JP2013194125A - Polystyrene-based foam-molded article - Google Patents

Polystyrene-based foam-molded article Download PDF

Info

Publication number
JP2013194125A
JP2013194125A JP2012062089A JP2012062089A JP2013194125A JP 2013194125 A JP2013194125 A JP 2013194125A JP 2012062089 A JP2012062089 A JP 2012062089A JP 2012062089 A JP2012062089 A JP 2012062089A JP 2013194125 A JP2013194125 A JP 2013194125A
Authority
JP
Japan
Prior art keywords
polystyrene
molded article
isobutane
particles
foamed molded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012062089A
Other languages
Japanese (ja)
Inventor
Takashi Motomura
隆司 本村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Kasei Co Ltd
Original Assignee
Sekisui Plastics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Plastics Co Ltd filed Critical Sekisui Plastics Co Ltd
Priority to JP2012062089A priority Critical patent/JP2013194125A/en
Publication of JP2013194125A publication Critical patent/JP2013194125A/en
Pending legal-status Critical Current

Links

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a polystyrene-based foam-molded article having favorable surface hardness and tensile strength.SOLUTION: A polystyrene-based foam-molded article comprises a fused body of polystyrene-based foam particles, wherein the foam-molded article contains isobutane satisfying expressions of 0.6X≤Y≤1.0X (Expression 1) and 0.5≤Y≤2.5 (Expression 2), where X (wt.%) represents an amount of isobutane in the inner part of the foam-molded article and Y (wt.%) represents an amount of isobutane in the surface layer of the article.

Description

本発明は、ポリスチレン系発泡成形体に関する。更に詳しくは、本発明は、改善された表面硬度と引張強度とを備えたポリスチレン系発泡成形体に関する。   The present invention relates to a polystyrene-based foam molded article. More specifically, the present invention relates to a polystyrene-based foam molded article having improved surface hardness and tensile strength.

ポリスチレンのような合成樹脂の発泡成形体は、断熱性を備えている上に、軽量かつ衝撃吸収性に優れているという特性を有する。また、発泡成形体は、発泡粒子を型内に充填し、型を加熱することで発泡粒子を互いに融着するという、比較的容易な方法により形成できる。このため、発泡成形体は、野菜、果物、肉類、魚介類、工業製品等を、収容、保管又は輸送する際に使用する容器として汎用されている。
発泡成形体の性質は、原料となる発泡性樹脂粒子を何倍の大きさに膨らませるか、いわゆる発泡成形体の発泡倍数を変化させることで大きく変わる。このため、発泡成形体は、用途に応じて、適切な発泡倍数で使用されている。
更に、発泡性樹脂粒子を大きく膨らませれば膨らませるほど、合成樹脂材の量は少なくて済む。このため、製品を安価に製造することもできる。しかしながら、製品の倍数を大きくすればするほど、その表面硬度は低くなる。そこで、特許文献1には、発泡成形体の表層の発泡倍率を内部の発泡倍率より低くすることで表面硬度を向上させた発泡成形体が提案されている。
Synthetic resin foamed molded articles such as polystyrene have heat insulating properties, light weight and excellent shock absorption. The foamed molded product can be formed by a relatively easy method of filling the foamed particles in a mold and heating the mold to fuse the foamed particles together. For this reason, a foaming molding is widely used as a container used when accommodating, storing or transporting vegetables, fruits, meats, seafood, industrial products and the like.
The properties of the foamed molded product vary greatly depending on how many times the expandable resin particles as a raw material are expanded, or by changing the expansion ratio of the so-called foamed molded product. For this reason, the foaming molding is used with the appropriate expansion ratio according to a use.
Furthermore, the more the expandable resin particles are expanded, the smaller the amount of the synthetic resin material. For this reason, a product can also be manufactured cheaply. However, the greater the product multiple, the lower the surface hardness. Therefore, Patent Document 1 proposes a foamed molded article having improved surface hardness by making the foaming ratio of the surface layer of the foamed molded article lower than the internal foaming ratio.

特開2011−68776号公報JP 2011-68776 A

しかしながら、特許文献1に記載の発泡成形体は、表面硬度の向上には効果が見られるものの、表層の発泡倍率を低くしているため、軽量化の観点では満足のいくものではなかった。このため、倍率を変えることなく表面硬度に優れた発泡成形体を提供することが望まれている。   However, although the foam molded article described in Patent Document 1 is effective in improving the surface hardness, it has not been satisfactory in terms of weight reduction because the foaming ratio of the surface layer is lowered. For this reason, it is desired to provide a foamed molded article having excellent surface hardness without changing the magnification.

このような問題点に鑑みて、本発明の発明者は鋭意検討した結果、発泡成形体の表層と内部にイソブタンを特定量で残存させることにより、良好な表面硬度を有することを見出し、本発明を完成するに至った。
かくして本発明によれば、ポリスチレン系発泡粒子の融着体から構成されるポリスチレン系発泡成形体であって、
前記発泡成形体が、その内部のイソブタン量をX重量%、その表層のイソブタン量をY重量%とした場合、下記式
0.6X≦Y<1.0X (式1)
0.5≦Y≦2.5 (式2)
を満たすようにイソブタンを含むことを特徴とするポリスチレン系発泡成形体が提供される。
In view of such problems, the inventor of the present invention has intensively studied, and as a result, found that a specific amount of isobutane is left in the surface layer and the inside of the foam molded article, thereby having good surface hardness. It came to complete.
Thus, according to the present invention, it is a polystyrene-based foam molded article composed of a fused product of polystyrene-based foamed particles,
When the foamed molded product has an isobutane content of X wt% inside and an isobutane content of the surface layer defined as Y wt%, the following formula 0.6X ≦ Y <1.0X (formula 1)
0.5 ≦ Y ≦ 2.5 (Formula 2)
There is provided a polystyrene-based foam-molded product characterized by containing isobutane so as to satisfy the above requirements.

本発明によれば、表層と内部にイソブタンを特定量で残存させることにより、良好な表面硬度と引張強度とを備えたポリスチレン系発泡成形体を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the polystyrene-type foaming molding provided with favorable surface hardness and tensile strength can be provided by leaving isobutane by a specific amount in a surface layer and an inside.

また、ポリスチレン系発泡成形体が、上面に開口部と、下面に底部と、開口部の周囲に位置しかつ底部とつながる側壁部とを備えた容器であり、側壁部が15〜30mmの厚さと150〜400mmの高さとを有する場合、より良好な表面硬度と引張強度とを備えたポリスチレン系発泡成形体を提供できる。
更に、ポリスチレン系発泡成形体が、ビーズ法による型内発泡成形法により成形されてなる場合、より良好な表面硬度と引張強度とを備えたポリスチレン系発泡成形体を提供できる。
Further, the polystyrene-based foam molded body is a container having an opening on the upper surface, a bottom on the lower surface, and a side wall located around the opening and connected to the bottom, and the side wall has a thickness of 15 to 30 mm. When it has a height of 150 to 400 mm, it is possible to provide a polystyrene-based foam molded article having better surface hardness and tensile strength.
Furthermore, when the polystyrene-based foam molded article is formed by an in-mold foam molding method using a bead method, a polystyrene-based foam molded article having better surface hardness and tensile strength can be provided.

(ポリスチレン系発泡成形体)
本発明の発明者は、良好な表面硬度と引張強度とを備えたポリスチレン系発泡成形体(以下、発泡成形体とも称する)を提供するために、発泡成形体の構成について分析を試みた。その結果、従来全量が空気と置換されると考えられていた発泡剤の一種であるイソブタンが、発泡成形体中にも一定量残ることを発明者は意外にも気付いた。そこで、発明者は、イソブタンの残存量について、検討したところ、特定の範囲で発泡成形体の内部と表層にイソブタンが含まれていれば、引張強度だけでなく、表面硬度も向上できることを複数の実験結果から経験的に見出した。引張強度と表面硬度を向上できる理由は定かではないが、発明者は発泡成形体内部のイソブタン量を表層より多くすることにより、発泡成形体表皮の破泡が僅かでも抑制されるためであると推測している。なお、表面硬度は、発泡成形体への傷付き防止の程度を示すファクターであると共に、表面の手触り感に影響を与えるファクターでもある。
(Polystyrene foam molding)
The inventor of the present invention tried to analyze the structure of a foamed molded product in order to provide a polystyrene-based foamed molded product (hereinafter also referred to as a foamed molded product) having good surface hardness and tensile strength. As a result, the inventor has unexpectedly realized that a certain amount of isobutane, which is a kind of foaming agent that has been conventionally considered to be replaced with air, remains in the foamed molded product. Therefore, the inventor examined the remaining amount of isobutane, and it was found that if isobutane is contained in the foam molded body and the surface layer within a specific range, not only the tensile strength but also the surface hardness can be improved. We found empirically from the experimental results. The reason why the tensile strength and the surface hardness can be improved is not clear, but the inventor is that the foam breakage of the foam molded product skin is suppressed even slightly by increasing the amount of isobutane inside the foam molded product from the surface layer. I guess. The surface hardness is a factor indicating the degree of prevention of scratches on the foamed molded product, and is also a factor that affects the feel of the surface.

本発明の発泡成形体は、ポリスチレン系発泡粒子の融着体から構成されており、その内部のイソブタン量をX重量%、その表層のイソブタン量をY重量%とした場合、下記式
0.6X≦Y<1.0X (式1)
0.5≦Y≦2.5 (式2)
を満たすようにイソブタンを含んでいる。
The foamed molded product of the present invention is composed of a fused product of polystyrene-based expanded particles. When the amount of isobutane in the interior is X wt% and the amount of isobutane in the surface layer is Y wt%, the following formula 0.6X ≦ Y <1.0X (Formula 1)
0.5 ≦ Y ≦ 2.5 (Formula 2)
Contains isobutane to satisfy

発泡成形体表層のイソブタン量であるY重量%が0.6X重量%未満及び0.5重量%未満の場合、表面硬度が十分でないことがある。また、1.0X重量%及び2.5重量%を超える場合、発泡成形体表面の外観が悪化することがある。より好ましいイソブタン量は、下記式を満たす関係を有する範囲である。
0.7X≦Y≦0.9X (式3)
1.0≦Y≦2.0 (式4)
ここで、表層とは、発泡成形体の厚みtが24mm以下の時は、表面からt/3までの部分を意味し、厚みtが24mmを超える時は、表面から8mmまでの部分を意味する。また、内部とは、発泡成形体の厚みtが24mm以下の時は、t/3から2t/3までの部分を意味し、厚みtが24mmを超える時は、表面から深さ8mmと16mmの間の部分を意味する。
When the Y weight%, which is the amount of isobutane in the surface layer of the foam molded article, is less than 0.6 X weight% and less than 0.5 weight%, the surface hardness may not be sufficient. Moreover, when it exceeds 1.0X weight% and 2.5 weight%, the external appearance of the foaming molding surface may deteriorate. A more preferable amount of isobutane is a range having a relationship satisfying the following formula.
0.7X ≦ Y ≦ 0.9X (Formula 3)
1.0 ≦ Y ≦ 2.0 (Formula 4)
Here, the surface layer means a portion from the surface to t / 3 when the thickness t of the foamed molded article is 24 mm or less, and when the thickness t exceeds 24 mm, it means a portion from the surface to 8 mm. . Further, the inside means a portion from t / 3 to 2t / 3 when the thickness t of the foamed molded product is 24 mm or less, and when the thickness t exceeds 24 mm, the depth is 8 mm and 16 mm from the surface. Means the part in between.

発泡成形体は、側壁部と、側壁部につながる底部とを有する発泡成形体に好適に使用できる。
側壁部は、一般的には板状の形状を有しており、掴み易くするための取っ手や、更なる強度の向上のための補強部を備えていてもよい。
側壁部は、15〜30mmの厚さを有していることが好ましい。厚さが15mmより小さい場合、十分な表面硬度が得られないことがある。30mmより大きい場合、十分な表面硬度を得られるものの、発泡成形体の原料コストが高くなることがある。より好ましい厚さは17〜25mmであり、更に好ましい厚さは18〜23mmである。
The foam molded article can be suitably used for a foam molded article having a side wall portion and a bottom portion connected to the side wall portion.
The side wall portion generally has a plate shape, and may include a handle for facilitating gripping and a reinforcing portion for further improving the strength.
The side wall portion preferably has a thickness of 15 to 30 mm. If the thickness is less than 15 mm, sufficient surface hardness may not be obtained. When it is larger than 30 mm, although sufficient surface hardness can be obtained, the raw material cost of the foamed molded product may be increased. A more preferable thickness is 17 to 25 mm, and a still more preferable thickness is 18 to 23 mm.

側壁部は、150〜400mmの高さを有していることが好ましい。高さが150mmより小さい場合、発泡成形体に収納可能な物品の量が減ることがある。400mmより大きい場合、十分な引張硬度が得られないことがある。より好ましい高さは150〜370mmであり、更に好ましい高さは160〜300mmである。
また、側壁部は、高い場合、十分な引張強度を確保する観点から、厚いことが好ましい。一方、低い場合、原料コストを下げる観点から、薄いことが好ましい。厚さと高さは、1:5〜30の比の関係を有することが好ましい。
The side wall portion preferably has a height of 150 to 400 mm. When the height is smaller than 150 mm, the amount of articles that can be stored in the foamed molded product may be reduced. If it is larger than 400 mm, sufficient tensile hardness may not be obtained. A more preferred height is 150 to 370 mm, and a still more preferred height is 160 to 300 mm.
Moreover, when a side wall part is high, it is preferable that it is thick from a viewpoint of ensuring sufficient tensile strength. On the other hand, when it is low, it is preferably thin from the viewpoint of reducing the raw material cost. It is preferable that the thickness and the height have a ratio of 1: 5 to 30.

底部の厚さは特に限定されず、発泡成形体内に保持される物品の重量や底部の面積に応じて適宜設定できる。底部の厚さは、例えば、12〜30mmに設定できる。また、底部の面積は、通常、3×104〜20×104mm2である。
更に、側壁部は、底部より厚いことが好ましい。厚いことにより表面硬度を向上できる。具体的には、側壁部は、底部の厚さの1.0〜1.5倍の厚さを有していることが好ましく、1.0〜1.2倍の厚さを有していることがより好ましい。
The thickness of the bottom is not particularly limited, and can be set as appropriate according to the weight of the article held in the foam molded body and the area of the bottom. The thickness of the bottom can be set to 12 to 30 mm, for example. The area of the bottom is usually 3 × 10 4 ~20 × 10 4 mm 2.
Furthermore, the side wall is preferably thicker than the bottom. The surface hardness can be improved by being thick. Specifically, the side wall portion preferably has a thickness of 1.0 to 1.5 times the thickness of the bottom portion, and has a thickness of 1.0 to 1.2 times. It is more preferable.

発泡成形体は、60〜80倍の発泡倍数を有することが好ましい。この特定の範囲の発泡倍数を有することで、十分な表面硬度を備えたより軽量化した発泡成形体を提供できる。より好ましい発泡倍数は、65〜75倍である。
また、発泡成形体を構成する発泡ポリスチレン系樹脂粒子の平均気泡径が、50〜100μmの範囲であることが好ましい。この範囲の平均気泡径を有することで、発泡成形体の軽量化と表面硬度の向上とを両立できる。
The foamed molded article preferably has a foaming factor of 60 to 80 times. By having the expansion ratio in this specific range, it is possible to provide a more lightweight foam-molded article having sufficient surface hardness. A more preferable expansion ratio is 65 to 75 times.
Moreover, it is preferable that the average cell diameter of the expanded polystyrene-type resin particle which comprises a foaming molding is the range of 50-100 micrometers. By having an average cell diameter in this range, it is possible to achieve both weight reduction of the foamed molded product and improvement of surface hardness.

発泡成形体を構成する発泡ポリスチレン系樹脂粒子に含まれるポリスチレン系樹脂は、上記範囲の重量平均分子量を有する限り、特に限定されない。例えば、ポリスチレン系樹脂としては、スチレン、α−メチルスチレン、パラメチルスチレン、ビニルトルエン、クロロスチレン、エチルスチレン、i−プロピルスチレン、ジメチルスチレン、ブロモスチレン等のスチレン系モノマーの単独重合体又はこれらの共重合体等が挙げられる。ポリスチレン系樹脂は、スチレン由来の成分を50重量%以上含有していることが好ましく、ポリスチレンからなることがより好ましい。   The polystyrene resin contained in the expanded polystyrene resin particles constituting the expanded molded article is not particularly limited as long as it has a weight average molecular weight in the above range. For example, as the polystyrene resin, homopolymers of styrene monomers such as styrene, α-methylstyrene, paramethylstyrene, vinyltoluene, chlorostyrene, ethylstyrene, i-propylstyrene, dimethylstyrene, bromostyrene, or the like A copolymer etc. are mentioned. The polystyrene resin preferably contains 50% by weight or more of a component derived from styrene, and more preferably consists of polystyrene.

また、ポリスチレン系樹脂としては、スチレン系モノマーと、このスチレン系モノマーと共重合可能なビニルモノマーとの共重合体であってもよい。共重合体の場合、スチレン系モノマー由来の成分が主成分(50重量%以上、好ましくは80重量%以上、より好ましくは99.8〜99.9重量%)を占めることが好ましい。このようなビニルモノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、セチル(メタ)アクリレート等の炭素数1〜8のアルキル(メタ)アクリレート、(メタ)アクリロニトリル、ジメチルマレエート、ジメチルフマレート、ジエチルフマレート、エチルフマレートの他、ジビニルベンゼン、アルキレングリコールジメタクリレート等の二官能性モノマー、無水マレイン酸、N−ビニルカルバゾール等が挙げられる。
発泡成形体は、野菜、果物、肉類、魚介類、工業製品等を、収容、保管又は輸送する際に使用する容器として使用できる。
The polystyrene resin may be a copolymer of a styrene monomer and a vinyl monomer copolymerizable with the styrene monomer. In the case of a copolymer, it is preferable that a component derived from a styrene monomer occupies a main component (50% by weight or more, preferably 80% by weight or more, more preferably 99.8 to 99.9% by weight). Examples of such vinyl monomers include alkyl (meth) acrylates having 1 to 8 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, and cetyl (meth) acrylate, (meth) In addition to acrylonitrile, dimethyl maleate, dimethyl fumarate, diethyl fumarate and ethyl fumarate, bifunctional monomers such as divinylbenzene and alkylene glycol dimethacrylate, maleic anhydride, N-vinylcarbazole and the like can be mentioned.
The foamed molded product can be used as a container used for housing, storing or transporting vegetables, fruits, meats, seafood, industrial products and the like.

(発泡成形体の製造方法)
発泡成形体は、発泡ポリスチレン系樹脂粒子が充填された金型を蒸気により加熱成形することで得ることができる。蒸気による加熱成形時間は、特に限定されないが、例えば、10〜30秒間である。ここで、発泡ポリスチレン系樹脂粒子は、一般的に予備発泡粒子とも称される。
この加熱成形は、より具体的には、次のように行われる。即ち、予備発泡粒子を多数の小孔を有する閉鎖された金型内に充填する。この金型を特定の蒸気圧の蒸気(水蒸気等)で加熱することにより、予備発泡粒子が発泡する。その結果、予備発泡粒子間の空隙が埋まると共に、予備発泡粒子が相互に融着一体化することで、発泡成形体が製造できる。その際、発泡成形体の密度は、例えば、金型内への予備発泡粒子の充填量を調整する等して調製できる。
(Method for producing foamed molded article)
The foamed molded product can be obtained by heat-molding a mold filled with expanded polystyrene resin particles with steam. Although the heat molding time by steam is not particularly limited, it is, for example, 10 to 30 seconds. Here, the expanded polystyrene resin particles are generally referred to as pre-expanded particles.
More specifically, this thermoforming is performed as follows. That is, the pre-expanded particles are filled into a closed mold having a large number of small holes. The pre-expanded particles are expanded by heating the mold with steam having a specific vapor pressure (water vapor or the like). As a result, a gap between the pre-expanded particles is filled and the pre-expanded particles are fused and integrated with each other, whereby a foam-molded article can be manufactured. At that time, the density of the foamed molded product can be adjusted, for example, by adjusting the filling amount of the pre-expanded particles in the mold.

予備発泡粒子は、発泡成形体の成形前に、例えば常圧で、熟成させてもよい。予備発泡粒子の熟成温度は、5〜50℃が好ましい。熟成温度が低いと、予備発泡粒子の熟成時間が長くなることがある。一方、高いと、予備発泡粒子中の発泡剤が散逸して成形性が低下することがある。
予備発泡粒子は、例えば、次の方法により製造できる。まず、ポリスチレン系樹脂粒子に発泡剤を含浸させて発泡性ポリスチレン系樹脂粒子を得る。次いで、発泡性ポリスチレン系樹脂粒子を予備発泡させて予備発泡粒子を得ることができる。
The pre-expanded particles may be aged, for example, at normal pressure before forming the foamed molded product. The aging temperature of the pre-expanded particles is preferably 5 to 50 ° C. When the aging temperature is low, the aging time of the pre-expanded particles may be long. On the other hand, if it is high, the foaming agent in the pre-expanded particles may be dissipated and the moldability may deteriorate.
The pre-expanded particles can be produced, for example, by the following method. First, polystyrene resin particles are impregnated with a foaming agent to obtain expandable polystyrene resin particles. Next, pre-expanded particles can be obtained by pre-expanding the expandable polystyrene resin particles.

発泡性ポリスチレン系樹脂粒子は、例えば、
(i)水性媒体中にポリスチレン系樹脂種粒子(以下種粒子)を分散させ、これにスチレン系モノマーを連続的又は断続的に供給して重合開始剤の存在下で懸濁重合し、発泡剤を含浸させる方法、いわゆるシード重合法によって得られた粒子、あるいは
(ii)スチレン系モノマーを連続的又は断続的に水性媒体中に供給して重合開始剤の存在下で懸濁重合し、発泡剤を含浸させる方法、いわゆる懸濁重合法によって得られた粒子
等を使用でき、成形体表層部の均一性の面で(i)の製造方法が好ましい。
スチレン系モノマーとしては、上記ポリスチレン系樹脂の欄で挙げたスチレン系モノマーが使用される。また、スチレン系モノマーに上記ポリスチレン系樹脂の欄で挙げたビニルモノマーを加えてもよい。
Expandable polystyrene resin particles are, for example,
(I) Polystyrene resin seed particles (hereinafter referred to as seed particles) are dispersed in an aqueous medium, and a styrene monomer is continuously or intermittently supplied thereto, and suspension polymerization is performed in the presence of a polymerization initiator. Particles obtained by so-called seed polymerization method, or (ii) a styrenic monomer is continuously or intermittently supplied into an aqueous medium and subjected to suspension polymerization in the presence of a polymerization initiator, and a foaming agent Particles obtained by a so-called suspension polymerization method can be used, and the production method (i) is preferred in terms of the uniformity of the surface layer of the molded body.
As the styrenic monomer, the styrenic monomer mentioned in the column of the polystyrene resin is used. Moreover, you may add the vinyl monomer quoted in the column of the said polystyrene-type resin to a styrene-type monomer.

なお、上記懸濁重合法及びシード重合法において用いられる重合開始剤としては、特に限定されず、例えば、ベンゾイルパーオキサイド、ラウリルパーオキサイド、t−ブチルパーオキシベンゾエート、t−ブチルパーオキサイド、t−ブチルパーオキシピバレート、t−ブチルパーオキシイソプロピルカーボネート、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート、イソプロピルカーボネート、t−ブチルパーオキシアセテート、2,2−ビス(t−ブチルパーオキシ)ブタン、t−ブチルパーオキシ−3,3,5トリメチルヘキサノエート、ジ−t−ブチルパーオキシヘキサハイドロテレフタレート等の有機過酸化物やアゾビスイソブチロニトリル、アゾビスジメチルバレロニトリル等のアゾ化合物等が挙げられ、これらは単独で用いられても二種以上が併用されてもよい。   In addition, it does not specifically limit as a polymerization initiator used in the said suspension polymerization method and seed polymerization method, For example, benzoyl peroxide, lauryl peroxide, t-butyl peroxybenzoate, t-butyl peroxide, t- Butyl peroxypivalate, t-butyl peroxyisopropyl carbonate, t-butyl peroxy-2-ethylhexyl monocarbonate, isopropyl carbonate, t-butyl peroxyacetate, 2,2-bis (t-butylperoxy) butane, Organic peroxides such as t-butylperoxy-3,3,5 trimethylhexanoate and di-t-butylperoxyhexahydroterephthalate, and azo compounds such as azobisisobutyronitrile and azobisdimethylvaleronitrile These are mentioned Alone may be also alone, or two or more are used.

そして、水性媒体中にポリスチレン系樹脂粒子を分散させてなる水性懸濁液は、上記懸濁重合法又はシード重合法による重合後の反応液を水性懸濁液として用いても、あるいは、上記懸濁重合法又はシード重合法によって得られたポリスチレン系樹脂粒子を反応液から分離し、このポリスチレン系樹脂粒子を別途用意した水性媒体に懸濁させて水性懸濁液を形成してもよい。なお、水性媒体としては、特に限定されず、例えば、水、アルコール等が挙げられ、水が好ましい。   The aqueous suspension obtained by dispersing polystyrene resin particles in an aqueous medium may be obtained by using the reaction liquid after polymerization by the suspension polymerization method or seed polymerization method as an aqueous suspension, or by using the suspension described above. The polystyrene resin particles obtained by the turbid polymerization method or the seed polymerization method may be separated from the reaction solution, and the polystyrene resin particles may be suspended in a separately prepared aqueous medium to form an aqueous suspension. In addition, it does not specifically limit as an aqueous medium, For example, water, alcohol, etc. are mentioned, Water is preferable.

また、上記懸濁重合法又はシード重合法において、スチレン系モノマーを重合させる際に、スチレン系モノマーの液滴又はポリスチレン系樹脂種粒子の分散性を安定させるために懸濁安定剤を用いてもよい。このような懸濁安定剤としては、例えば、ポリビニルアルコール、メチルセルロース、ポリアクリルアミド、ポリビニルピロリドン等の水溶性高分子や、第三リン酸カルシウム、ピロリン酸マグネシウム等の難水溶性無機塩等が挙げられ、難水溶性無機塩を用いる場合には、アニオン界面活性剤が通常、併用される。
上記アニオン界面活性剤としては、例えば、ラウリル硫酸ナトリウム等のアルキル硫酸塩、ドデシルベンゼンスルホン酸ナトリウム等のアルキルベンゼンスルホン酸塩、オレイン酸ナトリウム等の高級脂肪酸塩、β−テトラヒドロキシナフタレンスルホン酸塩等が挙げられ、アルキルベンゼンスルホン酸塩が好ましい。
In the suspension polymerization method or the seed polymerization method, a suspension stabilizer may be used to stabilize the dispersibility of the styrene monomer droplets or the polystyrene resin seed particles when the styrene monomer is polymerized. Good. Examples of such suspension stabilizers include water-soluble polymers such as polyvinyl alcohol, methylcellulose, polyacrylamide, and polyvinylpyrrolidone, and poorly water-soluble inorganic salts such as tribasic calcium phosphate and magnesium pyrophosphate. When a water-soluble inorganic salt is used, an anionic surfactant is usually used in combination.
Examples of the anionic surfactant include alkyl sulfates such as sodium lauryl sulfate, alkylbenzene sulfonates such as sodium dodecylbenzene sulfonate, higher fatty acid salts such as sodium oleate, and β-tetrahydroxynaphthalene sulfonate. And alkylbenzene sulfonates are preferred.

また、上記懸濁重合法又はシード重合法において、スチレン系モノマーを重合させる際に、水に溶解したスチレンの重合による微粉末の発生を防ぐ目的で、水溶性の重合禁止剤を添加してもよい。
そして、上記水性懸濁液中に分散させたポリスチレン系樹脂粒子中に発泡剤が含浸されて発泡性ポリスチレン系樹脂粒子が得られる。発泡剤は少なくともイソブタンを含む。更に、本発明者は、発泡剤を種々検討した結果、発泡性や型内発泡成形時に発泡成形体の面圧が所定圧力以下となる時間(以下、成形サイクルとも記す)を短くする観点、予備発泡粒子の長期保存性の面でブタンが最も優れた発泡剤であり、特にノルマルブタンとイソブタンを所定割合にて含有させて発泡剤として用いると、発泡成形体の表面硬度や成形サイクル、外観が向上できることを見出している。
In the suspension polymerization method or seed polymerization method, a water-soluble polymerization inhibitor may be added for the purpose of preventing the generation of fine powder due to polymerization of styrene dissolved in water when the styrene monomer is polymerized. Good.
Then, the polystyrene resin particles dispersed in the aqueous suspension are impregnated with a foaming agent to obtain expandable polystyrene resin particles. The blowing agent contains at least isobutane. Furthermore, as a result of various investigations on the foaming agent, the present inventor has found that the foaming property and the time during which the surface pressure of the foamed molded product is equal to or lower than a predetermined pressure during foam molding in the mold (hereinafter also referred to as a molding cycle) are reduced. Butane is the most excellent foaming agent in terms of long-term storage stability of the foamed particles, especially when normal butane and isobutane are contained in a predetermined ratio and used as a foaming agent, the surface hardness, molding cycle, and appearance of the foamed molded product are improved. We have found that it can be improved.

具体的には、発泡剤中におけるブタン(ノルマルブタンとイソブタンの合計量)の含有量は、ポリスチレン系樹脂粒子100重量部に対して4.0〜15.0重量部が好ましく、5.0〜12.0重量部がより好ましい。ブタンの含有量が4.0重量部未満では、発泡性ポリスチレン系樹脂粒子の発泡性が低下し、所望倍率を有する発泡成形体を得ることができず、あるいは、予備発泡粒子を発泡させて得られる発泡粒子同士の熱融着が不十分となり、得られる発泡成形体の機械的強度が低下する一方、15.0重量部を超えると、得られる発泡成形体に収縮が生じ、あるいは、発泡成形の成形サイクルが長くなるので、好ましくない。   Specifically, the content of butane (total amount of normal butane and isobutane) in the foaming agent is preferably 4.0 to 15.0 parts by weight with respect to 100 parts by weight of the polystyrene resin particles, and is preferably 5.0 to 12.0 parts by weight is more preferred. When the content of butane is less than 4.0 parts by weight, the foamability of the expandable polystyrene resin particles is lowered, and a foamed molded article having a desired magnification cannot be obtained, or the foamed pre-expanded particles are obtained. While the thermal fusion between the foamed particles to be obtained becomes insufficient and the mechanical strength of the resulting foamed molded product is reduced, when the amount exceeds 15.0 parts by weight, the resulting foamed molded product is contracted or foamed. This is not preferable because the molding cycle becomes longer.

そして、ブタンはイソブタンとノルマルブタンとからなることが好ましい。更に、ブタン中におけるイソブタンの含有量は40〜90重量%が好ましく、50〜80重量%がより好ましく、55〜70重量%が特に好ましい。イソブタンの含有量が40重量%未満だと、成形サイクルが長くなったり、十分な表面硬度が得られないことがある。一方、90重量%を超えて使用すると、成形サイクルが長くなったり、発泡成形体の外観が悪化することがある。   The butane is preferably composed of isobutane and normal butane. Furthermore, the content of isobutane in butane is preferably 40 to 90% by weight, more preferably 50 to 80% by weight, and particularly preferably 55 to 70% by weight. If the content of isobutane is less than 40% by weight, the molding cycle may become long or sufficient surface hardness may not be obtained. On the other hand, if it is used in excess of 90% by weight, the molding cycle may become longer or the appearance of the foamed molded product may deteriorate.

発泡剤としては、本発明に影響を及ぼさない範囲(例えば0〜0.1重量%)でブタン以外の発泡剤が含まれていてもよい。ブタン以外の発泡剤としては、ノルマルペンタン、イソペンタン、ネオペンタン、シクロペンタン、シクロペンタジエン、ノルマルヘキサン、石油エーテル等の炭化水素、ジメチルエーテル、ジエチルエーテル、ジプロピルエーテル、メチルエチルエーテル等の低沸点のエーテル化合物、炭酸ガス、窒素等の無機ガス等が挙げられる。
発泡性ポリスチレン系樹脂粒子中には、物性を損なわない範囲内において、気泡調整剤、充填剤、難燃剤、難燃助剤、滑剤、着色剤、溶剤、可塑剤等の添加剤を必要に応じて添加できる。
As the foaming agent, a foaming agent other than butane may be contained within a range not affecting the present invention (for example, 0 to 0.1% by weight). Examples of blowing agents other than butane include hydrocarbons such as normal pentane, isopentane, neopentane, cyclopentane, cyclopentadiene, normal hexane, petroleum ether, and low-boiling ether compounds such as dimethyl ether, diethyl ether, dipropyl ether, and methyl ethyl ether. Inorganic gas such as carbon dioxide and nitrogen.
Additives such as air conditioners, fillers, flame retardants, flame retardant aids, lubricants, colorants, solvents, plasticizers, etc., as necessary, in the expandable polystyrene resin particles as long as the physical properties are not impaired Can be added.

ポリスチレン系樹脂粒子の平均粒子径は、発泡性ポリスチレン系樹脂粒子を用いて型内発泡成形を行う場合に、発泡性ポリスチレン系樹脂粒子を予備発泡させて得られる予備発泡粒子のキャビティ内への充填性の観点から、0.3〜2.0mmが好ましく、0.6〜1.4mmがより好ましく、0.85〜1.1mmが更に好ましい。   The average particle diameter of the polystyrene resin particles is the filling of the pre-expanded particles obtained by pre-expanding the expandable polystyrene resin particles into the cavity when in-mold foam molding is performed using the expandable polystyrene resin particles. From a viewpoint of property, 0.3-2.0 mm is preferable, 0.6-1.4 mm is more preferable, 0.85-1.1 mm is still more preferable.

更に、ポリスチレン系樹脂粒子を構成するポリスチレン系樹脂のスチレン換算重量平均分子量は、小さいと、発泡性ポリスチレン系樹脂粒子を発泡させて得られる発泡成形体の機械的強度が低下することがある一方、大きいと、発泡性ポリスチレン系樹脂粒子の発泡性が低下し、高発泡倍率の発泡成形体を得ることができない恐れがあるので、20万〜40万が好ましく、24万〜35万がより好ましい。   Furthermore, when the polystyrene-based weight average molecular weight of the polystyrene-based resin constituting the polystyrene-based resin particles is small, the mechanical strength of the foamed molded product obtained by foaming the expandable polystyrene-based resin particles may decrease, If it is large, the foamability of the expandable polystyrene resin particles is lowered, and a foamed molded article having a high expansion ratio may not be obtained, so 200,000 to 400,000 are preferable, and 240,000 to 350,000 are more preferable.

以下、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、実施例における各種測定法を下記する。
(重量平均分子量)
GPC(ゲルパーミエーションクロマトグラフィー)を用いて、重量平均分子量を測定する。その測定方法は次の通りである。なお、重量平均分子量はポリスチレン(PS)換算重量平均分子量を意味する。
試料50mgをテトラヒドロフラン(THF)10ミリリットルに溶解させ、非水系0.45μmのクロマトディスクで濾過した上でクロマトグラフを用いて測定する。クロマトグラフの条件は下記の通りとする。
液体クロマトグラフ:東ソー社製、商品名「ゲルパーミエーションクロマトグラフ HLC−8020」
カラム:東ソー社製、商品名「TSKgel GMH−XL−L」φ7.8mm×30cm×2本
カラム温度:40℃
キャリアガス:テトラヒドロフラン(THF)
キャリアガス流量:1ミリリットル/分
注入・ポンプ温度:35℃
検出:RI
注入量:100マイクロリットル
検量線用標準ポリスチレン:昭和電工社製、商品名「shodex」重量平均分子量:1030000と東ソー社製、重量平均分子量:5480000、3840000、355000、102000、37900、9100、2630、870
EXAMPLES Hereinafter, although this invention is demonstrated in detail based on an Example, this invention is not limited by these Examples. Various measurement methods in the examples are described below.
(Weight average molecular weight)
The weight average molecular weight is measured using GPC (gel permeation chromatography). The measuring method is as follows. In addition, a weight average molecular weight means a polystyrene (PS) conversion weight average molecular weight.
A 50 mg sample is dissolved in 10 ml of tetrahydrofuran (THF), filtered through a non-aqueous 0.45 μm chromatographic disk, and measured using a chromatograph. The chromatographic conditions are as follows.
Liquid chromatograph: manufactured by Tosoh Corporation, trade name “Gel Permeation Chromatograph HLC-8020”
Column: Tosoh Corporation, trade name “TSKgel GMH-XL-L” φ7.8 mm × 30 cm × 2 Column temperature: 40 ° C.
Carrier gas: tetrahydrofuran (THF)
Carrier gas flow rate: 1 ml / min, pump temperature: 35 ° C
Detection: RI
Injection amount: Standard polystyrene for 100 microliter calibration curve: Showa Denko Co., Ltd., trade name “shodex” Weight average molecular weight: 1030000 and Tosoh Corporation, weight average molecular weight: 54480, 3840000, 355000, 102000, 37900, 9100, 2630, 870

(イソブタン量)
ガスクロマトグラフを用いて、イソブタン量を測定する。その測定方法は次の通りである。
発泡成形体の側壁から表層部と内部とをハムスライサーを用いて切り出し、各試料20〜50mgを50mlバイアル瓶に入れて精秤し、封入してオートサンプラー付ガスクロマトグラフ(島津製作所社製ガスクロマトグラフGC−2010、パーキンエルマー社製HSオートサンプラーTurboMatrix HS40)にセットし、160℃で30分加熱後、上部の空間の気体をガスクロマトグラフへ導入し、絶対検量線法で測定する。検量線作成は、ジーエルサイエンス社製の標準ガス(イソブタン:約1%、ノルマルブタン:約1%、バランスガス:窒素)を用いて行う。ガスクロマトグラフの条件は下記の通りとする。
カラム:J&W社製、商品名「DB−1」1.0μm×0.25mmφ×60m
カラム温度:初期温度50℃で6分保持し、40℃/分で200℃まで昇温し、15℃/分で270℃まで昇温した後、270℃で17分保持する。
入口温度200℃、キャリアガスHe、圧力制御モード、圧力124.2kPa、パージ流量3.0ml/分
ガス圧力:初期圧力124.2kPaで10分保持し、3.5kPa/分で165.6kPaまで昇圧し、10分保持する。
検出器:FID、検出温度280℃、メイクアップガスHe、メイクアップ流量30ml/分、H2流量40ml/分、Air流量400ml/分
オートサンプラー:オーブン温度160℃、保温時間30分、加圧ガス圧172.5kPa、加圧時間3分、引き抜き時間0.2分、ニードル温度165℃、トランスファーライン温度180℃、試料導入時間0.05分とする。
(Amount of isobutane)
The amount of isobutane is measured using a gas chromatograph. The measuring method is as follows.
The surface layer part and the inside are cut out from the side wall of the foamed molded article using a ham slicer, each sample 20 to 50 mg is placed in a 50 ml vial, precisely weighed, sealed, and gas chromatograph with an autosampler (gas chromatograph manufactured by Shimadzu Corporation). GC-2010, HS autosampler (TurboMatrix HS40, manufactured by PerkinElmer), heated at 160 ° C. for 30 minutes, the gas in the upper space is introduced into the gas chromatograph and measured by the absolute calibration curve method. The calibration curve is created using a standard gas (isobutane: about 1%, normal butane: about 1%, balance gas: nitrogen) manufactured by GL Sciences. The conditions for the gas chromatograph are as follows.
Column: J & W, trade name “DB-1” 1.0 μm × 0.25 mmφ × 60 m
Column temperature: Hold for 6 minutes at an initial temperature of 50 ° C., increase to 200 ° C. at 40 ° C./minute, increase to 270 ° C. at 15 ° C./minute, and then hold at 270 ° C. for 17 minutes.
Inlet temperature 200 ° C., carrier gas He, pressure control mode, pressure 124.2 kPa, purge flow rate 3.0 ml / min. Gas pressure: held at initial pressure 124.2 kPa for 10 minutes and increased to 165.6 kPa at 3.5 kPa / min. And hold for 10 minutes.
Detector: FID, detection temperature 280 ° C., makeup gas He, makeup flow rate 30 ml / min, H 2 flow rate 40 ml / min, Air flow rate 400 ml / min Autosampler: oven temperature 160 ° C., heat retention time 30 minutes, pressurized gas The pressure is 172.5 kPa, the pressurization time is 3 minutes, the drawing time is 0.2 minutes, the needle temperature is 165 ° C., the transfer line temperature is 180 ° C., and the sample introduction time is 0.05 minutes.

(表面硬度)
発泡成形体の長側壁から切り出した2つの試験片(100×300×20mm)を、表面硬度計(高分子計器社製 商品名「ASKER TYPE CS」)を用いて任意に選択した各15箇所を測定し、相加平均値を発泡成形体の表面硬度とした。
(surface hardness)
Two test pieces (100 × 300 × 20 mm) cut out from the long side wall of the foam molded article were used to select each of 15 locations arbitrarily selected using a surface hardness meter (trade name “ASKER TYPE CS” manufactured by Kobunshi Keiki Co., Ltd.). The arithmetic average value was measured as the surface hardness of the foamed molded product.

(引張強度)
万能試験機(オリエンテック社製、製品名「テンシロン UCT−10T」)に1000Nのロードセルを接続し、コの字型冶具で箱の長手壁を挟んで1000mm/minの速度で引張試験測定を行い、1次最大点荷重値を引張強度とする。
(Tensile strength)
A 1000N load cell is connected to a universal testing machine (product name “Tensilon UCT-10T” manufactured by Orientec Co., Ltd.), and a tensile test measurement is performed at a speed of 1000 mm / min by sandwiching the long wall of the box with a U-shaped jig. The primary maximum point load value is taken as the tensile strength.

(感触評価)
成形従事者10名により、実施例、比較例全ての箱を対象に感触評価を行う。硬いか軟らかいかを判定基準とし、10名全員が硬く感じた箱は100%、10名全員が軟らかく感じた箱は0%として評価する。
(Feel evaluation)
Tactile evaluation is performed on the boxes of all the Examples and Comparative Examples by 10 molding workers. Criteria are based on whether it is hard or soft. The box that all 10 people felt hard was rated as 100%, and the box that all 10 people felt soft was rated as 0%.

(外観評価)
成形従事者10名により、実施例、比較例全ての箱を対象に外観評価を行う。発泡粒子同士の融着部分が平滑であるか、凹凸が生じているかを判定基準とし、10名全員が平滑であるとした箱は100%、10名全員が凹凸が生じているとした箱は0%として評価する。
(Appearance evaluation)
Appearance evaluation is performed on all the boxes of the examples and comparative examples by 10 molding workers. Criteria based on whether the fused part between the foamed particles is smooth or uneven is used as a criterion. 100% is a box in which all 10 people are smooth. Assess as 0%.

(製品倍数)
発泡成形体の長側壁から切り出した試験片(100×300×20mm)の重量(a)と体積(b)をそれぞれ有効数字3桁以上になるように測定し、式(b)/(a)により発泡倍数(倍)を求める。
(Product multiple)
The weight (a) and volume (b) of the test piece (100 × 300 × 20 mm) cut out from the long side wall of the foamed molded product are measured so that each of them has three or more significant figures, and the formula (b) / (a) Obtain the expansion factor (times).

(平均気泡径)
平均気泡径は、ASTM D2842−69の試験方法に準拠して測定する。具体的には、発泡成形体の側壁部を垂直方向に切断し、切断面を走査型電子顕微鏡(JOEL社製 商品名「JSM−6360LV」)を用いて100倍に拡大して撮影する。
次に、撮影した画像をA4用紙上に印刷し、任意の箇所に長さ60mmの直線を一本描き、この直線上に存在する気泡数から気泡の平均弦長(t)を下記式により算出する。
平均弦長t=60/(気泡数×写真の倍率)
なお、直線を描くにあたっては、できるだけ直線が気泡に点接触することなく貫通した状態となるようにする。また、一部の気泡が直線に点接触してしまう場合には、この気泡も気泡数に含め、更に、直線の両端部が気泡を貫通することなく、気泡内に位置した状態となる場合には、直線の両端部が位置している気泡も気泡数に含める。
そして、算出された平均弦長tに基づいて次式により気泡径を算出できる。
平均気泡径(μm)D=t×1000/0.616
更に、撮影した画像の任意の5箇所において上述と同様の要領で平均気泡径を算出し、これらの平均気泡径の相加平均値を発泡成形体の気泡径とする。
(Average bubble diameter)
The average cell diameter is measured according to the test method of ASTM D2842-69. Specifically, the side wall portion of the foamed molded product is cut in the vertical direction, and the cut surface is photographed with a scanning electron microscope (trade name “JSM-6360LV” manufactured by JOEL) magnified 100 times.
Next, the photographed image is printed on A4 paper, a straight line with a length of 60 mm is drawn at an arbitrary position, and the average chord length (t) of the bubbles is calculated from the number of bubbles existing on the straight line by the following formula. To do.
Average string length t = 60 / (number of bubbles × photo magnification)
When drawing a straight line, the straight line should be penetrated as much as possible without making point contact with the bubbles. Also, if some of the bubbles come into point contact with a straight line, this bubble is included in the number of bubbles, and if both ends of the straight line are located in the bubble without penetrating the bubbles Includes the bubbles in which both ends of the straight line are located in the number of bubbles.
And based on the calculated average chord length t, the bubble diameter can be calculated by the following equation.
Average bubble diameter (μm) D = t × 1000 / 0.616
Furthermore, the average cell diameter is calculated in the same manner as described above at any five locations in the photographed image, and the arithmetic average value of these average cell diameters is taken as the cell diameter of the foam molded article.

(成形サイクル)
成形機起動から、金型内への発泡性ポリスチレン系粒子の充填工程、加熱工程及び冷却工程を経て、発泡成形体の面圧が0.003MPaとなって型開きするまでの時間を成形サイクルとして測定する。
(Molding cycle)
The time from the start of the molding machine through the filling process of the expandable polystyrene particles into the mold, the heating process and the cooling process until the surface pressure of the foamed molded product reaches 0.003 MPa and the mold opening is taken as the molding cycle. taking measurement.

(実施例1)
(種粒子の製造)
内容積が100リットルの攪拌機付オートクレーブに、リン酸三カルシウム120g、ドデシルベンゼンスルホン酸ナトリウム1g、ベンゾイルパーオキサイド(純度75重量%)140g、t−ブチルパーオキシ−2−エチルヘキシルモノカーボネート30g、イオン交換水40kg及びスチレンモノマー40kgを投入して100rpmの回転速度にて攪拌して懸濁液を作製した。
次に、攪拌羽を100rpmの回転速度にて撹拌しながら、オートクレーブ内の温度を90℃まで昇温した後、90℃で6時間に亘って保持した。しかる後、オートクレーブ内の温度を120℃まで昇温し、120℃で2時間に亘って保持した後、オートクレーブ内の温度を25℃まで冷却し、オートクレーブからポリスチレン粒子を取り出して洗浄及び脱水を繰り返した後に乾燥させて分級することによって、粒子径が0.5〜0.7mmでかつ重量平均分子量が30.2万のポリスチレン粒子を得た。
Example 1
(Manufacture of seed particles)
In an autoclave with a stirrer with an internal volume of 100 liters, 120 g of tricalcium phosphate, 1 g of sodium dodecylbenzenesulfonate, 140 g of benzoyl peroxide (purity 75% by weight), 30 g of t-butylperoxy-2-ethylhexyl monocarbonate, ion exchange 40 kg of water and 40 kg of styrene monomer were added and stirred at a rotation speed of 100 rpm to prepare a suspension.
Next, the temperature in the autoclave was raised to 90 ° C. while stirring the stirring blade at a rotation speed of 100 rpm, and then held at 90 ° C. for 6 hours. After that, the temperature in the autoclave is raised to 120 ° C. and held at 120 ° C. for 2 hours, then the temperature in the autoclave is cooled to 25 ° C., polystyrene particles are taken out from the autoclave, and washing and dehydration are repeated. After drying and classification, polystyrene particles having a particle diameter of 0.5 to 0.7 mm and a weight average molecular weight of 302,000 were obtained.

(発泡性ポリスチレン系樹脂粒子の製造)
内容積が100リットルの別の攪拌機付オートクレーブに、上記ポリスチレン粒子11kg、蒸留水30kg、ピロリン酸マグネシウム100g及びドデシルベンゼンスルホン酸ナトリウム6gを入れて攪拌して懸濁させた。
しかる後、予め用意した蒸留水6kgにピロリン酸マグネシウム20g及びドデシルベンゼンスルホン酸ナトリウム2gを分散させてなる分散液に、重合開始剤として純度75重量%のベンゾイルパーオキサイド130g及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネート10g、ジステアリル3,3-チオジプロピオネート2gをスチレンモノマー5kgに溶解した上で添加し、ホモミキサーによって均一に攪拌して懸濁液を作製し、この懸濁液を75℃に保持した上記オートクレーブ内に供給した。
(Manufacture of expandable polystyrene resin particles)
In another autoclave with a stirrer having an internal volume of 100 liters, 11 kg of the polystyrene particles, 30 kg of distilled water, 100 g of magnesium pyrophosphate and 6 g of sodium dodecylbenzenesulfonate were stirred and suspended.
Thereafter, in a dispersion prepared by dispersing 20 g of magnesium pyrophosphate and 2 g of sodium dodecylbenzenesulfonate in 6 kg of prepared distilled water, 130 g of benzoyl peroxide having a purity of 75% by weight and t-butylperoxy- 10 g of 2-ethylhexyl monocarbonate and 2 g of distearyl 3,3-thiodipropionate are dissolved in 5 kg of styrene monomer and added, and stirred uniformly with a homomixer to prepare a suspension. It supplied in the said autoclave hold | maintained at 75 degreeC.

オートクレーブ内の懸濁液を撹拌しながら75℃で1時間に亘って保持し、ポリスチレン樹脂粒子に、スチレンモノマー、ベンゾイルパーオキサイド及びt−ブチルパーオキシ−2−エチルヘキシルモノカーボネートを吸収させた後、オートクレーブ内にスチレンモノマー28kgを9333g/hrの速度で連続的に3.0時間供給すると共に、スチレンモノマーの供給終了時に懸濁液が108℃となるようにオートクレーブ内を連続的に昇温した。続いて、オートクレーブ内を120℃まで昇温して30分に亘って保持した。
一方、蒸留水2kgにピロリン酸マグネシウム13g及びドデシルベゼンスルホン酸ナトリウム0.8gを加えてなる分散液に、発泡助剤としてシクロヘキサン880gを加えた上でホモミキサーによって均一に攪拌して懸濁液を作製し、この懸濁液を上記オートクレーブ内に圧入した。
After maintaining the suspension in the autoclave at 75 ° C. for 1 hour with stirring, the polystyrene resin particles were allowed to absorb styrene monomer, benzoyl peroxide and t-butylperoxy-2-ethylhexyl monocarbonate, 28 kg of styrene monomer was continuously supplied into the autoclave at a rate of 9333 g / hr for 3.0 hours, and the temperature in the autoclave was continuously increased so that the suspension became 108 ° C. when the supply of styrene monomer was completed. Subsequently, the inside of the autoclave was heated to 120 ° C. and held for 30 minutes.
On the other hand, after adding 880 g of cyclohexane as a foaming aid to a dispersion obtained by adding 13 g of magnesium pyrophosphate and 0.8 g of sodium dodecylbezenesulfonate to 2 kg of distilled water, the suspension was stirred uniformly with a homomixer. The suspension was press-fitted into the autoclave.

しかる後、オートクレーブ内を100℃まで冷却した上で、オートクレーブ内に、発泡剤としてイソブタン1720g、ノルマルブタン1140gを圧入して、オートクレーブ内を100℃で3時間に亘って保持した後、オートクレーブ内を20℃まで冷却して発泡性ポリスチレン粒子を取り出して洗浄及び脱水をした後に乾燥させた。
更に、発泡性ポリスチレン粒子をその発泡後の気泡径が完全に安定するまで15℃で3日間に亘って熟成させて、平均粒子径1.0mmの発泡性ポリスチレン樹脂粒子を得た(重量平均分子量31.2万)。次に、得られた発泡性ポリスチレン樹脂粒子の表面を、表面処理剤としての、ステアリン酸亜鉛0.1重量%、ヒドロキシステアリン酸トリグリセライド0.05重量%、ステアリン酸モノグリセライド0.05重量%で被覆することで、表面処理剤で被覆された発泡性粒子を得た。
得られた被覆された発泡性粒子を、予備発泡した後に20℃で24時間熟成し、予備発泡粒子を得た。
Thereafter, the inside of the autoclave is cooled to 100 ° C., 1720 g of isobutane and 1140 g of normal butane are pressed into the autoclave, and the inside of the autoclave is held at 100 ° C. for 3 hours. After cooling to 20 ° C., the expandable polystyrene particles were taken out, washed and dehydrated, and then dried.
Further, the expandable polystyrene particles were aged at 15 ° C. for 3 days until the bubble diameter after the foaming was completely stabilized to obtain expandable polystyrene resin particles having an average particle diameter of 1.0 mm (weight average molecular weight). (312,000). Next, the surface of the obtained expandable polystyrene resin particles is coated with 0.1% by weight of zinc stearate, 0.05% by weight of hydroxystearic acid triglyceride, and 0.05% by weight of monoglyceride stearate as a surface treatment agent. As a result, expandable particles coated with the surface treatment agent were obtained.
The obtained coated expandable particles were pre-expanded and then aged at 20 ° C. for 24 hours to obtain pre-expanded particles.

(発泡成形体の製造)
面圧計が取り付けられた320mm×540mm×高さ170mmの箱形状のキャビティを有する成形型を備えた発泡ビーズ自動成形機(積水工機製作所社製 商品名「エース11型」)のキャビティ内に予備発泡粒子を充填し、0.07MPaの蒸気圧で20秒間加熱成形を行った。次に、金型のキャビティ内の発泡成形体を15秒間水冷した後、減圧下にて0.003MPaまで放冷して金型から樹脂容器を取り出した後、30℃恒温室で24時間乾燥して、側壁肉厚20mm、発泡倍数65倍の容器状の発泡成形体を得た。
(Manufacture of foam moldings)
Spare in the cavity of a foam bead automatic molding machine (trade name “ACE 11 Model” manufactured by Sekisui Koki Co., Ltd.) equipped with a mold having a box-shaped cavity of 320 mm × 540 mm × height 170 mm to which a surface pressure gauge is attached. The foamed particles were filled and thermoformed at a vapor pressure of 0.07 MPa for 20 seconds. Next, the foamed molded body in the cavity of the mold was water-cooled for 15 seconds, then allowed to cool to 0.003 MPa under reduced pressure, taken out of the resin container from the mold, and then dried in a constant temperature room at 30 ° C. for 24 hours. Thus, a container-like foamed molded article having a wall thickness of 20 mm and a foaming factor of 65 times was obtained.

(実施例2)
種粒子の分級後の粒子径を0.4〜0.6mmとして発泡性ポリスチレン粒子の平均粒子径を0.9mmとしたこと以外は実施例1と同様に発泡成形体を得た。
(実施例3)
発泡剤としてのイソブタンを2110g、ノルマルブタンを570gとしたこと以外は実施例1と同様に発泡成形体を得た。
(Example 2)
A foam molded article was obtained in the same manner as in Example 1 except that the particle diameter after classification of the seed particles was 0.4 to 0.6 mm and the average particle diameter of the expandable polystyrene particles was 0.9 mm.
(Example 3)
A foamed molded article was obtained in the same manner as in Example 1 except that 2110 g of isobutane as a foaming agent and 570 g of normal butane were used.

(実施例4)
発泡剤としてのイソブタンを2290g、ノルマルブタンを1410gとしたこと以外は実施例1と同様に発泡成形体を得た。
(実施例5)
発泡剤としてのイソブタンを1320g、ノルマルブタンを1320gとしたこと以外は実施例2と同様に発泡成形体を得た。
Example 4
A foamed molded article was obtained in the same manner as in Example 1 except that 2290 g of isobutane as a foaming agent and 1410 g of normal butane were used.
(Example 5)
A foamed molded article was obtained in the same manner as in Example 2 except that 1320 g of isobutane as a foaming agent and 1320 g of normal butane were used.

(実施例6)
発泡剤としてのイソブタンを2640g、ノルマルブタンを880gとしたこと以外は実施例1と同様に発泡成形体を得た。
(実施例7)
発泡倍数を75倍としたこと以外は、実施例1と同様に発泡成形体を得た。
(Example 6)
A foamed molded article was obtained in the same manner as in Example 1 except that 2640 g of isobutane as a foaming agent and 880 g of normal butane were used.
(Example 7)
A foamed molded article was obtained in the same manner as in Example 1 except that the expansion ratio was 75 times.

(実施例8)
発泡性ポリスチレン系樹脂粒子の製造時において、ジステアリル3,3-チオジプロピオネートを1.6gに変えたこと以外は実施例1と同様に発泡成形体を得た。
(実施例9)
発泡ビーズ自動成形機を、350mm×580mm、高さ260mmの箱形状のキャビティを有する成形型を備えた発泡ビーズ自動成形機(積水工機製作所社製 商品名「エース30型」)に変えたこと以外は実施例1と同様に成形することで側壁肉厚22mmの発泡成形体を得た。
(Example 8)
A foamed molded article was obtained in the same manner as in Example 1 except that distearyl 3,3-thiodipropionate was changed to 1.6 g during the production of the expandable polystyrene resin particles.
Example 9
The automatic foam bead forming machine has been changed to an automatic foam bead forming machine (trade name “Ace 30” manufactured by Sekisui Koki Co., Ltd.) equipped with a mold having a box-shaped cavity of 350 mm × 580 mm and a height of 260 mm. Except for the above, a foam molded article having a side wall thickness of 22 mm was obtained by molding in the same manner as in Example 1.

(比較例1)
発泡剤としてのイソブタンを1980g、ノルマルブタンを4620gとしたこと以外は実施例1と同様に発泡成形体を得た。
(比較例2)
種粒子の分級後の粒子径を0.4〜0.6mmとして発泡性ポリスチレン粒子の平均粒子径を0.9mmとしたこと以外は比較例1と同様に発泡成形体を得た。
(Comparative Example 1)
A foam molded article was obtained in the same manner as in Example 1 except that 1980 g of isobutane as a foaming agent and 4620 g of normal butane were used.
(Comparative Example 2)
A foamed molded article was obtained in the same manner as in Comparative Example 1 except that the particle diameter after classification of the seed particles was 0.4 to 0.6 mm and the average particle diameter of the expandable polystyrene particles was 0.9 mm.

(比較例3)
種粒子の分級後の粒子径を0.3〜0.5mmとして発泡性ポリスチレン粒子の平均粒子径を0.7mmとし、発泡剤としてのイソブタンを790g、ノルマルブタンを1850gとしたこと以外は比較例1と同様に発泡成形体を得た。
(比較例4)
発泡剤としてのイソブタンを3170g、ノルマルブタンを350gとしたこと以外は実施例1と同様に発泡成形体を得た。
実施例及び比較例から得られた結果を表1に示す。
(Comparative Example 3)
Comparative example except that the particle diameter after classification of the seed particles is 0.3 to 0.5 mm, the average particle diameter of the expandable polystyrene particles is 0.7 mm, isobutane as a blowing agent is 790 g, and normal butane is 1850 g. A foamed molded product was obtained in the same manner as in Example 1.
(Comparative Example 4)
A foamed molded product was obtained in the same manner as in Example 1 except that 3170 g of isobutane as a foaming agent and 350 g of normal butane were used.
The results obtained from the examples and comparative examples are shown in Table 1.

実施例から、イソブタン量が特定の範囲であれば、表面硬度、引張強度、感触及び外観の向上した発泡成形体を短時間で得られることが分かる。
比較例1〜3から、表層のイソブタン量Yが、内部のイソブタン量X×0.6以下の場合、表面硬度、引張強度及び感触の劣った発泡成形体が得られることが分かる。
比較例3から、表層のイソブタン量Yが0.5重量%未満の場合、表面硬度、引張強度及び感触の劣った発泡成形体が得られることが分かる。
比較例4から、表層のイソブタン量Yが2.5重量%を超える場合、引張強度及び外観の劣った発泡成形体が得られることが分かる。
From the examples, it can be seen that when the amount of isobutane is in a specific range, a foamed molded article having improved surface hardness, tensile strength, feel and appearance can be obtained in a short time.
From Comparative Examples 1 to 3, it can be seen that when the surface isobutane amount Y is equal to or less than the internal isobutane amount X × 0.6, a foamed molded article having inferior surface hardness, tensile strength and feel can be obtained.
It can be seen from Comparative Example 3 that when the amount of isobutane Y in the surface layer is less than 0.5% by weight, a foamed molded article having inferior surface hardness, tensile strength and feel can be obtained.
From Comparative Example 4, it can be seen that when the amount of isobutane Y in the surface layer exceeds 2.5% by weight, a foamed molded article having inferior tensile strength and appearance can be obtained.

Claims (3)

ポリスチレン系発泡粒子の融着体から構成されるポリスチレン系発泡成形体であって、
前記発泡成形体が、その内部のイソブタン量をX重量%、その表層のイソブタン量をY重量%とした場合、下記式
0.6X≦Y<1.0X (式1)
0.5≦Y≦2.5 (式2)
を満たすようにイソブタンを含むことを特徴とするポリスチレン系発泡成形体。
A polystyrene-based foamed molded article composed of a fused product of polystyrene-based expanded particles,
When the foamed molded product has an isobutane content of X wt% inside and an isobutane content of the surface layer defined as Y wt%, the following formula 0.6X ≦ Y <1.0X (formula 1)
0.5 ≦ Y ≦ 2.5 (Formula 2)
A polystyrene-based foam molded article comprising isobutane so as to satisfy
前記ポリスチレン系発泡成形体が、上面に開口部と、下面に底部と、前記開口部の周囲に位置しかつ前記底部とつながる側壁部とを備えた容器であり、前記側壁部が15〜30mmの厚さと150〜400mmの高さとを有する請求項1に記載のポリスチレン系発泡成形体。   The polystyrene-based foam molded body is a container having an opening on the upper surface, a bottom on the lower surface, and a side wall located around the opening and connected to the bottom, and the side wall is 15 to 30 mm. The polystyrene-based foam molded article according to claim 1, having a thickness and a height of 150 to 400 mm. 前記ポリスチレン系発泡成形体が、ビーズ法による型内発泡成形法により成形されてなる請求項1又は2に記載のポリスチレン系発泡成形体。   The polystyrene-based foam molded product according to claim 1 or 2, wherein the polystyrene-based foam molded product is formed by an in-mold foam molding method using a bead method.
JP2012062089A 2012-03-19 2012-03-19 Polystyrene-based foam-molded article Pending JP2013194125A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012062089A JP2013194125A (en) 2012-03-19 2012-03-19 Polystyrene-based foam-molded article

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012062089A JP2013194125A (en) 2012-03-19 2012-03-19 Polystyrene-based foam-molded article

Publications (1)

Publication Number Publication Date
JP2013194125A true JP2013194125A (en) 2013-09-30

Family

ID=49393484

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012062089A Pending JP2013194125A (en) 2012-03-19 2012-03-19 Polystyrene-based foam-molded article

Country Status (1)

Country Link
JP (1) JP2013194125A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122781A (en) * 1992-10-13 1994-05-06 Kanegafuchi Chem Ind Co Ltd Expandable styrenic resin particle and its production
JPH0940800A (en) * 1995-07-28 1997-02-10 Kanegafuchi Chem Ind Co Ltd Production of expandable polystyrene resin bead and expandable polystyrene resin bead
JPH09100366A (en) * 1995-10-03 1997-04-15 Mitsubishi Chem Basf Co Ltd Highly foamable styrene resin particle
JP2004131722A (en) * 2002-09-20 2004-04-30 Sekisui Plastics Co Ltd Expandable particle of styrene based resin and molded article of expanded styrene based resin
JP2007099790A (en) * 2005-09-30 2007-04-19 Jsp Corp Method for producing colored expandable styrene-based resin particle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06122781A (en) * 1992-10-13 1994-05-06 Kanegafuchi Chem Ind Co Ltd Expandable styrenic resin particle and its production
JPH0940800A (en) * 1995-07-28 1997-02-10 Kanegafuchi Chem Ind Co Ltd Production of expandable polystyrene resin bead and expandable polystyrene resin bead
JPH09100366A (en) * 1995-10-03 1997-04-15 Mitsubishi Chem Basf Co Ltd Highly foamable styrene resin particle
JP2004131722A (en) * 2002-09-20 2004-04-30 Sekisui Plastics Co Ltd Expandable particle of styrene based resin and molded article of expanded styrene based resin
JP2007099790A (en) * 2005-09-30 2007-04-19 Jsp Corp Method for producing colored expandable styrene-based resin particle

Similar Documents

Publication Publication Date Title
JP4837407B2 (en) Expandable polystyrene resin particles, polystyrene resin foam particles, polystyrene resin foam moldings, polystyrene resin foam slices, and methods for producing the same
JP2002284917A (en) Expandable styrene-based resin particle
JP5447573B2 (en) Modified resin foam particles and method for producing the same
JP2011068821A (en) Expandable composite resin particle, preliminary foamed particle, method for producing these, and foamed molded article
JP5478140B2 (en) Expandable polystyrene resin particles for low density foam molding and production method thereof, pre-expanded particles of low density polystyrene resin and low density polystyrene resin foam molded article
JP6407077B2 (en) Polystyrene foamed molded product, expandable particles, pre-expanded particles
JP6081266B2 (en) Foam molding
JP6405781B2 (en) Expandable styrene resin particles and method for producing the same
JP2013194125A (en) Polystyrene-based foam-molded article
JP2012153826A (en) Polystyrene resin foam, foaming polystyrene resin particle, and method for manufacturing the polystyrene resin foam and the foaming polystyrene resin particle
JP2014070150A (en) Polystyrene-based foamed molding, production method thereof, and foamed resin-made container
JP2016121325A (en) Styrenic resin expanded molded body, manufacturing method therefor and use thereof
JP6343485B2 (en) Polystyrene foamed molded product and method for producing the same
JP2012188543A (en) Resin particle, foamable resin particle, method for producing the same, foamed particle and formed molding
JP6407078B2 (en) Foam molded body, expandable resin particles, pre-expanded particles
JP5965853B2 (en) Expandable styrenic resin particles, expanded particles and expanded molded articles
JP2018141087A (en) Method for producing foamed particle and method for producing foam molded body
JP4832716B2 (en) Small particle size styrenic expandable resin particles, expanded beads and molded products
JP6626730B2 (en) Method for producing colored expandable styrene resin particles
JP6679390B2 (en) Expandable styrene resin particles
JP2019156901A (en) Expandable styrene-based resin particle, pre-expanded particle, and method for producing expanded formed body
JP2012067215A (en) Styrene-based resin foam and method for producing foamable styrene-based resin particle
JP2012172015A (en) Foamable resin particle and foaming mold object
JP5216503B2 (en) Expandable styrene resin particles and method for producing the same
JP5552399B2 (en) Expandable polystyrene resin particles, process for producing the same, pre-expanded particles, and expanded molded body

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140806

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150409

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150414

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20151006