JP2015117285A - Mixture containing polyphenylene ether - Google Patents

Mixture containing polyphenylene ether Download PDF

Info

Publication number
JP2015117285A
JP2015117285A JP2013260615A JP2013260615A JP2015117285A JP 2015117285 A JP2015117285 A JP 2015117285A JP 2013260615 A JP2013260615 A JP 2013260615A JP 2013260615 A JP2013260615 A JP 2013260615A JP 2015117285 A JP2015117285 A JP 2015117285A
Authority
JP
Japan
Prior art keywords
ppe
mass
compound
solvent
prepreg
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013260615A
Other languages
Japanese (ja)
Other versions
JP6204815B2 (en
Inventor
昌治 杉村
Seiji Sugimura
昌治 杉村
遠藤 正朗
Masao Endo
正朗 遠藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei E Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei E Materials Corp filed Critical Asahi Kasei E Materials Corp
Priority to JP2013260615A priority Critical patent/JP6204815B2/en
Publication of JP2015117285A publication Critical patent/JP2015117285A/en
Application granted granted Critical
Publication of JP6204815B2 publication Critical patent/JP6204815B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a mixture which provides a cured material having a low dielectric constant and dielectric tangent inherent to PPE, provides a cured material having excellent heat resistance and adhesiveness, can be coated at ordinary temperature, has excellent dispersion stability of PPE and a curable resin composition containing PPE, and can, when producing a prepreg, form uniform layers of PPE and a curable resin composition containing PPE.SOLUTION: Provided is a mixture containing polyphenylene ether and a solvent, where (1) the polyphenylene ether has a number average molecular weight of 5000 to 40000, and (2) the solvent is a mixture of a compound (A) which includes at least one compound selected from compounds whose amount held by the polyphenylene ether is 1500 mass% or more, and a compound (B) which includes at least one compound selected from compounds whose amount held by the polyphenylene ether is 300 mass% or more and less than 1500 mass%, and which contain a cyclic structure in the molecule.

Description

本発明は、電子基板材料として好適な、ポリフェニレンエーテル(以下、PPEともいう)を含む混合液、該混合液を含む樹脂ワニスと、基材とを含むプリプレグ、並びに、該プリプレグを用いて形成される電気、電子部品用の積層板、及びプリント配線板に関する。   The present invention is formed using a mixed solution containing polyphenylene ether (hereinafter also referred to as PPE) suitable as an electronic substrate material, a resin varnish containing the mixed solution, and a base material, and the prepreg. The present invention relates to a laminated board for electric and electronic parts and a printed wiring board.

近年、情報ネットワーク技術の著しい進歩、情報ネットワークを活用したサービスの拡大により、電子機器には情報量の大容量化、処理速度の高速化求められている。デジタル信号を大容量かつ高速に伝達するためには信号の波長を短くするのが有効であり、信号の高周波化が進んでいる。ところが、高周波領域の電気信号は配線回路で減衰されやすいため、伝送特性の良いプリント配線板が必要とされる。   In recent years, due to remarkable progress in information network technology and expansion of services utilizing information networks, electronic devices are required to have a large amount of information and a high processing speed. In order to transmit a large amount of digital signal at high speed, it is effective to shorten the wavelength of the signal, and the frequency of the signal is increasing. However, since an electric signal in a high frequency region is easily attenuated by a wiring circuit, a printed wiring board having good transmission characteristics is required.

PPEは、誘電率、誘電正接が低く、高周波特性、すなわち、誘電特性に優れるため、高周波数帯を利用する電子機器のプリント配線板用の材料として好適である。   PPE has a low dielectric constant and dielectric loss tangent, and is excellent in high-frequency characteristics, that is, dielectric characteristics. Therefore, PPE is suitable as a material for printed wiring boards of electronic devices using a high frequency band.

一方、PPEは、有機溶剤への溶解性に欠けるため、プリント配線板製造に必要なプリプレグを製造する際、クロロホルムのようなハロゲン系溶剤に溶解させてワニスを製造する、或いは、50℃以上に加熱したトルエン、キシレン等の芳香族有機溶剤に溶解させてワニスを製造する必要があった。   On the other hand, since PPE lacks solubility in organic solvents, when producing prepregs necessary for printed wiring board production, varnish is produced by dissolving in a halogen-based solvent such as chloroform, or at 50 ° C. or higher. It was necessary to produce a varnish by dissolving it in a heated aromatic organic solvent such as toluene or xylene.

また、このようなワニスでプリプレグを製造すると、PPEが溶剤を保持しやすく、樹脂層が厚くなるにつれ、乾燥による樹脂層のひび割れ等が発生しやすいという問題もあった。   Further, when the prepreg is produced with such a varnish, there is a problem that the PPE easily holds the solvent, and as the resin layer becomes thick, the resin layer is easily cracked due to drying.

かかる問題を解決すべく、特許文献1には、低分子量のPPEを用いることにより、常温での芳香族有機溶剤への溶解性に優れ、且つ、溶融樹脂の流動性が良好で多層化が可能なPPE樹脂組成物が記載されている。また、特許文献2には、低分子量PPEの末端水酸基を反応性官能基化し、溶剤への溶解性を高めるとともに耐熱性を向上させる技術が報告されている。   In order to solve this problem, Patent Document 1 uses a low-molecular-weight PPE, so that it has excellent solubility in an aromatic organic solvent at room temperature, and the fluidity of the molten resin is good, allowing multilayering. PPE resin compositions are described. Patent Document 2 reports a technique for converting a terminal hydroxyl group of a low molecular weight PPE into a reactive functional group to improve solubility in a solvent and improve heat resistance.

また、特許文献3、4には、PPEとスチレンブタジエンコポリマー等の架橋性樹脂とトリアシルイソシアヌレート等の架橋助剤を含む樹脂組成物を含むトルエン樹脂液を、一旦35℃に加熱した後冷却し、PPEと架橋性樹脂と架橋助剤を含む樹脂組成物の粒子が分散している不透明な分散液とする方法が記載されている。   In Patent Documents 3 and 4, a toluene resin liquid containing a crosslinkable resin such as PPE and a styrene butadiene copolymer and a resin composition containing a crosslinking aid such as triacyl isocyanurate is once heated to 35 ° C. and then cooled. In addition, there is described a method of preparing an opaque dispersion in which particles of a resin composition containing PPE, a crosslinkable resin, and a crosslinking aid are dispersed.

さらに、特許文献5には、平均粒径10〜50μmのPPE樹脂粉末をメチルエチルケトン等の溶剤に分散させる方法が、そして特許文献6には、106μm以下のPPE粒子を水系に分散させる方法が記載されている。   Further, Patent Document 5 describes a method of dispersing PPE resin powder having an average particle diameter of 10 to 50 μm in a solvent such as methyl ethyl ketone, and Patent Document 6 describes a method of dispersing PPE particles of 106 μm or less in an aqueous system. ing.

特開2002−265777号公報JP 2002-265777 A 特表2009−509312号公報Special table 2009-509912 特開平7−292126号公報JP 7-292126 A 特開平9−290481号公報JP-A-9-290481 特開2008−50526号公報JP 2008-50526 A 特開2003−34731号公報JP 2003-34731 A

しかしながら、特許文献1に記載の低分子量PPEを用いて溶剤への溶解性を高める方法は、得られる積層板の耐熱性が低下するという問題、及びPPEの末端水酸基の数が増加するために誘電率及び誘電正接が大きくなるという問題を招来するため、プリント配線板に用いるには十分なものではなかった。   However, the method of increasing the solubility in a solvent using the low molecular weight PPE described in Patent Document 1 has a problem that the heat resistance of the resulting laminate is reduced, and the number of terminal hydroxyl groups of the PPE increases. Since this causes a problem that the ratio and the dielectric loss tangent are increased, it is not sufficient for use in a printed wiring board.

また、特許文献2に記載の低分子量・反応性官能化PPEを用い溶剤への溶解性を高める方法は、低分子量化に伴う耐熱性低下の問題は改善されるものの、末端の水酸基を封止していることに起因すると推測される問題を有していた。すなわち、このようなPPEは、ガラスクロス等の基材又は銅箔等との接着性が十分でなく、積層板の場合の層間の剥離強度、又は該PPEと銅箔等との剥離強度が低い、或いは耐吸水性及びはんだ耐熱性が十分でないという問題があった。   In addition, the method of increasing the solubility in a solvent using the low molecular weight / reactive functionalized PPE described in Patent Document 2 improves the problem of heat resistance reduction due to the low molecular weight, but seals the terminal hydroxyl group. It has a problem that is presumed to be caused by this. That is, such PPE does not have sufficient adhesion to a substrate such as glass cloth or copper foil, and has low peel strength between layers in the case of a laminated plate or peel strength between the PPE and copper foil. Alternatively, there is a problem that water absorption resistance and solder heat resistance are not sufficient.

特許文献3、4に記載の方法は、PPEと架橋性樹脂と架橋助剤を含む樹脂組成物の粒子の分散液が非常に高粘度になるため、基材への塗工に必要な流動性が得られ難い点、基材への含浸に劣る点で、十分ではなかった。実際に、特許文献3の実施例1、実施例2に開示されている方法を忠実にトレースしてみると、分散液はグリース状になり、塗工に供すことができないか、辛うじて塗工できても基材への含浸が悪く基材と樹脂組成物の接着性に劣るものしか得られなかった。上述のようにPPEと加工性樹脂と架橋性樹脂とが混在した高濃度、高粘度の条件で温度下降させると、PPE等の結晶化が成長せず、非常に小さいが溶剤を内部に取り込み膨潤している結晶が多く発生し、これらの結晶粒子が凝集してグリース状になってしまったと考えられる。   In the methods described in Patent Documents 3 and 4, the dispersion of particles of a resin composition containing PPE, a crosslinkable resin, and a crosslinking aid has a very high viscosity. Is not sufficient in that it is difficult to obtain and inferior in impregnation into the substrate. Actually, when the method disclosed in Example 1 and Example 2 of Patent Document 3 is traced faithfully, the dispersion becomes grease-like and cannot be used for coating or it can be barely applied. However, the impregnation into the base material was poor, and only an inferior adhesive property between the base material and the resin composition was obtained. As described above, when the temperature is lowered under conditions of high concentration and high viscosity in which PPE, processable resin, and crosslinkable resin are mixed, crystallization of PPE does not grow, and it is very small but swells by incorporating the solvent inside. It is considered that a large number of crystals were generated and these crystal particles were aggregated to form a grease.

特許文献5に記載の方法は、ポリフェニレンーテルを貧溶剤に分散させるため、分散液の分散安定性に欠けPPEが沈降しやすく、均一な塗工性及び連続塗工性に欠ける点で十分でなかった。また、ガラスクロス等の基材に含浸させる際、分散溶剤とPPEの基材への移動速度が大きく異なるため、PPEのみ含浸ロール等に堆積してしまうという問題もあった。   The method described in Patent Document 5 is sufficient in that polyphenylene ether is dispersed in a poor solvent, so that the dispersion stability of the dispersion is insufficient and PPE is liable to settle and lacks uniform coating properties and continuous coating properties. There wasn't. In addition, when impregnating a substrate such as glass cloth, there is a problem that only the PPE is deposited on the impregnation roll or the like because the moving speed of the dispersion solvent and the PPE to the substrate is greatly different.

特許文献6に記載の方法は、界面活性剤を利用して水系溶媒に安定に分散させているが、PPEの粒子が106μm以下と非常に大きいため、例えば、該特許文献6に記載されているTAICを硬化性モノマーとして硬化性樹脂組成物とした際、通常の加熱加圧成型条件の過程ではPPEとTAICとを完全に相溶させることができず、得られる基板の均一性に欠けるため、はんだ耐熱性や、ドリル加工性に劣る欠点を有していた。
以上のように、PPEが本来有する低い誘電率及び誘電正接を有する硬化物を与え、優れた耐熱性及び接着性を有する硬化物を与え、PPEやPPEを含む樹脂組成物の分散安定性に優れ、常温での塗工によりPPEや樹脂組成物が均一な層を形成しているプリプレグを得られる混合液に関する技術は見出されておらず、前記の特性を有するような混合液が強く望まれていた。
The method described in Patent Document 6 is stably dispersed in an aqueous solvent using a surfactant. However, since the PPE particles are as large as 106 μm or less, the method is described in Patent Document 6, for example. When TAIC is used as a curable monomer and a curable resin composition, PPE and TAIC cannot be completely dissolved in the process of normal heating and pressure molding conditions, and the resulting substrate lacks uniformity. It had disadvantages inferior to solder heat resistance and drill workability.
As described above, it gives a cured product having a low dielectric constant and dielectric loss tangent inherent to PPE, gives a cured product having excellent heat resistance and adhesiveness, and is excellent in dispersion stability of a resin composition containing PPE and PPE. However, no technique has been found regarding a mixed solution that can obtain a prepreg in which a PPE or a resin composition forms a uniform layer by coating at room temperature, and a mixed solution having the above-mentioned characteristics is strongly desired. It was.

前記の状況のもと、本発明が解決しようとする課題は、PPEが本来有する低い誘電率及び誘電正接を有する硬化物を与え、優れた耐熱性及び接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等の金属箔との剥離強度)を有する硬化物を与え、常温塗工可能であり、PPEやPPEを含む硬化性樹脂組成物の分散安定性に優れ、プリプレグ製造時に均一なPPEやPPEを含む硬化性樹脂組成物の層を形成できる混合液を提供することである。本発明の課題は更に、特定の態様において、PPE又はPPEと架橋型硬化性樹脂とを含む硬化性樹脂組成物と、溶剤とを含む混合液、該硬化性樹脂組成物と基材とを含むプリント配線板用プリプレグ、及び該硬化性樹脂組成物の硬化物と基材とを含むプリント配線板を提供することである。   Under the circumstances described above, the problem to be solved by the present invention is to provide a cured product having a low dielectric constant and dielectric loss tangent inherent in PPE, and to have excellent heat resistance and adhesiveness (for example, delamination between layers in a multilayer board). A cured product having a strength or a peel strength between a cured product of the curable resin composition and a metal foil such as a copper foil) and can be applied at room temperature, and the dispersion stability of the curable resin composition containing PPE or PPE It is providing the liquid mixture which is excellent in property and can form the layer of the curable resin composition containing PPE and PPE uniform at the time of prepreg manufacture. The subject of the present invention further includes, in a specific embodiment, a curable resin composition containing PPE or PPE and a crosslinkable curable resin, a mixed solution containing a solvent, the curable resin composition and a substrate. It is providing the printed wiring board containing the prepreg for printed wiring boards, the hardened | cured material of this curable resin composition, and a base material.

本発明者らは、上記課題を解決すべく鋭意検討し実験を重ねた結果、後述するような、特定の分子量を有するPPEと、PPEの特定の溶剤保持量を有する化合物(A)と、PPEの特定の溶剤保持量を有しかつ分子内に環構造を有する化合物(B)との混合物である溶剤を用いることで、PPE及び溶剤を含む混合液、より具体的にはPPEを含む硬化性樹脂組成物を含む混合液の流動性、分散安定性が高められるため、該混合液を含むワニスの常温での塗工が可能となることを見出した。更に、本発明者らは、溶剤保持量が互いに異なる2つの化合物群から選択される、化合物(A)及び化合物(B)の組合せを用いることにより、得られるプリプレグにおいて、PPEを含む硬化性樹脂組成物の均一な層を形成しやすくなることを見出した。更に、本発明者らは、上記プリプレグから例えば加熱加圧成型により製造される、PPEを含む硬化性樹脂組成物の硬化物と基材との接着性が良好であることを見出した。本発明者らはかかる知見に基づき本発明を完成するに至った。   As a result of intensive investigations and repeated experiments to solve the above-mentioned problems, the present inventors, as described later, PPE having a specific molecular weight, a compound (A) having a specific solvent retention amount of PPE, and PPE A solvent containing PPE and a solvent, more specifically, a curable composition containing PPE, by using a solvent which is a mixture with the compound (B) having a specific solvent retention amount and having a ring structure in the molecule. It has been found that since the fluidity and dispersion stability of the mixed solution containing the resin composition are enhanced, the varnish containing the mixed solution can be applied at room temperature. Furthermore, the present inventors use a combination of the compound (A) and the compound (B) selected from two compound groups having different solvent retention amounts, so that a curable resin containing PPE in the prepreg obtained. It has been found that it becomes easier to form a uniform layer of the composition. Furthermore, the present inventors have found that the adhesiveness between the cured product of the curable resin composition containing PPE and the substrate produced from the prepreg by, for example, heat and pressure molding is good. Based on this finding, the inventors have completed the present invention.

すなわち、本発明は以下の通りのものである。   That is, the present invention is as follows.

[1] ポリフェニレンエーテルと溶剤とを含む混合液であって、
(1)前記ポリフェニレンエーテルの数平均分子量が5000〜40000であり、
(2)前記溶剤は、
前記ポリフェニレンエーテルの溶剤保持量が1500質量%以上である化合物から選択される1種以上である化合物(A)と、
前記ポリフェニレンエーテルの溶剤保持量が300質量%以上1500質量%未満であり、かつ分子内に環構造を有する化合物から選択される1種以上である化合物(B)と
の混合物である、混合液。
[2] 前記化合物(A)の前記溶剤全体に占める割合は、10質量%以上90質量%以下である、上記[1]に記載の混合液。
[3] 前記化合物(B)の沸点は、前記化合物(A)の沸点よりも高い、上記[1]又は[2]に記載の混合液。
[4] 前記化合物(B)の沸点は、前記化合物(A)の沸点よりも18℃以上高い、上記[3]に記載の混合液。
[5] 前記化合物(B)の前記環構造は、4員環から8員環である、上記[1]〜[4]のいずれかに記載の混合液。
[6] 前記化合物(B)は、ケトン化合物又はアルケン化合物である、上記[1]〜[5]のいずれかに記載の混合液。
[7] 架橋型硬化性樹脂及び開始剤をさらに含む、上記[1]〜[6]のいずれかに記載の混合液。
[8] 前記架橋型硬化性樹脂が、分子内に2個以上のビニル基を持つモノマーである、上記[7]に記載の混合液。
[9] 前記架橋型硬化性樹脂が、トリアリルイソシアヌレート(TAIC)である、上記[8]に記載の混合液。
[10] 上記[1]〜[9]のいずれかに記載の混合液を含む、樹脂ワニス。
[11] 上記[1]〜[9]のいずれかに記載の混合液を含む樹脂ワニスを基材に塗布し、次いで前記基材から溶剤を除去することによって得られる、プリプレグ。
[12] 上記[11]に記載のプリプレグを構成成分として作製された、プリント配線板。
[1] A liquid mixture containing polyphenylene ether and a solvent,
(1) The number average molecular weight of the polyphenylene ether is 5000 to 40000,
(2) The solvent is
A compound (A) that is one or more selected from compounds having a solvent retention of 1500% by mass or more of the polyphenylene ether;
The liquid mixture which is a mixture with the compound (B) which is 1 type or more selected from the compound whose solvent holding | maintenance amount of the said polyphenylene ether is 300 mass% or more and less than 1500 mass%, and has a ring structure in a molecule | numerator.
[2] The mixed liquid according to [1], wherein the ratio of the compound (A) to the entire solvent is 10% by mass or more and 90% by mass or less.
[3] The mixed solution according to [1] or [2], wherein the compound (B) has a boiling point higher than that of the compound (A).
[4] The mixed liquid according to [3], wherein the boiling point of the compound (B) is 18 ° C. or more higher than the boiling point of the compound (A).
[5] The mixed solution according to any one of [1] to [4], wherein the ring structure of the compound (B) is a 4-membered ring to an 8-membered ring.
[6] The mixed solution according to any one of [1] to [5], wherein the compound (B) is a ketone compound or an alkene compound.
[7] The mixed liquid according to any one of [1] to [6], further including a crosslinkable curable resin and an initiator.
[8] The mixed liquid according to [7] above, wherein the crosslinkable curable resin is a monomer having two or more vinyl groups in the molecule.
[9] The mixed liquid according to [8], wherein the crosslinkable curable resin is triallyl isocyanurate (TAIC).
[10] A resin varnish containing the mixed liquid according to any one of [1] to [9].
[11] A prepreg obtained by applying a resin varnish containing the mixed solution according to any one of [1] to [9] to a base material, and then removing the solvent from the base material.
[12] A printed wiring board produced using the prepreg according to [11] as a constituent component.

本発明によると、PPEが本来有する低い誘電率及び誘電正接を有する硬化物を与え、優れた耐熱性及び接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等の金属箔との剥離強度)を有する硬化物を与え、常温塗工可能であり、PPEやPPEを含む硬化性樹脂組成物の分散安定性に優れ、プリプレグ製造時に均一なPPEやPPEを含む硬化性樹脂組成物の層を形成できる混合液を得ることができる。更に、本発明の特定の態様によれば、硬化性樹脂組成物と基材とを含むプリント配線板用プリプレグ、及び該硬化性樹脂組成物の硬化物と基材とを含むプリント配線板を得ることができる。   According to the present invention, a cured product having a low dielectric constant and dielectric loss tangent inherent to PPE is provided, and excellent heat resistance and adhesiveness (for example, peel strength between layers in a multilayer board, or cured product of a curable resin composition) Can be applied at room temperature, has excellent dispersion stability of curable resin compositions containing PPE and PPE, and is uniform during prepreg manufacturing. The liquid mixture which can form the layer of the curable resin composition containing this can be obtained. Furthermore, according to the specific aspect of this invention, the printed wiring board prepreg containing the curable resin composition and a base material, and the printed wiring board containing the hardened | cured material and base material of this curable resin composition are obtained. be able to.

以下、本発明の実施態様を詳細に説明するが、本発明がこれらの態様に限定されることは意図されない。   Hereinafter, although the embodiment of the present invention is described in detail, it is not intended that the present invention be limited to these embodiments.

<混合液>
本発明の一態様は、PPEと溶剤とを含む混合液である。典型的には、該混合液は、PPE、架橋型硬化性樹脂、及び溶剤を含む。典型的には、PPEの少なくとも一部は、粒子の形態で混合液中に分散している。
<Mixed liquid>
One embodiment of the present invention is a mixed solution containing PPE and a solvent. Typically, the liquid mixture includes PPE, a cross-linkable curable resin, and a solvent. Typically, at least a portion of the PPE is dispersed in the mixture in the form of particles.

本態様の混合液が含むPPEは、好ましくは、下記一般式(1):

Figure 2015117285
{式中、R1、R2、R3及びR4は、各々独立して、水素原子、ハロゲン原子、置換基を有してもよいアルキル基、置換基を有してもよいアルコキシ基、置換基を有してもよいアリール基、置換基を有してもよいアミノ基、ニトロ基又はカルボキシル基を表す。}で表される繰返し構造単位を含む。 The PPE contained in the mixed liquid of this embodiment is preferably the following general formula (1):
Figure 2015117285
{Wherein R1, R2, R3 and R4 each independently have a hydrogen atom, a halogen atom, an alkyl group which may have a substituent, an alkoxy group which may have a substituent, or a substituent. An aryl group that may be substituted, an amino group that may have a substituent, a nitro group, or a carboxyl group. } Is included.

PPEの具体例としては、例えば、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−エチル−1,4−フェニレンエーテル)、ポリ(2−メチル−6−フェニル−1,4−フェニレンエーテル)、ポリ(2,6−ジクロロ−1,4−フェニレンエーテル)等、更に、2,6−ジメチルフェノールと他のフェノール類(例えば、2,3,6−トリメチルフェノール、2−メチル−6−ブチルフェノール等)との共重合体、及び、2,6−ジメチルフェノールとビフェノール類又はビスフェノール類とをカップリングさせて得られるポリフェニレンエーテル共重合体、等が挙げられる。誘電率及び誘電正接の観点から好ましい例は、ポリ(2,6−ジメチル−1,4−フェニレンエーテル)である。   Specific examples of PPE include poly (2,6-dimethyl-1,4-phenylene ether), poly (2-methyl-6-ethyl-1,4-phenylene ether), and poly (2-methyl-6). -Phenyl-1,4-phenylene ether), poly (2,6-dichloro-1,4-phenylene ether) and the like, and 2,6-dimethylphenol and other phenols (for example, 2,3,6-phenylene ether) And a polyphenylene ether copolymer obtained by coupling 2,6-dimethylphenol and biphenols or bisphenols, and the like. . A preferable example from the viewpoint of dielectric constant and dielectric loss tangent is poly (2,6-dimethyl-1,4-phenylene ether).

尚、本開示において、ポリフェニレンエーテル、すなわちPPEとは、置換又は非置換のフェニレンエーテル単位構造から構成されるポリマーを意味するが、本発明の作用効果を損なわない範囲で他の共重合成分を含んでもよい。   In the present disclosure, polyphenylene ether, that is, PPE means a polymer composed of a substituted or unsubstituted phenylene ether unit structure, but includes other copolymerization components as long as the effects of the present invention are not impaired. But you can.

混合液に含まれるPPEの数平均分子量は、5,000以上40,000以下である。PPEの数平均分子量の好ましい範囲は、8,500以上30,000以下であり、更に好ましい範囲は9,000以上25,000以下である。   The number average molecular weight of PPE contained in the mixed solution is 5,000 or more and 40,000 or less. A preferable range of the number average molecular weight of PPE is 8,500 or more and 30,000 or less, and a more preferable range is 9,000 or more and 25,000 or less.

PPEの数平均分子量が5,000以上であれば、プリント配線板等において所望される、硬化物の耐吸水性、はんだ耐熱性、及び接着性(例えば、多層板における層間の剥離強度、又は硬化性樹脂組成物の硬化物と銅箔等との剥離強度)が良好である。また、PPEの数平均分子量が40,000以下であれば、成形時の硬化性樹脂組成物の溶融粘度が小さく、良好な成形性が得られる。   If the number average molecular weight of PPE is 5,000 or more, the water absorption resistance, solder heat resistance, and adhesiveness of a cured product, for example, desired for printed wiring boards (for example, peel strength between layers in multilayer boards, or curing) The peel strength between the cured product of the conductive resin composition and the copper foil, etc.) is good. Moreover, if the number average molecular weight of PPE is 40,000 or less, the melt viscosity of the curable resin composition at the time of molding is small, and good moldability is obtained.

ここで、PPEの数平均分子量は、以下の測定によって求めた値とする。PPEと溶剤とを含む混合液から、該溶剤の沸点(この場合の沸点とは、含まれる化合物の中で最も高い沸点を有する化合物の沸点を指す)以下の温度にて溶剤を乾燥除去して、溶剤含有量が1質量%以下の生成物を得る。次いで、この生成物1.5gに、23℃±3℃の、質量比95:5のトルエンとメタノールとの混合溶剤を20g加える。23℃±2℃の恒温室で、5分毎に激しく振とうしながら、1時間経過させる。次いで、同恒温室内で24時間静置させる。次いで、上澄み液を取り除き、質量比95:5のトルエンとメタノールとの混合溶剤を5g加え、激しく振とうした後、同恒温室内で24時間静置させる。次いで上澄み液を取り除き、質量比95:5のトルエンとメタノールとの混合溶剤を5g加える。次いで、溶剤の実質的に全てを乾燥除去した後に、乾燥物をクロロホルム中に展開し、不溶分をろ別して除去し、抽出物を得る(以下、この抽出物を「抽出物(A)」という。)。   Here, the number average molecular weight of PPE is a value determined by the following measurement. The solvent is dried and removed from the mixed solution containing PPE and the solvent at a temperature not higher than the boiling point of the solvent (the boiling point in this case refers to the boiling point of the compound having the highest boiling point among the contained compounds). A product having a solvent content of 1% by mass or less is obtained. Next, 20 g of a mixed solvent of toluene and methanol having a mass ratio of 95: 5 at 23 ° C. ± 3 ° C. is added to 1.5 g of this product. Allow 1 hour to elapse while shaking vigorously every 5 minutes in a constant temperature room at 23 ° C. ± 2 ° C. Next, it is allowed to stand for 24 hours in the same constant temperature room. Next, the supernatant liquid is removed, 5 g of a mixed solvent of toluene and methanol having a mass ratio of 95: 5 is added, and the mixture is shaken vigorously, and then allowed to stand in the same thermostatic chamber for 24 hours. Next, the supernatant is removed, and 5 g of a mixed solvent of toluene and methanol with a mass ratio of 95: 5 is added. Next, after substantially all of the solvent is removed by drying, the dried product is developed in chloroform, and insolubles are removed by filtration to obtain an extract (hereinafter, this extract is referred to as “extract (A)”. .)

該抽出物(A)を測定試料とし、カラムにShodex LF−804×2(昭和電工株式会社製)、溶離液に50℃のクロロホルム、検出器にRI(屈折率計)を用いてゲルパーミエーションクロマトグラフィ(GPC)測定を行い、同条件で測定した標準ポリスチレン試料の分子量と溶出時間との関係式から、標準ポリスチレン換算で測定される値をPPEの数平均分子量とする。   Gel permeation using the extract (A) as a measurement sample, Shodex LF-804 × 2 (manufactured by Showa Denko KK) as a column, chloroform at 50 ° C. as an eluent, and RI (refractometer) as a detector Chromatography (GPC) measurement is performed, and the value measured in terms of standard polystyrene is defined as the number average molecular weight of PPE from the relational expression between the molecular weight of the standard polystyrene sample measured under the same conditions and the elution time.

また、使用するPPEの分子量の分布により、PPEの少なくとも一部が溶剤に溶解している場合、溶解しているPPEの数平均分子量は、以下の測定によって求めた値とする。上述の手順に従って、抽出物(A)を得る過程で得られた上澄み液を全て回収する。この上澄み液から、シリカゲルカラムクロマトグラフィーで可溶成分を分離し、PPEの分離液を得る。次いで、PPE分離液に含まれるPPEの分子量を、上記抽出物(A)に関するPPEの数平均分子量の測定と同じ方法によるGPC測定及び標準ポリスチレン換算にて求める。得られた値を溶剤に溶解しているPPEの数平均分子量とする。   Further, when at least a part of PPE is dissolved in a solvent due to the molecular weight distribution of the PPE used, the number average molecular weight of the dissolved PPE is a value determined by the following measurement. According to the above-mentioned procedure, all the supernatant liquid obtained in the process of obtaining the extract (A) is recovered. From this supernatant, soluble components are separated by silica gel column chromatography to obtain a PPE separation liquid. Next, the molecular weight of PPE contained in the PPE separation liquid is determined by GPC measurement and standard polystyrene conversion by the same method as the measurement of the number average molecular weight of PPE related to the extract (A). The obtained value is defined as the number average molecular weight of PPE dissolved in the solvent.

後述する複合体における基材と硬化性樹脂組成物の硬化物との接着性に関し、プリプレグから硬化物複合体を作製する際に、プリプレグの通常の加熱加圧成型条件において、通常PPEは、PPE以外の熱硬化性樹脂成分よりも溶融速度が遅い。よって、PPEを存在させることにより、PPE以外の熱硬化性樹脂成分がまず溶融して基材の表面を覆い、これに、PPEが遅れて溶融し、PPE及びPPE以外の熱硬化性樹脂成分が互いに相溶した状態で硬化することとなるため、良好な接着性が実現されると考えられる。   Regarding the adhesiveness between the base material and the cured product of the curable resin composition described later, when producing a cured product composite from a prepreg, the normal PPE is usually PPE under the normal heat-pressure molding conditions of the prepreg. The melting rate is slower than other thermosetting resin components. Therefore, the presence of PPE causes the thermosetting resin component other than PPE to first melt and cover the surface of the base material, and then PPE melts with a delay, and the thermosetting resin component other than PPE and PPE Since it hardens | cures in the state mutually compatible, it is thought that favorable adhesiveness is implement | achieved.

本態様におけるPPEは、後述する溶剤中に、溶解又は、溶剤を吸収して膨潤した状態で存在している。本態様の混合液に用いる溶剤は、後述するPPEの溶剤保持量の特性を有する化合物から選択される1種以上である化合物(A)と、後述するPPEの溶剤保持量の特性を有しかつ分子内に環構造を有する化合物から選択される1種以上である化合物(B)との混合物である。   The PPE in this embodiment is present in a solvent which will be described later, dissolved or absorbed in the solvent and swollen. The solvent used in the mixed liquid of this embodiment has at least one compound (A) selected from compounds having the characteristics of the PPE solvent retention described later, and the solvent retention characteristics of the PPE described later; It is a mixture with one or more compounds (B) selected from compounds having a ring structure in the molecule.

化合物(A)に対するPPEの溶剤保持量は1500質量%以上である。また、化合物(B)に対するPPEの溶剤保持量は300質量%以上1500質量%未満である。   The solvent retention amount of PPE with respect to the compound (A) is 1500% by mass or more. Moreover, the solvent holding | maintenance amount of PPE with respect to a compound (B) is 300 to 1500 mass%.

本開示で、PPEの各化合物に対する溶剤保持量とは、以下の方法で求められる値である。本発明において所望に応じて選択されたPPE、W0(g)(但し5±0.1gとする)に23℃±2℃の測定対象溶剤である化合物を約80g加え、23℃±2℃の恒温室内で、マグネチックスターラーで2時間以上撹拌し、混合液を得る。得られた混合液を、100cm3の沈降管に移し、混合液を軽く均一に撹拌した後、23℃±2℃の恒温室に24時間静置する。混合液は上下2層に相分離する。上澄み液を取り除き、下層(これにはPPEとPPEが保持する溶剤とが含まれる)の質量Wを測定する。 In the present disclosure, the solvent retention amount for each compound of PPE is a value determined by the following method. About 80 g of a compound to be measured at 23 ° C. ± 2 ° C. is added to PPE, W0 (g) (provided 5 ± 0.1 g) selected as desired in the present invention. Stir in a thermostatic chamber with a magnetic stirrer for 2 hours or more to obtain a mixture. The obtained mixed solution is transferred to a 100 cm 3 sedimentation tube, and the mixed solution is lightly and uniformly stirred, and then left to stand in a thermostatic chamber at 23 ° C. ± 2 ° C. for 24 hours. The mixed solution is phase-separated into two upper and lower layers. The supernatant liquid is removed, and the mass W of the lower layer (which includes PPE and the solvent retained by PPE) is measured.

上記のPPEの質量W0と、PPEとPPEが保持する溶剤との合計である質量Wとから、下式:
溶剤保持量(%)=100×(W−W0)/W0
により溶剤保持量を求める。
From the mass W0 of the above PPE and the mass W that is the sum of the PPE and the solvent held by the PPE, the following formula:
Solvent retention amount (%) = 100 × (W−W0) / W0
Obtain the amount of solvent retained.

また、上記24時間静置の後に、上下2層に分かれず、均一な溶液又は混合液であった場合は、溶剤保持量1600質量%以上とする。   In addition, after the 24 hours of standing, if the solution is a uniform solution or mixed solution without being separated into two upper and lower layers, the solvent holding amount is set to 1600% by mass or more.

PPEの溶剤保持量が1500質量%以上の化合物(A)と、PPEの溶剤保持量が300質量%以上1500質量%未満かつ分子内に環構造を有する化合物(B)との混合質量比(A):(B)は、分散安定性、塗工性、保存安定性の観点から、好ましくは90:10から10:90の範囲内、より好ましくは30:70から70:30の範囲内、さらに好ましくは40:60から60:40の範囲内である。   Mixing mass ratio (A) of the compound (A) having a PPE solvent retention of 1500% by mass or more and the compound (B) having a PPE solvent retention of 300% by mass to less than 1500% by mass and having a ring structure in the molecule ): (B) is preferably in the range of 90:10 to 10:90, more preferably in the range of 30:70 to 70:30, from the viewpoint of dispersion stability, coating property, and storage stability. Preferably it is in the range of 40:60 to 60:40.

溶剤中に化合物(A)が存在する(好ましくは上記所定割合以上で)ことにより、PPEが溶剤を粒子内に取り込み膨潤するため、粘度が増加し、分散安定性が増加し、基材への塗工量(樹脂含量)も増える。また、溶剤に溶けているPPEと、膨潤したPPEとは親和性が良いため、PPEの基材への浸漬性が安定して、均一な塗工ができる。PPEの膨潤性が足りないと、ワニス含浸工程でPPEが基材/ガラスクロス/織物構造に濾されて、含浸ロールに堆積してしまうという問題もある。溶剤中の化合物(A)が上記所定割合以下で存在するとき、PPEの膨潤によるゲル化・固化を抑制し、塗工が可能となり、経時的な膨潤・ゲル化も抑制でき、保存安定性が良好である。   When the compound (A) is present in the solvent (preferably at the above-mentioned predetermined ratio or more), the PPE takes the solvent into the particles and swells, so that the viscosity increases, the dispersion stability increases, The coating amount (resin content) also increases. Moreover, since PPE melt | dissolved in the solvent and swollen PPE have good affinity, the immersion property to the base material of PPE is stabilized, and uniform coating can be performed. If the swelling property of PPE is insufficient, there is also a problem that PPE is filtered into the base material / glass cloth / woven fabric structure in the varnish impregnation step and deposited on the impregnation roll. When the compound (A) in the solvent is present at a predetermined ratio or less, the gelation / solidification due to the swelling of PPE can be suppressed, coating can be performed, the swelling / gelation with time can be suppressed, and the storage stability can be improved. It is good.

また、PPEの溶剤保持量が300質量%以上1500質量%未満の分子内に環構造を有する化合物(B)が存在する(好ましくは上記所定割合以上で)ことにより、プリプレグの製造時に、その乾燥工程で、樹脂膜中に溶剤が残留するのを抑制できるため、塗工膜厚を厚くした場合にも、樹脂膜がひび割れしにくくなり、塗工性の観点から好ましい。また、PPEが溶解若しくは、膨潤しているPPEの粒子表面の分子鎖がほぐれているためと推測されるが、PPEの粒子の接着性が向上するため、本態様の混合液を用いて作製したプリプレグ、及び該プリプレグを加熱加圧成型して作製した硬化物の、基材と樹脂成分との接着性が良好となる。また、溶剤中の化合物(B)が上記所定割合以下で存在するとき、上記化合物(A)が上記所定割合以上で存在する場合の利点が得られる。化合物(B)は、これは後述する理由により、PPEを溶解若しくは、膨潤させる観点から、分子内に環構造を有する。環構造は例えば芳香環及び脂環式環であることができる。化合物(B)に対するPPEの溶剤保持量は、300質量%〜1500質量%未満、好ましくは300質量%〜1000質量%である。   In addition, the presence of the compound (B) having a ring structure in the molecule having a solvent holding amount of PPE of 300% by mass or more and less than 1500% by mass (preferably at the above-mentioned predetermined ratio or more) causes the drying of the prepreg. Since it can suppress that a solvent remains in a resin film at a process, even when it makes a coating film thickness thick, it becomes difficult to crack a resin film, and it is preferable from a viewpoint of coating property. In addition, it is presumed that molecular chains on the surface of PPE particles in which PPE is dissolved or swollen are loosened, but the adhesion of PPE particles is improved. Adhesiveness between the base material and the resin component of the prepreg and a cured product produced by heating and pressing the prepreg is improved. Further, when the compound (B) in the solvent is present in the predetermined ratio or less, the advantage can be obtained when the compound (A) is present in the predetermined ratio or more. The compound (B) has a ring structure in the molecule from the viewpoint of dissolving or swelling PPE for the reasons described later. The ring structure can be, for example, an aromatic ring and an alicyclic ring. The solvent holding | maintenance amount of PPE with respect to a compound (B) is 300 mass%-less than 1500 mass%, Preferably it is 300 mass%-1000 mass%.

化合物(A)を上記所定割合を超えて多量に使用する場合、混合液中のPPEの溶剤保持量が高くなり、プリプレグの製造時の乾燥工程において樹脂膜中で溶剤を保持する特性が強くなる。これにより、樹脂膜内部の乾燥が進みにくく、その結果、ひび割れを起こす可能性が高くなる傾向がある。また、樹脂膜厚を厚くする場合には、ひび割れはさらに顕著になりやすいため、樹脂膜の厚みも制限される傾向がある。また、化合物(B)を上記所定割合を超えて多量に使用する場合、混合液中のPPEの溶剤保持量が低下し、塗工中にPPEが沈殿する等、分散安定性が低下する傾向がある。   When the compound (A) is used in a large amount exceeding the predetermined ratio, the solvent retention amount of PPE in the mixed solution becomes high, and the property of retaining the solvent in the resin film in the drying process at the time of manufacturing the prepreg becomes strong. . Thereby, the drying inside the resin film is difficult to proceed, and as a result, there is a tendency that the possibility of causing cracks is increased. In addition, when the resin film thickness is increased, cracks tend to become more prominent, and the thickness of the resin film tends to be limited. Moreover, when using a compound (B) in large quantities exceeding the said predetermined ratio, the solvent retention amount of PPE in a liquid mixture falls, and there exists a tendency for dispersion stability to fall, such as precipitation of PPE during coating. is there.

ここで、PPEの溶剤保持量が1500質量%以上となる化合物(A)は、特に限定はないが、環構造として芳香環を有する有機溶剤等は、PPEの種類や分子量によらず溶剤保持量1500質量%以上となりやすいため、好ましく用いられる。好ましい例としては、ベンゼン、トルエン、キシレン等を単独で用いることもでき、2種類以上を混合して用いることもできる。また、その他の一例としてはクロロホルム等を用いることができる。   Here, the compound (A) having a PPE solvent holding amount of 1500% by mass or more is not particularly limited, but the organic solvent having an aromatic ring as a ring structure is not limited to the type and molecular weight of PPE. Since it tends to be 1500 mass% or more, it is preferably used. As a preferable example, benzene, toluene, xylene, etc. can also be used independently, and 2 or more types can also be mixed and used. As another example, chloroform or the like can be used.

また、PPEの溶剤保持量が300質量%以上1500質量%未満となる分子内に環構造を有する化合物(B)は、特に限定はしないが、化合物(A)よりも沸点が高いことが好ましく、更には、化合物(A)よりも沸点が18℃以上高いことがより好ましく、化合物(A)よりも沸点が25℃以上高いことがより好ましい。このような沸点の差を設けることで、プリプレグの製造時に、その乾燥工程で、PPEの溶剤保持量の高い化合物(A)が、化合物(B)よりも早く揮発しやすくなる。従って、プリプレグの製造時、乾燥工程で樹脂膜中にPPEに保持されやすい化合物(A)の残存量を低減できるため、より塗工性に優れた混合液を得ることができる。また、化合物(A)と化合物(B)との沸点の差が18℃以上あれば、より成膜性を向上できる。一方、化合物(A)と化合物(B)の沸点の差が大きすぎる場合、化合物(B)のプリプレグ中への残留を抑制しつつ、化合物(A)が急激の揮発による成膜品質(樹脂膜表面への凹凸の発生)の低下を抑制するというバランスがとりにくくなるため、化合物(B)は、化合物(A)よりも沸点が好ましくは60℃以下、より好ましくは50℃以下で高い。なお、化合物(A)が2種以上の化合物を含む場合には、化合物(A)中の各化合物の含有比率にそれぞれの沸点を乗じた値に基づいて算出される数平均値を化合物(A)の沸点とする。化合物(B)に関しても同様である。   Further, the compound (B) having a ring structure in the molecule where the solvent holding amount of PPE is 300% by mass or more and less than 1500% by mass is not particularly limited, but preferably has a boiling point higher than that of the compound (A), Furthermore, it is more preferable that the boiling point is 18 ° C. or higher than the compound (A), and it is more preferable that the boiling point is 25 ° C. or higher than the compound (A). By providing such a difference in boiling points, the compound (A) having a high PPE solvent retention amount is likely to volatilize faster than the compound (B) in the drying step during the production of the prepreg. Accordingly, when the prepreg is produced, the remaining amount of the compound (A) that is easily held by the PPE in the resin film in the drying step can be reduced, and thus a mixed solution having more excellent coatability can be obtained. Moreover, if the difference in boiling point between the compound (A) and the compound (B) is 18 ° C. or more, the film formability can be further improved. On the other hand, when the difference between the boiling points of the compound (A) and the compound (B) is too large, the film formation quality (resin film) due to rapid volatilization of the compound (A) is suppressed while suppressing the remaining of the compound (B) in the prepreg. The compound (B) has a boiling point that is preferably 60 ° C. or less, more preferably 50 ° C. or less, higher than that of the compound (A), since it is difficult to achieve a balance of suppressing a decrease in the occurrence of unevenness on the surface. In addition, when the compound (A) contains two or more kinds of compounds, the number average value calculated based on the value obtained by multiplying the content ratio of each compound in the compound (A) by the respective boiling point is the compound (A ) Boiling point. The same applies to compound (B).

化合物(B)が有する環構造は、4員環から8員環までであることが好ましく、この中でも特に好ましくはケトン類、アルケン類等である。これらは、分子内に環構造及び二重結合を有するため、分子構造がPPEの分子構造と近い。よってこれらの化合物によるPPEの膨潤性若しくは溶解性は比較的高く、これらの化合物に対するPPEの溶剤保持量が大きくなると推測される。好ましい例としては、シクロヘキサノン、シクロペンタノン、シクロヘキセン等を単独で用いることもでき、2種類以上を混合して用いることもできる。   The ring structure possessed by the compound (B) is preferably from a 4-membered ring to an 8-membered ring, and among these, ketones, alkenes and the like are particularly preferable. Since these have a ring structure and a double bond in the molecule, the molecular structure is close to the molecular structure of PPE. Therefore, the swelling property or solubility of PPE by these compounds is relatively high, and it is presumed that the solvent retention amount of PPE with respect to these compounds increases. As a preferable example, cyclohexanone, cyclopentanone, cyclohexene or the like can be used alone, or two or more kinds can be mixed and used.

本態様の混合液は、例えば、架橋型硬化性樹脂、追加の樹脂、各種添加剤等を含むことができる。   The mixed liquid of this embodiment can contain, for example, a cross-linkable curable resin, an additional resin, various additives, and the like.

本態様の混合液は、好ましくは架橋型硬化性樹脂を更に含み、より好ましくは架橋型硬化性樹脂及び開始剤を更に含む。架橋型硬化性樹脂の含有量は、PPEと該架橋型硬化性樹脂の合計100質量部に対して、好ましくは5〜95質量部、より好ましくは10〜80質量部、更に好ましくは10〜70質量部、更に好ましくは20〜70質量部である。上記含有量が5質量部以上である場合、成形性が良好である点で好ましく、95質量部以下である場合、誘電率及び誘電正接が低い硬化物を形成できる点で好ましい。   The mixed liquid of this embodiment preferably further contains a crosslinkable curable resin, more preferably a crosslinkable curable resin and an initiator. The content of the crosslinkable curable resin is preferably 5 to 95 parts by mass, more preferably 10 to 80 parts by mass, and still more preferably 10 to 70 parts by mass with respect to 100 parts by mass in total of PPE and the crosslinkable curable resin. It is 20 mass parts, More preferably, it is 20-70 mass parts. When the content is 5 parts by mass or more, it is preferable in terms of good moldability, and when it is 95 parts by mass or less, it is preferable in that a cured product having a low dielectric constant and dielectric loss tangent can be formed.

架橋型硬化性樹脂としては、分子内に2個以上のビニル基を持つモノマーが好適であり、トリアリルイソシアヌレート(TAIC)、トリアリルシアヌレート、トリアリルアミン、トリアリルメセート、ジビニルベンゼン、ジビニルナフタレン、ジビニルビフェニル等が挙げられるが、その中でもポリフェニレンエーテルとの相溶性が良好なTAICが好ましい。   As the crosslinkable curable resin, a monomer having two or more vinyl groups in the molecule is suitable, and triallyl isocyanurate (TAIC), triallyl cyanurate, triallylamine, triallyl mesate, divinylbenzene, divinyl Naphthalene, divinylbiphenyl and the like can be mentioned, and among them, TAIC having good compatibility with polyphenylene ether is preferable.

開始剤としては、ビニルモノマーの重合反応を促進する能力を有する任意の開始剤を使用でき、例えば、ベンゾイルパーオキサイド、クメンハイドロパーオキサイド、2,5−ジメチルヘキサン−2,5−ジハイドロパーオキサイド、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、ジ−t−ブチルパーオキサイド、t−ブチルクミルパーオキサイド、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサン、ジクミルパーオキサイド、ジ−t−ブチルパーオキシイソフタレート、t−ブチルパーオキシベンゾエート、2,2−ビス(t−ブチルパーオキシ)ブタン、2,2−ビス(t−ブチルパーオキシ)オクタン、2,5−ジメチル−2,5−ジ(ベンゾイルパーオキシ)ヘキサン、ジ(トリメチルシリル)パーオキサイド、トリメチルシリルトリフェニルシリルパーオキサイド等の過酸化物が挙げられる。また、2,3−ジメチル−2,3−ジフェニルブタン等のラジカル発生剤も反応開始剤として使用できる。中でも、得られる耐熱性及び機械特性に優れ、更に低い誘電率及び誘電正接を有する硬化物を与えることができる観点から、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキシン−3、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン、2,5−ジメチル−2,5−ジ(t−ブチルパーオキシ)ヘキサンが好ましい。   As the initiator, any initiator having the ability to promote the polymerization reaction of the vinyl monomer can be used. For example, benzoyl peroxide, cumene hydroperoxide, 2,5-dimethylhexane-2,5-dihydroperoxide 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne-3, di-t-butyl peroxide, t-butylcumyl peroxide, α, α'-bis (t-butylperoxy) -M-isopropyl) benzene, 2,5-dimethyl-2,5-di (t-butylperoxy) hexane, dicumyl peroxide, di-t-butylperoxyisophthalate, t-butylperoxybenzoate, 2 , 2-bis (t-butylperoxy) butane, 2,2-bis (t-butylperoxy) octane, 2,5-dimethyl And peroxides such as ru-2,5-di (benzoylperoxy) hexane, di (trimethylsilyl) peroxide, and trimethylsilyltriphenylsilyl peroxide. A radical generator such as 2,3-dimethyl-2,3-diphenylbutane can also be used as a reaction initiator. Among these, 2,5-dimethyl-2,5-di (t-butylperoxy) hexyne is preferred from the viewpoint of providing a cured product having excellent heat resistance and mechanical properties and having a lower dielectric constant and dielectric loss tangent. -3, α, α'-bis (t-butylperoxy-m-isopropyl) benzene and 2,5-dimethyl-2,5-di (t-butylperoxy) hexane are preferred.

PPEと架橋型硬化性樹脂との合計100質量部に対して、開始剤の含有量は、反応率を高くできる観点から、好ましくは0.5質量部以上、より好ましくは1質量部以上、更に好ましくは1.5質量部以上であり、得られる硬化物の誘電率及び誘電正接を低く抑えることができる観点から、好ましくは15質量部以下、より好ましくは10質量部以下、更に好ましくは7質量部以下である。   From the viewpoint of increasing the reaction rate, the initiator content is preferably 0.5 parts by mass or more, more preferably 1 part by mass or more, with respect to a total of 100 parts by mass of PPE and the crosslinkable curable resin. Preferably, it is 1.5 parts by mass or more, and preferably 15 parts by mass or less, more preferably 10 parts by mass or less, and still more preferably 7 parts by mass from the viewpoint that the dielectric constant and dielectric loss tangent of the obtained cured product can be kept low. Or less.

好ましい態様においては、PPEと架橋型硬化性樹脂との合計100質量部に対して、架橋型硬化性樹脂の含有量が10質量部以上70質量部以下、及び開始剤の含有量が1質量部以上10質量部以下である。   In a preferred embodiment, the content of the crosslinkable curable resin is 10 parts by mass or more and 70 parts by mass or less, and the content of the initiator is 1 part by mass with respect to a total of 100 parts by mass of PPE and the crosslinkable curable resin. The amount is 10 parts by mass or less.

本態様の混合液には、追加の樹脂(例えば、熱可塑性樹脂、硬化性樹脂等)を更に含有させることもできる。熱可塑性樹脂としては、エチレン、プロピレン、ブタジエン、イソプレン、スチレン、ジビニルベンゼン、メタクリル酸、アクリル酸、メタクリル酸エステル、アクリル酸エステル、塩化ビニル、アクリロニトリル、無水マレイン酸、酢酸ビニル、四フッ化エチレン等のビニル化合物の単独重合体及び2種以上のビニル化合物の共重合体、並びに、ポリアミド、ポリイミド、ポリカーボネート、ポリエステル、ポリアセタール、ポリフェニレンスルフィド、ポリエチレングリコール等を例として挙げることができる。これらの中でもスチレンの単独重合体、スチレン−ブタジエン共重合体、及びスチレン−エチレン−ブタジエン共重合体が、溶剤への溶解性及び成形性の観点から好ましく用いることができる。硬化性樹脂としては、フェノール樹脂、エポキシ樹脂、及びシアネートエステル類を例として挙げることができる。上記熱可塑性樹脂及び硬化性樹脂は、酸無水物、エポキシ化合物、アミン等の官能化化合物で変成されたものでもよい。このような追加の樹脂の使用量は、PPEと架橋型硬化性樹脂との合計100質量部に対して、好ましくは10〜90質量部、より好ましくは20〜70質量部である。   The mixed liquid of this aspect may further contain an additional resin (for example, a thermoplastic resin, a curable resin, etc.). Thermoplastic resins include ethylene, propylene, butadiene, isoprene, styrene, divinylbenzene, methacrylic acid, acrylic acid, methacrylic ester, acrylic ester, vinyl chloride, acrylonitrile, maleic anhydride, vinyl acetate, ethylene tetrafluoride, etc. Examples thereof include homopolymers of vinyl compounds and copolymers of two or more vinyl compounds, and polyamides, polyimides, polycarbonates, polyesters, polyacetals, polyphenylene sulfides, polyethylene glycols, and the like. Among these, a styrene homopolymer, a styrene-butadiene copolymer, and a styrene-ethylene-butadiene copolymer can be preferably used from the viewpoints of solubility in a solvent and moldability. Examples of the curable resin include phenol resins, epoxy resins, and cyanate esters. The thermoplastic resin and curable resin may be modified with a functional compound such as an acid anhydride, an epoxy compound, or an amine. The amount of such additional resin used is preferably 10 to 90 parts by mass, more preferably 20 to 70 parts by mass with respect to 100 parts by mass in total of the PPE and the crosslinkable curable resin.

混合液は目的に応じ適当な添加剤を更に含有してもよい。添加剤としては、難燃剤、熱安定剤、酸化防止剤、UV吸収剤、界面活性剤、滑剤、充填剤、ポリマー添加剤等が挙げられる。   The mixed solution may further contain an appropriate additive depending on the purpose. Examples of the additive include a flame retardant, a heat stabilizer, an antioxidant, a UV absorber, a surfactant, a lubricant, a filler, and a polymer additive.

特に、混合液が更に難燃剤を含む場合、成形性、耐吸水性、はんだ耐熱性、及び接着性(例えば、多層板における層間の剥離強度、又は硬化物と銅箔等との剥離強度)に優れるプリント配線板等が得られる利点に加え、難燃性を付与できる点で好適である。   In particular, when the mixed solution further contains a flame retardant, the moldability, water absorption resistance, solder heat resistance, and adhesiveness (for example, the peel strength between layers in a multilayer board or the peel strength between a cured product and copper foil, etc.) In addition to the advantage that an excellent printed wiring board and the like can be obtained, it is preferable in that flame retardancy can be imparted.

難燃剤としては、燃焼のメカニズムを阻害する機能を有するものであれば特に制限されず、三酸化アンチモン、水酸化アルミニウム、水酸化マグネシウム、ほう酸亜鉛等の無機難燃剤、ヘキサブロモベンゼン、デカブロモジェフェニルエタン、4,4−ジフブロモフェニル、エチレンビステトラブロモフタルイミド等の芳香族臭素化合物、等が挙げられる。中でも、得られる硬化物の誘電率及び誘電正接を低く抑えられる観点からデカブロモジェフェニルエタン等が好ましい。   The flame retardant is not particularly limited as long as it has a function of inhibiting the combustion mechanism. Inorganic flame retardants such as antimony trioxide, aluminum hydroxide, magnesium hydroxide and zinc borate, hexabromobenzene, decabromobenzene And aromatic bromine compounds such as phenylethane, 4,4-diphbromophenyl, and ethylenebistetrabromophthalimide. Of these, decabromojephenylethane is preferred from the viewpoint of keeping the dielectric constant and dielectric loss tangent of the cured product low.

難燃剤の使用量は、使用する難燃剤によって異なり、特に限定するものでないが、UL規格94V−0レベルの難燃性を維持する観点から、PPEと架橋型硬化性樹脂との合計100質量部に対して好ましくは5質量部以上、より好ましくは10質量部以上、更に好ましくは15質量部以上である。また、得られる硬化物の誘電率及び誘電正接を小さく維持できる観点から、好ましくは50質量部以下、より好ましくは45質量部以下、更に好ましくは40質量部以下である。   The amount of flame retardant used varies depending on the flame retardant used, and is not particularly limited. From the viewpoint of maintaining flame retardancy at the UL standard 94V-0 level, a total of 100 parts by mass of PPE and the crosslinkable curable resin Is preferably 5 parts by mass or more, more preferably 10 parts by mass or more, and still more preferably 15 parts by mass or more. Moreover, from a viewpoint which can maintain the dielectric constant and dielectric loss tangent of the hardened | cured material small, Preferably it is 50 mass parts or less, More preferably, it is 45 mass parts or less, More preferably, it is 40 mass parts or less.

[PPEと溶剤とを含む混合液の製造]
混合液の製造方法は、混合液中に含まれるPPEが本発明の要件を満たせば特に限定されるものではないが、例えば、PPEを溶剤中に分散し、又は、PPEを溶剤中で粉砕し、所定の粒度のPPEが分散した状態とする方法(以下、「破砕分散法」ともいう。)を挙げることができる。
[Production of liquid mixture containing PPE and solvent]
The method for producing the mixed solution is not particularly limited as long as the PPE contained in the mixed solution satisfies the requirements of the present invention. For example, PPE is dispersed in a solvent, or PPE is pulverized in the solvent. And a method in which PPE having a predetermined particle size is dispersed (hereinafter also referred to as “crush dispersion method”).

混合液中に存在するPPEの粒径、混合液中のPPE含有割合、PPE分子量、は、例えば、後述の「破砕分散法」において、溶剤に加えるPPEを予め調整しておくことで調整可能であるし、溶剤中での破砕強度や用いる溶剤を変えることによって調整することもできる。   The particle size of PPE present in the mixed solution, the PPE content ratio in the mixed solution, and the PPE molecular weight can be adjusted by adjusting in advance the PPE to be added to the solvent, for example, in the “crush dispersion method” described later. Or, it can be adjusted by changing the crushing strength in the solvent or the solvent used.

[破砕分散法]
PPEを溶剤中に分散し、又は、PPEを溶剤中で粉砕し、所定の粒度のPPEが分散した状態を形成する方法としては、以下の2つを挙げることができる。
(1)粒度を調整したPPEを溶剤中に分散させる方法
粒度の調整方法としては湿式又は乾式での粉砕や篩い分けが挙げられる。これらの方法を組み合わせてもよい。
□使用する溶剤としては特に限定はないが、前述の化合物(A)と化合物(B)とを、その質量比(A):(B)が90:10〜10:90となる混合比で用いることが好ましい。この場合、PPEの流動性と分散安定性を確保しながら、且つ、基材への塗工性に優れ、基材と、PPE粒子を含む硬化性樹脂組成物との接着性に優れるプリプレグが得られるため好ましい。化合物(A)の中でも、ベンゼン、トルエン、キシレン等の芳香族有機溶剤が好ましく、これらを単独で用いてもよく、2種以上を混合して用いてもよい。また、化合物(B)の中でも、シクロヘキサノン、シクロペンタノン等のケトン類、シクロヘキセン等のアルケン類が好ましく、これらを単独で用いてもよく、2種以上を混合して用いてもよい。これら溶剤を、使用するPPEに応じて適時選択して用いることができる。
[Crushing dispersion method]
Examples of the method of dispersing PPE in a solvent or pulverizing PPE in a solvent to form a state in which PPE having a predetermined particle size is dispersed include the following two methods.
(1) Method for Dispersing PPE with Adjusted Particle Size in Solvent As a method for adjusting particle size, wet or dry pulverization and sieving can be mentioned. These methods may be combined.
□ The solvent to be used is not particularly limited, but the above-mentioned compound (A) and compound (B) are used in a mixing ratio in which the mass ratio (A) :( B) is 90:10 to 10:90. It is preferable. In this case, while ensuring the fluidity and dispersion stability of PPE, it is possible to obtain a prepreg excellent in the coating property to the substrate and excellent in the adhesion between the substrate and the curable resin composition containing PPE particles. Therefore, it is preferable. Among the compounds (A), aromatic organic solvents such as benzene, toluene, and xylene are preferable, and these may be used alone or in admixture of two or more. Among the compounds (B), ketones such as cyclohexanone and cyclopentanone and alkenes such as cyclohexene are preferable, and these may be used alone or in combination of two or more. These solvents can be selected and used in a timely manner according to the PPE used.

(2)PPEを溶剤中で破砕し、PPEが溶剤に分散した状態の混合液を作製する方法
□使用する溶剤としては特に限定はないが、上記化合物(A)と化合物(B)とを、その質量比(A):(B)が90:10〜10:90となる混合比で用いることが好ましい。この場合、PPEの流動性と分散安定性を確保しながら、且つ、基材への塗工性に優れ、基材と、PPEを含む硬化性樹脂組成物の接着性に優れるプリプレグが得られるため好ましい。化合物(A)の中でも、ベンゼン、トルエン、キシレン等の芳香族有機溶剤が好ましく、これらを単独で用いてもよく、2種以上を混合して用いてもよい。また、化合物(B)の中でも、シクロヘキサノン、シクロペンタノン等のケトン類、シクロヘキセン等のアルケン類が好ましく、これらを単独で用いてもよく、2種以上を混合して用いてもよい。これら溶剤を、使用するPPEに応じて適時選択して用いることができる。
(2) A method for preparing a mixed solution in which PPE is crushed in a solvent and PPE is dispersed in the solvent. □ The solvent to be used is not particularly limited, but the compound (A) and the compound (B) are: The mass ratio (A) :( B) is preferably used at a mixing ratio of 90:10 to 10:90. In this case, while ensuring the fluidity and dispersion stability of PPE, it is possible to obtain a prepreg excellent in the coating property to the substrate and excellent in the adhesion between the substrate and the curable resin composition containing PPE. preferable. Among the compounds (A), aromatic organic solvents such as benzene, toluene, and xylene are preferable, and these may be used alone or in admixture of two or more. Among the compounds (B), ketones such as cyclohexanone and cyclopentanone and alkenes such as cyclohexene are preferable, and these may be used alone or in combination of two or more. These solvents can be selected and used in a timely manner according to the PPE used.

PPEが分散した状態の混合液を得る方法は、得られる混合液中に含まれるPPEが本発明の要件を満たせば特に限定されるものではないが、PPEと溶剤とを混合した後、他の成分を添加して混合液を得る方法や、他の成分を溶剤中で先に混合した後に、PPEを添加して混合液を得る方法が挙げられる。   The method for obtaining a mixed solution in which PPE is dispersed is not particularly limited as long as the PPE contained in the obtained mixed solution satisfies the requirements of the present invention, but after mixing PPE and a solvent, other methods are used. Examples thereof include a method of obtaining a mixed solution by adding components, and a method of obtaining a mixed solution by adding PPE after other components are first mixed in a solvent.

<樹脂ワニス>
本発明の別の態様は、上述した本発明の一態様に係る混合液を含む、樹脂ワニスを提供する。樹脂ワニスは、典型的には上記混合液であってよく、又は、混合液に他の成分を更に添加したものであってもよい。例えば、PPE及び溶剤のみを含む混合液を調製した後、他の成分を添加して樹脂ワニスを調製してもよい。この場合の他の成分として、混合液の成分として前述した架橋型硬化性樹脂、追加の樹脂、各種添加剤等の少なくとも1つが含まれてもよい。
<Resin varnish>
Another aspect of the present invention provides a resin varnish containing the liquid mixture according to one aspect of the present invention described above. The resin varnish may typically be the above-mentioned mixed solution, or may be a solution obtained by further adding other components to the mixed solution. For example, after preparing a liquid mixture containing only PPE and a solvent, other components may be added to prepare a resin varnish. As other components in this case, at least one of the aforementioned cross-linkable curable resin, additional resin, various additives and the like may be included as a component of the mixed solution.

<プリプレグ>
本発明の別の態様は、上述した本発明の一態様に係る混合液を含む樹脂ワニスを基材に塗布し、次いで、例えば熱布乾燥機等によって該基材から溶剤を除去することによって得られるプリプレグを提供する。
<Prepreg>
Another aspect of the present invention is obtained by applying a resin varnish containing the mixed liquid according to one aspect of the present invention described above to a base material, and then removing the solvent from the base material by, for example, a hot cloth drier or the like. Provided prepreg.

基材としては、ロービングクロス、クロス、チョップドマット、サーフェシングマット等の各種ガラス布;アスベスト布、金属繊維布、及びその他合成若しくは天然の無機繊維布;全芳香族ポリアミド繊維、全芳香族ポリエステル繊維、ポリベンゾオキサゾール繊維等の液晶繊維から得られる織布又は不織布;綿布、麻布、フェルト等の天然繊維布;カーボン繊維布、クラフト紙、コットン紙、紙−ガラス混繊糸から得られる布等の天然セルロース系基材;ポリテトラフルオロエチレン多孔質フィルム;等を単独で又は2種以上組合せて用いることができる。   As the base material, various glass cloths such as roving cloth, cloth, chopped mat, and surfacing mat; asbestos cloth, metal fiber cloth, and other synthetic or natural inorganic fiber cloth; wholly aromatic polyamide fiber, wholly aromatic polyester fiber Woven or non-woven fabrics obtained from liquid crystal fibers such as polybenzoxazole fibers; natural fiber fabrics such as cotton cloth, linen cloth and felt; carbon fiber cloth, kraft paper, cotton paper, cloth obtained from paper-glass mixed yarn, etc. Natural cellulose base materials; polytetrafluoroethylene porous films; etc. can be used alone or in combination of two or more.

樹脂ワニス中の固形分がプリプレグ中に占める割合(以下、樹脂含有量ともいう。)は、プリプレグ全量100質量%に対して、30〜80質量%であることが好ましく、より好ましくは40〜70質量%である。上記樹脂含有量が30質量%以上である場合、プリプレグを、例えば、電子基板形成用として使用した際に優れた絶縁信頼性が得られ、80質量%以下である場合、例えば、得られる電子基板が曲げ弾性率等の機械特性に優れる。   The proportion of the solid content in the resin varnish in the prepreg (hereinafter also referred to as resin content) is preferably 30 to 80% by mass, more preferably 40 to 70% with respect to 100% by mass of the total amount of prepreg. % By mass. When the resin content is 30% by mass or more, excellent insulation reliability is obtained when the prepreg is used, for example, for forming an electronic substrate, and when it is 80% by mass or less, for example, the obtained electronic substrate is obtained. Is excellent in mechanical properties such as flexural modulus.

<積層板>
本発明の一態様に係る混合液を用い、硬化物複合体と金属箔とが積層されている積層板を形成できる。硬化物積層体は、該樹脂ワニスから溶剤を除去して得られる硬化性樹脂組成物の硬化物と基材とを含む。積層板は、好ましくは、上記硬化物複合体と金属箔とが重なって密着しているもので、電子基板の材料として好適に用いられる。金属箔としては、例えば、アルミ箔及び銅箔を用いることができ、中でも銅箔は電気抵抗が低いため好ましい。金属箔と組合せる硬化物複合体は1枚でも複数枚でもよく、用途に応じて硬化物複合体の片面又は両面に金属箔を重ねて積層板に加工する。積層板の製造方法としては、例えば、硬化性樹脂組成物と基材とから構成される複合体(例えば、前述のプリプレグ)を形成し、これを金属箔と重ねた後、硬化性樹脂組成物を硬化させることにより、硬化物積層体と金属箔とが積層されている積層板を得る方法が挙げられる。積層板の特に好ましい用途の1つはプリント配線板である。
<Laminated plate>
Using the mixed liquid according to one embodiment of the present invention, a laminated plate in which a cured product composite and a metal foil are laminated can be formed. The cured product laminate includes a cured product of a curable resin composition obtained by removing the solvent from the resin varnish and a substrate. The laminate is preferably one in which the cured product composite and the metal foil are in close contact with each other, and is suitably used as a material for an electronic substrate. As the metal foil, for example, an aluminum foil and a copper foil can be used, and among them, the copper foil is preferable because of its low electric resistance. The cured product composite to be combined with the metal foil may be one sheet or a plurality of sheets, and the metal foil is laminated on one side or both sides of the cured product composite and processed into a laminate according to the application. As a manufacturing method of a laminated board, for example, a composite (for example, the above-mentioned prepreg) composed of a curable resin composition and a substrate is formed, and this is overlapped with a metal foil, and then a curable resin composition. The method of obtaining the laminated board on which the hardened | cured material laminated body and metal foil are laminated | stacked by hardening | curing is mentioned. One particularly preferred application of the laminate is a printed wiring board.

<プリント配線板>
本発明の別の態様は、上述した本発明の一態様に係るプリプレグを構成成分として作製された、プリント配線板を提供する。本態様のプリント配線板は、典型的には、上述した本発明の一態様に係るプリプレグを用いて、加圧加熱成型によって形成できる。基材としてはプリプレグに関して前述したのと同様のものが挙げられる。本態様のプリント配線板は、上述したようなプリプレグを用いて形成されていることにより、優れた絶縁信頼性及び機械特性を有することができる。
<Printed wiring board>
Another aspect of the present invention provides a printed wiring board produced using the prepreg according to one aspect of the present invention described above as a constituent component. The printed wiring board of this aspect can be typically formed by pressure heating molding using the prepreg according to one aspect of the present invention described above. Examples of the substrate include the same materials as described above with respect to the prepreg. The printed wiring board of this aspect can have excellent insulation reliability and mechanical properties by being formed using the prepreg as described above.

以下、実施例により、本実施形態を具体的に説明するが、本実施形態は以下の実施例により何ら限定されるものではない。   Hereinafter, the present embodiment will be specifically described by way of examples. However, the present embodiment is not limited to the following examples.

以下の実施例、比較例及び試験例中の各物性は、以下の方法によって測定した。
(1)PPEの数平均分子量
ゲルパーミエーションクロマトグラフィ分析(GPC)を用い、分子量既知の標準ポリスチレンの溶出時間との比較で数平均分子量を求めた。
測定装置にはHLC−8220GPC(東ソー株式会社製)を用い、カラム:Shodex LF−804×2(昭和電工株式会社製)、溶離液:50℃のクロロホルム、検出器:RI、の条件で測定を行った。
The physical properties in the following examples, comparative examples and test examples were measured by the following methods.
(1) Number average molecular weight of PPE Using gel permeation chromatography analysis (GPC), the number average molecular weight was determined by comparison with the elution time of standard polystyrene having a known molecular weight.
HLC-8220GPC (manufactured by Tosoh Corporation) is used as a measuring apparatus, and measurement is performed under the conditions of column: Shodex LF-804 × 2 (manufactured by Showa Denko KK), eluent: chloroform at 50 ° C., detector: RI. went.

(2)PPEの溶剤保持量
PPE(S203A、旭化成ケミカルズ製、数平均分子量10,000)及び(S202A、旭化成ケミカルズ製、数平均分子量18,000)、(S203A、旭化成ケミカルズ製、数平均分子量10,000:粒径250μm以下に粉砕)各5gを下記の各化合物80gに添加し、スターラーにて2時間撹拌後、23℃にて1日静置した。混合液が上澄み液と沈降物に分離したものは、上澄み液を除去し、沈降物の質量を測定し、各溶剤に対するPPEの溶剤保持量を測定した。溶剤として用いた化合物は、トルエン、キシレン、シクロヘキサノン、シクロペンタノン、シクロヘキセン、メチルエチルケトン、メタノールであった。
(2) Solvent retention amount of PPE PPE (S203A, Asahi Kasei Chemicals, number average molecular weight 10,000) and (S202A, Asahi Kasei Chemicals, number average molecular weight 18,000), (S203A, Asahi Kasei Chemicals, number average molecular weight 10) 5,000: pulverized to a particle size of 250 μm or less) Each 5 g was added to 80 g of each of the following compounds, stirred for 2 hours with a stirrer, and allowed to stand at 23 ° C. for 1 day. In the case where the mixed solution was separated into a supernatant and a sediment, the supernatant was removed, the mass of the sediment was measured, and the solvent retention of PPE with respect to each solvent was measured. The compounds used as the solvent were toluene, xylene, cyclohexanone, cyclopentanone, cyclohexene, methyl ethyl ketone, and methanol.

(3)混合液の粘度
B型粘度計、ローターNo.3を用い、23℃、30rpm、30秒の条件で粘度を測定した。
(4)混合液の分散安定性
ガラス製の50mlサンプル管に混合液35gを入れ、23℃の恒温室に3日間静置した。PPEの沈降等による分離がなく、また、流動性を保持したものを「〇」とした。また、PPEの沈降等による分離が生じたものを「×」、流動性がないものを「ゲル化」と評した。
(3) Viscosity of liquid mixture B-type viscometer, rotor No. 3 was used, and the viscosity was measured under the conditions of 23 ° C., 30 rpm, and 30 seconds.
(4) Dispersion stability of the mixed solution 35 g of the mixed solution was placed in a glass 50 ml sample tube and allowed to stand in a thermostatic chamber at 23 ° C. for 3 days. A sample having no separation due to sedimentation or the like of PPE and retaining fluidity was designated as “◯”. In addition, the case where separation due to sedimentation or the like of PPE occurred was evaluated as “x”, and the case where there was no fluidity was evaluated as “gelation”.

(5)プリプレグの成膜性(ひび割れ)
プリプレグの外観を目視で確認し、樹脂組成物の層にひび割れ等が無いものを「〇」、ひび割れがあるものを「×」と評した。
(6)プリプレグの成膜性(粉落ち)
プリプレグを180°に折り曲げた際に、樹脂粉落ち、あるいは樹脂剥離が生じるかを調べ、評価した。まず、プリプレグを200mm×300mmの大きさにカッター刃を用いて切り出した。次いで、長方形の長辺側2辺が重なるようにプリプレグを180°に折り曲げた後、元に戻した。次いで、長方形の短辺側2辺が重なるようにプリプレグを180°に折り曲げた後、元に戻した。上述の一連のプリプレグの取り扱いにおいて、樹脂粉落ちに問題がなかったものは「〇」、取扱いに大きな問題ではないものの、樹脂粉落ちが若干確認されたものは「△」と評した。一方、粉落ちが激しかったものは「×」と評した。
(5) Prepreg film formability (cracking)
The appearance of the prepreg was visually confirmed, and the resin composition layer was evaluated as “◯” when there was no crack or the like, and “X” when there was a crack.
(6) Prepreg film-forming properties (powder removal)
When the prepreg was bent at 180 °, it was examined and evaluated whether resin powder fall or resin peeling occurred. First, the prepreg was cut out to a size of 200 mm × 300 mm using a cutter blade. Next, the prepreg was bent at 180 ° so that the two long sides of the rectangle overlapped, and then returned to its original state. Next, the prepreg was bent at 180 ° so that the two sides of the short side of the rectangle overlapped, and then returned to its original state. In the above-mentioned series of prepreg handling, the case where there was no problem in resin powder dropping was evaluated as “◯”, and the case where the resin powder falling off was slightly confirmed although it was not a large problem in handling was evaluated as “△”. On the other hand, those with severe powder fall were rated as “x”.

(7)積層板の誘電率、誘電正接
積層板の1GHzにおける誘電率及び誘電正接を、インピーダンスアナライザーを用いて測定した。
測定装置としてインピーダンスアナライザー(4291B op.002 with 16453A,16454A、AgilentTechnologies社製)を用い、試験片厚さ:約2mm、電圧:100mV、周波数:1mmHz〜1.8GHzの条件で測定し、掃引回数100回の平均値として求めた。
(8)積層板の吸水率
積層板を吸水加速試験に供し、増加した質量から吸水率を求めた。
積層板を50mm角に切り出し試験片を作製した。該試験片を130℃で30分乾燥した後、質量を測定し、加速試験前の質量(g)とした。次いで、温度:121℃、圧力:2atm、時間:4時間、の条件で加速試験を行った後の質量を測定し、加速試験後の質量(g)とした。
加速試験前の質量(g)と加速試験後の質量(g)とを用い、下記式:
吸水率(質量%)=(加速試験前の質量―加速試験後質量)/加速試験前の質量×100
により吸水率を算出し、試験片4枚の測定値の平均値を求めた。
(7) Dielectric constant and dielectric loss tangent of laminated plate The dielectric constant and dielectric loss tangent of the laminated plate at 1 GHz were measured using an impedance analyzer.
Using an impedance analyzer (4291B op.002 with 16453A, 16454A, manufactured by Agilent Technologies) as a measuring device, measurement is performed under the conditions of a specimen thickness: about 2 mm, voltage: 100 mV, frequency: 1 mm Hz to 1.8 GHz, and the number of sweeps is 100. It calculated | required as an average value of times.
(8) Water Absorption Rate of Laminate Plate The laminate plate was subjected to a water absorption acceleration test, and the water absorption rate was determined from the increased mass.
The laminate was cut into 50 mm squares to produce test pieces. After the test piece was dried at 130 ° C. for 30 minutes, the mass was measured to obtain the mass (g) before the acceleration test. Subsequently, the mass after the acceleration test was performed under the conditions of temperature: 121 ° C., pressure: 2 atm, and time: 4 hours, and the mass (g) after the acceleration test was measured.
Using the mass (g) before the acceleration test and the mass (g) after the acceleration test, the following formula:
Water absorption (mass%) = (mass before acceleration test−mass after acceleration test) / mass before acceleration test × 100
Then, the water absorption was calculated, and the average value of the measured values of the four test pieces was obtained.

(9)積層板の吸水試験後のはんだ耐熱性
上記(8)に記載の吸水率の測定後の積層板を用い、288℃でのはんだ耐熱試験を行った。吸水加速試験後の積層板を、288℃のはんだ浴に20秒間浸漬し、目視による観察を行った。はんだ浴へ浸漬しても、膨れ、剥離及び白化の何れも確認されなかった積層板については「〇」と評価した。また、はんだ浴への浸漬により、膨れ、剥離及び白化の何れか1つ以上が発生した積層板は「×」と評価した。
(10)積層板の銅箔剥離強度(剥離強度N/mm)
銅張積層板の銅箔を一定速度で引き剥がす際の応力を測定した。後述の方法で作製した、35μm銅箔(GTS−MP箔、古川電気工業株式会社製)を用いた銅張積層板を、幅15mm×長さ150mmのサイズに切り出し、オートグラフ(AG−5000D、株式会社島津製作所製)を用い、銅箔を除去面に対し90℃の角度で50mm/分の速度で引き剥がした際の荷重の平均値を測定し、5回の測定の平均値を求めた。
(9) Solder heat resistance after water absorption test of laminated board A solder heat resistance test at 288 ° C was performed using the laminated board after measuring the water absorption rate described in (8) above. The laminated board after the water absorption acceleration test was immersed in a solder bath at 288 ° C. for 20 seconds, and visually observed. A laminated board in which no swelling, peeling or whitening was confirmed even when immersed in a solder bath was evaluated as “◯”. Moreover, the laminated board in which any one or more of swelling, peeling, and whitening was generated by immersion in a solder bath was evaluated as “x”.
(10) Copper foil peel strength of laminate (peel strength N / mm)
The stress when peeling the copper foil of the copper clad laminate at a constant speed was measured. A copper-clad laminate using a 35 μm copper foil (GTS-MP foil, manufactured by Furukawa Electric Co., Ltd.) produced by the method described below was cut into a size of 15 mm wide × 150 mm long, and an autograph (AG-5000D, Shimadzu Corporation) was used to measure the average value of the load when the copper foil was peeled off at a speed of 50 mm / min at an angle of 90 ° C. with respect to the removal surface, and the average value of five measurements was obtained. .

(11)プリプレグの残留溶剤
プリプレグ中に残留する溶剤量をガスクロマトグラフィーにより測定した。分取したプリプレグ6gをクロロホルム50mlに加え、マグネチックスターラーで2時間撹拌した。その後、1日静置し、クロロホルムで洗浄しながら、桐山漏斗にて不溶分をろ過し、200mlのサンプル抽出液を得た。該サンプル抽出液を、ガスクロマトグラフ(GC−1700、株式会社島津製作所製)を用いて、内部標準試料にヘキサデカンを、検出器に水素炎イオン化型検出器を、固定相にポリジメチルシロキサンを、キャリアガスにヘリウムを使用し、残留溶剤量を測定した。
(11) Residual solvent of prepreg The amount of solvent remaining in the prepreg was measured by gas chromatography. 6 g of the collected prepreg was added to 50 ml of chloroform, and stirred with a magnetic stirrer for 2 hours. Then, it was left still for one day, and insoluble matter was filtered with a Kiriyama funnel while washing with chloroform to obtain a 200 ml sample extract. The sample extract was gas chromatograph (GC-1700, manufactured by Shimadzu Corporation) using hexadecane as an internal standard sample, a hydrogen flame ionization detector as a detector, polydimethylsiloxane as a stationary phase, and a carrier. Using helium as the gas, the amount of residual solvent was measured.

<製造例1>
90℃に加温されたオイルバスに10Lのフラスコを設置し、フラスコ内部に毎分30mlで窒素ガスを導入した。以降、操作は常に窒素ガス気流下で行った。ここに、PPE(S202A、旭化成ケミカルズ製、数平均分子量18,000)1000g、及びトルエン3000gを入れ、攪拌溶解させた。更に80gのビスフェノールAをメタノール350gに溶かした溶液を上記フラスコに攪拌しながら加えた。5分間攪拌を続けた後、6質量%ナフテン酸コバルトミネラルスピリット溶液3mlを注射器で加え、5分間攪拌を続けた。次いで、ベンゾイルパーオキサイド溶液375gにトルエン1125gを加えて、ベンゾイルパーオキサイド濃度が10質量%になるように希釈した溶液を滴下ロートに入れ、上記フラスコに2時間かけて滴下していった。滴下終了後、更に2時間加熱及び攪拌を続け、低分子量化PPEを含む反応液を得た。
<Production Example 1>
A 10 L flask was placed in an oil bath heated to 90 ° C., and nitrogen gas was introduced into the flask at a rate of 30 ml per minute. Thereafter, the operation was always performed under a nitrogen gas stream. To this, 1000 g of PPE (S202A, manufactured by Asahi Kasei Chemicals, number average molecular weight 18,000) and 3000 g of toluene were added and dissolved by stirring. Further, a solution obtained by dissolving 80 g of bisphenol A in 350 g of methanol was added to the flask with stirring. After stirring for 5 minutes, 3 ml of 6 mass% cobalt naphthenate mineral spirit solution was added with a syringe, and stirring was continued for 5 minutes. Next, 1125 g of toluene was added to 375 g of the benzoyl peroxide solution, and a solution diluted so that the benzoyl peroxide concentration was 10% by mass was placed in a dropping funnel and dropped into the flask over 2 hours. After completion of the dropwise addition, heating and stirring were further continued for 2 hours to obtain a reaction solution containing a low molecular weight PPE.

次に、水3000gを加えて、5分間撹拌した後、該反応液を静置し、2層分離させた後、下槽を除去した。更に水1000gを加え、撹拌した後静置し、再び2槽に分離させた後、下槽を除去した。次いで、メタノール200gを加え、同様に撹拌、静置し、2層に分離させた後、上層を除去した。更にメタノール100gを加え、同様に撹拌、静置し、2層に分離させた後、下層を回収し、これに多量のメタノールを加え、低分子量PPEを沈殿させ、ろ別後、乾燥させて低分子量PPEを得た。得られた低分子量PPEの数平均分子量は2800であった。   Next, after adding 3000 g of water and stirring for 5 minutes, the reaction solution was allowed to stand, and after two layers were separated, the lower tank was removed. Further, 1000 g of water was added, stirred, allowed to stand, and again separated into two tanks, and then the lower tank was removed. Next, 200 g of methanol was added, and the mixture was stirred and allowed to stand in the same manner to be separated into two layers, and then the upper layer was removed. Further, 100 g of methanol was added, and similarly stirred and allowed to stand to separate into two layers. Then, the lower layer was recovered, and a large amount of methanol was added thereto to precipitate low molecular weight PPE, which was filtered and dried. Molecular weight PPE was obtained. The number average molecular weight of the obtained low molecular weight PPE was 2800.

<試験例1>
以下の実施例及び、比較例で溶剤を構成する各化合物について、各PPEの溶剤保持量を測定し、結果を表1に記載した。
<Test Example 1>
The solvent retention of each PPE was measured for each compound constituting the solvent in the following examples and comparative examples, and the results are shown in Table 1.

<実施例1>
トルエン50質量部をSUS製容器に入れ、スチレン系エラストマー(SEBS、旭化成ケミカルズ製、H1041グレード)4.5質量部を加え、溶解させた。この溶液に対して、シクロヘキサノンを50質量部、トリアリルイソシアヌレート(日本化成製)17.2質量部、α,α’−ビス(t−ブチルパーオキシ−m−イソプロピル)ベンゼン(パーブチルP、日油製)1.0質量部を加え、均一に撹拌した後、デカブロモジフェニルエタン(SAYTEX8010、アルベマールジャパン製)12.2質量部、シリカフィラー(球状シリカ、龍森製)33質量部を加え、均一に撹拌した後、75mm径十字パドル翼で1.0m/minの先端速度で撹拌を行いながら、予め粉砕することで粒度を、その粒径が250μm以下になるよう調整しておいたPPE(S203A、旭化成ケミカルズ製、数平均分子量10,000)32質量部を加え、全体が均一になるように3時間撹拌を行い、粘度が1232mPa・sであり、上述の方法にて確認した分散安定性が「〇」の混合液を得た。この混合液を塗工用ワニスとして用いた。
<Example 1>
50 parts by mass of toluene was placed in a SUS container, and 4.5 parts by mass of a styrene elastomer (SEBS, manufactured by Asahi Kasei Chemicals, H1041 grade) was added and dissolved. For this solution, 50 parts by mass of cyclohexanone, 17.2 parts by mass of triallyl isocyanurate (Nihon Kasei), α, α′-bis (t-butylperoxy-m-isopropyl) benzene (perbutyl P, JP Oil) 1.0 parts by mass, and after stirring uniformly, decabromodiphenylethane (SAYTEX 8010, Albemarle Japan) 12.2 parts by mass, silica filler (spherical silica, made by Tatsumori) 33 parts by mass, After uniformly stirring, while stirring with a 75 mm diameter cross paddle blade at a tip speed of 1.0 m / min, the particle size was adjusted in advance by pulverization so that the particle size was adjusted to 250 μm or less. S203A, manufactured by Asahi Kasei Chemicals Co., Ltd., number average molecular weight 10,000) 32 parts by mass is added and stirred for 3 hours so that the whole becomes uniform. Is a 2mPa · s, dispersion stability, which was confirmed by the method described above to obtain a mixed solution of "〇". This mixed solution was used as a coating varnish.

ついで塗工用ワニスを、厚さ0.1mmのEガラス製ガラスクロス(2116スタイル、旭シェエーベル製)に含浸させ、スリットで余分なワニスを掻き落とした後、150℃で2分間乾燥して、樹脂含有量55質量%のプリプレグを得た。   Next, the coating varnish was impregnated into a 0.1 mm thick E glass glass cloth (2116 style, manufactured by Asahi Schavel), the excess varnish was scraped off with a slit, and dried at 150 ° C. for 2 minutes. A prepreg having a resin content of 55% by mass was obtained.

<実施例2>
シクロヘキサノンをシクロペンタノンに変更する以外、実施例1と同じ方法にて、粘度が1255mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
ついで、乾燥温度130℃に変更する以外、実施例1と同じ方法にて、樹脂含有量54質量%のプリプレグを得た。
<Example 2>
A coating varnish having a viscosity of 1255 mPa · s and a dispersion stability of “◯” was obtained in the same manner as in Example 1, except that cyclohexanone was changed to cyclopentanone.
Next, a prepreg having a resin content of 54 mass% was obtained in the same manner as in Example 1 except that the drying temperature was changed to 130 ° C.

<実施例3>
シクロヘキサノンをシクロヘキセンに変更する以外、実施例1と同じ方法にて、粘度が1260mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
ついで、乾燥温度105℃に変更する以外、実施例1と同じ方法にて、樹脂含有量52質量%のプリプレグを得た。
<Example 3>
A coating varnish having a viscosity of 1260 mPa · s and a dispersion stability of “◯” was obtained in the same manner as in Example 1, except that cyclohexanone was changed to cyclohexene.
Next, a prepreg having a resin content of 52 mass% was obtained in the same manner as in Example 1 except that the drying temperature was changed to 105 ° C.

<実施例4>
トルエンをキシレンに変更する以外、実施例1と同じ方法にて、粘度が1210mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
また、実施例1と同じ方法にて、樹脂含有量55質量%のプリプレグを得た。
<Example 4>
A coating varnish having a viscosity of 1210 mPa · s and a dispersion stability of “◯” was obtained in the same manner as in Example 1 except that toluene was changed to xylene.
Further, a prepreg having a resin content of 55% by mass was obtained in the same manner as in Example 1.

<実施例5>
PPEを(S202A、旭化成ケミカルズ製、数平均分子量18,000)に変更する以外、実施例1と同じ方法にて、粘度が1356mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
また、実施例1と同じ方法にて、樹脂含有量56質量%のプリプレグを得た。
<Example 5>
A coating varnish having a viscosity of 1356 mPa · s and a dispersion stability of “◯” in the same manner as in Example 1 except that PPE is changed to (S202A, manufactured by Asahi Kasei Chemicals, number average molecular weight 18,000). Got.
Further, a prepreg having a resin content of 56% by mass was obtained in the same manner as in Example 1.

<実施例6>
シクロヘキサノンをシクロペンタノンに変更し、トルエンの使用量を10質量部、シクロペンタノンの使用量を90質量部に変更する以外、実施例1と同じ方法にて、粘度が870mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
ついで、乾燥温度130℃に変更する以外、実施例1と同じ方法にて、樹脂含有量52質量%のプリプレグを得た。
<Example 6>
Viscosity is 870 mPa · s in the same manner as in Example 1 except that cyclohexanone is changed to cyclopentanone, the amount of toluene used is 10 parts by mass, and the amount of cyclopentanone is changed to 90 parts by mass. A coating varnish having a dispersion stability of “◯” was obtained.
Next, a prepreg having a resin content of 52 mass% was obtained in the same manner as in Example 1 except that the drying temperature was changed to 130 ° C.

<実施例7>
トルエンの使用量を30質量部、シクロペンタノンの使用量を70質量部に変更する以外、実施例6と同じ方法にて、粘度が978mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
また、実施例6と同じ方法で、樹脂含有量53質量%のプリプレグを得た。
<Example 7>
A viscosity of 978 mPa · s and a dispersion stability of “◯” were applied in the same manner as in Example 6 except that the amount of toluene used was changed to 30 parts by mass and the amount of cyclopentanone used was changed to 70 parts by mass. An industrial varnish was obtained.
Further, a prepreg having a resin content of 53 mass% was obtained in the same manner as in Example 6.

<実施例8>
トルエンの使用量を70質量部、シクロペンタノンの使用量を30質量部に変更する以外、実施例6と同じ方法にて、粘度が1415mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
また、実施例6と同じ方法で、樹脂含有量54質量%のプリプレグを得た。
<Example 8>
A viscosity of 1415 mPa · s and a dispersion stability of “◯” were applied in the same manner as in Example 6 except that the amount of toluene used was changed to 70 parts by mass and the amount of cyclopentanone used was changed to 30 parts by mass. An industrial varnish was obtained.
Further, a prepreg having a resin content of 54 mass% was obtained in the same manner as in Example 6.

<実施例9>
トルエンの使用量を90質量部、シクロペンタノンの使用量を10質量部に変更する以外、実施例6と同じ方法にて、粘度が1921mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
また、実施例6と同じ方法で、樹脂含有量55質量%のプリプレグを得た。
<Example 9>
A viscosity of 1921 mPa · s and a dispersion stability of “◯” were applied in the same manner as in Example 6 except that the amount of toluene used was changed to 90 parts by mass and the amount of cyclopentanone used was changed to 10 parts by mass. An industrial varnish was obtained.
Further, a prepreg having a resin content of 55% by mass was obtained in the same manner as in Example 6.

<実施例10>
トルエンの使用量を95質量部、シクロペンタノンの使用量を5質量部に変更する以外、実施例6と同じ方法にて、粘度が2313mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
また、実施例6と同じ方法で、樹脂含有量55質量%のプリプレグを得た。
<Example 10>
A viscosity of 2313 mPa · s and a dispersion stability of “◯” were applied in the same manner as in Example 6 except that the amount of toluene used was changed to 95 parts by mass and the amount of cyclopentanone used was changed to 5 parts by mass. An industrial varnish was obtained.
Further, a prepreg having a resin content of 55% by mass was obtained in the same manner as in Example 6.

<実施例11>
トルエンの使用量を5質量部、シクロペンタノンの使用量を95質量部に変更する以外、実施例6と同じ方法にて、粘度が578mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。
また、実施例6と同じ方法で、樹脂含有量51質量%のプリプレグを得た。
<Example 11>
A viscosity of 578 mPa · s and a dispersion stability of “◯” were applied in the same manner as in Example 6 except that the amount of toluene used was changed to 5 parts by mass and the amount of cyclopentanone was changed to 95 parts by mass. An industrial varnish was obtained.
Further, a prepreg having a resin content of 51% by mass was obtained in the same manner as in Example 6.

<比較例1>
シクロヘキサノンを使用せず、トルエンの使用量を100質量部使用することに変更する以外、実施例1と同じ方法にて、ワニスを調合したが、PPE添加後、撹拌中、経時で大きく増粘し、流動性を失い、「ゲル化」してしまったため、塗工に使用することのできるワニスを得られなかった。
<Comparative Example 1>
A varnish was prepared in the same manner as in Example 1 except that the amount of toluene used was changed to 100 parts by mass without using cyclohexanone. Since the fluidity was lost and the solution was "gelled", a varnish that could be used for coating could not be obtained.

<比較例2>
トルエンを使用せず、シクロヘキサノンをシクロペンタノンに変更し、その使用量を100質量部使用することに変更する以外、実施例1と同じ方法にて、粘度が340mPa・sであり、分散安定性が「×」のワニスを調合した。分散安定性が悪かったためと推測されるが、プリプレグ作製中、ワニスバス内で固形分の沈殿や含浸ロールへの固形分の堆積が発生し、後の評価に使用できる品質のプリプレグを得ることができなかった。
<Comparative Example 2>
The viscosity is 340 mPa · s and the dispersion stability is the same as in Example 1, except that toluene is not used, cyclohexanone is changed to cyclopentanone, and the amount used is changed to 100 parts by mass. Prepared “×” varnish. It is presumed that the dispersion stability was poor, but during the preparation of the prepreg, precipitation of solids in the varnish bath and accumulation of solids on the impregnation roll occurred, and a prepreg of quality that can be used for later evaluation can be obtained. There wasn't.

<比較例3>
シクロヘキサノンをメチルエチルケトンに変更する以外、実施例1と同じ方法にて、粘度が450mPa・sであり、分散安定性が「×」のワニスを調合した。分散安定性が悪かったためと推測されるが、プリプレグ作製中、ワニスバス内で固形分の沈殿や含浸ロールへの固形分の堆積が発生し、後の評価に使用できる品質のプリプレグを得ることができなかった。
<Comparative Example 3>
A varnish having a viscosity of 450 mPa · s and a dispersion stability of “×” was prepared in the same manner as in Example 1 except that cyclohexanone was changed to methyl ethyl ketone. It is presumed that the dispersion stability was poor, but during the preparation of the prepreg, precipitation of solids in the varnish bath and accumulation of solids on the impregnation roll occurred, and a prepreg of quality that can be used for later evaluation can be obtained. There wasn't.

<比較例4>
トルエンの使用量を95質量部に変更し、シクロヘキサノンをメタノールに変更し、その使用量を5質量部に変更する以外、実施例1と同じ方法にて、粘度が1818mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。乾燥温度を105℃に変更する以外、実施例1と同じ方法で樹脂含有量58質量%のプリプレグを得たが、得られたプリプレグを観察すると、樹脂層に多数のひび割れが確認された。
<Comparative Example 4>
The viscosity is 1818 mPa · s in the same manner as in Example 1 except that the amount of toluene used is changed to 95 parts by mass, cyclohexanone is changed to methanol, and the amount used is changed to 5 parts by mass. A coating varnish having a property of “◯” was obtained. A prepreg having a resin content of 58% by mass was obtained in the same manner as in Example 1 except that the drying temperature was changed to 105 ° C. When the obtained prepreg was observed, many cracks were confirmed in the resin layer.

<比較例5>
PPEを低分子量PPE(数平均分子量2800)に変更し、シクロヘキサノンをシクロペンタノンに変更する以外、実施例1と同じ方法にて、粘度が2215mPa・sであり、分散安定性が「〇」の塗工用ワニスを得た。乾燥温度を130℃に変更する以外、実施例1と同じ方法で樹脂含有量56質量%のプリプレグを得た。
<Comparative Example 5>
The viscosity is 2215 mPa · s and the dispersion stability is “◯” in the same manner as in Example 1 except that PPE is changed to low molecular weight PPE (number average molecular weight 2800) and cyclohexanone is changed to cyclopentanone. A varnish for coating was obtained. A prepreg having a resin content of 56% by mass was obtained in the same manner as in Example 1 except that the drying temperature was changed to 130 ° C.

<試験例2>
実施例1から実施例11、比較例4、比較例5から得られたプリプレグを用いて、成膜性(ひび割れ、粉落ち)の評価を行った。実施例1から実施例10、比較例5は、全ての評価で「〇」であったが、実施例11では、ひび割れの評価で「〇」であるものの、粉落ちの評価が「△」であることが確認された。一方で比較例4は、ひび割れの評価が「×」、粉落ちの評価が「〇」であった。
ただし、比較例5では、後述する残留溶剤に起因すると考えられるタック性が発生しており、保管時の取扱い性が良好ではない状態であった。
<Test Example 2>
Using the prepregs obtained from Example 1 to Example 11, Comparative Example 4, and Comparative Example 5, the film formability (cracking and powder falling) was evaluated. In Examples 1 to 10 and Comparative Example 5, the evaluation was “◯”. In Example 11, the evaluation of cracking was “△”, although the evaluation of cracking was “◯”. It was confirmed that there was. On the other hand, in Comparative Example 4, the evaluation of cracking was “x”, and the evaluation of powder falling was “◯”.
However, in Comparative Example 5, tackiness considered to be caused by the residual solvent described later was generated, and the handling property during storage was not good.

<試験例3>
実施例1から実施例11、比較例4、比較例5から得られたプリプレグを用いて、残留溶剤量を測定した(測定結果は表2に記載)。実施例1から実施例11までは、溶剤の残留量が低く抑えられている一方、比較例5は、大量の溶剤が残留していることが確認された。
<Test Example 3>
Using the prepregs obtained from Example 1 to Example 11, Comparative Example 4, and Comparative Example 5, the amount of residual solvent was measured (measurement results are listed in Table 2). From Example 1 to Example 11, the residual amount of solvent was kept low, while in Comparative Example 5, it was confirmed that a large amount of solvent remained.

<試験例4>
実施例1〜11で得られたプリプレグを用いて基板試料を作製し、電気特性(誘電率、誘電正接)、吸水率、吸水試験後のはんだ耐熱、銅箔剥離強度を比較評価した。
<Test Example 4>
Substrate samples were prepared using the prepregs obtained in Examples 1 to 11, and electrical characteristics (dielectric constant, dielectric loss tangent), water absorption, solder heat resistance after water absorption test, and copper foil peel strength were compared and evaluated.

吸水率、及び吸水試験後のはんだ耐熱性を評価するための試料は次の方法で作製した。実施例又は比較例で得たプリプレグを2枚重ね、その上下に厚み12μmの銅箔(GTS−MP箔、古川電気工業株式会社製)を重ね合わせたものを、室温から昇温速度3℃/分で加熱しながら圧力5kg/cm2の条件で真空プレスを行い、130℃まで達したら昇温速度3℃/分で加熱しながら圧力30kg/cm2の条件で真空プレスを行い、200℃まで達したら温度を200℃に保ったまま圧力30kg/cm2、時間60分間の条件で真空プレスを行うことによって両面銅張積層板を得た。次いで、該銅張積層板を100mm角に切り出し、銅箔をエッチングにて除去し、吸水率、及び吸水試験後のはんだ耐熱性を評価するための試料を得た。 A sample for evaluating the water absorption rate and the solder heat resistance after the water absorption test was prepared by the following method. Two prepregs obtained in Examples or Comparative Examples were stacked, and a copper foil (GTS-MP foil, manufactured by Furukawa Electric Co., Ltd.) having a thickness of 12 μm was stacked on the top and bottom. Perform vacuum pressing under conditions of pressure 5 kg / cm 2 while heating in minutes, and when reaching 130 ° C., perform vacuum pressing under conditions of pressure 30 kg / cm 2 while heating at a rate of temperature increase of 3 ° C./min, up to 200 ° C. When the temperature reached 200 ° C., a double-sided copper-clad laminate was obtained by vacuum pressing under the conditions of a pressure of 30 kg / cm 2 and a time of 60 minutes. Next, the copper clad laminate was cut into a 100 mm square, the copper foil was removed by etching, and a sample for evaluating the water absorption rate and the solder heat resistance after the water absorption test was obtained.

また、銅箔剥離強度測定用の試料は次の方法で作製した。実施例又は比較例で得たプリプレグを2枚重ね、その上下に厚み35μmの銅箔(GTS−MP箔、古川電気工業株式会社製)を重ね合わせたものを、室温から昇温速度3℃/分で加熱しながら圧力5kg/cm2の条件で真空プレスを行い、130℃まで達したら昇温速度3℃/分で加熱しながら圧力30kg/cm2の条件で真空プレスを行い、200℃まで達したら温度を200℃に保ったまま圧力30kg/cm2、時間60分間の条件で真空プレスを行うことによって両面銅張積層板を作製した。この両面銅張積層板を銅箔剥離強度測定用の試料として用いた。 Moreover, the sample for copper foil peeling strength measurement was produced with the following method. Two prepregs obtained in Examples or Comparative Examples were stacked, and a copper foil having a thickness of 35 μm (GTS-MP foil, manufactured by Furukawa Electric Co., Ltd.) was stacked on the top and bottom. Perform vacuum pressing under conditions of pressure 5 kg / cm 2 while heating in minutes, and when reaching 130 ° C., perform vacuum pressing under conditions of pressure 30 kg / cm 2 while heating at a rate of temperature increase of 3 ° C./min, up to 200 ° C. When the temperature reached 200 ° C., a double-sided copper-clad laminate was produced by vacuum pressing under the conditions of a pressure of 30 kg / cm 2 and a time of 60 minutes. This double-sided copper-clad laminate was used as a sample for measuring the copper foil peel strength.

また、誘電率及び誘電正接の測定用試料は次の方法で作製した。実施例又は比較例で得たプリプレグを16枚重ね、室温から昇温速度3℃/分で加熱しながら圧力5kg/cm2の条件で真空プレスを行い、130℃まで達したら昇温速度3℃/分で加熱しながら圧力30kg/cm2の条件で真空プレスを行い、200℃まで達したら温度を200℃に保ったまま圧力30kg/cm2、時間60分間の条件で真空プレスを行うことによって積層板を作製した。該積層板を、100mm角に切り出し、誘電率及び誘電正接の測定用試料とした。 A sample for measuring dielectric constant and dielectric loss tangent was prepared by the following method. Sixteen prepregs obtained in Examples or Comparative Examples were stacked, vacuum-pressed under the condition of a pressure of 5 kg / cm 2 while heating from room temperature at a heating rate of 3 ° C./min, and when reaching 130 ° C., the heating rate was 3 ° C. By performing vacuum pressing under the condition of pressure 30 kg / cm 2 while heating at / min, and when reaching 200 ° C., performing vacuum pressing under the conditions of pressure 30 kg / cm 2 and time 60 minutes while maintaining the temperature at 200 ° C. A laminate was prepared. The laminate was cut into a 100 mm square and used as a sample for measuring dielectric constant and dielectric loss tangent.

上記のように、プリプレグ、両面銅張積層板(銅箔:12μm及び35μmの2種)、又は積層板を用い、銅箔剥離強度、誘電率、誘電正接、吸水率、及び吸水後のはんだ耐熱性を測定した。結果を以下の表2に示す。   As described above, using prepreg, double-sided copper-clad laminate (copper foil: 12 μm and 35 μm), or laminate, copper foil peel strength, dielectric constant, dielectric loss tangent, water absorption, and solder heat resistance after water absorption Sex was measured. The results are shown in Table 2 below.

Figure 2015117285
Figure 2015117285

Figure 2015117285
Figure 2015117285

本発明は、高周波数帯を利用する電子機器のプリント配線板用の材料等として好適に適用できる。   The present invention can be suitably applied as a material for a printed wiring board of an electronic device using a high frequency band.

Claims (12)

ポリフェニレンエーテルと溶剤とを含む混合液であって、
(1)前記ポリフェニレンエーテルの数平均分子量が5000〜40000であり、
(2)前記溶剤は、
前記ポリフェニレンエーテルの溶剤保持量が1500質量%以上である化合物から選択される1種以上である化合物(A)と、
前記ポリフェニレンエーテルの溶剤保持量が300質量%以上1500質量%未満であり、かつ分子内に環構造を有する化合物から選択される1種以上である化合物(B)と
の混合物である、混合液。
A mixed solution containing polyphenylene ether and a solvent,
(1) The number average molecular weight of the polyphenylene ether is 5000 to 40000,
(2) The solvent is
A compound (A) that is one or more selected from compounds having a solvent retention of 1500% by mass or more of the polyphenylene ether;
The liquid mixture which is a mixture with the compound (B) which is 1 type or more selected from the compound whose solvent holding | maintenance amount of the said polyphenylene ether is 300 mass% or more and less than 1500 mass%, and has a ring structure in a molecule | numerator.
前記化合物(A)の前記溶剤全体に占める割合は、10質量%以上90質量%以下である、請求項1に記載の混合液。   The liquid mixture according to claim 1, wherein a ratio of the compound (A) to the whole solvent is 10% by mass or more and 90% by mass or less. 前記化合物(B)の沸点は、前記化合物(A)の沸点よりも高い、請求項1又は2に記載の混合液。   The mixed liquid according to claim 1 or 2, wherein the boiling point of the compound (B) is higher than the boiling point of the compound (A). 前記化合物(B)の沸点は、前記化合物(A)の沸点よりも18℃以上高い、請求項3に記載の混合液。   The mixed liquid according to claim 3, wherein the boiling point of the compound (B) is 18 ° C. or more higher than the boiling point of the compound (A). 前記化合物(B)の前記環構造は、4員環から8員環である、請求項1〜4のいずれか1項に記載の混合液。   The mixed solution according to any one of claims 1 to 4, wherein the ring structure of the compound (B) is a 4-membered ring to an 8-membered ring. 前記化合物(B)は、ケトン化合物又はアルケン化合物である、請求項1〜5のいずれか1項に記載の混合液。   The said compound (B) is a liquid mixture of any one of Claims 1-5 which is a ketone compound or an alkene compound. 架橋型硬化性樹脂及び開始剤をさらに含む、請求項1〜6のいずれか1項に記載の混合液。   The mixed liquid according to claim 1, further comprising a cross-linkable curable resin and an initiator. 前記架橋型硬化性樹脂が、分子内に2個以上のビニル基を持つモノマーである、請求項7に記載の混合液。   The mixed liquid according to claim 7, wherein the crosslinkable curable resin is a monomer having two or more vinyl groups in a molecule. 前記架橋型硬化性樹脂が、トリアリルイソシアヌレート(TAIC)である、請求項8に記載の混合液。   The mixed liquid according to claim 8, wherein the crosslinkable curable resin is triallyl isocyanurate (TAIC). 請求項1〜9のいずれか1項に記載の混合液を含む、樹脂ワニス。   The resin varnish containing the liquid mixture of any one of Claims 1-9. 請求項1〜9のいずれか1項に記載の混合液を含む樹脂ワニスを基材に塗布し、次いで前記基材から溶剤を除去することによって得られる、プリプレグ。   The prepreg obtained by apply | coating the resin varnish containing the liquid mixture of any one of Claims 1-9 to a base material, and then removing a solvent from the said base material. 請求項11に記載のプリプレグを構成成分として作製された、プリント配線板。   A printed wiring board produced using the prepreg according to claim 11 as a constituent component.
JP2013260615A 2013-12-17 2013-12-17 Liquid mixture containing polyphenylene ether Expired - Fee Related JP6204815B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013260615A JP6204815B2 (en) 2013-12-17 2013-12-17 Liquid mixture containing polyphenylene ether

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013260615A JP6204815B2 (en) 2013-12-17 2013-12-17 Liquid mixture containing polyphenylene ether

Publications (2)

Publication Number Publication Date
JP2015117285A true JP2015117285A (en) 2015-06-25
JP6204815B2 JP6204815B2 (en) 2017-09-27

Family

ID=53530329

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013260615A Expired - Fee Related JP6204815B2 (en) 2013-12-17 2013-12-17 Liquid mixture containing polyphenylene ether

Country Status (1)

Country Link
JP (1) JP6204815B2 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207096A (en) * 1993-01-11 1994-07-26 Sumitomo Bakelite Co Ltd Low-permittivity thermosetting resin composition
JPH1121507A (en) * 1997-07-07 1999-01-26 Hitachi Chem Co Ltd Modified cyanate ester resin vanish for printed circuit board and preparation of prepreg for laminate and metal-clad laminate using same
JP2001339130A (en) * 2000-03-21 2001-12-07 Hitachi Chem Co Ltd Resin composition having excellent dielectric characteristics, varnish manufactured thereby, manufacturing method of varnish, prepreg, and metal- clad laminated sheet
JP2002265777A (en) * 2001-03-12 2002-09-18 Matsushita Electric Works Ltd Polyphenylene oxide resin composition, prepreg, laminated board, printed wiring board and multi-layered printed wiring board
JP2004099681A (en) * 2002-09-06 2004-04-02 Asahi Kasei Chemicals Corp Method for producing polyphenylene ether
JP2005281615A (en) * 2004-03-30 2005-10-13 Asahi Kasei Chemicals Corp Method for producing thermosetting resin composition precursor
JP2013194137A (en) * 2012-03-19 2013-09-30 Asahi Kasei E-Materials Corp Prepreg including polyphenylene ether particle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06207096A (en) * 1993-01-11 1994-07-26 Sumitomo Bakelite Co Ltd Low-permittivity thermosetting resin composition
JPH1121507A (en) * 1997-07-07 1999-01-26 Hitachi Chem Co Ltd Modified cyanate ester resin vanish for printed circuit board and preparation of prepreg for laminate and metal-clad laminate using same
JP2001339130A (en) * 2000-03-21 2001-12-07 Hitachi Chem Co Ltd Resin composition having excellent dielectric characteristics, varnish manufactured thereby, manufacturing method of varnish, prepreg, and metal- clad laminated sheet
JP2002265777A (en) * 2001-03-12 2002-09-18 Matsushita Electric Works Ltd Polyphenylene oxide resin composition, prepreg, laminated board, printed wiring board and multi-layered printed wiring board
JP2004099681A (en) * 2002-09-06 2004-04-02 Asahi Kasei Chemicals Corp Method for producing polyphenylene ether
JP2005281615A (en) * 2004-03-30 2005-10-13 Asahi Kasei Chemicals Corp Method for producing thermosetting resin composition precursor
JP2013194137A (en) * 2012-03-19 2013-09-30 Asahi Kasei E-Materials Corp Prepreg including polyphenylene ether particle

Also Published As

Publication number Publication date
JP6204815B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5948552B2 (en) Prepreg containing polyphenylene ether particles
JP6092520B2 (en) Prepreg containing polyphenylene ether particles
JP5970214B2 (en) Dispersion containing polyphenylene ether particles
JP5274721B2 (en) Curable resin composition
JP5952100B2 (en) Curable resin composition
JP6163292B2 (en) Curable resin composition
JP2023052699A (en) Prepreg, metal-clad laminate, and wiring board
WO2015076288A1 (en) Cured product of polyphenylene ether-containing resin composition
JP6254762B2 (en) Resin dispersion, varnish, resin composite, and laminate
JP6080455B2 (en) Resin dispersion, resin composition, resin composition composite and laminate
JP6204815B2 (en) Liquid mixture containing polyphenylene ether
JP6478507B2 (en) Polyphenylene ether containing liquid
JP6478508B2 (en) Polyphenylene ether containing liquid
JP6282134B2 (en) Laminate containing PPE
JP6080604B2 (en) Polyphenylene ether resin particle dispersion and method for producing composite of resin particle and substrate
JP6815792B2 (en) Thermosetting resin composition and prepreg using it, metal-clad laminate or printed wiring board
JP2014198773A (en) PPE particle dispersion
JP2015067675A (en) Method for producing fluid dispersion containing ppe
JP2014162849A (en) Resin dispersion, varnish, resin composite, and laminate

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20160404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170804

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170901

R150 Certificate of patent or registration of utility model

Ref document number: 6204815

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees