信号を大容量かつ高速に伝達するにためには信号の波長を短くするのが有効であり、信号の高周波化が進んでいる。ところが、高周波領域の電気信号は配線回路で減衰されやすいため、伝送特性の良いプリント配線板が必要とされる。
PPEは、誘電率、誘電正接が低く、高周波特性(すなわち誘電特性)に優れるため、高周波数帯を利用する電子機器のプリント配線板用の材料として好適である。
一方、PPEは有機溶剤への溶解性に欠けるため、プリント配線板製造に必要なプリプレグを製造する際、クロロホルムのようなハロゲン系溶剤に溶解させてワニスを製造する、或いは、50℃以上に加熱したトルエン、キシレンなどの芳香族有機溶剤に溶解させてワニスを製造する必要があった。
In recent years, due to remarkable progress in information network technology and expansion of services utilizing information networks, electronic devices are required to have a large amount of information and a high processing speed. In order to transmit a digital signal with a large capacity and high speed, it is effective to shorten the wavelength of the signal, and the frequency of the signal is increasing. However, since an electric signal in a high frequency region is easily attenuated by a wiring circuit, a printed wiring board having good transmission characteristics is required.
PPE has a low dielectric constant and dielectric loss tangent and is excellent in high-frequency characteristics (that is, dielectric characteristics), and therefore is suitable as a material for printed wiring boards of electronic devices that use a high frequency band.
On the other hand, since PPE lacks solubility in organic solvents, when producing prepregs necessary for printed wiring board production, varnish is produced by dissolving in a halogen-based solvent such as chloroform, or heated to 50 ° C or higher. It was necessary to produce the varnish by dissolving it in an aromatic organic solvent such as toluene or xylene.

かかる問題を解決すべく、特許文献1には、PPEを数平均分子量3,000程度に低分子量化し、溶剤への溶解性を高める方法が記載されている。また、特許文献2には、低分子量PPEの末端水酸基を反応性官能基化し、溶剤への溶解性を高めるとともに耐熱性を向上させる技術が報告されている。
また、特許文献3、4には、PPEとスチレンブタジエンコポリマーなどの架橋性樹脂とトリアシルイソシアヌレートなどの架橋助剤を含む樹脂組成物のトルエン樹脂液を、一旦35℃以上に加熱した後冷却し、PPEと架橋性樹脂と架橋助剤を含む樹脂組成物の粒子が分散している不透明な分散液とする方法が記載されている。
さらに、特許文献5には、平均粒径10〜50μmのPPE樹脂粉末をメチルエチルケトン等の溶剤に分散させる方法、特許文献6には、106μm以下のPPE粒子を水系に分散させる方法が記載されている。
In order to solve this problem, Patent Document 1 describes a method of reducing the molecular weight of PPE to about 3,000 and increasing the solubility in a solvent. Patent Document 2 reports a technique for converting a terminal hydroxyl group of a low molecular weight PPE into a reactive functional group to improve solubility in a solvent and improve heat resistance.
In Patent Documents 3 and 4, a toluene resin solution of a resin composition containing a crosslinkable resin such as PPE and a styrene butadiene copolymer and a crosslinking aid such as triacyl isocyanurate is once heated to 35 ° C. or higher and then cooled. In addition, there is described a method of preparing an opaque dispersion in which particles of a resin composition containing PPE, a crosslinkable resin, and a crosslinking aid are dispersed.
Further, Patent Document 5 describes a method of dispersing PPE resin powder having an average particle size of 10 to 50 μm in a solvent such as methyl ethyl ketone, and Patent Document 6 describes a method of dispersing PPE particles of 106 μm or less in an aqueous system. .

特開2003−265777号公報JP 2003-265777 A 特表2009−509312号公報Special table 2009-509912 特開平7−292126号公報JP 7-292126 A 特開平9−290481号公報JP-A-9-290481 特開2008−50526号公報JP 2008-50526 A 特開2003−34731号公報JP 2003-34731 A

しかしながら、特許文献1に記載の低分子量PPEを用い溶剤への溶解性を高める方法は、得られる積層板の耐熱性が低下するという問題、及びPPEの末端水酸基の数が増加するために誘電率及び誘電正接が大きくなるという問題を招来するため、プリント配線板に用いるには十分なものではなかった。
また、特許文献2に記載の低分子量・反応性官能化PPEを用い溶剤への溶解性を高める方法は、低分子量化に伴う耐熱性低下の問題は改善されるものの、末端の水酸基を封止していることに起因すると推測される問題を有していた。すなわち、このようなPPEは、ガラスクロス等の基材又は銅箔等との接着性が十分でなく、積層板の場合の層間の剥離強度、又は該PPEと銅箔等との剥離強度が低い、或いは耐吸水性及びはんだ耐熱性が十分でないという問題があった。
However, the method of increasing the solubility in a solvent using the low molecular weight PPE described in Patent Document 1 has a problem that the heat resistance of the resulting laminate is lowered, and the number of terminal hydroxyl groups of the PPE increases so that the dielectric constant. In addition, since the dielectric loss tangent is increased, it is not sufficient for use in a printed wiring board.
In addition, the method of increasing the solubility in a solvent using the low molecular weight / reactive functionalized PPE described in Patent Document 2 improves the problem of heat resistance reduction due to the low molecular weight, but seals the terminal hydroxyl group. It has a problem that is presumed to be caused by this. That is, such PPE does not have sufficient adhesion to a substrate such as glass cloth or copper foil, and has low peel strength between layers in the case of a laminated plate or peel strength between the PPE and copper foil. Alternatively, there is a problem that water absorption resistance and solder heat resistance are not sufficient.

特許文献3、4に記載の方法は、PPEと架橋性樹脂と架橋助剤を含む樹脂組成物の粒子の分散液が非常に高粘度になるため、基材への塗工に必要な流動性が得られ難い点、基材への含浸に劣る点で、十分ではなかった。実際に、特許文献3の実施例1、実施例2に開示されている方法を忠実にトレースしてみると、分散液はグリース状になり塗工に供すことができないか、塗工できても基材への含浸が悪く基材と樹脂組成物の接着性に劣るものしか得られなかった。この分散液を希釈して光学顕微鏡で観察すると、3μm以下の非常に小さな粒子が密集していた。上述のようにPPEと加工性樹脂と架橋性樹脂とが混在した高濃度、高粘度の条件で温度下降させると、PPEなどの結晶が成長せず、非常に小さな結晶が多く発生し、グリース状になってしまったと考えられる。   In the methods described in Patent Documents 3 and 4, the dispersion of particles of a resin composition containing PPE, a crosslinkable resin, and a crosslinking aid has a very high viscosity. Is not sufficient in that it is difficult to obtain and inferior in impregnation into the substrate. Actually, when the methods disclosed in Example 1 and Example 2 of Patent Document 3 are traced faithfully, the dispersion becomes grease-like and cannot be used for coating, or even if it can be applied. The impregnation to a base material was bad and only what was inferior to the adhesiveness of a base material and a resin composition was obtained. When this dispersion was diluted and observed with an optical microscope, very small particles of 3 μm or less were dense. As described above, when the temperature is lowered under conditions of high concentration and high viscosity in which PPE, processable resin and crosslinkable resin are mixed, crystals such as PPE do not grow, and many very small crystals are generated, resulting in a grease-like state. It is thought that it became.

特許文献5に記載の方法は、PPEを貧溶剤に分散させるため、分散液の分散安定性に欠けPPEが沈降しやすく、均一な塗工性および連続塗工性に欠ける点で十分でなかった。また、ガラスクロスなどの基材に含浸させる際、分散溶剤とPPEの基材への移動速度が大きくことなるため、PPEのみ含浸ロールなどに堆積してしまうという問題も有していた。   The method described in Patent Document 5 is not sufficient in that PPE is dispersed in a poor solvent, so that the dispersion stability of the dispersion lacks, PPE tends to settle, and uniform coatability and continuous coatability are lacking. . In addition, when impregnating a base material such as glass cloth, the moving speed of the dispersion solvent and PPE to the base material is increased, so that only PPE is deposited on the impregnation roll.

特許文献6に記載の方法は、界面活性剤を利用して水系溶媒に安定に分散させているが、PPEの粒子が106μm以下と非常に大きいため、例えば該特許文献6に記載されているTAICを硬化性モノマーとして硬化性樹脂組成物とした際、プリプレグから硬化物複合体を作製する際に、通常の加熱加圧成型条件の過程ではPPEとTAICとを完全に相溶させることができず、得られる基板の均一性に欠けるため、はんだ耐熱性や、ドリル加工性に劣る欠点を有していた。   The method described in Patent Document 6 is stably dispersed in an aqueous solvent using a surfactant. However, since the PPE particles are as large as 106 μm or less, for example, the TAIC described in Patent Document 6 is used. When a curable resin composition is used as a curable monomer, a PPE and TAIC cannot be completely mixed in the process of normal heat and pressure molding conditions when preparing a cured product composite from a prepreg. Since the obtained substrate lacks uniformity, it has disadvantages inferior to solder heat resistance and drilling workability.

このように、PPEが本来有する低い誘電率及び誘電正接を有し、かつ、耐熱性、及び接着性に優れる、常温塗工可能な樹脂分散液は従来技術においては見出されていないのが現状である。従って、PPEを構成成分としつつ上記のような特性を有する常温塗工可能な樹脂分散液が強く望まれていた。   As described above, a resin dispersion having a low dielectric constant and a dielectric loss tangent inherent to PPE, and excellent in heat resistance and adhesiveness, which can be applied at room temperature, has not been found in the prior art. It is. Accordingly, there has been a strong demand for a resin dispersion that can be applied at room temperature and that has the above-described characteristics while using PPE as a constituent component.

前記した状況下、本発明が解決しようとする課題は、PPEが本来有する低い誘電率及び誘電正接と、優れた耐熱性及び接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等の金属箔との剥離強度)とを与える、PPE粒子を含む樹脂組成物を含有する分散液、該分散液を用いて製造されるプリプレグ、及び該プリプレグから製造されるプリント配線板を提供することである。   Under the circumstances described above, the problem to be solved by the present invention is that the low dielectric constant and dielectric loss tangent inherent in PPE, and excellent heat resistance and adhesion (for example, peel strength between layers in a multilayer board, or curable resin composition) A dispersion containing a resin composition containing PPE particles, a prepreg produced using the dispersion, and a prepreg produced from the prepreg. Printed wiring board.

本発明者らは、上記課題を解決すべく鋭意検討し実験を重ねた結果、PPEを溶剤中で結晶化させてPPE粒子とし、そのPPE粒子の粒径、PPE含有割合を特定範囲とすることによって、PPEの膨潤性お、流動性、分散安定性が高められるため、該分散液を含むワニスの常温での塗工が可能となり、更に、得られるプリプレグおよび該プリプレグから加熱加圧成型により製造される基板のPPEを含む硬化性樹脂と基材との接着性が改善されることを見出し、かかる知見に基づき本発明を完成するに至った。
すなわち、本発明は以下の通りのものである。
As a result of intensive studies and repeated experiments to solve the above-mentioned problems, the present inventors crystallized PPE in a solvent to form PPE particles, and set the particle size of the PPE particles and the PPE content ratio within a specific range. Can improve the swellability, fluidity, and dispersion stability of PPE, so that coating of the varnish containing the dispersion can be performed at room temperature, and the prepreg and the prepreg obtained can be manufactured by heat and pressure molding. It has been found that the adhesiveness between the curable resin containing PPE and the base material of the substrate to be improved is improved, and the present invention has been completed based on such knowledge.
That is, the present invention is as follows.

[1]ポリフェニレンエーテル(PPE)粒子を含む樹脂組成物と溶剤とを含む分散液であって、
(1)該PPE粒子は、長径30μm以下の大きさであり、
(2)該PPE粒子の全粒子数の60%以上は、長径3μm以上20μm以下の大きさであり、
(3)該PPE粒子は、PPEを70質量%以上含有し、そして
(4)該PPE粒子に含有されるPPEの数平均分子量は、8,000〜40,000である、
を特徴とする前記分散液。
[1] A dispersion containing a resin composition containing polyphenylene ether (PPE) particles and a solvent,
(1) The PPE particles have a major axis size of 30 μm or less,
(2) 60% or more of the total number of PPE particles is a size of 3 μm to 20 μm in major axis,
(3) The PPE particles contain 70% by mass or more of PPE, and (4) the number average molecular weight of the PPE contained in the PPE particles is 8,000 to 40,000.
Said dispersion.

[2]25℃における前記溶剤へのPPEの溶解度が3質量%以上20質量%以下である、前記[1]に記載のPPE粒子を含む分散液。   [2] A dispersion containing PPE particles according to [1], wherein the solubility of PPE in the solvent at 25 ° C. is 3% by mass or more and 20% by mass or less.

[3]前記分散液が、PPE粒子の他に溶存しているPPEを含み、該PPE粒子(A)と溶存PPE(B)との質量比(A):(B)は、85:15〜30:70である、前記[1]又は[2]に記載の分散液。   [3] The dispersion liquid contains dissolved PPE in addition to the PPE particles, and the mass ratio (A) :( B) of the PPE particles (A) to the dissolved PPE (B) is 85:15 to 15:15. The dispersion according to [1] or [2], wherein the dispersion is 30:70.

[4]前記PPE粒子(A)と溶存PPE(B)との質量比(A):(B)は、80:20〜45:55である、前記[3]に記載の分散液。   [4] The dispersion according to [3], wherein the mass ratio (A) :( B) of the PPE particles (A) to the dissolved PPE (B) is 80:20 to 45:55.

[5]前記溶存PPE(B)の数平均分子量は、5,000〜40,000である、前記[3]又は[4]に記載の分散液。   [5] The dispersion according to [3] or [4], wherein the dissolved PPE (B) has a number average molecular weight of 5,000 to 40,000.

[6]前記樹脂組成物に含まれるPPE成分は、該樹脂組成物を基準として10質量%以上70質量%以下の量である、前記[1]〜[5]のいずれかに記載の分散液。   [6] The dispersion according to any one of [1] to [5], wherein the PPE component contained in the resin composition is in an amount of 10% by mass to 70% by mass based on the resin composition. .

[7]架橋型硬化性樹脂(C)、及び開始剤(D)をさらに含む、前記[1]〜[6]のいずれかに記載の分散液。   [7] The dispersion according to any one of [1] to [6], further including a crosslinkable curable resin (C) and an initiator (D).

[8]架橋型硬化性樹脂(C)が、分子内に2個以上のビニル基を持つモノマーである、前記[7]に記載の分散液。   [8] The dispersion according to [7], wherein the crosslinkable curable resin (C) is a monomer having two or more vinyl groups in the molecule.

[9]架橋型硬化性樹脂(C)が、トリアリルイソシアヌレート(TAIC)である、前記[7]に記載の分散液。   [9] The dispersion according to [7], wherein the crosslinkable curable resin (C) is triallyl isocyanurate (TAIC).

[10]前記[1]〜[9]のいずれかに記載の分散液を含む樹脂ワニス。   [10] A resin varnish containing the dispersion according to any one of [1] to [9].

[11]前記[1]〜[9]のいずれかに記載の分散液を含むワニスを基材に塗布し、次いで該分散液が塗布された基材から溶剤を除去して得られるプリプレグ。   [11] A prepreg obtained by applying a varnish containing the dispersion according to any one of [1] to [9] to a substrate, and then removing the solvent from the substrate to which the dispersion is applied.

[12]前記[10]で得られたプリプレグを構成成分として作製されたプリント配線板。   [12] A printed wiring board produced using the prepreg obtained in [10] as a constituent component.

本発明によれば、PPEを結晶化し、PPEの膨潤性と粒度を適切範囲に制御できるため、ワニス安定性、塗工均一性が良好なPPE粒子を含む樹脂組成物の分散液を提供することができる。更には、PPEの結晶化をPPE含量が高い条件で行いPPEを主成分とする結晶粒子をすることで、該分散液を用いて製造されるプリプレグの樹脂組成分と基材との接着性が良好であり、また優れた耐熱性及び接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等の金属箔との剥離強度)のプリント配線板用基材が取得可能な分散液、該分散液を用いて製造されるプリント配線プリプレグ、及び該プリプレグの硬化物を含むプリント配線板を提供することができる。   According to the present invention, since a PPE can be crystallized and the swelling property and particle size of the PPE can be controlled within an appropriate range, a dispersion of a resin composition containing PPE particles having good varnish stability and coating uniformity is provided. Can do. Furthermore, by crystallization of PPE under conditions with a high PPE content and forming crystal particles mainly composed of PPE, the adhesion between the resin component of the prepreg produced using the dispersion and the substrate can be improved. Good and excellent heat resistance and adhesion (for example, peel strength between layers in a multilayer board, or peel strength between a cured product of a curable resin composition and a metal foil such as copper foil) Dispersions from which materials can be obtained, printed wiring prepregs manufactured using the dispersions, and printed wiring boards including cured products of the prepregs can be provided.

実施例1の方法で得られた抽出物(A)のカーボン核磁気共鳴分光法スペクトル、及び標準物質のカーボン磁気共鳴分光法スペクトル。The carbon nuclear magnetic resonance spectroscopy spectrum of the extract (A) obtained by the method of Example 1 and the carbon magnetic resonance spectroscopy spectrum of the standard substance.

以下、本発明の実施態様を詳細に説明するが、本発明がこれらの態様に限定されることは意図されない。
本発明の一態様は、PPE粒子を含む硬化性樹脂組成物と基材から構成されるプリプレグである。
本態様の硬化性樹脂組成物が含むPPEは、好ましくは、下記一般式(1):

Figure 2013194137
{式中、R1、R2、R3及びR4は、各々独立して、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリール基、置換基を有してもよいアミノ基、ニトロ基又はカルボキシル基を表す。}で表される繰返し構造単位を含む。 Hereinafter, although the embodiment of the present invention is described in detail, it is not intended that the present invention be limited to these embodiments.
One embodiment of the present invention is a prepreg composed of a curable resin composition containing PPE particles and a substrate.
The PPE contained in the curable resin composition of this embodiment is preferably the following general formula (1):
Figure 2013194137
{Wherein R1, R2, R3 and R4 each independently have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent. An aryl group that may be substituted, an amino group that may have a substituent, a nitro group, or a carboxyl group. } Is included.

PPEの具体例としては、例えば、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−エチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−フェニル−1,4−フェニレンエーテル)、ポリ(2,6−ジクロロ−1,4−フェニレンエーテル)等、更に、2,6−ジメチルフェノールと他のフェノール類(例えば、2,3,6−トリメチルフェノール、2−メチル−6−ブチルフェノール等)との共重合体、及び、2,6−ジメチルフェノールとビフェノール類又はビスフェノール類とをカップリングさせて得られるポリフェニレンエーテル共重合体、等が挙げられ、好ましい例は、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)である。
尚、本願明細書中、PPEとは、置換又は非置換のフェニレンエーテル単位構造から構成されるポリマーを意味するが、本発明の作用効果を損なわない範囲で他の共重合成分を含んでもよい。
Specific examples of PPE include poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), and poly (2-methyl-6). -Phenyl-1,4-phenylene ether), poly (2,6-dichloro-1,4-phenylene ether) and the like, and 2,6-dimethylphenol and other phenols (for example, 2,3,6-phenylene ether) And a polyphenylene ether copolymer obtained by coupling 2,6-dimethylphenol and biphenols or bisphenols, and the like. A preferred example is poly (2,6-dimethyl-1,4-phenylene ether).
In the present specification, PPE means a polymer composed of a substituted or unsubstituted phenylene ether unit structure, but may contain other copolymerization components as long as the effects of the present invention are not impaired.

本発明の第一の実地様態において、分散液に含まれるPPE粒子(A)の最大長径は、30μm以下である。PPE粒子(A)の最大長径の好ましい範囲は25μm以下であり、より好ましい範囲は20μm以であり、更に好ましい範囲は17μm以下である。
ここで、PPE粒子(A)の最大長径は、以下の測定によって求められる値とする。すなわち、分散液から溶剤含有量が1質量%以下となるように、該溶剤の沸点以下の温度で溶剤を乾燥除去する。次いで、溶剤が乾燥除去された分散液1.5gに23℃±2℃の質量比95:5のトルエンとメタノールの混合溶剤を20g加える。23℃±2℃の恒温室で、5分毎に激しく振とうしながら、1時間経過させる。次いで、同恒温室内で24時間静置させる。次いで、上澄み液を取り除き、質量比95:5のトルエンとメタノールの混合溶剤を5g加え、再び激しく振とうした後、同恒温室内で24時間静置させる。次いで上澄み液を取り除き、質量比95:5のトルエンとメタノールの混合溶剤を5g加える。均一に分散するように振とうさせた後、分散液を取出し、SEM−EDX測定用の試料台に滴下する。溶剤を揮発させた後に、SEM−EDX観察を行い、炭素、酸素、水素の合計が95%以上の粒子をPPE粒子(A)として、その一次粒子の長径を計測する。一次粒子の内部を通るように直線を引き、直線が一番長くなる時の長さをその一次粒子の長径とする。400個以上の一次粒子の長径を無作為に測定し、その最大値を最大長径とする。
In the first embodiment of the present invention, the maximum major axis of the PPE particles (A) contained in the dispersion is 30 μm or less. A preferable range of the maximum major axis of the PPE particles (A) is 25 μm or less, a more preferable range is 20 μm or less, and a further preferable range is 17 μm or less.
Here, the maximum major axis of the PPE particles (A) is a value determined by the following measurement. That is, the solvent is dried and removed at a temperature not higher than the boiling point of the solvent so that the solvent content is 1% by mass or less from the dispersion. Next, 20 g of a mixed solvent of toluene and methanol having a mass ratio of 95: 5 at 23 ° C. ± 2 ° C. is added to 1.5 g of the dispersion from which the solvent has been removed by drying. Allow 1 hour to elapse while shaking vigorously every 5 minutes in a constant temperature room at 23 ° C. ± 2 ° C. Next, it is allowed to stand for 24 hours in the same constant temperature room. Next, the supernatant is removed, 5 g of a mixed solvent of toluene and methanol having a mass ratio of 95: 5 is added, and the mixture is shaken vigorously again, and then allowed to stand in the same thermostatic chamber for 24 hours. Next, the supernatant is removed, and 5 g of a mixed solvent of toluene and methanol having a mass ratio of 95: 5 is added. After shaking so as to be uniformly dispersed, the dispersion is taken out and dropped onto a sample stage for SEM-EDX measurement. After the solvent is volatilized, SEM-EDX observation is performed, and the major axis of the primary particles is measured with PPE particles (A) having particles with a total of 95% or more of carbon, oxygen, and hydrogen. A straight line is drawn so as to pass through the inside of the primary particle, and the length when the straight line becomes the longest is defined as the major axis of the primary particle. The major axis of 400 or more primary particles is randomly measured, and the maximum value is taken as the maximum major axis.

PPE粒子(A)の最大長径が上述の範囲にあると、分散液の分散安定性が良好なため、該分散液を含むワニスの基材への塗工によりPPE粒子の分布が均一なプリプレグが得られるため好ましい。更に、後述する硬化物複合体として十分な耐熱性を有するものが得られるため好ましい。これは、プリプレグから硬化物複合体を作成する際に、通常の加熱加圧成型条件でPPE粒子(A)を早い段階で溶融させることができるため、PPE粒子(A)成分とPPE粒子(A)以外の硬化性樹脂成分とが均一に混合され、得られる硬化物中のPPE成分の分布を均一にすることができるためであると考えられる。   When the maximum major axis of the PPE particles (A) is in the above-mentioned range, the dispersion stability of the dispersion liquid is good, so that a prepreg having a uniform distribution of PPE particles can be obtained by applying the varnish containing the dispersion liquid to the base material. Since it is obtained, it is preferable. Furthermore, since the thing which has sufficient heat resistance as a hardened | cured material composite body mentioned later is obtained, it is preferable. This is because the PPE particles (A) and the PPE particles (A) can be melted at an early stage under normal heat and pressure molding conditions when preparing a cured product composite from the prepreg. This is considered to be because the distribution of the PPE component in the resulting cured product can be made uniform by uniformly mixing with other curable resin components.

本発明の第一の実地様態において、分散液に含まれるPPE粒子(A)の全粒子数の60%以上は、長径3μm以上20μm以下の大きさである。長径3μm以上20μm以下の大きさ粒子数の割合の好ましい範囲は70%以上100%以下であり、更に好ましい範囲は80%以上100%以下である。ここで、全PPE粒子(A)の数に対する長径3μm以上20μm以下のPPE粒子(A)の数の割合は、以下の測定によって求めた値とする。まず、PPE粒子(A)の最大長径の求め方と同様の方法で、SEM−DEX画像にて400個以上のPPE粒子(A)の長径を無作為に測定する。次いで、3μm以上20μm以下となったPPE粒子(A)の数を求め、測定した全粒子数に対する割合を算出し、全PPE粒子(A)の数に対する長径3μm以上20μm以下のPPE粒子(A)数の割合とする。   In the first embodiment of the present invention, 60% or more of the total number of PPE particles (A) contained in the dispersion liquid has a major axis of 3 μm or more and 20 μm or less. A preferable range of the ratio of the number of particles having a major axis of 3 μm or more and 20 μm or less is 70% or more and 100% or less, and a more preferable range is 80% or more and 100% or less. Here, the ratio of the number of PPE particles (A) having a major axis of 3 μm or more and 20 μm or less to the number of all PPE particles (A) is a value determined by the following measurement. First, the major axis of 400 or more PPE particles (A) is randomly measured on the SEM-DEX image by the same method as the method for obtaining the maximum major axis of the PPE particles (A). Next, the number of PPE particles (A) having a particle diameter of 3 μm or more and 20 μm or less is obtained, the ratio to the total number of particles measured is calculated, and the PPE particles (A) having a major axis of 3 μm or more and 20 μm or less with respect to the number of all PPE particles (A). A percentage of numbers.

60%以上のPPE粒子(A)が長径3μm以上20μm以下の範囲にあると、分散液および分散液と架橋型硬化性樹脂を含むワニスの分散安定性が保たれる範囲で良好な流動性が確保されるので好ましい。更に、後述する硬化物複合体として十分な耐熱性を有するものが得られるため好ましい。これは、プリプレグから硬化物複合体を作成する際に、通常の加熱加圧成型条件でPPE粒子(A)を早い段階で溶融させることができるため、PPE粒子(A)成分とPPE粒子(A)以外の硬化性樹脂成分とが均一に混合され、得られる硬化物中のPPE成分の分布を均一にすることができるためであると考えられる。
長径3μm以上20μm以下の粒子の割合は高い方が好ましく、全ての粒子が前記粒径範囲に入るのが最も好ましい。
When 60% or more of the PPE particles (A) are in the range of 3 μm or more and 20 μm or less in the major axis, good fluidity is obtained as long as the dispersion stability of the dispersion and the varnish containing the dispersion and the crosslinkable curable resin is maintained. It is preferable because it is secured. Furthermore, since the thing which has sufficient heat resistance as a hardened | cured material composite body mentioned later is obtained, it is preferable. This is because the PPE particles (A) and the PPE particles (A) can be melted at an early stage under normal heat and pressure molding conditions when preparing a cured product composite from the prepreg. This is considered to be because the distribution of the PPE component in the resulting cured product can be made uniform by uniformly mixing with other curable resin components.
The ratio of particles having a major axis of 3 μm or more and 20 μm or less is preferably higher, and most preferably all particles fall within the above particle size range.

本発明の第一の実施様態において、分散液に含まれるPPE粒子(A)は、PPEを70質量%以上含有している。PPE粒子(A)中のPPE含有割合の好ましい範囲は75質量%以上であり、更に好ましい範囲は80質量%以上である。ここで、PPE粒子(A)中のPPE含有割合は、以下の測定によって求めた値とする。
分散液から溶剤含有量が1質量%以下となるように、該溶剤の沸点以下の温度で溶剤を乾燥除去する。次いで、溶剤が乾燥除去された分散液1.5gに23℃±3℃の質量比95:5のトルエンとメタノールの混合溶剤を20g加える。23℃±2℃の恒温室で、5分毎に激しく振とうしながら、1時間経過させる。次いで、同恒温室内で24時間静置させる。次いで、上澄み液を取り除き、質量比95:5のトルエンとメタノールの混合溶剤を5g加え、激しく振とうした後、同恒温室内で24時間静置させる。次いで上澄み液を取り除き、質量比95:5のトルエンとメタノールの混合溶剤を5g加える(上述のPPE粒子(A)の最大長径を求めた際と同一の手順)。次いで、溶剤を乾燥して除去した後に、クロロホルム中に展開し、不溶分をろ別して除去し、抽出物を得る(以下、この抽出物を「抽出物(A)」ともいう。)。抽出物(A)中のPPE量をカーボン核磁気共鳴分光法にて定量を行い、PPE粒子(A)中のPPE含有割合とする。
In the first embodiment of the present invention, the PPE particles (A) contained in the dispersion contain 70% by mass or more of PPE. A preferable range of the PPE content ratio in the PPE particles (A) is 75% by mass or more, and a more preferable range is 80% by mass or more. Here, the PPE content ratio in the PPE particles (A) is a value determined by the following measurement.
The solvent is dried and removed from the dispersion at a temperature not higher than the boiling point of the solvent so that the solvent content is 1% by mass or less. Then, 20 g of a mixed solvent of toluene and methanol having a mass ratio of 95: 5 at 23 ° C. ± 3 ° C. is added to 1.5 g of the dispersion from which the solvent has been removed by drying. Allow 1 hour to elapse while shaking vigorously every 5 minutes in a constant temperature room at 23 ° C. ± 2 ° C. Next, it is allowed to stand for 24 hours in the same constant temperature room. Next, the supernatant is removed, 5 g of a mixed solvent of toluene and methanol with a mass ratio of 95: 5 is added, shaken vigorously, and then allowed to stand in the same constant temperature room for 24 hours. Next, the supernatant is removed, and 5 g of a mixed solvent of toluene and methanol having a mass ratio of 95: 5 is added (the same procedure as that for obtaining the maximum major axis of the PPE particles (A) described above). Next, after removing the solvent by drying, it is developed in chloroform, and insolubles are removed by filtration to obtain an extract (hereinafter, this extract is also referred to as “extract (A)”). The amount of PPE in the extract (A) is quantified by carbon nuclear magnetic resonance spectroscopy to obtain the PPE content ratio in the PPE particles (A).

カーボン核磁気共鳴分光法を用いたPPEの定量は、以下の方法で行うことができる。化学シフトの基準としてテトラメチルシランを使用し、そのピークを0ppmとする。PPEのピークとして、16.8、114.4、 132.5、145.4、154.7ppm近傍のピークの強度を合計し、テトラメチルシランのピーク強度との比をXとする。標準物質についてのこの値をX1、及び抽出物(A)についての値をX2とすると、(X2/X1)×100の値を算出することにより抽出物質中におけるPPE含有量を測定することが出来る。ここで、PPE由来の信号は、標準物質と同じ位置のものを用いればよく、上記に限定されるものではない。尚、定量には、数平均分子量15,000〜25,000のポリ(2,6−ジメチル−1,4−フェニレンエーテル)を標準物質として用い、同一の測定サンプル量から得られるピーク強度の比を用いて求める。数平均分子量15,000〜25,000のポリ(2,6−ジメチル−1,4−フェニレンエーテル)としては、例えば、旭化成ケミカルズ(株)製S202Aグレードを用いることができる。
実施例1の方法で得られた抽出物(A)のカーボン核磁気共鳴分光法スペクトル、及び標準物質のカーボン磁気共鳴分光法スペクトルを参考に図1に示す。まず、標準物質のNMRスペクトルから、PPEに由来する16.8、114.4、 132.5、145.4、154.7ppmの各信号強度のテトラメチルシランの信号強度との比の和を、標準物質の信号強度値(1)とする。次いで、実施例1のNMRスペクトルにおいて、標準物資と同じ信号位置の16.8、114.4、 132.5、145.4、154.7ppmの各信号強度のテトラメチルシランの信号強度との比の和を、実施例1の信号強度値(X2)とする。X1とX2の値を用い以下の式:
PPE粒子中のPPE含有割合=(X2/X1)×100=83%
によりPPE粒子(A)中のPPE含有割合を求めた。
Quantification of PPE using carbon nuclear magnetic resonance spectroscopy can be performed by the following method. Tetramethylsilane is used as a standard for chemical shift, and its peak is 0 ppm. As the peak of PPE, the intensities of peaks near 16.8, 114.4, 132.5, 145.4, and 154.7 ppm are totaled, and the ratio to the peak intensity of tetramethylsilane is X. If this value for the standard substance is X1, and the value for the extract (A) is X2, the PPE content in the extract can be measured by calculating the value of (X2 / X1) × 100. . Here, the signal derived from the PPE may be used at the same position as the standard material, and is not limited to the above. For quantitative determination, the ratio of peak intensities obtained from the same measurement sample amount using poly (2,6-dimethyl-1,4-phenylene ether) having a number average molecular weight of 15,000 to 25,000 as a standard substance. Find using. As poly (2,6-dimethyl-1,4-phenylene ether) having a number average molecular weight of 15,000 to 25,000, for example, S202A grade manufactured by Asahi Kasei Chemicals Corporation can be used.
FIG. 1 shows the carbon nuclear magnetic resonance spectroscopy spectrum of the extract (A) obtained by the method of Example 1 and the carbon magnetic resonance spectroscopy spectrum of the standard substance for reference. First, from the NMR spectrum of the standard substance, the sum of the ratios of the signal strengths of 16.8, 114.4, 132.5, 145.4, 154.7 ppm derived from PPE and the signal strength of tetramethylsilane, The signal intensity value (1) of the standard substance is used. Next, in the NMR spectrum of Example 1, the ratio of the signal intensity of 16.8, 114.4, 132.5, 145.4, and 154.7 ppm at the same signal position as that of the standard material to the signal intensity of tetramethylsilane. Is the signal intensity value (X2) of the first embodiment. Using the values of X1 and X2, the following formula:
PPE content ratio in PPE particles = (X2 / X1) × 100 = 83%
Was used to determine the PPE content in the PPE particles (A).

PPE粒子(A)に含まれるPPE成分が上述の範囲であれば、PPE結晶化により上述の粒度のPPE粒子としやすいため好ましい。更に、後述する硬化物複合体として十分な耐熱性を有するものが得られるため好ましい。これは、プリプレグから硬化物複合体を作成する際に、通常の加熱加圧成型条件でPPE粒子(A)を早い段階で溶融させることができるため、PPE粒子(A)成分とPPE粒子(A)以外の硬化性樹脂成分とが均一に混合され、得られる硬化物中のPPE成分の分布を均一にすることができるためであると考えられる。
PPE粒子(A)中のPPE含有割合は高い方が好ましく、全てPPE成分で構成されるのが最も好ましい。
If the PPE component contained in the PPE particles (A) is in the above-mentioned range, it is preferable because the PPE particles having the above-mentioned particle size are easily obtained by PPE crystallization. Furthermore, since the thing which has sufficient heat resistance as a hardened | cured material composite body mentioned later is obtained, it is preferable. This is because the PPE particles (A) and the PPE particles (A) can be melted at an early stage under normal heat and pressure molding conditions when preparing a cured product composite from the prepreg. This is considered to be because the distribution of the PPE component in the resulting cured product can be made uniform by uniformly mixing with other curable resin components.
The PPE content ratio in the PPE particles (A) is preferably high, and most preferably composed of all PPE components.

本発明の第一の実施様態において、分散液に含まれるPPE粒子(A)に含有されるPPEの数平均分子量は、8,000以上40,000以下である。PPE粒子(A)に含有されるPPEの数平均分子量の好ましい範囲は、8,500以上30,000以下であり、更に好ましい範囲は9,000以上25,000以下である。
ここで、PPE粒子(A)中のPPEの数平均分子量は、以下の測定によって求めた値とする。上述のPPE粒子(A)中のPPE含有割合を測定した時の抽出物(A)を測定試料とし、カラムにShodex LF−804×2(昭和電工株式会社製)、溶離液に50℃のクロロホルム、検出器にRI(屈折率計)を用いてゲルパーミエーションクロマトグラフィ(GPC)測定を行い、同条件で測定した標準ポリスチレン試料の分子量と溶出時間との関係式から、標準ポリスチレン換算で測定される値をPPE粒子(A)の数平均分子量とする。
PPE粒子(A)の数平均分子量が8,000以上で、プリント配線板等において所望される、硬化物の耐吸水性、はんだ耐熱性、及び接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等との剥離強度)を良好に与える点で好ましい。また、PPE粒子(A)の数平均分子量が40,000以下で、成形時の硬化性樹脂組成物の溶融粘度が小さく、良好な成形性が得られる点で好ましい。
In the first embodiment of the present invention, the number average molecular weight of PPE contained in the PPE particles (A) contained in the dispersion is 8,000 or more and 40,000 or less. A preferred range of the number average molecular weight of PPE contained in the PPE particles (A) is from 8,500 to 30,000, and a more preferred range is from 9,000 to 25,000.
Here, the number average molecular weight of PPE in the PPE particles (A) is a value obtained by the following measurement. The extract (A) obtained by measuring the PPE content in the PPE particles (A) described above was used as a measurement sample, Shodex LF-804 × 2 (manufactured by Showa Denko KK) as the column, and chloroform at 50 ° C. as the eluent. The gel permeation chromatography (GPC) is measured using RI (refractometer) as a detector, and is measured in terms of standard polystyrene from the relational expression between the molecular weight and elution time of the standard polystyrene sample measured under the same conditions. The value is the number average molecular weight of the PPE particles (A).
The number average molecular weight of the PPE particles (A) is 8,000 or more, which is desired in a printed wiring board or the like, the water absorption resistance of the cured product, solder heat resistance, and adhesiveness (for example, the peel strength between layers in a multilayer board, Or it is preferable at the point which gives favorable the peeling strength of the hardened | cured material of a curable resin composition, and copper foil etc. Moreover, the number average molecular weight of PPE particle (A) is 40,000 or less, and the melt viscosity of the curable resin composition at the time of shaping | molding is small, and it is preferable at the point from which favorable moldability is obtained.

本発明のPPE粒子を含む樹脂組成物と溶剤とを含む分散液は、PPEの温度25℃における溶解度が3質量%以上20質量%以下である溶剤を用いるのが好ましい。更に好ましくは、PPEの温度80℃におけるPPEの溶解度が20質量%以上である。PPEの溶解度が上記範囲であれば特に限定はないが、好ましい溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族有機溶剤、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、メタノール、エタノール、ブタノール等のアルコール類が挙げられる、これら1種の溶剤であってもよく、或いは2種以上の混合溶剤であっても良い。PPEの溶解度が上述範囲の溶剤とすることで、PPE粒子の膨潤性、流動性、分散安定性を、常温での塗工、ならびに塗工によって得られるプリプレグの接着性を良好なものとするのに適切なものとすることができるので好ましい。   For the dispersion containing the resin composition containing the PPE particles of the present invention and the solvent, it is preferable to use a solvent having a solubility of PPE at 25 ° C. of 3% by mass or more and 20% by mass or less. More preferably, the solubility of PPE at a temperature of 80 ° C. is 20% by mass or more. Although there is no particular limitation as long as the solubility of PPE is in the above range, preferred solvents include aromatic organic solvents such as benzene, toluene, xylene, ketones such as cyclohexanone, methyl ethyl ketone, methyl isobutyl ketone, methanol, ethanol, butanol, etc. These alcohols may be one kind of these solvents, or two or more kinds of mixed solvents. By making the solubility of PPE a solvent in the above-mentioned range, the swelling property, fluidity, and dispersion stability of the PPE particles are improved, and the adhesiveness of the prepreg obtained by coating at normal temperature is improved. It is preferable because it can be made appropriate.

本発明の第一の実施様態において、分散液はPPE粒子の他に溶存しているPPEを含み、該PPE粒子(A)と溶存PPE(B)との質量比(A):(B)は、85:15〜30:70であることが好ましい。PPE粒子(A)とPPE(B)の重量比(A):(B)のより好ましい範囲は、80:20〜45:55であり、更に好ましい範囲は75:25〜50:50である。
ここで、(A)と(B)の質量比は以下の測定によって求められる値とする。
まず、溶剤が乾燥除去された分散液1.5g中に含まれるPPE粒子(A)の質量を以下のように求めた値とする。上述のPPE粒子(A)のPPE含有量を求めた際と同一の手順で抽出物Aを取得し、抽出に用いた溶剤を乾燥除去し、得られた抽出物Aの質量を溶剤が乾燥除去された分散液1.5g中に含まれるPPE粒子(A)の質量とする。
次に、溶剤が乾燥除去された分散液1.5g中に含まれるPPE(B)の質量を以下のように求めた値とする。上述の手順に従ってPPE粒子(A)中のPPE含有割合を測定した際の上澄み液を全て回収する。上澄み液の溶剤を乾燥除去し、前記溶剤に可溶な硬化性樹脂組成物の質量を測定する。
次いで、前記溶剤に可溶な硬化性樹脂組成物中のPPE含有割合を、PPE粒子(A)中のPPE含有割合の測定と同様に核磁気共鳴分光法にて定量して求める。上述の方法で得られた、前記溶剤に可溶な硬化性樹脂組成物の質量と、前記可溶な固化性樹脂組成物中のPPEの含有割合から、溶剤が乾燥除去された分散液1.5g中に含まれるPPE成分(B)の質量を求める。
上述の方法で得られた、溶剤が乾燥除去された分散液1.5g中に含まれる、質量比95:5のトルエンとメタノールの混合溶剤に不溶なPPE粒子(A)の質量と、前記溶剤に可溶なPPE(B)の質量とから、(A)と(B)の質量比を求める。
In the first embodiment of the present invention, the dispersion contains dissolved PPE in addition to the PPE particles, and the mass ratio (A) :( B) between the PPE particles (A) and the dissolved PPE (B) is 85: 15-30: 70. A more preferable range of the weight ratio (A) :( B) between the PPE particles (A) and the PPE (B) is 80:20 to 45:55, and a more preferable range is 75:25 to 50:50.
Here, let mass ratio of (A) and (B) be a value calculated | required by the following measurements.
First, the mass of the PPE particles (A) contained in 1.5 g of the dispersion liquid from which the solvent has been removed by drying is determined as follows. Extract A is obtained by the same procedure as when the PPE content of the above-mentioned PPE particles (A) was obtained, the solvent used for extraction was removed by drying, and the solvent removed the mass of the resulting extract A by drying. The mass of the PPE particles (A) contained in 1.5 g of the resulting dispersion.
Next, the mass of PPE (B) contained in 1.5 g of the dispersion liquid from which the solvent has been removed by drying is determined as follows. All the supernatant liquid when the PPE content ratio in the PPE particles (A) is measured according to the above-described procedure is recovered. The solvent of the supernatant is removed by drying, and the mass of the curable resin composition soluble in the solvent is measured.
Subsequently, the PPE content ratio in the curable resin composition soluble in the solvent is quantitatively determined by nuclear magnetic resonance spectroscopy as in the measurement of the PPE content ratio in the PPE particles (A). From the mass of the curable resin composition soluble in the solvent and the content of PPE in the soluble solidifiable resin composition obtained by the above-described method, a dispersion obtained by drying and removing the solvent 1. The mass of the PPE component (B) contained in 5 g is determined.
The mass of the PPE particles (A) insoluble in a mixed solvent of toluene and methanol having a mass ratio of 95: 5, contained in 1.5 g of the dispersion obtained by drying and removing the solvent, obtained by the method described above, and the solvent The mass ratio of (A) and (B) is determined from the mass of PPE (B) that is soluble in.

分散液中のPPE粒子(A)とPPE(B)の重量比が85:15と同じかそれよりも(A)の割合が少ないと、基材の耐熱性が良好となるため好ましい。これは、後述する硬化性複合体において硬化性樹脂組成物の硬化物中にPPEを均一に分布させることができるためと考えられる。また、PPE粒子(A)とPPE(B)の重量比が30:70と同じかそれより(A)の割合が多いと、後述する硬化物複合体における基材と熱硬化性樹脂組成物の硬化体との接着性が良好となるため好ましい。この原因としては定かではないが、上述のように、プリプレグの通常の加熱加圧成型条件において、PPE粒子(A)以外の熱硬化性樹脂成分よりも溶融速度が遅いPPE粒子(A)中に多くのPPEを存在させることにより、PPE粒子(A)以外の熱硬化性樹脂成分がまず溶融して基材の表面を覆い、これに、該PPE粒子(A)から遅れて溶融したPPEが相溶した状態で熱硬化性樹脂成分が硬化することとなるためであると考えられる。   It is preferable that the weight ratio of PPE particles (A) and PPE (B) in the dispersion is the same as 85:15 or a ratio of (A) is smaller than that because the heat resistance of the substrate becomes good. This is considered because PPE can be uniformly distributed in the cured product of the curable resin composition in the curable composite described later. Moreover, when the weight ratio of PPE particles (A) and PPE (B) is the same as 30:70 or the ratio of (A) is more than that, the base material and thermosetting resin composition in the cured product composite described later This is preferable because the adhesiveness to the cured body becomes good. Although it is not certain as to this cause, as described above, in the PPE particles (A) whose melting rate is slower than the thermosetting resin component other than the PPE particles (A) under the normal heating and pressure molding conditions of the prepreg. Due to the presence of a large amount of PPE, the thermosetting resin component other than the PPE particles (A) first melts to cover the surface of the substrate, and the PPE melted with a delay from the PPE particles (A) It is thought that this is because the thermosetting resin component is cured in the melted state.

また、前記分散液溶存しているPPE(B)の数平均分子量は、5,000〜40,000であることが好ましい。PPE(B)の数平均分子量の好ましいより好ましい範囲は5,500以上30,000以下であり、更に好ましい範囲は6,000以上25,000以下である。
ここで、溶存PPE(B)の数平均分子量は、以下の測定によって求めた値とする。上述の手順に従ってPPE粒子(A)中のPPE含有割合を測定した際の上澄み液を全て回収する。該上澄み液を、シリカゲルカラムクロマトグラフィーで可溶成分を分離し、PPEの分離液を得る。次いで、PPE分離液に含まれるPPE(B)の分子量を、PPE粒子(A)中のPPEの数平均分子量の測定と同じ方法でGPC測定を行い、標準ポリスチレン換算で測定される値を溶存PPE(B)の数平均分子量とする。
分散液中の溶存PPE(B)の数平均分子量が5,000以上で、該分散液を用いて製造されるプリント配線板の電気特性が良好となるため好ましい。溶存PPE(B)の数平均分子量が40,000以下で、PPE粒子分散液を含むワニスを基材に含浸させて得られるプリプレグの、成形時の硬化性樹脂組成物の溶融粘度が小さく、良好な成形性が得られる点で好ましい。
The number average molecular weight of the PPE (B) dissolved in the dispersion is preferably 5,000 to 40,000. The more preferable range of the number average molecular weight of PPE (B) is 5,500 or more and 30,000 or less, and the more preferable range is 6,000 or more and 25,000 or less.
Here, the number average molecular weight of dissolved PPE (B) is a value determined by the following measurement. All the supernatant liquid when the PPE content ratio in the PPE particles (A) is measured according to the above-described procedure is recovered. A soluble component is separated from the supernatant by silica gel column chromatography to obtain a PPE separation liquid. Next, the molecular weight of PPE (B) contained in the PPE separation liquid is subjected to GPC measurement by the same method as the measurement of the number average molecular weight of PPE in the PPE particles (A), and the value measured in terms of standard polystyrene is dissolved PPE. The number average molecular weight of (B).
The number average molecular weight of the dissolved PPE (B) in the dispersion is preferably 5,000 or more, and the electric characteristics of the printed wiring board produced using the dispersion are improved. The number average molecular weight of dissolved PPE (B) is 40,000 or less, and the prepreg obtained by impregnating the base material with a varnish containing a PPE particle dispersion has a low melt viscosity of the curable resin composition at the time of molding. It is preferable in that a good moldability is obtained.

本発明の第一の実施様態において、分散液中に含まれるPPE成分は、分散液中に含まれる硬化性樹脂組成物の質量を基準として、10質量%以上70質量%以下であることが好ましい。PPE成分の樹脂組成物に占める割合のより好ましい範囲は13質量%以上60質量%以下、更に好ましい範囲は15質量%以上50質量%以下である。
ここで、分散液中に含まれるPPE成分の硬化性樹脂成分に占める割合は以下の方法で求めた値とする。
In the first embodiment of the present invention, the PPE component contained in the dispersion is preferably 10% by mass or more and 70% by mass or less based on the mass of the curable resin composition contained in the dispersion. . A more preferable range of the proportion of the PPE component in the resin composition is 13% by mass to 60% by mass, and a further preferable range is 15% by mass to 50% by mass.
Here, the ratio of the PPE component contained in the dispersion to the curable resin component is a value determined by the following method.

まず、分散液中の硬化性樹脂組成物の量を以下の方法で求める。
分散液から溶剤含有量が1質量%以下となるように、該溶剤の沸点以下の温度で溶剤を乾燥除去する。次いで、溶剤が乾燥除去された分散液1.5gに23℃±2℃のクロロホルム50gを加える。23℃±2℃の恒温室内で、5分間毎に激しく振とうさせながら、1時間経過させた後、ろ過によりクロロホルムに溶解した硬化性樹脂組成物を回収する。続いて、抽出残さに23℃±2℃のクロロホルム50gを加え、同様に23℃±2℃の恒温室内で、1時間、5分間毎に激しく振とうさせた後、ろ過によりクロロホルムに溶解した硬化性樹脂成物を回収する。回収した2回分のクロロホルム溶液を合わせ、溶剤を除去して硬化性樹脂組成物を得、その重量を測定し、溶剤が乾燥除去された分散液1.5g中に含まれる硬化性樹脂成物の質量とする。
また、分散液中に含まれるPPE成分の量は、上述の方法で求めた、溶剤が乾燥除去された分散液1.5g中に含まれるPPE粒子(A)の質量と、溶剤が乾燥除去された分散液1.5g中に含まれるPPE(B)の質量の和として求める。
上述の方法で得られた、溶剤が乾燥除去された分散液1.5g中に含まれる硬化性樹脂組成物の質量とPPE成分の質量とから、PPE成分の硬化性樹脂組成物に対する質量比を求める。
First, the amount of the curable resin composition in the dispersion is determined by the following method.
The solvent is dried and removed from the dispersion at a temperature not higher than the boiling point of the solvent so that the solvent content is 1% by mass or less. Next, 50 g of chloroform at 23 ° C. ± 2 ° C. is added to 1.5 g of the dispersion from which the solvent has been removed by drying. In a constant temperature room of 23 ° C. ± 2 ° C., after 1 hour while vigorously shaking every 5 minutes, the curable resin composition dissolved in chloroform is collected by filtration. Subsequently, 50 g of chloroform at 23 ° C. ± 2 ° C. was added to the extraction residue, and after vigorously shaking every 1 hour and 5 minutes in a constant temperature room at 23 ° C. ± 2 ° C., hardening dissolved in chloroform by filtration The resinous resin composition is recovered. The collected chloroform solution for two times was combined, the solvent was removed to obtain a curable resin composition, the weight thereof was measured, and the curable resin composition contained in 1.5 g of the dispersion liquid from which the solvent was removed by drying. Mass.
Further, the amount of the PPE component contained in the dispersion was determined by the method described above, and the mass of the PPE particles (A) contained in 1.5 g of the dispersion from which the solvent was removed by drying and the solvent was removed by drying. Obtained as the sum of the masses of PPE (B) contained in 1.5 g of the dispersion.
The mass ratio of the PPE component to the curable resin composition is determined from the mass of the curable resin composition and the mass of the PPE component contained in 1.5 g of the dispersion obtained by drying and removing the solvent. Ask.

PPE成分の樹脂組成物に占める割合が10質量%以上のとき、分散液の粘度が適度に高くなり、分散液の分散安定性が増すので好ましい。また、該分散液を含むワニスを基材に塗工して得られるプリプレグを加熱加圧成型して得られるプリント配線板中のPPE含量が高められ、電気特性に優れたプリント配線板となるため好ましい。PPE成分の樹脂組成物に占める割合が70%以下の時、PPE粒子を含むプリプレグの加熱加圧成型過程での溶融粘度が高くなりすぎるのを防ぎ、均一で良好な成型物が得られるので好ましい。   When the proportion of the PPE component in the resin composition is 10% by mass or more, the viscosity of the dispersion liquid is appropriately increased and the dispersion stability of the dispersion liquid is increased, which is preferable. Moreover, since the PPE content in the printed wiring board obtained by heat-press molding the prepreg obtained by applying the varnish containing the dispersion to a substrate is increased, the printed wiring board has excellent electrical characteristics. preferable. When the proportion of the PPE component in the resin composition is 70% or less, it is preferable because the melt viscosity of the prepreg containing PPE particles is prevented from becoming too high in the heat and pressure molding process, and a uniform and good molded product can be obtained. .

本態様の硬化性樹脂組成物に含まれるPPE1分子当たりの平均フェノール性水酸基数は、0.3個以上であることができる。PPE1分子当たりの平均フェノール性水酸基数は、好ましくは0.7個以上であり、より好ましくは0.9個以上であり、更に好ましくは1.05個以上である。1分子当たりの平均フェノール性水酸基数が0.3個以上のPPEを硬化性樹脂組成物において用いると、該樹脂組成物の硬化物と基材(例えばガラスクロス等)との接着性、又は該樹脂組成物の硬化物と銅箔等の金属箔との接着性が良好となり、プリント配線板の耐吸水性、はんだ耐熱性、及び接着性(例えば、多層板における層間の剥離強度、又は硬化物と銅箔等との剥離強度)に優れるため好ましい。該平均フェノール性水酸基数は、硬化性樹脂組成物の硬化物と基材とを含む複合体(例えば積層板)の吸水性が高くなるのを抑制できる観点、又は、該複合体の誘電率と誘電正接が高くなるのを抑制できる観点から、好ましくは2.0個以下、より好ましくは1.85個以下、更に好ましくは1.6個以下である。   The average number of phenolic hydroxyl groups per molecule of PPE contained in the curable resin composition of this embodiment can be 0.3 or more. The average number of phenolic hydroxyl groups per PPE molecule is preferably 0.7 or more, more preferably 0.9 or more, and still more preferably 1.05 or more. When PPE having an average number of phenolic hydroxyl groups per molecule of 0.3 or more is used in the curable resin composition, the adhesion between the cured product of the resin composition and a substrate (for example, glass cloth), or the Adhesion between the cured product of the resin composition and a metal foil such as a copper foil is improved, and the printed circuit board has water absorption resistance, solder heat resistance, and adhesiveness (for example, peeling strength between layers in a multilayer board, or cured product) Is preferable because it is excellent in peel strength between the copper foil and the copper foil. The average number of phenolic hydroxyl groups is a viewpoint that can suppress an increase in water absorption of a composite (for example, a laminate) containing a cured product of the curable resin composition and a substrate, or a dielectric constant of the composite From the viewpoint of suppressing an increase in dielectric loss tangent, it is preferably 2.0 or less, more preferably 1.85 or less, and still more preferably 1.6 or less.

PPE1分子当たりの平均フェノール性水酸基数は、それぞれ、次の方法で求めた値と定義される。高分子論文集,vol.51,No.7(1994),第480頁記載の方法に準拠し、PPEの塩化メチレン溶液にテトラメチルアンモニウムハイドロオキシド溶液を加えて得たサンプルの波長318nmにおける吸光度変化を紫外可視吸光光度計で測定した値から水酸基の数を求める。別途、PPEの数平均分子量を、ゲルパーミエーションクロマトグラフィ(GPC)により求め、この値を用いてPPEの分子数を求める。これらの値から、下記式:
1分子当たりの平均フェノール性水酸基数=水酸基の数/数平均分子数
に従って、PPE1分子当たりの平均水酸基数を算出する。
The average number of phenolic hydroxyl groups per molecule of PPE is defined as a value determined by the following method. Polymer Papers, vol. 51, no. 7 (1994), in accordance with the method described on page 480, from a value obtained by measuring the change in absorbance at a wavelength of 318 nm of a sample obtained by adding a tetramethylammonium hydroxide solution to a methylene chloride solution of PPE using an ultraviolet-visible spectrophotometer. Obtain the number of hydroxyl groups. Separately, the number average molecular weight of PPE is determined by gel permeation chromatography (GPC), and the number of PPE molecules is determined using this value. From these values, the following formula:
According to the average number of phenolic hydroxyl groups per molecule = number of hydroxyl groups / number average number of molecules, the average number of hydroxyl groups per molecule of PPE is calculated.

PPE1分子当たりの平均フェノール性水酸基数は、例えば、分子末端のフェノール性水酸基が残存しているPPEと、分子末端のフェノール性水酸基が他の官能基で変性されているPPEとを混合し、その混合比を変えることによって調整することができる。又は、分子末端のフェノール性水酸基の他の官能基による置換度合を変えることによっても調整することができる。上記の官能基の態様は特に限定されるものではなく、ベンジル基、アリル基、プロパギル基、グリシジル基、ビニルベンジル基、メタクリル基等であることができる。その中でも、反応効率が良いため産業的に入手しやすいこと、自身の反応性がなく安定性に優れること、プレス成形時にポリフェニレンエーテル含有組成物の溶融粘度を低下させる効果が著しいこと等の観点から、該官能基は、好ましくは、ベンジル基である。   The average number of phenolic hydroxyl groups per molecule of PPE is, for example, by mixing PPE in which the phenolic hydroxyl group at the molecular end remains with PPE in which the phenolic hydroxyl group at the molecular end is modified with another functional group. It can be adjusted by changing the mixing ratio. Or it can adjust also by changing the substitution degree by the other functional group of the phenolic hydroxyl group of a molecule terminal. The mode of the functional group is not particularly limited, and may be a benzyl group, an allyl group, a propargyl group, a glycidyl group, a vinylbenzyl group, a methacryl group, or the like. Among them, from the viewpoints of being easy to obtain industrially due to good reaction efficiency, being excellent in stability without own reactivity, and having a remarkable effect of reducing the melt viscosity of the polyphenylene ether-containing composition during press molding, etc. The functional group is preferably a benzyl group.

使用するポリフェニレンエーテルは、(A−1)1分子当たりの平均フェノール性水酸基数が0.5個未満であることができ、かつ、数平均分子量が1,000以上8,000以下であるPPE成分(以下、低分子量・末端官能化PPEともいう。)をPPE全量に対して1質量%以上40質量%以下含有することが好ましい。該低分子量・末端官能化PPEの含有量のより好ましい範囲は1.2質量%以上30質量%以下であり、更に好ましい範囲は1.5質量%以上25質量%以下である。   The polyphenylene ether used is (A-1) a PPE component having an average number of phenolic hydroxyl groups per molecule of less than 0.5 and a number average molecular weight of 1,000 to 8,000. (Hereinafter also referred to as low molecular weight / terminal functionalized PPE) is preferably contained in an amount of 1% by mass to 40% by mass with respect to the total amount of PPE. A more preferable range of the content of the low molecular weight / end-functionalized PPE is 1.2% by mass or more and 30% by mass or less, and a further preferable range is 1.5% by mass or more and 25% by mass or less.

PPEの数平均分子量は、ゲルパーミエーションクロマトグラフィ(GPC)を用い、標準ポリスチレン換算で測定される値である。典型的には、カラムにShodex LF−804×2(昭和電工株式会社製)、溶離液に50℃のクロロホルム検出器にRI(屈折率計)を用いてGPC測定を行い、同条件で測定した標準ポリスチレン試料の分子量と溶出時間との関係式から、数平均分子量を算出する。   The number average molecular weight of PPE is a value measured in terms of standard polystyrene using gel permeation chromatography (GPC). Typically, GPC measurement was performed under the same conditions using Shodex LF-804 × 2 (manufactured by Showa Denko KK) for the column, RI (refractometer) for the chloroform detector at 50 ° C. for the eluent. The number average molecular weight is calculated from the relational expression between the molecular weight of the standard polystyrene sample and the elution time.

(A−1)低分子量・末端官能化PPEを1質量%以上含有するPPEを含む硬化性樹脂組成物は、成形時の硬化性樹脂組成物の溶融粘度が小さく、良好な成形性が得られる点で好ましい。一方、該低分子量・末端官能化PPEを40質量%以下含有するPPEを含む硬化性樹脂組成物は、接着性に劣るという該低分子量・末端官能化PPEの特性の顕著な発現を抑制することができ、プリント配線板等において所望される、硬化物の耐吸水性、はんだ耐熱性、及び接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等との剥離強度)を良好に与える点で好ましい。   (A-1) A curable resin composition containing PPE containing 1% by mass or more of low molecular weight / end-functionalized PPE has a low melt viscosity of the curable resin composition at the time of molding, and good moldability is obtained. This is preferable. On the other hand, the curable resin composition containing PPE containing 40% by mass or less of the low molecular weight / end-functionalized PPE suppresses the remarkable expression of the characteristics of the low molecular weight / end-functionalized PPE, which is inferior in adhesiveness. Desired for printed wiring boards, etc., water absorption resistance, solder heat resistance, and adhesiveness of cured products (for example, peel strength between layers in a multilayer board, or cured product of a curable resin composition and copper foil, etc. In terms of giving good peel strength).

また、(A−1)低分子量・末端官能化PPEの1分子当たりの平均フェノール性水酸基数は好ましくは0.5個未満であるが、より好ましくは0.2個以下であり、更に好ましくは0.1個以下である。該平均フェノール性水酸基数が0.5個未満であれば、低分子量・末端官能化PPEを含有する硬化性樹脂組成物が低い誘電率及び誘電正接の硬化物を形成できることに加えて良好な硬化反応性を有するため、機械特性及び耐熱性に優れた硬化物が得られる点で好ましい。平均フェノール性水酸基数は少ないほど好ましく、0個であってもよいが、フェノール性水酸基を他の官能基で変性させる効率の観点から、好ましくは0.001個以上、より好ましくは0.01個以上であることができる。   The average number of phenolic hydroxyl groups per molecule of (A-1) low molecular weight / end-functionalized PPE is preferably less than 0.5, more preferably 0.2 or less, and still more preferably. 0.1 or less. If the average number of phenolic hydroxyl groups is less than 0.5, the curable resin composition containing the low molecular weight and end-functionalized PPE can form a cured product having a low dielectric constant and dielectric loss tangent, as well as good curing. Since it has reactivity, it is preferable at the point from which the hardened | cured material excellent in the mechanical characteristic and heat resistance is obtained. The smaller the average number of phenolic hydroxyl groups, the better. It may be 0, but from the viewpoint of the efficiency of modifying the phenolic hydroxyl group with other functional groups, it is preferably 0.001 or more, more preferably 0.01. That can be the end.

好ましい態様においては、PPEは、
(A−1)1分子当たりの平均フェノール性水酸基数が0.5個未満であり、かつ数平均分子量が1,000以上8,000以下であるPPE成分、及び
(A−2)1分子当たりの平均フェノール性水酸基数が0.5個以上であり、かつ数平均分子量が8,000を超えるPPE成分
を含み、(A−1)と(A−2)との合計質量100質量%を基準として、(A−1)の含有量が1質量%以上40質量%未満であり、かつ(A−2)の含有量が60質量%超99質量%以下である。
本態様においては、PPEは、好ましくは、(A−1)及び(A−2)から実質的になり、より好ましくは(A−1)及び(A−2)からなる。
(A−2)成分の使用により、分子量の大きいPPEに由来する高いガラス転移温度が得られる。また、好ましい態様における(A−2)成分の使用により、さらに末端水酸基に由来する良好な接着性とが得られ、優れた耐熱性、機械特性、及び接着性という利点が得られる。
(A−2)成分の1分子当たりの平均フェノール性水酸基数は、良好な接着性を実現する観点から0.5個以上であることが好ましく、さらに好ましくは0.8個以上、より好ましくは1.6個以上である。該平均フェノール性水酸基数は多い方が上記の効果を得る点で好ましいが、硬化性樹脂組成物の硬化物と基材とを含む硬化物複合体の吸水性が高くなるのを防ぐ、或いは、誘電率と誘電正接が高くなるのを防ぐ観点から、好ましくは2個以下、より好ましくは1.85個以下、更に好ましくは1.6個以下であることができる。
In a preferred embodiment, the PPE is
(A-1) A PPE component having an average number of phenolic hydroxyl groups per molecule of less than 0.5 and a number average molecular weight of 1,000 or more and 8,000 or less, and (A-2) per molecule Including a PPE component having an average phenolic hydroxyl number of 0.5 or more and a number average molecular weight exceeding 8,000, and based on a total mass of 100% by mass of (A-1) and (A-2) The content of (A-1) is 1% by mass or more and less than 40% by mass, and the content of (A-2) is more than 60% by mass and 99% by mass or less.
In this embodiment, the PPE preferably consists essentially of (A-1) and (A-2), more preferably (A-1) and (A-2).
By using the component (A-2), a high glass transition temperature derived from PPE having a large molecular weight can be obtained. In addition, by using the component (A-2) in a preferred embodiment, good adhesiveness derived from the terminal hydroxyl group can be obtained, and the advantages of excellent heat resistance, mechanical properties, and adhesiveness can be obtained.
The average number of phenolic hydroxyl groups per molecule of the component (A-2) is preferably 0.5 or more, more preferably 0.8 or more, more preferably from the viewpoint of realizing good adhesiveness. 1.6 or more. Although it is preferable in terms of obtaining the above effect that the average number of phenolic hydroxyl groups is large, the water absorption of the cured product composite containing the cured product of the curable resin composition and the substrate is prevented from being increased, or From the viewpoint of preventing increase in dielectric constant and dielectric loss tangent, it is preferably 2 or less, more preferably 1.85 or less, and still more preferably 1.6 or less.

該(A−2)成分の数平均分子量の好ましい範囲は8,000超40,000以下であり、より好ましい範囲は9,500以上28,000以下であり、更に好ましい範囲は10,000以上20,000以下である。数平均分子量が8,000超である場合、高いガラス転移温度が得られるため、耐熱性及び機械特性に優れる硬化物が得られ好ましい。一方で、数平均分子量が40,000以下である場合、通常のプレス成形温度での溶融粘度が低く保たれ、良好な成形性が得られるため好ましい。
(A−1)と(A−2)との合計100質量%基準での(A−2)の含有量は、高いガラス転移温度及び良好な接着性を実現する観点から好ましくは60質量%以上、より好ましくは60質量%超、更に好ましくは70質量%以上、更に好ましくは75質量%以上であり、成形時の硬化性樹脂組成物の溶融粘度を小さくし、良好な成形性を得るという観点から、好ましくは99質量%以下、より好ましくは98.8質量%以下、更に好ましくは98.5質量%以下である。
A preferred range of the number average molecular weight of the component (A-2) is more than 8,000 and 40,000 or less, a more preferred range is 9,500 or more and 28,000 or less, and a more preferred range is 10,000 or more and 20 or less. , 000 or less. When the number average molecular weight is more than 8,000, a high glass transition temperature is obtained, so that a cured product having excellent heat resistance and mechanical properties is obtained. On the other hand, when the number average molecular weight is 40,000 or less, the melt viscosity at a normal press molding temperature is kept low, and good moldability is obtained, which is preferable.
The content of (A-2) on the basis of a total of 100% by mass of (A-1) and (A-2) is preferably 60% by mass or more from the viewpoint of realizing a high glass transition temperature and good adhesiveness. More preferably, it is more than 60% by mass, more preferably 70% by mass or more, and further preferably 75% by mass or more, from the viewpoint of reducing the melt viscosity of the curable resin composition at the time of molding and obtaining good moldability. Therefore, it is preferably 99% by mass or less, more preferably 98.8% by mass or less, and still more preferably 98.5% by mass or less.

また、本発明のPPE粒子を含む樹脂組成物と溶剤とを含む分散液に含まれるPPEは、PPEと不飽和カルボン酸または酸無水物との反応物であることができる。PPEがPPEと不飽和カルボン酸又は酸無水物との反応物であることにより、PPEの溶剤中での結晶化を遅延することができ、より低温での分散液の調製が可能、あるいは、より高濃度のPPE分散液とすることができるため好ましい。
不飽和カルボン酸又は酸無水物の例としては、アクリル酸、メタクリル酸、無水マレイン酸、フマル酸、イタコン酸、無水イタコン酸、無水グルタコン酸、無水シトラコン酸等が挙げられる。反応はPPEと不飽和カルボン酸また酸無水物を100℃〜390℃の温度範囲で加熱することによって行われる。この際ラジカル開始剤を共存させてもよい。溶液法と溶融混合法の両方が使用できるが、押出し機等を用いる溶融混合法の方が簡便に行うことができ、本発明の目的に適している。不飽和カルボン酸又は酸無水物の割合は、PPE100重量部に対し、0.01重量部以上5.0重量部以下、好ましくは0.1重量部以上3.0重量部以下である。
Moreover, PPE contained in the dispersion liquid containing the resin composition containing the PPE particles of the present invention and a solvent can be a reaction product of PPE and an unsaturated carboxylic acid or acid anhydride. Because PPE is a reaction product of PPE and unsaturated carboxylic acid or acid anhydride, crystallization of PPE in a solvent can be delayed, and a dispersion can be prepared at a lower temperature. Since it can be set as a highly concentrated PPE dispersion liquid, it is preferable.
Examples of the unsaturated carboxylic acid or acid anhydride include acrylic acid, methacrylic acid, maleic anhydride, fumaric acid, itaconic acid, itaconic anhydride, glutaconic anhydride, citraconic anhydride, and the like. The reaction is carried out by heating PPE and unsaturated carboxylic acid or acid anhydride in the temperature range of 100 ° C to 390 ° C. At this time, a radical initiator may coexist. Although both the solution method and the melt mixing method can be used, the melt mixing method using an extruder or the like can be performed more easily and is suitable for the purpose of the present invention. The ratio of unsaturated carboxylic acid or acid anhydride is 0.01 parts by weight or more and 5.0 parts by weight or less, preferably 0.1 parts by weight or more and 3.0 parts by weight or less with respect to 100 parts by weight of PPE.

なお、本態様の組成物は、本発明の幾つかの態様に関して記載する各種成分、例えば、反応開始剤、難燃剤、他の樹脂、その他の添加剤等を、これら態様と同様の様式で好ましく配合できる。そのような配合もまた本開示は包含する。また、該本態様の組成物を用い、本発明の別の態様に関して記載するのと同様の態様で、ワニス、プリプレグ及びプリント配線板を好ましく形成できる。
本発明の別の態様は、上述したPPE粒子(A)を含む硬化性樹脂組成分に更に架橋型硬化性樹脂、例えば、分子内に2個以上のビニル基を持つモノマー(C)を含有するプリプレグを提供する。前記硬化性樹脂組成物は、プリプレグ中のPPE成分(A+B)と架橋型硬化性樹脂(C)との合計100質量部に対して、架橋型硬化性樹脂(C)を好ましくは5〜95質量部、より好ましくは10〜80質量部、更に好ましくは10〜70質量部、更に好ましくは20〜70質量部含有する。該モノマー(C)の量が5質量部以上である場合、成形性が良好である点で好ましく、95質量部以下である場合、誘電率及び誘電正接が低い硬化物を形成できる点で好ましい。
In addition, the composition of this embodiment preferably includes various components described in relation to some embodiments of the present invention, such as reaction initiators, flame retardants, other resins, and other additives in the same manner as these embodiments. Can be blended. Such formulations are also encompassed by the present disclosure. Moreover, a varnish, a prepreg, and a printed wiring board can be preferably formed in the same manner as described with respect to another embodiment of the present invention using the composition of the present embodiment.
In another embodiment of the present invention, the curable resin composition containing the PPE particles (A) described above further contains a crosslinkable curable resin, for example, a monomer (C) having two or more vinyl groups in the molecule. Provide prepreg. The curable resin composition is preferably 5 to 95 mass parts of the crosslinkable curable resin (C) with respect to 100 parts by mass in total of the PPE component (A + B) and the crosslinkable curable resin (C) in the prepreg. Parts, more preferably 10-80 parts by mass, still more preferably 10-70 parts by mass, and still more preferably 20-70 parts by mass. When the amount of the monomer (C) is 5 parts by mass or more, it is preferable in terms of good moldability, and when it is 95 parts by mass or less, it is preferable in that a cured product having a low dielectric constant and dielectric loss tangent can be formed.

架橋型硬化性樹脂としては、分子内に2個以上のビニル基を持つモノマーが好適であり、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート、トリアリルアミン、トリアリルメセート、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等が挙げられるが、その中でもポリフェニレンエーテルとの相溶性が良好なTAICが好ましい。
本態様に含まれる硬化性樹脂組成物は、好ましくは、架橋型硬化性樹脂(C)と(反応)開始剤(D)をさらに含む。
開始剤(D)としては、ビニルモノマーの重合反応を促進する能力を有する任意の開始剤を使用でき、例えば、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシベンゾエート、2,2−ビス(t−ブチルパーオキシ)ブタン、2,2−ビス(t−ブチルパーオキシ)オクタン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物が挙げられる。また、2,3−ジメチル−2,3−ジフェニルブタン等のラジカル発生剤も反応開始剤として使用できる。中でも、得られる耐熱性及び機械特性に優れ、更に低い誘電率及び誘電正接を有する硬化物を与えることができるの観点から、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサンが好ましい。
As the crosslinkable curable resin, a monomer having two or more vinyl groups in the molecule is suitable, and triallyl isocyanurate (TAIC), triallyl cyanurate, triallylamine, triallyl mesate, divinylbenzene, divinyl Naphthalene, divinylbiphenyl and the like can be mentioned, and among them, TAIC having good compatibility with polyphenylene ether is preferable.
The curable resin composition included in this embodiment preferably further includes a crosslinkable curable resin (C) and a (reaction) initiator (D).
As the initiator (D), any initiator having the ability to promote a polymerization reaction of a vinyl monomer can be used. For example, benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-di Hydroperoxide, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, di-t-butyl peroxide, t-butylcumyl peroxide, α, α'-bis (t- Butylperoxy-m-isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxy Benzoate, 2,2-bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) octane, 2,5- Methyl-2,5-di (benzoyl peroxy) hexane, di (trimethylsilyl) peroxide, peroxides such as trimethylsilyl triphenylsilyl peroxide. A radical generator such as 2,3-dimethyl-2,3-diphenylbutane can also be used as a reaction initiator. Among them, 2,5-dimethyl-2,5-di (t-butylperoxy) is preferable from the viewpoint of obtaining a cured product having excellent heat resistance and mechanical properties and having a lower dielectric constant and dielectric loss tangent. Hexin-3, α, α′-bis (t-butylperoxy-m-isopropyl) benzene and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane are preferred.

プリプレグ中のPPE成分(A+B)とモノマー(C)との合計100質量部に対して、開始剤(D)の含有量は、反応率を高くできる観点から好ましくは0.5質量部以上、より好ましくは1質量部以上、更に好ましくは1.5質量部以上であり、得られる硬化物の誘電率及び誘電正接を低く抑えることができる観点から、好ましくは15質量部以下、より好ましくは10質量部以下、更に好ましくは7質量部以下である。
好ましい態様においては、プリプレグ中のPPE成分(A+B)とモノマー(C)との合計100質量部に対して、架橋型硬化性樹脂(C)の含有量が10質量部以上70質量部以下、及び開始剤(D)の含有量が1質量部以上10質量部以下である。
The content of the initiator (D) is preferably 0.5 parts by mass or more from the viewpoint of increasing the reaction rate with respect to the total of 100 parts by mass of the PPE component (A + B) and the monomer (C) in the prepreg. Preferably it is 1 part by mass or more, more preferably 1.5 parts by mass or more, and preferably 15 parts by mass or less, more preferably 10 parts by mass, from the viewpoint that the dielectric constant and dielectric loss tangent of the resulting cured product can be kept low. Part or less, more preferably 7 parts by weight or less.
In a preferred embodiment, the content of the crosslinkable curable resin (C) is 10 parts by mass or more and 70 parts by mass or less with respect to a total of 100 parts by mass of the PPE component (A + B) and the monomer (C) in the prepreg, and The content of the initiator (D) is 1 part by mass or more and 10 parts by mass or less.

本発明の硬化性樹脂組成物には、他の樹脂(例えば、熱可塑性樹脂、硬化性樹脂等)を更に含有させることもできる。熱可塑性樹脂としては、エチレン、プロピレン、ブタジエン、イソプレン、スチレン、ジビニルベンゼン、メタクリル酸、アクリル酸、メタクリル酸エステル、アクリル酸エステル、塩化ビニル、アクリロニトリル、無水マレイン酸、酢酸ビニル、四フッ化エチレン等のビニル化合物の単独重合体及び2種以上のビニル化合物の共重合体、並びに、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ポリアセタール、ポリフェニレンスルフィド、ポリエチレングリコール等を例として挙げることができる。これらの中でもスチレンの単独重合体、スチレン−ブタジエン共重合体、及びスチレン−エチレン−ブタジエン共重合体が、硬化性樹脂組成物の溶剤への溶解性及び成形性の観点から好ましく用いることができる。硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、及びシアネートエステル類を例として挙げることができる。上記熱可塑性樹脂及び硬化性樹脂は、酸無水物、エポキシ化合物、アミン等の官能化化合物で変成されたものでもよい。このような別の樹脂の使用量は、上記PPE(A)と上記モノマー(C)との合計100質量部に対して、好ましくは10〜90質量部、より好ましくは20〜70質量部である。   The curable resin composition of the present invention may further contain other resins (for example, thermoplastic resins, curable resins, etc.). Thermoplastic resins include ethylene, propylene, butadiene, isoprene, styrene, divinylbenzene, methacrylic acid, acrylic acid, methacrylic ester, acrylic ester, vinyl chloride, acrylonitrile, maleic anhydride, vinyl acetate, ethylene tetrafluoride, etc. Examples thereof include homopolymers of vinyl compounds and copolymers of two or more vinyl compounds, and polyamides, polyimides, polycarbonates, polyesters, polyacetals, polyphenylene sulfides, polyethylene glycols, and the like. Among these, a styrene homopolymer, a styrene-butadiene copolymer, and a styrene-ethylene-butadiene copolymer can be preferably used from the viewpoints of solubility of the curable resin composition in a solvent and moldability. Examples of the curable resin include phenol resins, epoxy resins, and cyanate esters. The thermoplastic resin and curable resin may be modified with a functional compound such as an acid anhydride, an epoxy compound, or an amine. The amount of such another resin used is preferably 10 to 90 parts by mass, more preferably 20 to 70 parts by mass with respect to a total of 100 parts by mass of the PPE (A) and the monomer (C). .

本発明に係る硬化性樹脂組成物は目的に応じ適当な添加剤を更に含有してもよい。添加剤としては、難燃剤、熱安定剤、酸化防止剤、UV吸収剤、界面活性剤、滑剤、充填剤、ポリマー添加剤等が挙げられる。
特に、本発明の硬化性樹脂組成物が更に難燃剤を含む場合、本発明の有する良好な成形性、耐吸水性、はんだ耐熱性、及び接着性(例えば、多層板における層間の剥離強度、又は硬化物と銅箔等との剥離強度)に優れるプリント配線板等が得られる利点に加え、難燃性を付与できる点で好適である。
The curable resin composition according to the present invention may further contain an appropriate additive depending on the purpose. Examples of the additive include a flame retardant, a heat stabilizer, an antioxidant, a UV absorber, a surfactant, a lubricant, a filler, and a polymer additive.
In particular, when the curable resin composition of the present invention further contains a flame retardant, the good moldability, water absorption resistance, solder heat resistance, and adhesiveness of the present invention (for example, peel strength between layers in a multilayer board, or In addition to the advantage that a printed wiring board having excellent peel strength between a cured product and copper foil or the like can be obtained, it is preferable in that flame retardancy can be imparted.

難燃剤としては、燃焼のメカニズムを阻害する機能を有するものであれば特に制限されず、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、ほう酸亜鉛等の無機難燃剤、ヘキサブロモベンゼン、デカブロモジェフェニルエタン、4,4−ジフブロモフェニル、エチレンビステトラブロモフタルイミド等の芳香族臭素化合物、等が挙げられる。中でも、得られる硬化物の誘電率及び誘電正接を低く抑えられる観点からデカブロモジェフェニルエタン等が好ましい。
難燃剤の使用量は、使用する難燃剤によって異なり、特に限定するものでないが、UL規格94V−0レベルの難燃性を維持する観点から、PPE(A)とモノマー(C)との合計100質量部に対して好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上である。また、得られる硬化物の誘電率及び誘電正接を小さく維持できる観点から、好ましくは50質量部以下、より好ましくは45質量部以下、更に好ましくは40質量部以下である。
The flame retardant is not particularly limited as long as it has a function of hindering the combustion mechanism. Inorganic flame retardants such as antimony trioxide, aluminum hydroxide, magnesium hydroxide, zinc borate, hexabromobenzene, decabromobenzene And aromatic bromine compounds such as phenylethane, 4,4-diphbromophenyl, and ethylenebistetrabromophthalimide. Of these, decabromojephenylethane is preferred from the viewpoint of keeping the dielectric constant and dielectric loss tangent of the cured product low.
The amount of flame retardant used varies depending on the flame retardant used, and is not particularly limited, but from the viewpoint of maintaining flame retardancy at the UL standard 94V-0 level, a total of 100 PPE (A) and monomer (C). Preferably it is 5 mass parts or more with respect to a mass part, More preferably, it is 10 mass parts or more, More preferably, it is 15 mass parts or more. Moreover, from a viewpoint which can maintain the dielectric constant and dielectric loss tangent of the hardened | cured material small, Preferably it is 50 mass parts or less, More preferably, it is 45 mass parts or less, More preferably, it is 40 mass parts or less.

上述した硬化性樹脂組成物を含有するワニスもまた開示される。該ワニスは、本発明の硬化性樹脂組成物を溶剤に溶解又は分散させることによって形成できる。このワニスを、例えばガラスクロス等である基材に含浸させた後、溶剤分を乾燥除去することにより、例えば基板材料の絶縁層の材料として好適なプリプレグを製造できる。
上記ワニスに用いられる溶剤としては、一般的には、トルエン、キシレン、メチルエチルケトン、アセトン等を挙げることができる。これらの溶剤は単独でも2種以上を混合しても使用できる。また、例えば上記各種の溶剤の1種以上とメタノール等のアルコール類とを組合せてもよい。ワニスに占める硬化性樹脂組成物の割合は、基材へのワニス含浸性及び基材への樹脂付着量を良好に制御する観点から、ワニス全量100質量部に対して、5〜95質量部であることが好ましく、20〜80質量部であることがより好ましい。
A varnish containing the curable resin composition described above is also disclosed. The varnish can be formed by dissolving or dispersing the curable resin composition of the present invention in a solvent. After impregnating the varnish with a base material such as glass cloth, the solvent content is removed by drying, whereby a prepreg suitable as a material for the insulating layer of the substrate material can be produced.
In general, examples of the solvent used for the varnish include toluene, xylene, methyl ethyl ketone, and acetone. These solvents can be used alone or in combination of two or more. For example, you may combine 1 or more types of said various solvents, and alcohols, such as methanol. The ratio of the curable resin composition in the varnish is 5 to 95 parts by mass with respect to 100 parts by mass of the varnish from the viewpoint of satisfactorily controlling the varnish impregnation property to the substrate and the resin adhesion amount to the substrate. It is preferable that it is 20 to 80 parts by mass.

本発明のプリプレグは、典型的にはプリント配線板用プリプレグである。典型的なプリプレグは、該硬化性樹脂組成物を含有するワニスを基材に含浸させた後、熱風乾燥機等で溶剤分を揮発させて得られる、硬化性樹脂組成物と基材との複合体である。基材としては、ロービングクロス、クロス、チョップドマット、サーフェシングマット等の各種ガラス布;アスベスト布、金属繊維布、及びその他合成若しくは天然の無機繊維布;全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリベンゾオキサゾール繊維等の液晶繊維から得られる織布又は不織布;綿布、麻布、フェルト等の天然繊維布;カーボン繊維布、クラフト紙、コットン紙、紙−ガラス混繊糸から得られる布等の天然セルロース系基材;ポリテトラフルオロエチレン多孔質フィルム;等を単独で、又は2種以上組合せて用いることができる。
上記プリプレグに占める硬化性樹脂組成物の割合は、プリプレグ全量100質量部に対して、30〜80質量部であることが好ましく、より好ましくは40〜70質量部である。上記割合が30質量部以上である場合、プリプレグを例えば電子基板形成用として使用した際に優れた絶縁信頼性が得られ、80質量部以下である場合、例えば、得られる電子基板が曲げ弾性率等の機械特性に優れる。
The prepreg of the present invention is typically a printed circuit board prepreg. A typical prepreg is a composite of a curable resin composition and a substrate obtained by impregnating a varnish containing the curable resin composition into a substrate and then volatilizing the solvent with a hot air dryer or the like. Is the body. As the base material, various glass cloths such as roving cloth, cloth, chopped mat, and surfacing mat; asbestos cloth, metal fiber cloth, and other synthetic or natural inorganic fiber cloth; wholly aromatic polyamide fiber, wholly aromatic polyester fiber Woven or non-woven fabrics obtained from liquid crystal fibers such as polybenzoxazole fibers; natural fiber fabrics such as cotton cloth, linen cloth and felt; carbon fiber cloth, kraft paper, cotton paper, cloth obtained from paper-glass mixed yarn, etc. Natural cellulose base materials; polytetrafluoroethylene porous films; etc. can be used alone or in combination of two or more.
The proportion of the curable resin composition in the prepreg is preferably 30 to 80 parts by mass, more preferably 40 to 70 parts by mass with respect to 100 parts by mass of the total amount of prepreg. When the ratio is 30 parts by mass or more, excellent insulation reliability is obtained when the prepreg is used for forming an electronic substrate, for example. When the prepreg is 80 parts by mass or less, for example, the obtained electronic substrate has a flexural modulus. Excellent mechanical properties.

[PPE粒子(A)を含む硬化性樹脂組成物と基材とから構成されるプリプレグの製法]
本発明のPPE粒子(A)を含む硬化性樹脂組成物と基材から構成されるプリプレグは、プリプレグ中に含まれるPPE粒子(A)とPPE(B)が本発明の要件を満たせば特に限定されるものではないが、例えば、PPE粒子(A)が分散した状態のワニスを基材に含浸し、溶剤を乾燥除去する方法で得られる。
PPE粒子(A)が分散した状態のワニスを得る方法として、得られるプリプレグ中に含まれるPPE粒子(A)とPPE(B)が本発明の要件を満たせば特に限定されるものではないが、PPE粒子(A)の分散液を得た後に、他の成分を添加してワニスを得る方法が挙げられる。
かかるPPE粒子(A)の分散液を得る方法として、例えば、PPEを非ハロゲン溶剤中に添加し、加温して溶解させた後に温度降下させる方法(以下、「結晶分散法」ともいう。)を挙げることができる。
本発明のプリプレグ中に存在するPPE粒子(A)の粒径、PPE含有割合、PPE分子量、およびPPE粒子(A)とPPE(B)の重量比は、例えば、後述の「結晶分散法」において、PPEの濃度、PPEの分子量や分子末端の官能基の種類、共存物質の存在と量、温度降下速度、撹拌速度等を変えることによって調整することができる。
[Preparation method of prepreg composed of a curable resin composition containing PPE particles (A) and a substrate]
A prepreg composed of a curable resin composition containing the PPE particles (A) of the present invention and a substrate is particularly limited if the PPE particles (A) and PPE (B) contained in the prepreg satisfy the requirements of the present invention. Although not necessarily obtained, for example, it is obtained by a method of impregnating a base material with a varnish in which PPE particles (A) are dispersed and drying and removing the solvent.
As a method for obtaining a varnish in which PPE particles (A) are dispersed, there is no particular limitation as long as the PPE particles (A) and PPE (B) contained in the obtained prepreg satisfy the requirements of the present invention, A method of obtaining a varnish by adding other components after obtaining a dispersion of PPE particles (A) is mentioned.
As a method for obtaining such a dispersion of PPE particles (A), for example, a method in which PPE is added to a non-halogen solvent, heated and dissolved, and then the temperature is lowered (hereinafter also referred to as “crystal dispersion method”). Can be mentioned.
The particle size of the PPE particles (A), the PPE content ratio, the PPE molecular weight, and the weight ratio of the PPE particles (A) and PPE (B) present in the prepreg of the present invention are, for example, in the “crystal dispersion method” described below. It can be adjusted by changing the concentration of PPE, the molecular weight of PPE, the type of functional group at the molecular end, the presence and amount of coexisting substances, the temperature drop rate, the stirring rate, and the like.

[結晶分散法]
PPEを非ハロゲン溶剤中に添加し、加温して溶解させた後に温度降下させてPPE結晶粒子を得る方法においては、PPEが固形分中70質量%以上含まれるPPE溶解液を用い、温度降下により粒子を得るのがよい。長径が3μm以上20μm以下の粒子の含量が60%以上であることが、塗工に適切な粘度が得られる点で、好ましい。また、粒子の長径/短径比が1.0以上1.2以下の範囲にあることが、塗工に適切な粘度が得られる点で、好ましく、また、流動性が得られ易いので、ワニス中のPPE粒子濃度を高くできる点でも好ましい。
また、PPE溶解液中のPPEの、溶解成分に対する割合が高い方が、PPE粒子中のPPE濃度を高くすることができ、本発明の要件を満たすPPE粒子が得易い点で、好ましい。さらに、PPE溶解液には、PPE以外に、ポリスチレン樹脂、1種類のビニル芳香族化合物を主体とする重合体ブロックA及び少なくとも1種類の共役ジエン化合物を主体とする重合体ブロックBとからなるブロック共重合体を水素添加して得られる水添ブロック共重合体などの添加剤を含んでもよい。また、PPE溶解液には、融点30℃以上の成分は含まない方が、安定して再現性よく流動性を有するPPE結晶分散液が得られるのでよい。
温度降下は、攪拌翼を供えた槽内で行うことが好ましい。非ハロゲン系溶剤中に溶解したPPEを撹拌した状態で温度降下させてPPE粒子分散液を製造する。この際、PPE結晶粒子が析出を開始する温度より10℃以上高い温度となったら、攪拌を翼先端速度3m/s以下で行うことが、粒子の凝集や分散液に増粘を防ぐために好ましい。また、温度降下は、得られるPPE粒子を大きな球形に制御しやすく、分散液の流動性を上げる、或いはPPE含有量を高くできる観点で、静止状態であってもよい。
[Crystal dispersion method]
In a method in which PPE is added to a non-halogen solvent, dissolved by heating, and then the temperature is lowered to obtain PPE crystal particles, a PPE solution containing 70 mass% or more of PPE in the solid content is used. To obtain particles. The content of particles having a major axis of 3 μm or more and 20 μm or less is preferably 60% or more from the viewpoint of obtaining a viscosity suitable for coating. Further, it is preferable that the ratio of the major axis / minor axis of the particles is in the range of 1.0 or more and 1.2 or less, because a viscosity suitable for coating is obtained, and fluidity is easily obtained. It is also preferable in that the PPE particle concentration in the inside can be increased.
In addition, it is preferable that the ratio of PPE in the PPE solution with respect to the dissolved component is high, because the PPE concentration in the PPE particles can be increased and PPE particles that satisfy the requirements of the present invention can be easily obtained. In addition to PPE, the PPE solution includes a block comprising a polystyrene block, a polymer block A mainly composed of one kind of vinyl aromatic compound, and a polymer block B mainly composed of at least one kind of conjugated diene compound. An additive such as a hydrogenated block copolymer obtained by hydrogenating the copolymer may also be included. In addition, it is better that the PPE solution does not contain a component having a melting point of 30 ° C. or higher because a PPE crystal dispersion having a stable and reproducible fluidity can be obtained.
The temperature drop is preferably performed in a tank provided with a stirring blade. The PPE particle dispersion is produced by lowering the temperature of the PPE dissolved in the non-halogen solvent while stirring. At this time, when the temperature becomes 10 ° C. or more higher than the temperature at which the PPE crystal particles start to precipitate, stirring is preferably performed at a blade tip speed of 3 m / s or less in order to prevent aggregation of the particles and thickening of the dispersion. In addition, the temperature drop may be in a stationary state from the viewpoint of easily controlling the obtained PPE particles into a large spherical shape and increasing the fluidity of the dispersion or increasing the PPE content.

また、温度下降の到達温度は、ワニスを基材に含浸させる温度に近い方がよく、例えば、塗工温度をα℃とした場合、α―15℃以上α+10℃以下の温度とすることで、PPE粒子(A)とPPE(B)の質量比が制御しやすく、安定したプリプレグが得られるため好ましい。温度下降到達温度のより好ましい範囲はα−10℃以上α+5℃以下、更に好ましい温度範囲α−5℃以上α+4℃以下、最も好ましい温度範囲はα―3℃以上α+3℃以下である。
この方法で得られた樹脂分散液からワニスを作製する場合の温度条件としては、樹脂分散液作成時の温度下降到達温度と塗工温度との間の温度で行うことが、PPE粒子(A)とPPE(B)の質量比が制御しやすいため好ましいが、PPE粒子(A)とPPE(B)の質量比を制御することができる範囲であれば、特に限定はされない。
樹脂分散液に他の成分を添加して樹脂ワニスを製造する際には、前記成分の添加速度が、前記分散液中の全PPE含有量を100重量部基準として、毎分0.6重量部以下の速度で添加することが、樹脂の凝集を防ぐ点で、好ましい。
In addition, the temperature lowering temperature should be close to the temperature at which the varnish is impregnated into the base material. For example, when the coating temperature is α ° C., by setting the temperature to α-15 ° C. or higher and α + 10 ° C. or lower, The mass ratio of PPE particles (A) and PPE (B) is easy to control, and a stable prepreg is obtained, which is preferable. A more preferable range of the temperature lowering arrival temperature is α-10 ° C. or more and α + 5 ° C. or less, a more preferable temperature range α-5 ° C. or more and α + 4 ° C. or less, and a most preferable temperature range is α−3 ° C. or more and α + 3 ° C. or less.
As a temperature condition in the case of producing a varnish from the resin dispersion obtained by this method, the PPE particles (A) may be carried out at a temperature between the temperature lowering arrival temperature and the coating temperature at the time of resin dispersion production. However, there is no particular limitation as long as the mass ratio between the PPE particles (A) and the PPE (B) can be controlled.
When a resin varnish is produced by adding other components to the resin dispersion, the addition rate of the components is 0.6 parts by weight per minute based on 100 parts by weight of the total PPE content in the dispersion. It is preferable to add at the following speed in terms of preventing resin aggregation.

上記分散液に使用する溶媒としては、温度25℃におけるPPEの溶解度が3質量%以上20質量%以下であることが好ましい。温度80℃におけるPPEの溶解度が20質量%以上、好ましくは30質量%以上であることがさらに好ましい。上記PEの溶解特性を満たせば特に制限はなく、1種でも2種以上の混合液でもよい。好ましい溶媒としては、ベンゼン、トルエン、キシレンなどの芳香族有機溶剤、シクロヘキサノン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、メタノール、エタノール、ブタノール等のアルコール類が挙げられる。   As a solvent used in the dispersion, the solubility of PPE at a temperature of 25 ° C. is preferably 3% by mass or more and 20% by mass or less. More preferably, the solubility of PPE at a temperature of 80 ° C. is 20% by mass or more, preferably 30% by mass or more. There is no particular limitation as long as the above PE solubility characteristics are satisfied, and one or a mixture of two or more may be used. Preferable solvents include aromatic organic solvents such as benzene, toluene and xylene, ketones such as cyclohexanone, methyl ethyl ketone and methyl isobutyl ketone, and alcohols such as methanol, ethanol and butanol.

上述した本発明に係る硬化性樹脂組成物を用い、該硬化性樹脂組成物の硬化物と基材とを含む硬化物複合体と、金属箔とが積層されている積層板を形成できる。該積層板は、好ましくは、上記硬化物複合体と金属箔とが重なって密着しているもので、電子基板の材料として好適に用いられる。金属箔としては、例えば、アルミ箔及び銅箔を用いることができ、中でも銅箔は電気抵抗が低いため好ましい。金属箔と組合せる硬化物複合体は1枚でも複数枚でもよく、用途に応じて複合体の片面又は両面に金属箔を重ねて積層板に加工する。積層板の製造方法としては、例えば、硬化性樹脂組成物と基材とから構成される複合体(例えば、前述のプリプレグ)を形成し、これを金属箔と重ねた後、硬化性樹脂組成物を硬化させることにより、硬化物積層体と金属箔とが積層されている積層板を得る方法が挙げられる。該積層板の特に好ましい用途の1つはプリント配線板である。
本発明の別の態様は、上述した本発明の硬化性樹脂組成物の硬化物と、基材とを含むプリント配線板を提供する。本発明のプリント配線板は、典型的には、上述した本発明のプリプレグを用いて、加圧加熱成型する方法で形成できる。基材としてはプリプレグに関して前述したのと同様のものが挙げられる。本発明のプリント配線板は、上述したような硬化性樹脂組成物を用いて形成されていることにより、優れた絶縁信頼性及び機械特性を有することができる。
By using the curable resin composition according to the present invention described above, a laminate in which a cured product composite including a cured product of the curable resin composition and a substrate and a metal foil are laminated can be formed. The laminate is preferably one in which the cured product composite and the metal foil are in close contact with each other, and is suitably used as a material for an electronic substrate. As the metal foil, for example, an aluminum foil and a copper foil can be used, and among them, the copper foil is preferable because of its low electric resistance. The cured product composite to be combined with the metal foil may be one sheet or a plurality of sheets, and the metal foil is overlapped on one side or both sides of the composite to be processed into a laminate according to the use. As a manufacturing method of a laminated board, for example, a composite (for example, the above-mentioned prepreg) composed of a curable resin composition and a substrate is formed, and this is overlapped with a metal foil, and then a curable resin composition. The method of obtaining the laminated board on which the hardened | cured material laminated body and metal foil are laminated | stacked by hardening | curing is mentioned. One particularly preferred application of the laminate is a printed wiring board.
Another aspect of the present invention provides a printed wiring board comprising a cured product of the curable resin composition of the present invention described above and a base material. The printed wiring board of the present invention can typically be formed by a method of pressure and heat molding using the prepreg of the present invention described above. Examples of the substrate include the same materials as described above with respect to the prepreg. Since the printed wiring board of the present invention is formed using the curable resin composition as described above, it can have excellent insulation reliability and mechanical properties.

以下、実施例により、本実施形態を具体的に説明するが、本実施形態は以下の実施例により何ら限定されるものではない。
以下の実施例、比較例及び試験例中の各物性は、以下の方法によって測定した。
(1)PPEの数平均分子量
ゲルパーミエーションクロマトグラフィ分析(GPC)を用い、分子量既知の標準ポリスチレンの溶出時間との比較で数平均分子量を求めた。
測定装置にはHLC−8220GPC(東ソー株式会社製)を用い、カラム:Shodex LF−804×2(昭和電工株式会社製)、溶離液:50℃のクロロホルム、検出器:RI、の条件で測定を行った。
Hereinafter, the present embodiment will be specifically described by way of examples. However, the present embodiment is not limited to the following examples.
The physical properties in the following examples, comparative examples and test examples were measured by the following methods.
(1) Number average molecular weight of PPE Using gel permeation chromatography analysis (GPC), the number average molecular weight was determined by comparison with the elution time of standard polystyrene having a known molecular weight.
HLC-8220GPC (manufactured by Tosoh Corporation) is used as a measuring apparatus, and measurement is performed under the conditions of column: Shodex LF-804 × 2 (manufactured by Showa Denko KK), eluent: chloroform at 50 ° C., detector: RI. went.

(2)PPE1分子当たりの平均フェノール性水酸基数
吸光度から求めたPPEに含まれるフェノール性水酸基数と、平均分子量から求めたPPEの分子数とを用い、1分子当たりの平均フェノール性水酸基数を求めた。
先ず、高分子論文集,vol.51,No.7(1994),第480頁記載の方法に準拠し、PPEの塩化メチレン溶液にテトラメチルアンモニウムハイドロオキシド溶液を加えて得た試料の波長318nmにおける吸光度変化を紫外可視吸光光度計で測定した値から水酸基の数を求めた。
別途、PPEの数平均分子量を、上記(1)に従いゲルパーミエーションクロマトグラフィ(GPC)により求め、この値を用いて、PPEの分子数を求めた。これらの値から、下記式に従って、PPE1分子当たりの平均水酸基数を算出した。
1分子当たりの平均フェノール性水酸基数=水酸基の数/数平均分子数
(2) Average number of phenolic hydroxyl groups per molecule of PPE Using the number of phenolic hydroxyl groups contained in PPE determined from the absorbance and the number of PPE molecules determined from the average molecular weight, the average number of phenolic hydroxyl groups per molecule was determined. It was.
First, collection of polymer papers, vol. 51, no. 7 (1994), in accordance with the method described on page 480, from a value obtained by measuring an absorbance change at a wavelength of 318 nm of a sample obtained by adding a tetramethylammonium hydroxide solution to a methylene chloride solution of PPE with an ultraviolet-visible spectrophotometer. The number of hydroxyl groups was determined.
Separately, the number average molecular weight of PPE was determined by gel permeation chromatography (GPC) according to (1) above, and the number of PPE molecules was determined using this value. From these values, the average number of hydroxyl groups per PPE molecule was calculated according to the following formula.
Average number of phenolic hydroxyl groups per molecule = number of hydroxyl groups / number average number of molecules

(3)積層板の誘電率、誘電正接
積層板の1GHzにおける誘電率及び誘電正接を、インピーダンスアナライザーを用いて測定した。
測定装置としてインピーダンスアナライザー(4291B op.002 with 16453A,16454A、AgilentTechnologies社製)を用い、試験片厚さ:約2mm、電圧:100mV、周波数:1mmHz〜1.8GHzの条件で測定し、掃引回数100回の平均値として求めた。
(3) Dielectric constant and dielectric loss tangent of laminated plate The dielectric constant and dielectric loss tangent of the laminated plate at 1 GHz were measured using an impedance analyzer.
Using an impedance analyzer (4291B op.002 with 16453A, 16454A, manufactured by Agilent Technologies) as a measuring device, measurement is performed under the conditions of test piece thickness: about 2 mm, voltage: 100 mV, frequency: 1 mm Hz to 1.8 GHz, and 100 sweeps. It calculated | required as an average value of times.

(4)積層板の吸水率
積層板を吸水加速試験に供し、増加した質量から吸水率を求めた。
積層板を50mm角に切り出し試験片を作製した。該試験片を130℃で30分乾燥した後、質量を測定し、加速試験前の質量(g)とした。次いで、温度:121℃、圧力:2atm、時間:4時間、の条件で加速試験を行った後の質量を測定し、加速試験後の質量(g)とした。
加速試験前の質量(g)と加速試験後の質量(g)とを用い、下記式により吸水率を算出し、試験片4枚の測定値の平均値を求めた。
吸水率(質量%)=(加速試験前の質量―加速試験後質量)/加速試験前の質量×100
(4) Water Absorption Rate of Laminate Plate The laminate plate was subjected to a water absorption acceleration test, and the water absorption rate was determined from the increased mass.
The laminate was cut into 50 mm squares to produce test pieces. After the test piece was dried at 130 ° C. for 30 minutes, the mass was measured to obtain the mass (g) before the acceleration test. Subsequently, the mass after the acceleration test was performed under the conditions of temperature: 121 ° C., pressure: 2 atm, and time: 4 hours, and the mass (g) after the acceleration test was measured.
Using the mass (g) before the acceleration test and the mass (g) after the acceleration test, the water absorption was calculated by the following formula, and the average value of the measured values of the four test pieces was obtained.
Water absorption (mass%) = (mass before acceleration test−mass after acceleration test) / mass before acceleration test × 100

(5)積層板の吸水試験後のはんだ耐熱性
上記(4)に記載の吸水率の測定後の積層板を用い、288℃及び260℃でのはんだ耐熱試験を行った。吸水加速試験後の積層板を、288℃又は260℃のはんだ浴に20秒間浸漬し、目視による観察を行った。288℃のはんだ浴へ浸漬しても、膨れ、剥離及び白化の何れも確認されなかった積層板については「はんだ耐熱288℃」と評価した。また、288℃のはんだ浴への浸漬により、膨れ、剥離及び白化の何れか1つ以上が発生したが、260℃のはんだ浴へ浸漬しても、膨れ、剥離及び白化の何れも確認されなかった積層板については「はんだ耐熱260℃」と評価した。また、260℃のはんだ浴への浸漬により、膨れ、剥離及び白化の何れか1つ以上が発生した積層板は「不合格」と評価した。
(5) Solder heat resistance after water absorption test of laminated board A solder heat resistance test was performed at 288 ° C and 260 ° C using the laminated board after measuring the water absorption rate described in (4) above. The laminated board after the water absorption acceleration test was immersed in a solder bath at 288 ° C. or 260 ° C. for 20 seconds, and visually observed. A laminated board in which neither swelling, peeling or whitening was confirmed even when immersed in a solder bath at 288 ° C. was evaluated as “solder heat resistance 288 ° C.”. In addition, any one or more of swelling, peeling and whitening occurred by immersion in a solder bath at 288 ° C., but neither swelling nor peeling or whitening was confirmed even when immersed in a solder bath at 260 ° C. The laminated board was evaluated as “solder heat resistance 260 ° C.”. Moreover, the laminated board which generate | occur | produced any one or more of a swelling, peeling, and whitening by immersion in a 260 degreeC solder bath was evaluated as "failed."

(6)積層板の銅箔引き剥がし強さ(剥離強度N/mm)
銅張積層板の銅箔を一定速度で引き剥がす際の応力を測定した。後述の方法で作製した、35μm銅箔(GTS−MP箔、古川電気工業株式会社製)を用いた銅張積層板を、幅15mm×長さ150mmのサイズに切り出し、オートグラフ(AG−5000D、株式会社島津製作所製)を用い、銅箔を除去面に対し90℃の角度で50mm/分の速度で引き剥がした際の荷重の平均値を測定し、5回の測定の平均値を求めた。
(6) Copper foil peel strength of laminate (Peel strength N / mm)
The stress when peeling the copper foil of the copper clad laminate at a constant speed was measured. A copper-clad laminate using a 35 μm copper foil (GTS-MP foil, manufactured by Furukawa Electric Co., Ltd.) produced by the method described below was cut into a size of 15 mm wide × 150 mm long, and an autograph (AG-5000D, Shimadzu Corporation) was used to measure the average value of the load when the copper foil was peeled off at a speed of 50 mm / min at an angle of 90 ° C. with respect to the removal surface, and the average value of five measurements was obtained. .

(7)プリプレグの粉落ち、剥がれ
プリプレグを180°に折り曲げた際に、樹脂粉落ち、あるいは樹脂剥離が生じるかを調べ、評価した。まず、プリプレグを200mm×300mmの大きさにカッター刃を用いて切り出した。次いで、長方形の長辺側2辺が重なるようにプリプレグを180°に折り曲げた後、元に戻した。次いで、長方形の短辺側2辺が重なるようにプリプレグを180°に折り曲げた後、元に戻した。上述の一連のプリプレグの取り扱いにおいて、樹脂粉落ち、又は樹脂層の剥がれなどの問題がなかったものは「合格」と評価した。一方、樹脂粉落ちが激しかったものは「不合格/樹脂粉落ち」、また、樹脂層の剥がれが著しかったものは「不合格/樹脂剥がれ」と評した。
(7) Powder removal and peeling of prepreg When the prepreg was bent at 180 °, it was examined and evaluated whether resin powder falling or resin peeling occurred. First, the prepreg was cut out to a size of 200 mm × 300 mm using a cutter blade. Next, the prepreg was bent at 180 ° so that the two long sides of the rectangle overlapped, and then returned to its original state. Next, the prepreg was bent at 180 ° so that the two sides of the short side of the rectangle overlapped, and then returned to its original state. In the above-described series of prepreg handling, those that had no problems such as falling off of the resin powder or peeling of the resin layer were evaluated as “pass”. On the other hand, the case where the resin powder was severely removed was evaluated as “failed / resin powder fall”, and the case where the resin layer was severely peeled was evaluated as “failed / resin peeled”.

(8)質量比95:5のトルエンとメタノールの混合溶剤に不溶なPPE粒子(A)の最大長径
前記したように、PPE粒子(A)の最大長径を求めた。
(8) Maximum major axis of PPE particles (A) insoluble in a mixed solvent of toluene and methanol with a mass ratio of 95: 5 As described above, the maximum major axis of the PPE particles (A) was determined.

(9)質量比95:5のトルエンとメタノールの混合溶剤に不溶な全PPE粒子(A)の数に対する長径3μm以上20μm以下のPPE粒子(A)の数の割合
前記したように、上記割合を求めた。
(9) Ratio of the number of PPE particles (A) having a major axis of 3 μm or more and 20 μm or less to the total number of PPE particles (A) insoluble in a mixed solvent of toluene and methanol having a mass ratio of 95: 5 Asked.

(10)PPE粒子(A)中のPPE含有割合
前記したように、上記割合を求めた。
(10) PPE content ratio in PPE particles (A) As described above, the above ratio was determined.

(11)PPE粒子(A)に含まれるPPEの数平均分子量
前記したように、上記分子量を求めた。
(11) Number average molecular weight of PPE contained in PPE particles (A) As described above, the molecular weight was determined.

(12)質量比95:5のトルエンとメタノールの混合溶剤に不溶なPPE(A)と同溶剤に可溶なPPE(B)との質量比
前記したように、上記質量比を求めた。
(12) Mass ratio of PPE (A) insoluble in a mixed solvent of toluene and methanol having a mass ratio of 95: 5 and PPE (B) soluble in the same solvent As described above, the mass ratio was determined.

(13)PPE(B)の数平均分子量
前記したように、上記分子量を求めた。
(13) Number average molecular weight of PPE (B) The molecular weight was determined as described above.

(14)分散液の粘度
B型粘度計、ローターNo.3を用い、25℃、30rpm、30秒の条件で粘度の測定を行った。
(14) Viscosity of dispersion liquid B-type viscometer, rotor No. 3 was used, and the viscosity was measured under the conditions of 25 ° C., 30 rpm, and 30 seconds.

(15)分散液の分散安定性
ガラス製の50mlサンプル管に分散液35gを入れ、23℃の恒温室に3日間静置した。PPE粒子の沈降などによる分離がなく、また、流動性を保持したものを「合格」とした。また、PE粒子の沈降などによる分離が生じたものを「分離」、流動性がないものを「ゲル化」と評した。
(15) Dispersion stability of dispersion liquid 35 g of the dispersion liquid was placed in a glass 50 ml sample tube and allowed to stand in a thermostatic chamber at 23 ° C. for 3 days. Those that did not separate due to sedimentation of PPE particles and maintained fluidity were evaluated as “pass”. Further, the case where separation due to sedimentation of PE particles or the like occurred was evaluated as “separation”, and the case where there was no fluidity was described as “gelation”.

<製造例1:低分子量・ベンジル化PPE>
90℃に加温されたオイルバスに10Lのフラスコを設置し、フラスコ内部に毎分30mlで窒素ガスを導入した。以降、操作は常に窒素ガス気流下で行った。ここに、PPE1000g、及びトルエン3000gを入れ、攪拌溶解させた。更に80gのビスフェノールAをメタノール350gに溶かした溶液を上記フラスコに攪拌しながら加えた。5分間攪拌を続けた後、6質量%ナフテン酸コバルトミネラルスピリット溶液3mlを注射器で加え、5分間攪拌を続けた。続いてベンゾイルパーオキサイド溶液375gにトルエン1125gを加えて、ベンゾイルパーオキサイド濃度が10質量%になるように希釈した溶液を滴下ロートに入れ、上記フラスコに2時間かけて滴下していった。滴下終了後、更に2時間加熱及び攪拌を続け、低分子量化PPEを含む反応液を得た。得られた低分子量化PPEの数平均分子量は2,800であり、1分子当たりの平均フェノール性水酸基数は1.96個であった。
<Production Example 1: Low molecular weight / benzylated PPE>
A 10 L flask was placed in an oil bath heated to 90 ° C., and nitrogen gas was introduced into the flask at a rate of 30 ml per minute. Thereafter, the operation was always performed under a nitrogen gas stream. Here, 1000 g of PPE and 3000 g of toluene were added and dissolved by stirring. Further, a solution obtained by dissolving 80 g of bisphenol A in 350 g of methanol was added to the flask with stirring. After stirring for 5 minutes, 3 ml of 6 mass% cobalt naphthenate mineral spirit solution was added with a syringe, and stirring was continued for 5 minutes. Subsequently, 1125 g of toluene was added to 375 g of the benzoyl peroxide solution, and a solution diluted so that the benzoyl peroxide concentration was 10% by mass was placed in a dropping funnel and dropped into the flask over 2 hours. After completion of the dropwise addition, heating and stirring were further continued for 2 hours to obtain a reaction solution containing a low molecular weight PPE. The number average molecular weight of the obtained low molecular weight PPE was 2,800, and the average number of phenolic hydroxyl groups per molecule was 1.96.

次いで、該低分子量化PPEを含む反応液の温度を50℃に下げ、水酸化ナトリウム340gをイオン交換水3050gに溶解させた水溶液とテトラブチルアンモニウムヨード31gとを加えて、5分間撹拌した。続いて、塩化ベンジル1070gを加えてから温度50℃で4時間撹拌を続け、低分子量・ベンジル化PPEを含む反応液を得た。該反応液を静置し、2層分離させた後、下槽を除去した。更に水1000gを加え、撹拌した後静置し、再び2槽に分離させた後、下槽を除去した。次いで、メタノール200gを加え、同様に撹拌、静置し、2層に分離させた後、上層を除去した。更にメタノール100gを加え、同様に撹拌、静置し、2層に分離させた後、下層を回収して低分子量・ベンジル化PPEを含む反応液を得た。これに多量のメタノールを加え、低分子量・ベンジル化PPEを沈殿させ、ろ別後、乾燥させて低分子量・ベンジル化PPEを得た。得られた低分子量・ベンジル化PPEの数平均分子量は3,000、1分子当たりの平均フェノール性水酸基数は0.01個であった。   Next, the temperature of the reaction solution containing the low molecular weight PPE was lowered to 50 ° C., an aqueous solution in which 340 g of sodium hydroxide was dissolved in 3050 g of ion-exchanged water and 31 g of tetrabutylammonium iodide were added and stirred for 5 minutes. Subsequently, 1070 g of benzyl chloride was added and stirring was continued at a temperature of 50 ° C. for 4 hours to obtain a reaction solution containing low molecular weight / benzylated PPE. The reaction solution was allowed to stand and the two layers were separated, and then the lower tank was removed. Further, 1000 g of water was added, stirred, allowed to stand, and again separated into two tanks, and then the lower tank was removed. Next, 200 g of methanol was added, and the mixture was stirred and allowed to stand in the same manner to separate into two layers, and then the upper layer was removed. Further, 100 g of methanol was added, and similarly stirred and allowed to stand to separate into two layers, and then the lower layer was recovered to obtain a reaction solution containing a low molecular weight / benzylated PPE. A large amount of methanol was added thereto to precipitate low molecular weight / benzylated PPE, which was filtered and dried to obtain low molecular weight / benzylated PPE. The number average molecular weight of the obtained low molecular weight / benzylated PPE was 3,000, and the average number of phenolic hydroxyl groups per molecule was 0.01.

<製造例2:PPEと無水マレイン酸との反応生成物>
PPE(S202A、旭化成ケミカルズ製、数平均分子量18,000、1分子当たりの平均フェノール性水酸基数1.84個)100重量部と無水マレイン酸1.5重量部、および2,5−ジメチル2,5−ジ(t−ブチルパーオキシ)ヘキサン(パーヘキサ25B、日本油脂製)1.0重量部を室温でドライブレンドした後、シリンダー温度300℃、スクリュー回転数230rpmの条件で2軸押出し機により押出し、PPEと無水マレイン酸との反応生成物を得た。得られたPPEと無水マレイン酸との反応生成物の数平均分子量は17,000、1分子当たりの平均フェノール性水酸基数は0.95個であった。
<Production Example 2: Reaction product of PPE and maleic anhydride>
100 parts by weight of PPE (S202A, manufactured by Asahi Kasei Chemicals, number average molecular weight 18,000, average number of phenolic hydroxyl groups 1.84 per molecule), 1.5 parts by weight of maleic anhydride, and 2,5-dimethyl-2 After dry blending 1.0 parts by weight of 5-di (t-butylperoxy) hexane (Perhexa 25B, manufactured by NOF Corporation) at room temperature, it is extruded by a twin screw extruder under conditions of a cylinder temperature of 300 ° C. and a screw rotation speed of 230 rpm. A reaction product of PPE and maleic anhydride was obtained. The number average molecular weight of the reaction product of the obtained PPE and maleic anhydride was 17,000, and the average number of phenolic hydroxyl groups per molecule was 0.95.

<実施例1>
トルエン111重量部をセパラブルフラスコに入れ80℃に加熱した。PPE(S202A、旭化成ケミカルズ製、数平均分子量18,000、1分子当たりの平均フェノール性水酸基数1.84個)53.3部、スチレン系エラストマー(SOE L606、旭化成ケミカルズ製)3.6重量部を加え、80℃で2時間撹拌して、前記PPEとスチレン系エラストマーを溶解させた。撹拌を止め、5時間かけて25℃まで温度降下させ、PPE粒子の分散液Aを得た。PPE粒子分散液Aは、適度な流動性と分散安定性を有していり、粘度は512mPa・sであった。また、PPE粒子分散液Aには、質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は12μm、長径3μm〜20μmの割合は90%、PPE含量は91質量%であった。
得られたPPE分散液Aに、トリアリルイソシアヌレート(日本化成製)21.3重量部、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン(パーブチルP、日油製)2.3重量部を加え、均一に撹拌した後、デカブロモジフェニルエタン(SAYTEX8010、アルベマールジャパン製)15.9部、シリカフィラー(球状シリカ、龍森製)24.6重量部を加え均一に撹拌し、塗工用ワニスAを得た。
次いで、塗工用ワニスAを、厚さ約0.1m、のEガラス製ガラスクロス(2116スタイル、旭シェーベル製)に含浸させ、スリットで余分なワニスを掻き落とした後、溶媒を乾燥除去し、樹脂含有量60質量%のプリプレグAを得た。該プリプレグAは、樹脂の粉落ちや剥がれが無く、取り扱い性に優れるものであった。
<Example 1>
111 parts by weight of toluene was placed in a separable flask and heated to 80 ° C. PPE (S202A, manufactured by Asahi Kasei Chemicals, number average molecular weight 18,000, average number of phenolic hydroxyl groups 1.84 per molecule) 53.3 parts, styrene elastomer (SOE L606, manufactured by Asahi Kasei Chemicals) 3.6 parts by weight And stirred at 80 ° C. for 2 hours to dissolve the PPE and the styrene elastomer. Stirring was stopped and the temperature was lowered to 25 ° C. over 5 hours to obtain a dispersion A of PPE particles. The PPE particle dispersion A had moderate fluidity and dispersion stability, and had a viscosity of 512 mPa · s. In addition, PPE particle dispersion A contains PPE extracted as an insoluble component in a toluene / methanol mixed solvent having a mass ratio of 95: 5. As shown in Table 1 below, the maximum major axis is 12 μm and the major axis is 3 μm to 3 μm. The proportion of 20 μm was 90%, and the PPE content was 91% by mass.
In the obtained PPE dispersion A, triallyl isocyanurate (Nihon Kasei) 21.3 parts by weight, α, α'-bis (t-butylperoxy-m-isopropyl) benzene (Perbutyl P, manufactured by NOF Corporation) After adding 2.3 parts by weight and stirring uniformly, 15.9 parts of decabromodiphenylethane (SAYTEX 8010, manufactured by Albemarle Japan) and 24.6 parts by weight of silica filler (spherical silica, manufactured by Tatsumori) were added and stirred uniformly. Thus, varnish A for coating was obtained.
Next, the coating varnish A was impregnated into an E glass glass cloth (2116 style, manufactured by Asahi Shovel) with a thickness of about 0.1 m, and after removing excess varnish with a slit, the solvent was removed by drying. A prepreg A having a resin content of 60% by mass was obtained. The prepreg A was excellent in handleability with no powder falling off or peeling off of the resin.

<実施例2>
トルエン158重量部をセパラブルフラスコに入れ80℃に加熱した。PPE(S202A、旭化成ケミカルズ製、数平均分子量18,000、1分子当たりの平均フェノール性水酸基数1.84個)53.3部、ポリスチレン(650、PSジャパン製)1.5重量部を加え、80℃で2時間撹拌して、前記PPEとポリスチレンを溶解させた。撹拌を止め、5時間かけて25℃まで温度降下させ、PPE粒子の分散液Bを得た。
PPE粒子分散液Bは、適度な流動性と分散安定性を有していり、粘度は602mPa・sであった。また、PPE粒子分散液Aには、質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は12μm、長径3μm〜20μmの割合は68%、PPE含量は87質量%であった。
得られたPPE粒子分散液Bに、トリアリルイソシアヌレート(日本化成製)22.8重量部、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン(パーブチルP、日油製)1.5重量部を加え、均一に撹拌した後、デカブロモジフェニルエタン(SAYTEX8010、アルベマールジャパン製)19.8部を加え均一に撹拌し、塗工用ワニスBを得た。
次いで、塗工用ワニスBを、厚さ約0.1m、のEガラス製ガラスクロス(2116スタイル、旭シェーベル製)に含浸させ、スリットで余分なワニスを掻き落とした後、溶媒を乾燥除去し、樹脂含有量60質量%のプリプレグBを得た。該プリプレグBは、樹脂の粉落ちや剥がれが無く、取り扱い性に優れるものであった。
<Example 2>
158 parts by weight of toluene was placed in a separable flask and heated to 80 ° C. Add 53.3 parts of PPE (S202A, manufactured by Asahi Kasei Chemicals, number average molecular weight 18,000, average number of phenolic hydroxyl groups per molecule 1.84), 1.5 parts by weight of polystyrene (650, manufactured by PS Japan), The mixture was stirred at 80 ° C. for 2 hours to dissolve the PPE and polystyrene. Stirring was stopped and the temperature was lowered to 25 ° C. over 5 hours to obtain a dispersion B of PPE particles.
The PPE particle dispersion B had moderate fluidity and dispersion stability, and had a viscosity of 602 mPa · s. In addition, PPE particle dispersion A contains PPE extracted as an insoluble component in a toluene / methanol mixed solvent having a mass ratio of 95: 5. As shown in Table 1 below, the maximum major axis is 12 μm and the major axis is 3 μm to 3 μm. The proportion of 20 μm was 68%, and the PPE content was 87% by mass.
To the obtained PPE particle dispersion B, triallyl isocyanurate (Nippon Kasei) 22.8 parts by weight, α, α'-bis (t-butylperoxy-m-isopropyl) benzene (perbutyl P, manufactured by NOF Corporation) ) After adding 1.5 parts by weight and stirring uniformly, 19.8 parts of decabromodiphenylethane (SAYTEX8010, manufactured by Albemarle Japan) was added and stirred uniformly to obtain varnish B for coating.
Next, the coating varnish B was impregnated into a glass cloth made of E glass (2116 style, manufactured by Asahi Shovel) with a thickness of about 0.1 m, and after removing excess varnish with a slit, the solvent was removed by drying. A prepreg B having a resin content of 60% by mass was obtained. The prepreg B was excellent in handleability, with no powder falling off or peeling off of the resin.

<実施例3>
PPEとポリスチレンのトルエン溶液の温度降下を35℃までにする以外は実施例2と同様の方法で、PPE粒子の分散液Cを得た。PPE粒子分散液Cは、適度な流動性と分散安定性を有していり、粘度は524mPa・sであった。また、PPE粒子分散液Cには、質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は12μm、長径3μm〜20μmの割合は92%、ポリフェニレンエーテル含量は96質量%であった。
次いで、得られたPPE粒子分散液Cを用いる以外は実施例2と同様の方法で、樹脂含有量60質量%のプリプレグCを得た。該プリプレグCは、樹脂の粉落ちや剥がれが無く、取り扱い性に優れるものであった。
<Example 3>
A dispersion C of PPE particles was obtained in the same manner as in Example 2 except that the temperature drop of the toluene solution of PPE and polystyrene was reduced to 35 ° C. The PPE particle dispersion C had moderate fluidity and dispersion stability, and had a viscosity of 524 mPa · s. In addition, PPE particle dispersion C contains PPE extracted as an insoluble component in a 95: 5 mass ratio of toluene and methanol mixed solvent. As shown in Table 1 below, the maximum major axis is 12 μm, and the major axis is 3 μm to 3 μm. The proportion of 20 μm was 92%, and the polyphenylene ether content was 96% by mass.
Next, a prepreg C having a resin content of 60% by mass was obtained in the same manner as in Example 2 except that the obtained PPE particle dispersion C was used. The prepreg C was excellent in handleability, with no powder falling off or peeling off of the resin.

<実施例4>
トルエンの量を210重量部とし、PPEとポリスチレンのトルエン溶液の温度降下を20℃までにする以外は実施例2と同様の方法で、PPE粒子の分散液Dを得た。PPE粒子分散液Dは、適度な流動性と分散安定性を有していり、粘度は624mPa・sであった。また、PPE粒子分散液Dには、質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は13μm、長径3μm〜20μmの割合は81%、PPE含量は90質量%であった。
次いで、得られたPPE粒子分散液Dを用いる以外は実施例2と同様の方法で、樹脂含有量60質量%のプリプレグDを得た。該プリプレグDは、樹脂の粉落ちや剥がれが無く、取り扱い性に優れるものであった。
<Example 4>
A dispersion D of PPE particles was obtained in the same manner as in Example 2 except that the amount of toluene was 210 parts by weight and the temperature drop of the toluene solution of PPE and polystyrene was 20 ° C. The PPE particle dispersion D had moderate fluidity and dispersion stability, and had a viscosity of 624 mPa · s. The PPE particle dispersion D contains PPE extracted as an insoluble component in a toluene / methanol mixed solvent having a mass ratio of 95: 5. As shown in Table 1 below, the maximum major axis is 13 μm and the major axis is 3 μm to 3 μm. The proportion of 20 μm was 81%, and the PPE content was 90% by mass.
Next, a prepreg D having a resin content of 60% by mass was obtained in the same manner as in Example 2 except that the obtained PPE particle dispersion D was used. The prepreg D was excellent in handleability with no resin powder falling off or peeling off.

<実施例5>
PPEとポリスチレンのトルエン溶液の温度降下を35℃までにする以外は実施例4と同様の方法で、PPE粒子の分散液Eを得た。PPE粒子分散液Eは、適度な流動性と分散安定性を有していり、粘度は440mPa・sであった。また、PPE粒子分散液Eには、質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は12μm、長径3μm〜20μmの割合は88%、PPE含量は100質量%であった。
次いで、得られたPPE粒子分散液Eを用いる以外は実施例4と同様の方法で、樹脂含有量60質量%のプリプレグEを得た。該プリプレグEは、樹脂の粉落ちや剥がれが無く、取り扱い性に優れるものであった。
<Example 5>
A dispersion E of PPE particles was obtained in the same manner as in Example 4 except that the temperature drop of the toluene solution of PPE and polystyrene was reduced to 35 ° C. The PPE particle dispersion E had moderate fluidity and dispersion stability, and had a viscosity of 440 mPa · s. The PPE particle dispersion E contains PPE extracted as an insoluble component in a toluene / methanol mixed solvent having a mass ratio of 95: 5. As shown in Table 1 below, the maximum major axis is 12 μm and the major axis is 3 μm to 3 μm. The proportion of 20 μm was 88%, and the PPE content was 100% by mass.
Next, a prepreg E having a resin content of 60% by mass was obtained in the same manner as in Example 4 except that the obtained PPE particle dispersion E was used. The prepreg E was excellent in handleability with no powder falling off or peeling off of the resin.

<実施例6>
実施例2で用いたPPEに代えて、PPE(S201A、旭化成ケミカルズ製、数平均分子量25,000、1分子当たりの平均フェノール性水酸基数1.88個)を用いた以外は実施例2と同様の方法で、PPE粒子の分散液Fを得た。PPE粒子分散液Fは、適度な流動性と分散安定性を有していり、粘度は720mPa・sであった。また、PPE粒子分散液Fには、質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は13μm、長径3μm〜20μmの割合は85%、PPE含量は88質量%であった。
次いで、得られたPPE粒子分散液Fを用いる以外は実施例2と同様の方法で、樹脂含有量60質量%のプリプレグFを得た。該プリプレグFは、樹脂の粉落ちや剥がれが無く、取り扱い性に優れるものであった。
<Example 6>
In place of PPE used in Example 2, PPE (S201A, manufactured by Asahi Kasei Chemicals, number average molecular weight 25,000, average number of phenolic hydroxyl groups per molecule 1.88) is the same as Example 2 In this way, a dispersion F of PPE particles was obtained. The PPE particle dispersion F had moderate fluidity and dispersion stability, and had a viscosity of 720 mPa · s. The PPE particle dispersion F contains PPE extracted as an insoluble component in a 95: 5 mass ratio of toluene and methanol mixed solvent. As shown in Table 1 below, the maximum major axis is 13 μm and the major axis is 3 μm to 3 μm. The proportion of 20 μm was 85%, and the PPE content was 88% by mass.
Next, a prepreg F having a resin content of 60% by mass was obtained in the same manner as in Example 2 except that the obtained PPE particle dispersion F was used. The prepreg F was excellent in handleability with no resin falling off or peeling off.

<実施例7>
実施例2で用いたPPEに代えて、PPE(S203A、旭化成ケミカルズ製、数平均分子量10,000、1分子当たりの平均フェノール性水酸基数1.80個)を用いた以外は実施例2と同様の方法で、PPE粒子の分散液Gを得た。PPE粒子分散液Gは、適度な流動性と分散安定性を有していり、粘度は520mPa・sであった。また、PPE粒子分散液Gには、質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は10μm、長径3μm〜20μmの割合は92%、PPE含量は97質量%であった。
次いで、得られたPPE粒子分散液Gを用いる以外は実施例2と同様の方法で、樹脂含有量60質量%のプリプレグGを得た。該プリプレグGは、樹脂の粉落ちや剥がれが無く、取り扱い性に優れるものであった。
<Example 7>
In place of PPE used in Example 2, PPE (S203A, manufactured by Asahi Kasei Chemicals Corporation, number average molecular weight 10,000, average number of phenolic hydroxyl groups per molecule 1.80) was the same as Example 2 In this way, a dispersion G of PPE particles was obtained. The PPE particle dispersion G had moderate fluidity and dispersion stability, and had a viscosity of 520 mPa · s. In addition, PPE particle dispersion G contains PPE extracted as an insoluble component in a toluene / methanol mixed solvent having a mass ratio of 95: 5. As shown in Table 1 below, the maximum major axis is 10 μm and the major axis is 3 μm to 3 μm. The proportion of 20 μm was 92%, and the PPE content was 97% by mass.
Next, a prepreg G having a resin content of 60% by mass was obtained in the same manner as in Example 2 except that the obtained PPE particle dispersion G was used. The prepreg G was excellent in handleability, with no powder falling off or peeling off of the resin.

<実施例8>
実施例2で用いたPPEに代えて、PPEと無水マレイン酸との反応物(製造例3参照)を用いる以外は実施例2と同様の方法を用い、PPE粒子の分散液Hを得た。PPE粒子分散液Hは、適度な流動性と分散安定性を有していり、粘度は464mPa・sであった。また、PPE粒子分散液Hには、質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は14μm、長径3μm〜20μmの割合は97%、PPE含量は97質量%であった。
次いで、得られたPPE粒子分散液Gを用いる以外は実施例2と同様の方法で、樹脂含有量60質量%のプリプレグHを得た。該プリプレグHは、樹脂の粉落ちや剥がれが無く、取り扱い性に優れるものであった。
<Example 8>
A dispersion H of PPE particles was obtained in the same manner as in Example 2 except that a reaction product of PPE and maleic anhydride (see Production Example 3) was used instead of PPE used in Example 2. The PPE particle dispersion H had moderate fluidity and dispersion stability, and had a viscosity of 464 mPa · s. The PPE particle dispersion H contains PPE extracted as an insoluble component in a toluene / methanol mixed solvent having a mass ratio of 95: 5. As shown in Table 1 below, the maximum major axis is 14 μm and the major axis is 3 μm to 3 μm. The proportion of 20 μm was 97%, and the PPE content was 97% by mass.
Next, a prepreg H having a resin content of 60% by mass was obtained in the same manner as in Example 2 except that the obtained PPE particle dispersion G was used. The prepreg H was excellent in handleability with no powder falling off or peeling of the resin.

<実施例9>
実施例2で用いたPPE53.3部に代えて、該PPE42.6重量部と低分子量・ベンジル化PPE(製造例1参照)10.7重量部とを用いる以外は実施例2と同様の方法で、PPE粒子の分散液Iを得た。PPE粒子分散液Hは、適度な流動性と分散安定性を有していり、粘度は458mPa・sであった。また、PPE粒子分散液Iには、質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は14μm、長径3μm〜20μmの割合は91%、PPE含量は96質量%であった。
次いで、得られたPPE粒子分散液Gを用いる以外は実施例2と同様の方法で、樹脂含有量60質量%のプリプレグIを得た。該プリプレグIは、樹脂の粉落ちや剥がれが無く、取り扱い性に優れるものであった。
<Example 9>
In place of 53.3 parts of PPE used in Example 2, the same method as in Example 2 except that 42.6 parts by weight of PPE and 10.7 parts by weight of low molecular weight / benzylated PPE (see Production Example 1) were used. Thus, a dispersion I of PPE particles was obtained. The PPE particle dispersion H had moderate fluidity and dispersion stability, and had a viscosity of 458 mPa · s. Further, PPE particle dispersion I contains PPE extracted as an insoluble component in a toluene / methanol mixed solvent having a mass ratio of 95: 5. As shown in Table 1 below, the maximum major axis is 14 μm and the major axis is 3 μm to 3 μm. The proportion of 20 μm was 91%, and the PPE content was 96% by mass.
Next, a prepreg I having a resin content of 60% by mass was obtained in the same manner as in Example 2 except that the obtained PPE particle dispersion G was used. The prepreg I was excellent in handleability with no resin falling off or peeling off.

<比較例1>
トルエン150重量部をセパラブルフラスコに入れ80℃に加熱した。PPE(S202A、旭化成ケミカルズ製、数平均分子量18,000、1分子当たりの平均フェノール性水酸基数1.84個)53.3部、ポリスチレン(650、PSジャパン製)2.6重量部、トリアリルイソシアヌレート(日本化成製)22.8重量部を加え、80℃で2時間撹拌して溶解させた。撹拌を止め、5時間かけて25℃まで温度降下させ、PPE粒子の分散液Jを得た。PPE粒子分散液Jは、膨潤・ゲル化によりグリース状となり、全く流動性を示さないため、続くワニスの調製とプリプレグの塗工に供することができなかった。PPE粒子分散液Jには質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は12、長径3μm〜20μmの割合は44%、PPE含量は48質量%であった。
<Comparative Example 1>
150 parts by weight of toluene was placed in a separable flask and heated to 80 ° C. PPE (S202A, manufactured by Asahi Kasei Chemicals, number average molecular weight 18,000, average number of phenolic hydroxyl groups 1.84 per molecule) 53.3 parts, polystyrene (650, manufactured by PS Japan) 2.6 parts by weight, triallyl 22.8 parts by weight of isocyanurate (manufactured by Nippon Kasei) was added and dissolved by stirring at 80 ° C. for 2 hours. Stirring was stopped and the temperature was lowered to 25 ° C. over 5 hours to obtain a dispersion J of PPE particles. The PPE particle dispersion J became grease-like due to swelling and gelation, and showed no fluidity, so that it could not be used for subsequent varnish preparation and prepreg coating. The PPE particle dispersion J contains PPE extracted as an insoluble component in a toluene / methanol mixed solvent having a mass ratio of 95: 5. As shown in Table 1 below, the maximum major axis is 12, and the ratio of the major axis is 3 μm to 20 μm. Was 44% and the PPE content was 48% by mass.

<比較例2>
トルエン233重量部をセパラブルフラスコに入れ80℃に加熱した。PPE(S202A、旭化成ケミカルズ製、数平均分子量18,000、1分子当たりの平均フェノール性水酸基数1.84個)53.3部、ポリスチレン(650、PSジャパン製)2.6重量部、トリアリルイソシアヌレート(日本化成製)22.8重量部を加え、80℃で2時間撹拌して溶解させた。撹拌を止め、5時間かけて25℃まで温度降下させ、PPE粒子の分散液Kを得た。PPE粒子分散液Kは、粘度1180mPa・sと高粘度であったが、流動性を示したため、続くワニスの調製とプリプレグの塗工に供することができた。PPE粒子分散液Kには質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPEが存在し、以下の表1に示す通り、その最大長径は11、長径3μm〜20μmの割合は55%、PPE含量は57質量%であった。
次いで、得られたPPE粒子分散液Kを用いる以外は実施例2と同様の方法で、樹脂含有量60質量%のプリプレグKを得た。該プリプレグKは、樹脂の粉落ちが見られた。
<Comparative example 2>
233 parts by weight of toluene was placed in a separable flask and heated to 80 ° C. PPE (S202A, manufactured by Asahi Kasei Chemicals, number average molecular weight 18,000, average number of phenolic hydroxyl groups 1.84 per molecule) 53.3 parts, polystyrene (650, manufactured by PS Japan) 2.6 parts by weight, triallyl 22.8 parts by weight of isocyanurate (manufactured by Nippon Kasei) was added and dissolved by stirring at 80 ° C. for 2 hours. Stirring was stopped and the temperature was lowered to 25 ° C. over 5 hours to obtain a dispersion K of PPE particles. The PPE particle dispersion K had a high viscosity of 1180 mPa · s, but exhibited fluidity, so that it could be used for subsequent varnish preparation and prepreg coating. The PPE particle dispersion K contains PPE that is extracted as an insoluble component in a toluene / methanol mixed solvent having a mass ratio of 95: 5. As shown in Table 1 below, the maximum major axis is 11, and the ratio of the major axis is 3 μm to 20 μm. Was 55% and the PPE content was 57% by mass.
Next, a prepreg K having a resin content of 60% by mass was obtained in the same manner as in Example 2 except that the obtained PPE particle dispersion K was used. In the prepreg K, resin powder was observed.

<比較例3>
PPEとポリスチレンのトルエン溶液の温度降下を20℃までにする以外は実施例2と同様の方法で、PPE粒子を含む分散液Lを得た。分散液Lを光学顕微鏡で観察すると、非常に小さな粒子が数多く存在していた。分散液Lは、該粒子の膨潤・ゲル化によりグリース状となり、流動性を示さず、続くワニスの調製とプリプレグの塗工に供することができなかった。
PPE粒子分散液Lの質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPE粒子は、以下の表1に示す通り、その最大長径は5、長径3μm〜20μmの割合は16%、PPE含量は89質量%であり、非常に小さなものであった。
<Comparative Example 3>
A dispersion L containing PPE particles was obtained in the same manner as in Example 2 except that the temperature drop of the toluene solution of PPE and polystyrene was changed to 20 ° C. When the dispersion L was observed with an optical microscope, many very small particles were present. Dispersion L became grease-like due to swelling and gelation of the particles, did not exhibit fluidity, and could not be used for subsequent varnish preparation and prepreg coating.
As shown in Table 1 below, the PPE particles extracted as an insoluble in a toluene / methanol mixed solvent having a mass ratio of 95: 5 of the PPE particle dispersion L have a maximum major axis of 5, and a ratio of major axis of 3 μm to 20 μm is 16. %, PPE content was 89% by mass, which was very small.

<比較例4>
トルエンの量を111重量部とする以外は、実施例2と同様の方法で、PPE粒子を含む分散液Mを得た。分散液Mを光学顕微鏡で観察すると、非常に小さな粒子が数多く存在していた。分散液Mは、該粒子の膨潤・ゲル化によりグリース状となり、流動性を示さず、続くワニスの調製とプリプレグの塗工に供することができなかった。
PPE粒子分散液Mの質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPE粒子は、以下の表1に示す通り、その最大長径は6、長径3μm〜20μmの割合は23%、PPE含量は88質量%であり、非常に小さなものであった。
<Comparative example 4>
A dispersion M containing PPE particles was obtained in the same manner as in Example 2 except that the amount of toluene was 111 parts by weight. When the dispersion M was observed with an optical microscope, many very small particles were present. Dispersion M became grease-like due to swelling and gelation of the particles, did not exhibit fluidity, and could not be used for subsequent varnish preparation and prepreg coating.
As shown in Table 1 below, PPE particles extracted as an insoluble in a toluene / methanol mixed solvent having a mass ratio of 95: 5 of the PPE particle dispersion M have a maximum major axis of 6, and a ratio of major axis of 3 μm to 20 μm is 23. %, PPE content was 88% by mass, which was very small.

<比較例5>
トルエンの量を240重量部とし、PPEとポリスチレンのトルエン溶液の温度降下を35℃までにする以外は実施例2と同様の方法で、PPE粒子を含む分散液Nを得た。PPE粒子分散液Nは、粘度210mPa・sと流動性が良好であったが、分散安定性に劣り、数時間でPPE粒子が沈降し、分散液が分離してしまった。PPE粒子分散液Nの質量比95:5のトルエンとメタノール混合溶剤に不溶分として抽出されるPPE粒子は、以下の表1に示す通り、その最大長径は17、長径3μm〜20μmの割合は97%、PPE含量は98質量%であり、非常に大きなものであった。
次いで、PPE粒子分散液Nに、実施例2と同様にトリアリルイソシアヌレート、デカブロモジフェニルエタンを加え、塗工用ワニスNを得た。
塗工用ワニスNは分散安定性に劣るため、塗工の直前まで撹拌して均一にしておき、その他は実施例2と同様の方法で、ガラスクロスへの塗工を試みたが、樹脂含量が最大で44質量%のプリプレグしか得らなかった。
<Comparative Example 5>
A dispersion N containing PPE particles was obtained in the same manner as in Example 2 except that the amount of toluene was 240 parts by weight and the temperature drop of the toluene solution of PPE and polystyrene was 35 ° C. The PPE particle dispersion N had a viscosity of 210 mPa · s and good fluidity, but was inferior in dispersion stability. In a few hours, the PPE particles settled and the dispersion separated. As shown in Table 1 below, PPE particles extracted as insoluble in a toluene / methanol mixed solvent having a mass ratio of 95: 5 of PPE particle dispersion N have a maximum major axis of 17 and a ratio of major axis of 3 μm to 20 μm is 97. %, PPE content was 98% by mass, which was very large.
Next, triallyl isocyanurate and decabromodiphenylethane were added to the PPE particle dispersion N in the same manner as in Example 2 to obtain a coating varnish N.
Since the coating varnish N was inferior in dispersion stability, stirring was performed until just before coating to make it uniform, and the others were applied in the same manner as in Example 2, but the coating on the glass cloth was attempted. However, only 44% by mass of prepreg was obtained.

<試験例>
実施例1〜9、比較例2で得られたプリプレグA〜I、Kを用いて基板試料を作製し、電気特性(誘電率、誘電正接)、吸水率、吸水後のはんだ耐熱、銅箔剥離強度を比較評価した。
吸水率、及び吸水試験後のはんだ耐熱性を評価するための試料は次の方法で作製した。実施例又は比較例で得たプリプレグを2枚重ね、その上下に厚み12μmの銅箔(GTS−MP箔、古川電気工業株式会社製)を重ね合わせたものを、室温から昇温速度3℃/分で加熱しながら圧力5kg/cm2の条件で真空プレスを行い、130℃まで達したら昇温速度3℃/分で加熱しながら圧力30kg/cm2の条件で真空プレスを行い、200℃まで達したら温度を200℃に保ったまま圧力30kg/cm2、時間60分間の条件で真空プレスを行うことによって両面銅張積層板を得た。次いで、前記銅張積層板を100mm角に切り出し、銅箔をエッチングにて除去し、吸水率、及び吸水試験後のはんだ耐熱性を評価するための試料を得た。
<Test example>
A substrate sample was prepared using the prepregs A to I and K obtained in Examples 1 to 9 and Comparative Example 2, and electrical characteristics (dielectric constant, dielectric loss tangent), water absorption, solder heat resistance after water absorption, copper foil peeling The strength was comparatively evaluated.
A sample for evaluating the water absorption rate and the solder heat resistance after the water absorption test was prepared by the following method. Two prepregs obtained in Examples or Comparative Examples were stacked, and a copper foil (GTS-MP foil, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 12 μm was stacked on the top and bottom. Perform vacuum pressing under conditions of pressure 5 kg / cm 2 while heating in minutes, and when reaching 130 ° C., perform vacuum pressing under conditions of pressure 30 kg / cm 2 while heating at a rate of temperature increase of 3 ° C./min, up to 200 ° C. When the temperature reached 200 ° C., a double-sided copper-clad laminate was obtained by vacuum pressing under the conditions of a pressure of 30 kg / cm 2 and a time of 60 minutes. Next, the copper clad laminate was cut into a 100 mm square, the copper foil was removed by etching, and a sample for evaluating the water absorption rate and the solder heat resistance after the water absorption test was obtained.

また、銅箔剥離強度測定用の試料は次の方法で作製した。実施例又は比較例で得たプリプレグを2枚重ね、その上下に厚み35μmの銅箔(GTS−MP箔、古川電気工業株式会社製)を重ね合わせたものを、室温から昇温速度3℃/分で加熱しながら圧力5kg/cm2の条件で真空プレスを行い、130℃まで達したら昇温速度3℃/分で加熱しながら圧力30kg/cm2の条件で真空プレスを行い、200℃まで達したら温度を200℃に保ったまま圧力30kg/cm2、時間60分間の条件で真空プレスを行うことによって両面銅張積層板を作製した。この両面銅張積層板を銅箔剥離強度測定用の試料として用いた。 Moreover, the sample for copper foil peeling strength measurement was produced with the following method. Two prepregs obtained in Examples or Comparative Examples were stacked, and a copper foil having a thickness of 35 μm (GTS-MP foil, manufactured by Furukawa Electric Co., Ltd.) was stacked on the top and bottom. Perform vacuum pressing under conditions of pressure 5 kg / cm 2 while heating in minutes, and when reaching 130 ° C., perform vacuum pressing under conditions of pressure 30 kg / cm 2 while heating at a rate of temperature increase of 3 ° C./min, up to 200 ° C. When the temperature reached 200 ° C., a double-sided copper-clad laminate was produced by vacuum pressing under the conditions of a pressure of 30 kg / cm 2 and a time of 60 minutes. This double-sided copper-clad laminate was used as a sample for measuring the copper foil peel strength.

また、誘電率及び誘電正接の測定用試料は次の方法で作製した。実施例又は比較例で得たプリプレグを16枚重ね、室温から昇温速度3℃/分で加熱しながら圧力5kg/cm2の条件で真空プレスを行い、130℃まで達したら昇温速度3℃/分で加熱しながら圧力30kg/cm2の条件で真空プレスを行い、200℃まで達したら温度を200℃に保ったまま圧力30kg/cm2、時間60分間の条件で真空プレスを行うことによって積層板を作製した。該積層板を、100mm角に切り出し、誘電率及び誘電正接の測定用試料とした。
上記のように、プリプレグ、両面銅張積層板(銅箔:12μm及び35μmの2種)、又は積層板を用い、銅箔剥離強度、誘電率、誘電正接、吸水率、及び吸水後のはんだ耐熱性を測定した。結果を以下の表1に示す。
A sample for measuring dielectric constant and dielectric loss tangent was prepared by the following method. Sixteen prepregs obtained in Examples or Comparative Examples were stacked, vacuum-pressed under the condition of a pressure of 5 kg / cm 2 while heating from room temperature at a heating rate of 3 ° C./min, and when reaching 130 ° C., the heating rate was 3 ° C. By performing vacuum pressing under the condition of pressure 30 kg / cm 2 while heating at / min, and when reaching 200 ° C., performing vacuum pressing under the conditions of pressure 30 kg / cm 2 and time 60 minutes while maintaining the temperature at 200 ° C. A laminate was prepared. The laminate was cut into a 100 mm square and used as a sample for measuring dielectric constant and dielectric loss tangent.
As described above, using prepreg, double-sided copper-clad laminate (copper foil: 12 μm and 35 μm), or laminate, copper foil peel strength, dielectric constant, dielectric loss tangent, water absorption, and solder heat resistance after water absorption Sex was measured. The results are shown in Table 1 below.

Figure 2013194137
Figure 2013194137

表1から分かるように、実施例1〜9においては、いずれも銅箔剥離強度が高く、耐吸水性が良好で、更にはんだ耐熱性にも優れるものであった。
一方、分散液粘度が高くなってしまった比較例2は、実施例1〜9と比較し、銅箔剥離強度、耐吸水性、はんだ耐熱性ともに劣るものであった。
As can be seen from Table 1, in each of Examples 1 to 9, the copper foil peel strength was high, the water absorption resistance was good, and the solder heat resistance was also excellent.
On the other hand, Comparative Example 2 in which the viscosity of the dispersion became high was inferior in copper foil peel strength, water absorption resistance, and solder heat resistance as compared with Examples 1-9.

本発明によれば、PPEを結晶化し、PPEの膨潤性と粒度を適切範囲に制御できるため、ワニス安定性、塗工均一性が良好なPPE粒子を含む樹脂組成物の分散液を提供することができる。更には、PPEの結晶化をPPE含量が高い条件で行いPPEを主成分とする結晶粒子をすることで、該分散液を用いて製造されるプリプレグの樹脂組成分と基材との接着性が良好であり、また優れた耐熱性及び接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等の金属箔との剥離強度)のプリント配線板用基材が取得可能な分散液、該分散液を用いて製造されるプリント配線プリプレグ、及び該プリプレグの硬化物を含むプリント配線板を提供することができる。よって、本発明は、高周波数帯を利用する電子機器のプリント配線板用の材料として好適に利用可能である。   According to the present invention, since a PPE can be crystallized and the swelling property and particle size of the PPE can be controlled within an appropriate range, a dispersion of a resin composition containing PPE particles having good varnish stability and coating uniformity is provided. Can do. Furthermore, by crystallization of PPE under conditions with a high PPE content and forming crystal particles mainly composed of PPE, the adhesion between the resin component of the prepreg produced using the dispersion and the substrate can be improved. Good and excellent heat resistance and adhesion (for example, peel strength between layers in a multilayer board, or peel strength between a cured product of a curable resin composition and a metal foil such as copper foil) Dispersions from which materials can be obtained, printed wiring prepregs manufactured using the dispersions, and printed wiring boards including cured products of the prepregs can be provided. Therefore, the present invention can be suitably used as a material for a printed wiring board of an electronic device that uses a high frequency band.

Claims (12)

ポリフェニレンエーテル(PPE)粒子を含む樹脂組成物と溶剤とを含む分散液であって、
(1)該PPE粒子は、長径30μm以下の大きさであり、
(2)該PPE粒子の全粒子数の60%以上は、長径3μm以上20μm以下の大きさであり、
(3)該PPE粒子は、PPEを70質量%以上含有し、そして
(4)該PPE粒子に含有されるPPEの数平均分子量は、8,000〜40,000である、
を特徴とする前記分散液。
A dispersion containing a resin composition containing polyphenylene ether (PPE) particles and a solvent,
(1) The PPE particles have a major axis size of 30 μm or less,
(2) 60% or more of the total number of PPE particles is a size of 3 μm to 20 μm in major axis,
(3) The PPE particles contain 70% by mass or more of PPE, and (4) the number average molecular weight of the PPE contained in the PPE particles is 8,000 to 40,000.
Said dispersion.
25℃における前記溶剤へのPPEの溶解度が3質量%以上20質量%以下である、請求項1に記載のPPE粒子を含む分散液。   The dispersion containing PPE particles according to claim 1, wherein the solubility of PPE in the solvent at 25 ° C is 3% by mass or more and 20% by mass or less. 前記分散液が、PPE粒子の他に溶存しているPPEを含み、該PPE粒子(A)と溶存PPE(B)との質量比(A):(B)は、85:15〜30:70である、請求項1又は2に記載の分散液。   The dispersion liquid contains dissolved PPE in addition to the PPE particles, and the mass ratio (A) :( B) of the PPE particles (A) to the dissolved PPE (B) is 85:15 to 30:70. The dispersion according to claim 1 or 2, wherein 前記PPE粒子(A)と溶存PPE(B)との質量比(A):(B)は、80:20〜45:55である、請求項3に記載の分散液。   The dispersion according to claim 3, wherein the mass ratio (A) :( B) of the PPE particles (A) to the dissolved PPE (B) is 80:20 to 45:55. 前記溶存PPE(B)の数平均分子量は、5,000〜40,000である、請求項3又は4に記載の分散液。   The dispersion liquid according to claim 3 or 4, wherein the dissolved PPE (B) has a number average molecular weight of 5,000 to 40,000. 前記樹脂組成物に含まれるPPE成分は、該樹脂組成物を基準として10質量%以上70質量%以下の量である、請求項1〜5のいずれか1項に記載の分散液。   The dispersion according to any one of claims 1 to 5, wherein the PPE component contained in the resin composition is an amount of 10% by mass or more and 70% by mass or less based on the resin composition. 架橋型硬化性樹脂(C)、及び開始剤(D)をさらに含む、請求項1〜6のいずれか1項に記載の分散液。   The dispersion liquid according to any one of claims 1 to 6, further comprising a cross-linkable curable resin (C) and an initiator (D). 架橋型硬化性樹脂(C)が、分子内に2個以上のビニル基を持つモノマーである、請求項7に記載の分散液。   The dispersion liquid according to claim 7, wherein the crosslinkable curable resin (C) is a monomer having two or more vinyl groups in the molecule. 架橋型硬化性樹脂(C)が、トリアリルイソシアヌレート(TAIC)である、請求項7に記載の分散液。   The dispersion liquid according to claim 7, wherein the crosslinkable curable resin (C) is triallyl isocyanurate (TAIC). 請求項1〜9のいずれか1項に記載の分散液を含む樹脂ワニス。   The resin varnish containing the dispersion liquid of any one of Claims 1-9. 請求項1〜9のいずれか1項に記載の分散液を含むワニスを基材に塗布し、次いで該分散液が塗布された基材から溶剤を除去して得られるプリプレグ。   The prepreg obtained by apply | coating the varnish containing the dispersion liquid of any one of Claims 1-9 to a base material, and then removing a solvent from the base material with which this dispersion liquid was apply | coated. 請求項10で得られたプリプレグを構成成分として作製されたプリント配線板。   A printed wiring board produced using the prepreg obtained in claim 10 as a constituent component.
JP2012062728A 2012-03-19 2012-03-19 Prepreg containing polyphenylene ether particles Expired - Fee Related JP6092520B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012062728A JP6092520B2 (en) 2012-03-19 2012-03-19 Prepreg containing polyphenylene ether particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012062728A JP6092520B2 (en) 2012-03-19 2012-03-19 Prepreg containing polyphenylene ether particles

Publications (2)

Publication Number Publication Date
JP2013194137A true JP2013194137A (en) 2013-09-30
JP6092520B2 JP6092520B2 (en) 2017-03-08

Family

ID=49393492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012062728A Expired - Fee Related JP6092520B2 (en) 2012-03-19 2012-03-19 Prepreg containing polyphenylene ether particles

Country Status (1)

Country Link
JP (1) JP6092520B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014070087A (en) * 2012-09-27 2014-04-21 Asahi Kasei E-Materials Corp Resin dispersion, resin composition, resin composition composite, and laminate sheet
JP2014198773A (en) * 2013-03-29 2014-10-23 旭化成イーマテリアルズ株式会社 PPE particle dispersion
US9051465B1 (en) 2012-02-21 2015-06-09 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
JP2015117285A (en) * 2013-12-17 2015-06-25 旭化成イーマテリアルズ株式会社 Mixture containing polyphenylene ether
JP2015151491A (en) * 2014-02-17 2015-08-24 旭化成イーマテリアルズ株式会社 Laminate sheet containing ppe
US9243164B1 (en) 2012-02-21 2016-01-26 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
JP2016532726A (en) * 2013-10-03 2016-10-20 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Flexible polyurethane foam and related methods and articles
JP2016216715A (en) * 2015-05-18 2016-12-22 南亜塑膠工業股▲ふん▼有限公司 Polyphenylene ether fine particle dispersion preparation process
JP2017501285A (en) * 2014-01-03 2017-01-12 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Dust-free poly (phenylene ether) particles
JP2018070773A (en) * 2016-10-28 2018-05-10 旭化成株式会社 Polyphenylene ether powder and production method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292126A (en) * 1994-04-27 1995-11-07 Matsushita Electric Works Ltd Production of laminated sheet
JPH09104094A (en) * 1995-10-12 1997-04-22 Matsushita Electric Works Ltd Manufacture of laminated sheet
JP2002265777A (en) * 2001-03-12 2002-09-18 Matsushita Electric Works Ltd Polyphenylene oxide resin composition, prepreg, laminated board, printed wiring board and multi-layered printed wiring board
JP2009078209A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Metal foil bearing resin, method for manufacturing the same, and metal-coated flexible laminated sheet
JP5580952B2 (en) * 2012-03-19 2014-08-27 旭化成イーマテリアルズ株式会社 Prepreg containing polyphenylene ether particles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292126A (en) * 1994-04-27 1995-11-07 Matsushita Electric Works Ltd Production of laminated sheet
JPH09104094A (en) * 1995-10-12 1997-04-22 Matsushita Electric Works Ltd Manufacture of laminated sheet
JP2002265777A (en) * 2001-03-12 2002-09-18 Matsushita Electric Works Ltd Polyphenylene oxide resin composition, prepreg, laminated board, printed wiring board and multi-layered printed wiring board
JP2009078209A (en) * 2007-09-25 2009-04-16 Panasonic Electric Works Co Ltd Metal foil bearing resin, method for manufacturing the same, and metal-coated flexible laminated sheet
JP5580952B2 (en) * 2012-03-19 2014-08-27 旭化成イーマテリアルズ株式会社 Prepreg containing polyphenylene ether particles

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9051465B1 (en) 2012-02-21 2015-06-09 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
US9243164B1 (en) 2012-02-21 2016-01-26 Park Electrochemical Corporation Thermosetting resin composition containing a polyphenylene ether and a brominated fire retardant compound
JP2014070087A (en) * 2012-09-27 2014-04-21 Asahi Kasei E-Materials Corp Resin dispersion, resin composition, resin composition composite, and laminate sheet
JP2014198773A (en) * 2013-03-29 2014-10-23 旭化成イーマテリアルズ株式会社 PPE particle dispersion
JP2016532726A (en) * 2013-10-03 2016-10-20 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Flexible polyurethane foam and related methods and articles
JP2015117285A (en) * 2013-12-17 2015-06-25 旭化成イーマテリアルズ株式会社 Mixture containing polyphenylene ether
JP2017501285A (en) * 2014-01-03 2017-01-12 サビック グローバル テクノロジーズ ベスローテン フェンノートシャップ Dust-free poly (phenylene ether) particles
JP2015151491A (en) * 2014-02-17 2015-08-24 旭化成イーマテリアルズ株式会社 Laminate sheet containing ppe
JP2016216715A (en) * 2015-05-18 2016-12-22 南亜塑膠工業股▲ふん▼有限公司 Polyphenylene ether fine particle dispersion preparation process
JP2018070773A (en) * 2016-10-28 2018-05-10 旭化成株式会社 Polyphenylene ether powder and production method

Also Published As

Publication number Publication date
JP6092520B2 (en) 2017-03-08

Similar Documents

Publication Publication Date Title
JP6092520B2 (en) Prepreg containing polyphenylene ether particles
JP5948552B2 (en) Prepreg containing polyphenylene ether particles
JP5970214B2 (en) Dispersion containing polyphenylene ether particles
JP7316569B2 (en) Prepregs, metal-clad laminates, and wiring boards
JP5274721B2 (en) Curable resin composition
JP2008303382A (en) Poly/(phenylene ether) resin composition, prepreg, and laminated sheet
JP6163292B2 (en) Curable resin composition
JP2023052699A (en) Prepreg, metal-clad laminate, and wiring board
JP2014001274A (en) Curable resin composition
TWI557155B (en) And a cured product of a resin composition containing a polyphenyl ether
JP6254762B2 (en) Resin dispersion, varnish, resin composite, and laminate
JP6080455B2 (en) Resin dispersion, resin composition, resin composition composite and laminate
JP6204815B2 (en) Liquid mixture containing polyphenylene ether
JP6478507B2 (en) Polyphenylene ether containing liquid
JP2015067675A (en) Method for producing fluid dispersion containing ppe
JP2014162822A (en) Polyphenylene ether resin particle dispersion, composite of the resin particles and substrate, and production method thereof
JP2014198773A (en) PPE particle dispersion
JP2015151491A (en) Laminate sheet containing ppe
JP2018035217A (en) Thermosetting resin composition, and prepreg, metal-clad laminate or printed wiring board using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150831

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160209

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160509

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20160613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161129

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170112

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170209

R150 Certificate of patent or registration of utility model

Ref document number: 6092520

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees