JP2013192905A - Biophotonic measuring apparatus - Google Patents
Biophotonic measuring apparatus Download PDFInfo
- Publication number
- JP2013192905A JP2013192905A JP2012066528A JP2012066528A JP2013192905A JP 2013192905 A JP2013192905 A JP 2013192905A JP 2012066528 A JP2012066528 A JP 2012066528A JP 2012066528 A JP2012066528 A JP 2012066528A JP 2013192905 A JP2013192905 A JP 2013192905A
- Authority
- JP
- Japan
- Prior art keywords
- signal
- event
- signals
- observation
- similarity
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000005259 measurement Methods 0.000 claims abstract description 27
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000001514 detection method Methods 0.000 claims description 8
- 238000011524 similarity measure Methods 0.000 claims 1
- 238000000034 method Methods 0.000 abstract description 37
- 238000004458 analytical method Methods 0.000 abstract description 10
- 239000000284 extract Substances 0.000 abstract description 4
- 230000007177 brain activity Effects 0.000 description 24
- 230000008859 change Effects 0.000 description 17
- 239000011159 matrix material Substances 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 9
- 230000006870 function Effects 0.000 description 6
- 210000004556 brain Anatomy 0.000 description 5
- 230000003287 optical effect Effects 0.000 description 5
- 230000008569 process Effects 0.000 description 4
- 230000004044 response Effects 0.000 description 4
- 238000000926 separation method Methods 0.000 description 4
- 238000012876 topography Methods 0.000 description 4
- 230000003925 brain function Effects 0.000 description 3
- 230000000004 hemodynamic effect Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 239000013307 optical fiber Substances 0.000 description 3
- 230000001360 synchronised effect Effects 0.000 description 3
- 230000001133 acceleration Effects 0.000 description 2
- 230000004913 activation Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000012880 independent component analysis Methods 0.000 description 2
- 238000007781 pre-processing Methods 0.000 description 2
- 238000000513 principal component analysis Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 230000003252 repetitive effect Effects 0.000 description 2
- 230000029058 respiratory gaseous exchange Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 230000002269 spontaneous effect Effects 0.000 description 2
- 238000012935 Averaging Methods 0.000 description 1
- 102000001554 Hemoglobins Human genes 0.000 description 1
- 108010054147 Hemoglobins Proteins 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000036772 blood pressure Effects 0.000 description 1
- 230000002490 cerebral effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 210000001652 frontal lobe Anatomy 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000015654 memory Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000006403 short-term memory Effects 0.000 description 1
- 230000008326 skin blood flow Effects 0.000 description 1
- 230000035900 sweating Effects 0.000 description 1
- 210000000857 visual cortex Anatomy 0.000 description 1
Landscapes
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
本発明は、特定の脳機能に関わる脳活動状態の変化を導出することを目的として設計された脳賦活課題(例えば脳の視覚野における物体の色を認識する機能を特に賦活するように設計された画像表示や,例えば脳の前頭葉における短期記憶に関連する機能を特に賦活させるように設計された記憶問題の呈示など)を被検体に呈示するという事象に対し,それに伴う被検体の状態変化(たとえば脳血行動態変化や皮膚血流変化,発汗に伴う皮膚状態変化,体の動きに伴う計測状態の変化など)を複数の観測点から観測することを,2回以上繰り返し行い、信号を取得した場合について、事象に対応した変化に重畳している、事象とは関係のない雑音信号を除去し、事象に対応した変化信号を高精度に取得するこの方法を実装した装置に関するものである。 The present invention is designed to activate a brain activation task (for example, a function for recognizing the color of an object in the visual cortex of the brain) designed for deriving a change in a brain activity state related to a specific brain function. Changes in the state of the subject (for example, the presentation of memory problems designed to activate functions related to short-term memory in the frontal lobe of the brain, for example). (For example, changes in cerebral hemodynamics, changes in skin blood flow, changes in skin condition due to sweating, changes in measurement state due to body movement, etc.) were observed twice or more times, and signals were acquired. For a device that implements this method to remove the noise signal that is not related to the event and superimposes the change signal corresponding to the event with high accuracy. It is.
または,観測者が能動的に被検体に対し課題を呈示していない場合であっても,被検体が自発的に繰り返し生じさせている生体変化,例えば呼吸や血圧の自律制御に関連した血行動態変化の揺らぎなど,を自発応答として繰り返し観測した場合に,特定の自発応答に伴う信号変化と,それ以外の信号変化とを高精度に分離する手法を実装した装置に関するものである。 Or even if the observer is not actively presenting a subject to the subject, the hemodynamics associated with the biological changes that the subject spontaneously and repeatedly causes, for example, autonomous control of respiration and blood pressure The present invention relates to a device that implements a technique for separating a signal change accompanying a specific spontaneous response and other signal changes with high accuracy when a fluctuation of the change is repeatedly observed as a spontaneous response.
一般に現実の計測では、ある事象に対する信号変化を観測する場合において,観測信号中に予測が困難な雑音成分が混入している。このような場合、従来は,事象の観測を繰り返し行い,得られた観測信号を加算平均することにより雑音成分の影響を低減するのが一般的であり,加算回数Nに対し,1/√Nで雑音成分の振幅を低減できるとされている。しかし,雑音成分の振幅が大きい場合に十分な効果を得るためには,繰り返し回数Nを多くする必要があり,すなわち観測時間が長時間化してしまうという問題がある。 In general, in actual measurement, when observing a signal change for a certain event, a noise component that is difficult to predict is mixed in the observed signal. In this case, conventionally, it is common to reduce the influence of noise components by repeating the observation of events and averaging the obtained observation signals. It is said that the amplitude of the noise component can be reduced. However, in order to obtain a sufficient effect when the amplitude of the noise component is large, it is necessary to increase the number of repetitions N, that is, the observation time becomes long.
非特許文献1に記載のように、目的信号や,混入している雑音成分の信号パターンが想定可能であり,それらが線形混合であると考えられる場合には,幾つかのモデル波形を設定し,それらに基づき観測波形を回帰解析により事象に関連した信号変化の大きさを推定する手法が一般的である。また、非特許文献2に記載の様に、想定される目的信号と,重畳する雑音信号の統計的な性質が異なるという仮定に基づき信号を分離する手法として,主成分解析や独立成分解析が一般的である。 As described in Non-Patent Document 1, when a target signal or a signal pattern of a mixed noise component can be assumed and they are considered to be linear mixture, several model waveforms are set. Based on these, a general method is to estimate the magnitude of the signal change related to the event by regression analysis of the observed waveform. As described in Non-Patent Document 2, principal component analysis and independent component analysis are generally used as methods for separating signals based on the assumption that the statistical characteristics of the assumed target signal and the superimposed noise signal are different. Is.
非特許文献1の、いくつかのモデル波形を設定する手法では、信号パターンの想定が不正確な場合は正しい結果が得られない。特に,予測不可能な雑音成分が混入している場合には回帰解析を用いることはできない。 In the method of setting several model waveforms in Non-Patent Document 1, a correct result cannot be obtained if the assumption of the signal pattern is incorrect. In particular, regression analysis cannot be used when unpredictable noise components are present.
また、非特許文献2の、主成分解析や独立成分解析の手法では分離後のそれぞれ成分に対して意味づけを行う必要があり,十分に客観的な意味づけが困難な場合もある。 Further, in the method of principal component analysis and independent component analysis of Non-Patent Document 2, it is necessary to make meanings for each component after separation, and it may be difficult to make objective meanings sufficiently.
そこで、ある事象に対する信号変化を繰り返し計測した雑音が混入している観測信号に対し,モデル波形を想定することなく,また,解析後の信号に対する意味づけをすることなく,ある事象に対する信号変化を効率的に抽出することが重要である。 Therefore, it is possible to change the signal change for an event without assuming a model waveform or making meaning for the analyzed signal with respect to the observed signal mixed with the noise that is measured repeatedly. It is important to extract efficiently.
被検体の複数の箇所に光を照射する複数の光照射部と、前記照射した光を、被検体を介して検出する複数の光検出部と、前記複数の光検出部が検出した複数の光信号を、演算する演算部とを備えた生体光計測装置において、被検体を2回以上繰り返し測定した信号について,前記演算部は、前記複数の検出部が検出した信号を混合する混合係数を、前記被検体を繰り返し測定した信号の間の類似度が最大となることを基準として導出する生体光計測装置を提供する。 A plurality of light irradiation units that irradiate light to a plurality of locations of the subject, a plurality of light detection units that detect the irradiated light through the subject, and a plurality of lights detected by the plurality of light detection units In a biological light measurement device including a calculation unit that calculates a signal, for a signal obtained by repeatedly measuring a subject twice or more, the calculation unit calculates a mixing coefficient for mixing the signals detected by the plurality of detection units, Provided is a biological light measurement device that is derived on the basis that the degree of similarity between signals obtained by repeatedly measuring the subject is maximized.
実験課題に同期して発生し信号に混入する雑音成分の分離・除去を可能にし、雑音の少ない信号を提供する。 It enables separation / removal of noise components generated in synchronization with the experimental task and mixed in the signal, and provides a signal with less noise.
実施例として具体的な構成図を図1に示す。生体光計測用のインターフェイス部(110)は、被験者の頭部の一部または全体に取り付ける。インターフェイス部(110)に連結した光ファイバー(111)により、光照射部(101)より波長が生体をある程度透過する波長の光が生体に照射され、インターフェイス部(110)に連結した光ファイバー(111)により、生体内を通過した光が、光検出部(102)でそれぞれの波長の光が検出され、この検出結果は記憶部(103)内に記録される。 A specific configuration diagram as an embodiment is shown in FIG. The biological light measurement interface unit (110) is attached to a part or the whole of the subject's head. By the optical fiber (111) connected to the interface unit (110), the light irradiation unit (101) irradiates the living body with light having a wavelength that transmits the living body to some extent, and the optical fiber (111) connected to the interface unit (110). The light having passed through the living body is detected by the light detection unit (102), and the detection result is recorded in the storage unit (103).
生体に接触する光ファイバーは複数であり,すなわち観測点は複数であるものとする。ここで、照射する光の波長は他のものでもよい。用いる波長の組み合わせは3つ以上でもよい。また、得られた光信号に対し、何らかの演算処理,例えばヘモグロビン濃度変化への変換を行ったものを以降の処理に用いてもよい。 It is assumed that there are a plurality of optical fibers in contact with the living body, that is, a plurality of observation points. Here, the wavelength of the irradiated light may be other. Three or more combinations of wavelengths may be used. Moreover, you may use what performed some arithmetic processing, for example, the conversion to a hemoglobin density | concentration change, with respect to the obtained optical signal for subsequent processes.
以上により得られる複数観測点からの信号を計測信号とする。計測中は,被験者に対し,特定の脳機能を活発にさせるような実験課題を呈示する。実験課題の呈示は繰り返し行われる。この実験課題の呈示という事象のタイミングの情報は計測信号として記憶部(103)に記録される。 Signals from a plurality of observation points obtained as described above are used as measurement signals. During the measurement, subjects are presented with experimental tasks that activate specific brain functions. The presentation of the experimental task is repeated. Information on the timing of the event of presenting the experiment task is recorded in the storage unit (103) as a measurement signal.
次に,演算部(121)では,観測信号と事象のタイミング情報とから,繰り返し呈示された事象に関連して再現性高く生じる信号変化(事象関連成分)を抽出する。 Next, the calculation unit (121) extracts a signal change (event related component) that occurs with high reproducibility in relation to the repeatedly presented event from the observation signal and the event timing information.
本実施例では,抽出の手法として,本発明における新規の手法である相関最大化法を用いる。以下にその詳細を説明する。 In this embodiment, the correlation maximization method, which is a novel method in the present invention, is used as the extraction method. Details will be described below.
・相関最大化法
解析手法を示すために,計算機上で擬似的に生成した信号を図2に示す。(201)〜(206)の信号波形は,被検体における状態変化に対応する信号変化を模擬したものであり,特に,光トポグラフィ計測を想定したもので,各信号波形はそれぞれ,(201)は事象によって引き起こされた脳活動による信号変化(ただし,事象は繰り返し5回呈示されたものとし,呈示は(207)〜(211)の図中の灰色領域の期間に渡り行われたものとする),(202)は自律的な血行動態制御に関連する低周波揺らぎ雑音成分,(203)は心拍動によって引き起こされる脈波雑音成分,(204)は光トポグラフィ信号に見られることの多いドリフト雑音成分,(205)は比較的小さな体の動きにより引き起こされる体動雑音成分,(206)は比較的大きな体の動きにより引き起こされる体動雑音成分を模擬したものである。これら(201)〜(206)を原信号と呼ぶ。
-In order to show the correlation maximization analysis method, Fig. 2 shows a pseudo-generated signal on a computer. The signal waveforms in (201) to (206) simulate signal changes corresponding to changes in the state of the subject. In particular, the signal waveforms are assumed to be optical topography measurements. Signal change due to brain activity caused by event (however, event was assumed to have been repeatedly presented 5 times, and the presentation was made over the period of gray area in the figures (207) to (211)) , (202) is a low-frequency fluctuation noise component related to autonomous hemodynamic control, (203) is a pulse wave noise component caused by heartbeat, and (204) is a drift noise component often found in optical topography signals , (205) is a body motion noise component caused by a relatively small body motion, and (206) is a simulation of a body motion noise component caused by a relatively large body motion. These (201) to (206) are called original signals.
また,脳活動に関連した成分を模擬した信号波形(201)を模擬脳活動信号,様々な雑音成分を模擬した信号波形(202)〜(206)を雑音信号1〜5と呼ぶ。実際の計測では,複数の異なる頭部の観測点において,これらの原信号が混合されて一つの信号として観測される。そこで,観測信号を模擬する信号波形として原信号をランダムな割合で混合することで観測信号を模擬することが可能である。 Also, a signal waveform (201) that simulates a component related to brain activity is called a simulated brain activity signal, and signal waveforms (202) to (206) that simulate various noise components are called noise signals 1 to 5. In actual measurement, these original signals are mixed and observed as one signal at observation points on different heads. Therefore, it is possible to simulate the observation signal by mixing the original signal at a random ratio as a signal waveform that simulates the observation signal.
本例では,観測点を6か所であると想定し,それぞれにランダムな混合割合で6個の原信号を混合し,さらに観測の際に混入すると考えられる白色雑音を混合した信号を生成した。擬似的な観測信号を図3に示す(301〜306)。 In this example, assuming that there are 6 observation points, each of the 6 original signals was mixed at a random mixing ratio, and a signal was generated that was mixed with white noise that could be mixed during the observation. . A pseudo observation signal is shown in FIG. 3 (301 to 306).
実際の脳機能計測を想定した場合には,模擬観測信号から模擬脳活動信号を抽出することが目的となる。上記の模擬観測信号に関しては,模擬観測信号を生成する際に設定した模擬原信号の混合係数列が既知である場合には,連立方程式によって6個の模擬観測信号から模擬原信号を導出することは原理的に可能である。 When actual brain function measurement is assumed, the objective is to extract simulated brain activity signals from simulated observation signals. For the above simulated observation signal, if the mixed coefficient sequence of the simulated original signal set when generating the simulated observation signal is known, the simulated original signal should be derived from the six simulated observation signals by simultaneous equations. Is possible in principle.
しかし,実際の観測信号の場合には混合係数列は未知である。ここでは,複数の観測点から得られた観測信号(ここでは模擬観測信号)に対し,最適な係数を乗じ,和をとることによって脳活動信号(ここでは模擬脳活動信号)が導出可能であると仮定する。この仮定に基づけば,模擬脳活動信号(201)をy(t)とすると,y(t)は模擬観測信号(101)〜(106)をx1(t)〜x6(t)とし,ある係数列wを用いることにより, However, in the case of an actual observation signal, the mixing coefficient sequence is unknown. Here, the brain activity signal (here, simulated brain activity signal) can be derived by multiplying the observation signal obtained from multiple observation points (here, simulated observation signal) by the optimal coefficient and taking the sum. Assume that Based on this assumption, if the simulated brain activity signal (201) is y (t), y (t) is the simulated observation signals (101) to (106) x 1 (t) to x 6 (t) By using a certain coefficient sequence w,
と表わされることになる。 Will be expressed.
ここで,添え字iは観測点の番号を意味する。この様に導出されるy(t)が真の模擬脳活動信号と等しいものであるならば,事象発生期間(207)〜(211)の各時刻を含むように切り出した5つの波形部分のパターンは同一のものとなるはずである。 Here, the subscript i means the observation point number. If y (t) derived in this way is equal to the true simulated brain activity signal, the pattern of the five waveform parts cut out to include each time of the event occurrence period (207) to (211) Should be the same.
すなわち5つの波形部分の任意の2つの波形部分間の相関係数は1になるはずである。これを式で表わすと,ひとつの事象の発生期間での波形部分を,事象の前後の任意の時間(例えば,事象前5秒と事象後10秒など)も含む時刻をt〜t+Tとすると,任意のk番目の事象と任意のl番目の事象に対応する信号変化の相関係数は That is, the correlation coefficient between any two waveform portions of the five waveform portions should be 1. Expressing this as an expression, the time including the arbitrary time before and after the event (for example, 5 seconds before the event and 10 seconds after the event, etc.) Then, the correlation coefficient of the signal change corresponding to any kth event and any lth event is
と定義される。 Is defined.
ここで,添え字のi, j は観測点番号を,Corr(A,B)はA,B間の相関係数を,E[]は期待値を意味する。この式は,統計学などの分野で一般に用いられる相関係数を導出するための式であり,k番目の事象に対応する観測信号波形とl番目の事象に対応する観測信号波形との類似度を示す指標であり,波形が最も類似している場合は1を,最も類似していない場合は-1を示す指標である。 Here, the subscripts i and j are observation point numbers, Corr (A, B) is the correlation coefficient between A and B, and E [] is the expected value. This equation is used to derive a correlation coefficient generally used in the field of statistics and the like, and the similarity between the observed signal waveform corresponding to the kth event and the observed signal waveform corresponding to the lth event. This is an index indicating 1 when the waveforms are most similar and -1 when the waveforms are not most similar.
(2)式では2つの事象に対応する信号波形の類似度を判断するための指標が得られる。そこで,この式をさらに拡張し,5回の事象,あるいは数式としては任意のK回の事象,に対応する信号波形の類似度を総合的に判断するための指標を,2つの事象の信号変化の相関係数を,5回(K回)の事象から2つの事象を選択するという可能な組み合わせに対し総当たりで算出した和とする。これを式であらわすと, In the equation (2), an index for determining the similarity between signal waveforms corresponding to two events is obtained. Therefore, this equation is further expanded to provide an index for comprehensively determining the similarity of the signal waveform corresponding to five events, or arbitrary K events as a mathematical formula, and the signal change of two events. Is the sum calculated for the possible combinations of selecting two events from five (K) events. This can be expressed as an expression:
となる。これを相関和と定義する。 It becomes. This is defined as a correlation sum.
したがって,式(1)で算出されるy(t)が模擬脳活動信号(201)と等しいものであるならば,式(3)から導出される相関和は,5回の事象に対して導出した場合の最大値である5になるはずであり,逆に模擬脳活動信号と異なるものであれば5よりも小さな値になってしまう。そこで,相関和が最大となるようなwを求めることにより,繰り返し事象に対応して再現される目的信号,すなわち模擬脳活動信号を抽出することが可能であると考えられる。 Therefore, if y (t) calculated by Equation (1) is equal to the simulated brain activity signal (201), the correlation sum derived from Equation (3) is derived for five events. If it is different from the simulated brain activity signal, it should be less than 5. Therefore, it is considered that by obtaining w that maximizes the correlation sum, it is possible to extract a target signal that is reproduced in response to a repetitive event, that is, a simulated brain activity signal.
ただし,最大化計算における発散を防ぐため,境界条件として, However, to prevent divergence in the maximization calculation, the boundary condition is
を同時に満たすものとする。 At the same time.
実際の計算は一般的な最適化問題と考えることが可能である。例えば,シンプレックス法などがある。ただし,局所的な極値を解として与えるなどの問題もあるため,開発されているより高度な手法を用いることが望ましい。 The actual calculation can be considered as a general optimization problem. For example, there is a simplex method. However, since there are problems such as giving local extreme values as solutions, it is desirable to use a more advanced method that has been developed.
相関最大化法を用いて,図2に示す観測信号例を分離した結果の例を図5に示す。図1の模擬脳活動信号(101)に対応する成分が精度よく抽出されている。 Fig. 5 shows an example of the result of separating the observed signal example shown in Fig. 2 using the correlation maximization method. Components corresponding to the simulated brain activity signal (101) in FIG. 1 are extracted with high accuracy.
以上が相関最大化法の説明である。本実施例では計測信号と繰り返し呈示された事象のタイミングとは記憶部(103)に保持されており,演算部(121)ではそれらを用い,式(3)に定義される相関和を導出し,事象に同期した信号成分を最もよく抽出するための,最適な複数計測点の混合係数列を導出する。そして,表示部(122)では,導出された波形を表示する。表示部では,実際の観測波形と本手法により導出した波形とを明示的に区別して表示する。画面構成例を図4に示す。 The above is the description of the correlation maximization method. In this embodiment, the measurement signal and the timing of the repeatedly presented event are held in the storage unit (103), and the calculation unit (121) uses them to derive the correlation sum defined in equation (3). Deriving an optimal mixture coefficient sequence of multiple measurement points to best extract the signal components synchronized with the event. Then, the display unit (122) displays the derived waveform. In the display section, the actual observed waveform and the waveform derived by this method are explicitly distinguished and displayed. An example of the screen configuration is shown in FIG.
演算部では必要に応じて観測信号に対する前処理をおこなう。例えば,高周波雑音が大きい場合には平滑化処理などを行い,また低周波の大きな変動がある場合にはハイパスフィルタなどの前処理により,ある程度,信号を処理する。 The arithmetic unit performs preprocessing on the observation signal as necessary. For example, when high frequency noise is large, smoothing processing is performed, and when there is a large variation in low frequency, the signal is processed to some extent by preprocessing such as a high-pass filter.
しかし,本発明である相関最大化法では,高周波雑音や低周波の変動がある場合であっても,適切に事象関連成分を抽出することが可能であるので,これらの前処理は必須ではない。 However, in the correlation maximization method according to the present invention, it is possible to appropriately extract event-related components even when there are high-frequency noise and low-frequency fluctuations. .
表示では,脳活動信号に対応する固有ベクトルを各チャンネルの位置に対応させたマップとして表示しても良い。模擬脳活動信号が各チャンネルに含まれる程度を最小二乗法などにより観測信号から導出し,マップとして表示しても良い。 In the display, the eigenvector corresponding to the brain activity signal may be displayed as a map corresponding to the position of each channel. The degree to which the simulated brain activity signal is included in each channel may be derived from the observed signal by the least square method or the like and displayed as a map.
実施例1では最適な混合係数を導出する手段として相関最大化法を用いが,本実施例では相関最大化法の代わりに本発明で提案する共分散最大化法を用いる。以下に共分散最大化法を説明する。 In the first embodiment, the correlation maximization method is used as a means for deriving the optimum mixing coefficient. In this embodiment, the covariance maximization method proposed in the present invention is used instead of the correlation maximization method. The covariance maximization method will be described below.
相関最大化法では,評価関数として相関係数を用いた。本実施例では,共分散を評価関数として用いる。事象kと事象lに対応する信号変化の共分散は In the correlation maximization method, a correlation coefficient is used as an evaluation function. In this embodiment, covariance is used as an evaluation function. The covariance of the signal change corresponding to event k and event l is
と定義され,評価関数となる,繰り返し事象の総当たりの共分散の和は, The sum of the covariances of brute force events that is defined as
と表わされる。ここで, It is expressed as here,
である。ただし,i, jは計測点番号を意味する。この評価関数を共分散和とよぶ。この共分散和が最大となるような混合係数wを求めることにより,繰り返し事象に対応して再現される模擬脳活動信号を抽出することが可能であると考える。ただし,最大化計算における発散を防ぐため,境界条件として,実施例1と同様とすると,この最大化は以下の式で表わされる。 It is. However, i and j mean measurement point numbers. This evaluation function is called a covariance sum. By obtaining the mixing coefficient w that maximizes this covariance sum, it is possible to extract a simulated brain activity signal that is reproduced in response to repeated events. However, in order to prevent divergence in the maximization calculation, assuming that the boundary condition is the same as in the first embodiment, this maximization is expressed by the following equation.
これはRayleigh-Ritz定理から From the Rayleigh-Ritz theorem
の固有ベクトルがwとなる。このとき,固有値は各固有ベクトルにより合成されるyの妥当性を示す指標となる。 The eigenvector of is w. At this time, the eigenvalue is an index indicating the validity of y synthesized by each eigenvector.
共分散最大化法を用いて,図3に示す模擬観測信号を分離した結果の例を図6に示す。図1の模擬脳活動信号(101)に対応する成分が成分(601)として精度よく抽出されている。 Figure 6 shows an example of the result of separating the simulated observation signal shown in Fig. 3 using the covariance maximization method. The component corresponding to the simulated brain activity signal (101) in FIG. 1 is accurately extracted as the component (601).
実施例1,2では,事象の呈示期間に関する情報のみによって,観測信号から脳活動信号を抽出する例であった。本実施例では,さらに雑音の分離を高精度に行うための手法を示す。すなわち,雑音信号に関係する時系列信号を観測信号と同時に観測していた場合に,それらの雑音に関係した信号を利用し,雑音の分離の精度を上げるものである。 Examples 1 and 2 are examples in which brain activity signals are extracted from observation signals based only on information related to the event presentation period. In the present embodiment, a technique for performing noise separation with high accuracy will be described. That is, when a time-series signal related to a noise signal is observed at the same time as the observation signal, the signal related to the noise is used to improve the noise separation accuracy.
実際の計測において,事象とは無関係ではあるが,観測信号に雑音として重畳している信号成分,例えば体の動きに伴うアーチファクト,に関係する観測信号,例えば体の動きの移動量,加速度などの時間変化,を観測信号と同時に計測しており,これらの情報が既知である場合,相関最大化法や共分散最大化法で最適な混合係数を導出するための演算に用いる観測信号に,これらの信号をあらたな観測点からの観測信号として加えることによって,より効果的にアーチファクトの除去が可能となる。 In actual measurement, although it is not related to the event, the observation signal related to the signal component superimposed as noise on the observation signal, for example, the artifact accompanying the movement of the body, such as the movement amount of the body movement, acceleration, etc. If the time change is measured at the same time as the observation signal and the information is known, the observation signal used in the calculation to derive the optimal mixing coefficient by the correlation maximization method or the covariance maximization method By adding this signal as an observation signal from a new observation point, artifacts can be removed more effectively.
図7に例を示す。図7−(a)は脳活動信号(701)と、観測信号に重畳する例えば呼吸を模擬した雑音信号(702)と,体動による雑音を模擬した雑音信号(703)を示す。図7-(b)の(704)〜(706)は図7-(a)の3つの信号(701〜703)を任意のランダムな係数を掛け合わせた後に足し合わせ,さらに白色雑音を付加した信号である。そして(707)は,体の動きに伴う加速度変化を観測した信号を模擬した,体動雑音信号(703)に関連した既知の信号成分を模擬したものである。 An example is shown in FIG. FIG. 7- (a) shows a brain activity signal (701), a noise signal (702) simulating, for example, respiration superimposed on the observation signal, and a noise signal (703) simulating noise due to body movement. (704) to (706) in Fig. 7- (b) add the three signals (701 to 703) in Fig. 7- (a) after multiplying them by an arbitrary random coefficient, and add white noise. Signal. (707) is a simulation of a known signal component related to the body motion noise signal (703), which simulates a signal obtained by observing an acceleration change accompanying the movement of the body.
実施例1,2では,この場合の3つの観測信号(704)〜(706)のみを用いる解析手法であったが,本実施例では,(707)をあらたな観測点からの観測信号として加え,(704)〜(707)の4つの信号を用い,相関最大化法または共分散最大化法を適用し,脳活動信号を導出するための最適な各観測点の混合係数列を導出する。 In the first and second embodiments, the analysis method uses only the three observation signals (704) to (706) in this case, but in this embodiment, (707) is added as an observation signal from a new observation point. , (704) to (707), the correlation maximization method or the covariance maximization method is applied, and the optimal mixture coefficient sequence for each observation point for deriving the brain activity signal is derived.
実際の解析結果例を図7-cに示す。ここでは相関最大化法を解析手法として用いる。まず,導出信号(708)は実施例1のように観測信号(707)を追加せずに解析し導出された信号である。そして,導出信号(709)は,観測信号(707)を追加し解析した結果である。導出信号(709)で導出信号(708)に比べて雑音成分が明瞭に取り除かれている。この例では元の雑音信号(703)と解析時に追加した信号(707)は同一の信号列としたが,必ずしも同一である必要はない。また,この例では追加する雑音成分は1成分であったが複数の成分を追加しても良い。 An example of actual analysis results is shown in Fig. 7-c. Here, the correlation maximization method is used as an analysis method. First, the derived signal (708) is a signal that is analyzed and derived without adding the observation signal (707) as in the first embodiment. The derived signal (709) is the result of analysis by adding the observation signal (707). Compared with the derived signal (708), the noise component is clearly removed in the derived signal (709). In this example, the original noise signal (703) and the signal (707) added at the time of analysis are the same signal sequence, but they are not necessarily the same. In this example, one noise component is added, but a plurality of components may be added.
・共分散最大化法における統計基準に基づく自動的な波形選択
共分散最大化法では,例えば図6に示すように複数の抽出信号(抽出波形(601)〜(606))が生成されるため,どれが事象に関連した脳活動信号に対応するかを選択する必要があり,固有値の大きいもの抽出信号ほどより事象に同期した成分であると考えることができる。ここで,固有値とは式(9)に示される行列を対角化し得られるものである。
In the automatic waveform selection covariance maximization method based on statistical criteria in the covariance maximization method, for example, a plurality of extracted signals (extracted waveforms (601) to (606)) are generated as shown in FIG. Therefore, it is necessary to select which corresponds to the brain activity signal related to the event, and an extracted signal having a larger eigenvalue can be considered to be a component synchronized with the event. Here, the eigenvalue is obtained by diagonalizing the matrix shown in Equation (9).
例えば図6では(601)の固有値は28.374であるのに対し,(602)は1.0464となっており,(601)のほうがより事象に同期した,すなわち脳活動信号として妥当な結果であると考えられる。しかし,選択基準の客観性という面では任意性が残ってしまい,特に抽出信号間で固有値の差が小さい場合などには選択基準の決定が困難である。そこで,擬似的に生成したランダム信号をもちいた解析結果の分布を基準とし,分布とのかい離度から統計的な基準に基づき固有値の有意性を示すことが可能である。 For example, in FIG. 6, the eigenvalue of (601) is 28.374, whereas (602) is 1.0464, and (601) is more synchronized with the event, that is, a reasonable result as a brain activity signal. It is thought that. However, the objectivity of the selection criterion remains arbitrary, and it is difficult to determine the selection criterion particularly when the difference between eigenvalues between extracted signals is small. Therefore, it is possible to show the significance of eigenvalues based on statistical criteria based on the degree of deviation from the distribution, based on the distribution of analysis results using pseudo-generated random signals.
ランダム信号の生成としては,例えば,事象のタイミング情報をランダムに設定する。そしてランダムに設定した時用のタイミング情報に基づき,共分散最大化法を適用し,固有値を求める。これを十分に分布が得られる回数繰り返す。例えば,図8(801)は1000回の繰り返し計算により得られた分布と,実際の事象のタイミング情報に基づき導出した固有値のプロット(802〜804)を示している。統計的な有意水準を例えば5%とすると,波線(805)が基準となり,この基準を超える固有値は(803,804)の2つとなる。 As the generation of the random signal, for example, event timing information is set at random. Based on the timing information set at random, the covariance maximization method is applied to obtain the eigenvalue. This is repeated as many times as sufficient distribution is obtained. For example, FIG. 8 (801) shows a distribution (802 to 804) of eigenvalues derived based on the distribution obtained by 1000 repetitive calculations and the actual event timing information. If the statistical significance level is 5%, for example, the wavy line (805) is the reference, and the eigenvalues exceeding this reference are two (803, 804).
・光トポグラフィ計測信号から課題種別の弁別(BMI応用)
これまでの実施例では,繰り返される事象が1種類のみの場合を例示した。ここでは,事象が2種類以上ある場合,例えば繰り返し呈示する事象として,右手指の運動(事象A)と左手指の運動(事象B)という異なる事象を提示した場合に,本発明を適用する例を説明する。
・ Distinguish issues by optical topography measurement signal (BMI application)
In the embodiments so far, the case where only one type of event is repeated has been exemplified. Here, when there are two or more types of events, for example, when different events such as right hand movement (event A) and left hand movement (event B) are presented as events to be repeatedly presented, examples of applying the present invention Will be explained.
信号変化が異なる事象Aと事象Bのどちらかによって引き起こされている場合に,それがどちらの事象によるものであるかを弁別することは,ブレイン・コンピュータ・インターフェイス(Brain Computer Interface: BCI)の分野で研究対象となっている課題である。 Discriminating which event is caused by a change in signal caused by different event A or event B is the field of Brain Computer Interface (BCI). This is the subject of research.
一般的に,BMIでは異なる2つの脳活動状態を弁別するために,あらかじめ計測した学習用信号を用い,弁別手段(フィルタ)を準備し,実際の計測をあらかじめ準備した弁別手段(フィルタ)によって弁別する。最も単純な弁別手段は,信号の閾値処理である。 Generally, in BMI, in order to discriminate between two different brain activity states, a learning signal measured in advance is used, a discrimination means (filter) is prepared, and an actual measurement is discriminated by a discrimination means (filter) prepared in advance. To do. The simplest discrimination means is signal thresholding.
すなわち,学習用信号から弁別対象となる2つの状態での信号振幅の違いを導出し,2つの状態を弁別するための閾値を導出し,弁別対象となる信号の振幅が閾値を超えるか否かにより実際の弁別をおこなう。図9に本発明手法による計測信号の弁別のフローを示す。 In other words, the difference in signal amplitude between the two states to be discriminated is derived from the learning signal, a threshold for discriminating between the two states is derived, and whether or not the amplitude of the signal to be discriminated exceeds the threshold The actual discrimination is performed by. FIG. 9 shows a measurement signal discrimination flow according to the method of the present invention.
第一のステップでは,学習用信号に基づき混合行列Mを導出する。教師信号の例を図10に示す。学習用信号とは,信号に対応した事象の内容が既知である観測信号を意味する。図10の例では,事象Aと事象Bとが5回ずつ交互に繰り返されている,5つの観測点から得られた信号であり,学習用信号(901)にあたる。 In the first step, a mixing matrix M is derived based on the learning signal. An example of the teacher signal is shown in FIG. The learning signal means an observation signal whose event content corresponding to the signal is known. In the example of FIG. 10, event A and event B are signals obtained from five observation points that are alternately repeated five times, and correspond to the learning signal (901).
これを元にフロー(902)では,事象A,Bのそれぞれにおいて再現性が高く,なおかつ事象A,Bの弁別能が高くなるような混合行列Mを導出する。このためには,式3や式6,7で定義される,評価行列を変更する。例えば,繰り返された事象Aの間での相関は高く,同様に事象Bの間での相関も高く,そして,事象AとBとの間での相関は低く(負に大きく)なることを同時に満たすような抽出成分を導出する混合行列Mを求めるように評価行列を定める。具体的な式は,事象A,Bに関する評価列を Based on this, in the flow (902), a mixing matrix M is derived that has high reproducibility in each of the events A and B and has high discrimination ability for the events A and B. For this purpose, the evaluation matrix defined by Equation 3 and Equations 6 and 7 is changed. For example, the correlation between repeated event A is high, the correlation between event B is also high, and the correlation between events A and B is low (negatively large) at the same time. An evaluation matrix is determined so as to obtain a mixing matrix M for deriving a satisfying extracted component. The concrete formula is the evaluation sequence for events A and B.
とする。ただし, And However,
である。 It is.
式(10)を用い,事象A,Bを弁別するための混合行列Mを導出するための評価行列Sは以下のように表わされる。 The evaluation matrix S for deriving the mixing matrix M for discriminating the events A and B using the equation (10) is expressed as follows.
この評価行列に基づき,実施例1の相関最大化法や実施例2の共分散最大化法により,事象A,Bを弁別するための混合行列Mを導出する。そして,弁別過程で利用するために,導出した混合行列Mを用い教師信号から事象A,Bに対応する参照混合信号RA,RBを算出する。 Based on this evaluation matrix, the mixing matrix M for discriminating the events A and B is derived by the correlation maximization method of the first embodiment and the covariance maximization method of the second embodiment. Then, for use in the discrimination process, reference mixed signals RA and RB corresponding to events A and B are calculated from the teacher signal using the derived mixing matrix M.
結果の例を図11に示す。ここまでが第一のステップである学習過程である。次に第二のステップである弁別過程では,弁別対象となる信号を第一のステップで導出した混合行列Mにより混合信号Yを導出する。弁別のための評価関数は An example of the result is shown in FIG. This is the learning process that is the first step. Next, in the discrimination process which is the second step, the mixed signal Y is derived from the mixing matrix M obtained by deriving the signal to be discriminated in the first step. The evaluation function for discrimination is
と表わされ,Dが十分に大きい場合には事象Aと弁別され,Dが十分に小さい場合には事象Bと判別される。 When D is sufficiently large, it is distinguished from event A, and when D is sufficiently small, it is determined as event B.
Claims (4)
被検体を2回以上繰り返し測定した信号について,
前記演算部は、前記複数の検出部が検出した信号を混合する混合係数を、前記被検体を繰り返し測定した信号の間の類似度が最大となることを基準として導出する生体光計測装置。 A plurality of light irradiation units that irradiate light to a plurality of locations of the subject, a plurality of light detection units that detect the irradiated light through the subject, and a plurality of lights detected by the plurality of light detection units In a biological light measurement device including a calculation unit that calculates a signal,
For signals measured repeatedly more than twice
The biological light measurement device, wherein the calculation unit derives a mixing coefficient for mixing signals detected by the plurality of detection units on the basis that a similarity between signals obtained by repeatedly measuring the subject is maximized.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012066528A JP5909394B2 (en) | 2012-03-23 | 2012-03-23 | Biological light measurement device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012066528A JP5909394B2 (en) | 2012-03-23 | 2012-03-23 | Biological light measurement device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2013192905A true JP2013192905A (en) | 2013-09-30 |
JP5909394B2 JP5909394B2 (en) | 2016-04-26 |
Family
ID=49392542
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012066528A Active JP5909394B2 (en) | 2012-03-23 | 2012-03-23 | Biological light measurement device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5909394B2 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001505739A (en) * | 1996-11-27 | 2001-04-24 | ノキア テレコミュニカシオンス オサケ ユキチュア | Method and receiver for measuring frequency difference |
JP2004184402A (en) * | 2002-11-19 | 2004-07-02 | Hitachi Ltd | Optical measuring device for living body |
JP2005328855A (en) * | 2004-05-18 | 2005-12-02 | Hitachi Ltd | Biological light measuring instrument, image display method and program |
US20080146901A1 (en) * | 2006-12-15 | 2008-06-19 | Takusige Katura | Optical measurement instrument for living body |
-
2012
- 2012-03-23 JP JP2012066528A patent/JP5909394B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001505739A (en) * | 1996-11-27 | 2001-04-24 | ノキア テレコミュニカシオンス オサケ ユキチュア | Method and receiver for measuring frequency difference |
JP2004184402A (en) * | 2002-11-19 | 2004-07-02 | Hitachi Ltd | Optical measuring device for living body |
JP2005328855A (en) * | 2004-05-18 | 2005-12-02 | Hitachi Ltd | Biological light measuring instrument, image display method and program |
US20080146901A1 (en) * | 2006-12-15 | 2008-06-19 | Takusige Katura | Optical measurement instrument for living body |
JP2008148797A (en) * | 2006-12-15 | 2008-07-03 | Hitachi Ltd | Biological light measurement apparatus |
Also Published As
Publication number | Publication date |
---|---|
JP5909394B2 (en) | 2016-04-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2015062817A5 (en) | Brain activity analyzing device, brain activity analyzing method, discriminator generating device, discriminator generating method, biomarker device and program, health management device and program, and discriminator program | |
Bonaiuto et al. | Laminar dynamics of high amplitude beta bursts in human motor cortex | |
JP6596089B2 (en) | Methods and equipment for use in allergy testing | |
US11826133B2 (en) | Method and system for determining brain-state dependent functional areas of unitary pooled activity and associated dynamic networks with functional magnetic resonance imaging | |
JP2006280421A (en) | Brain function information monitoring device | |
Drapała et al. | Two stage EMG onset detection method | |
RU2441585C1 (en) | Method for evaluation of attention level of operator during computer testing | |
US11678833B2 (en) | Brain activity feature amount extraction method | |
Bozhokin et al. | Analysis of non-stationary HRV as a frequency modulated signal by double continuous wavelet transformation method | |
RU2016117598A (en) | Device and method for evaluating multichannel electrocardiographic signals | |
AU2015303017A1 (en) | Improvement to analysing physiological electrograms | |
JP4379155B2 (en) | Biological light measurement method and apparatus using near infrared light | |
KR101744691B1 (en) | Method and Apparatus for Detecting Heartbeat using Ballistocardiogram | |
JP2017119109A (en) | Stress determination apparatus and method | |
JP5909394B2 (en) | Biological light measurement device | |
CN102525468A (en) | Cerebral function imaging-based method for analyzing intracerebral activation trend | |
RU2743608C1 (en) | Method of brain segment localization | |
Harpaz et al. | Improving the excess kurtosis (g2) method for localizing epileptic sources in magnetoencephalographic recordings | |
JP6821171B2 (en) | Brain activity state quantification method and brain activity state measurement device | |
JP5909388B2 (en) | Biological light measurement device | |
Rubega et al. | Automated analysis of local field potentials evoked by mechanical whisker stimulation in rat barrel cortex | |
CN115105078B (en) | Method and system for identifying brain cognitive states of pilot | |
JP6028100B2 (en) | Biological light measurement data analysis apparatus, analysis method, and program therefor | |
de Sá Ferreira et al. | Effects of supervised practice on the accuracy of observers for manual segmentation of simulated electromyograms | |
Haihong et al. | A kernel-based signal localization method for nirs brain-computer interfaces |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20150109 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20150814 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20151006 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151111 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20160301 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20160328 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5909394 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S801 | Written request for registration of abandonment of right |
Free format text: JAPANESE INTERMEDIATE CODE: R311801 |
|
ABAN | Cancellation due to abandonment | ||
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |