JP5909388B2 - Biological light measurement device - Google Patents

Biological light measurement device Download PDF

Info

Publication number
JP5909388B2
JP5909388B2 JP2012052488A JP2012052488A JP5909388B2 JP 5909388 B2 JP5909388 B2 JP 5909388B2 JP 2012052488 A JP2012052488 A JP 2012052488A JP 2012052488 A JP2012052488 A JP 2012052488A JP 5909388 B2 JP5909388 B2 JP 5909388B2
Authority
JP
Japan
Prior art keywords
waveform
signal
model
unit
separated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012052488A
Other languages
Japanese (ja)
Other versions
JP2013183961A (en
Inventor
卓成 桂
卓成 桂
司 舟根
司 舟根
佐藤 大樹
大樹 佐藤
田中 宏和
宏和 田中
木口 雅史
雅史 木口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP2012052488A priority Critical patent/JP5909388B2/en
Publication of JP2013183961A publication Critical patent/JP2013183961A/en
Application granted granted Critical
Publication of JP5909388B2 publication Critical patent/JP5909388B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、生体計測に関し、特に所望の生体信号に重畳している雑音信号を除去し、所望の生体信号を高精度に取得する生体光計測装置に関する。   The present invention relates to biological measurement, and more particularly to a biological optical measurement device that removes a noise signal superimposed on a desired biological signal and obtains the desired biological signal with high accuracy.

光を用いた生体内部情報の計測(例えば特許文献1)により得られる計測信号には、目的の信号のほかに、いくつかの原因を持つ雑音信号が含まれる。この雑音信号による影響を低減するために、加算平均や、バンドパス・フィルタなどが用いられる。加算平均による手法は、脳の活動が同一課題に対して同一の応答を示すことを前提とする雑音信号低減手法である。また、バンドパス・フィルタによる手法は、脳活動信号と雑音信号とが異なる周波数帯域に存在することを前提とする雑音信号低減手法である。
これらは複数の雑音信号に対する処理であるが、特定の原因による雑音信号に特化した処理も検討されている。
A measurement signal obtained by measurement of internal biological information using light (for example, Patent Document 1) includes a noise signal having several causes in addition to a target signal. In order to reduce the influence of the noise signal, an averaging or a band pass filter is used. The method based on addition averaging is a noise signal reduction method based on the premise that brain activity shows the same response to the same task. The band-pass filter method is a noise signal reduction method on the premise that the brain activity signal and the noise signal exist in different frequency bands.
These are processing for a plurality of noise signals, but processing specialized for noise signals due to a specific cause is also being studied.

例えば、脈拍の影響による雑音信号(脈拍雑音信号)は、周波数の特定が容易なことから、バンドカット・フィルタによる低減も可能である。また、耳などの部位で計測した脈拍信号を元に光計測信号に含まれる脈拍雑音信号を低減することや(特許文献2)、光計測信号自身から、脈拍雑音信号を抽出し、その影響を低減する手法も考案されている(非特許文献1)。   For example, a noise signal (pulse noise signal) due to the influence of a pulse can be reduced by a band cut filter because the frequency can be easily specified. In addition, the pulse noise signal included in the optical measurement signal is reduced based on the pulse signal measured at a part such as an ear (Patent Document 2), the pulse noise signal is extracted from the optical measurement signal itself, and the influence is extracted. A technique for reducing this has been devised (Non-Patent Document 1).

また、多点で計測した光計測信号から信号解析により複数の信号に分解し、雑音除去や目的信号の抽出を行う方法もある(特許文献3)。   In addition, there is a method in which optical measurement signals measured at multiple points are decomposed into a plurality of signals by signal analysis to remove noise and extract a target signal (Patent Document 3).

独立成分解析法については、非特許文献2等に記載される。   The independent component analysis method is described in Non-Patent Document 2 and the like.

特開平9−135825号公報JP-A-9-135825 特開2004−173751号公報JP 2004-173751 A 特開2005−143609号公報JP-A-2005-143609

Maria Angela Franceschiniほか、NeuroImage 21 (2004) 372- 386Maria Angela Franceschini et al., NeuroImage 21 (2004) 372-386 廣坂ほか、Physica D: Nonlinear Phenomena Volume 194, Issues 3-4 , 15 July 2004, Pages 320-332Aisaka et al., Physica D: Nonlinear Phenomena Volume 194, Issues 3-4, 15 July 2004, Pages 320-332 Katuraほか、J Biomed Opt. 2008 Sep-Oct;13(5):054008.Katura et al., J Biomed Opt. 2008 Sep-Oct; 13 (5): 054008. 佐藤ほか、Neuro Image. 2004 Apr;21(4):1554-62Sato et al., Neuro Image. 2004 Apr; 21 (4): 1554-62

所望の生体信号を得るために被験者にタスクを課す手法がある。例えば、所望の脳活動信号を得るために被験者に簡単な運動を所定のタイミングで行わせるような場合、運動に伴う心拍数の上昇による全身性血行動態変化が雑音となりうる。このとき、所望の生体信号に重畳する雑音信号が、所望の生体信号と同じようなタイミングで変化を示す可能性は高い。このような場合、得られた信号の解釈を誤ってしまう危険性がある。   There is a method of imposing a task on a subject in order to obtain a desired biological signal. For example, when a subject performs a simple exercise at a predetermined timing in order to obtain a desired brain activity signal, a systemic hemodynamic change due to an increase in heart rate associated with the exercise can be a noise. At this time, there is a high possibility that the noise signal superimposed on the desired biological signal changes at the same timing as the desired biological signal. In such a case, there is a risk of misinterpreting the obtained signal.

タスクを課す等の何らかの実験刺激への応答である脳活動を目的の信号としている場合、その実験刺激に同期して発生する全身性血行動態変化は目的信号である脳活動と同期して発生するので、両者の分離は非常に困難である。しかし、両者の弁別は必要不可欠である。   When the target signal is brain activity that is a response to some experimental stimulus such as imposing a task, systemic hemodynamic changes that occur in synchronization with the experimental stimulus occur in synchronization with the brain activity that is the target signal Therefore, it is very difficult to separate them. However, discrimination between the two is essential.

発明者らはこれまで、独立成分解析法のような信号分離法によりこれらの信号を分離する方法を提案してきた(非特許文献3)。しかしながら、この手法はクラスタリング解析を行うために十分な数のデータ群が必要であり、少数データ群に対しては適用が困難である。   The inventors have so far proposed a method of separating these signals by a signal separation method such as an independent component analysis method (Non-Patent Document 3). However, this method requires a sufficient number of data groups to perform clustering analysis, and is difficult to apply to a small number of data groups.

したがって、本発明のひとつの目的は、脳の血行動態変化を示す酸素化ヘモグロビン濃度もしくは脱酸素化ヘモグロビンの濃度変化を反映する頭部内の光経路中を透過した光の計測信号から、目的信号波形とこれに混入する全身性血行動態変化である雑音成分とを弁別し、雑音成分を除去した脳活動信号を有効に得ることにある。   Accordingly, one object of the present invention is to obtain a target signal from a measurement signal of light transmitted through an optical path in the head reflecting a change in oxygenated hemoglobin concentration or deoxygenated hemoglobin concentration indicating brain hemodynamic changes. The object is to discriminate between a waveform and a noise component, which is a systemic hemodynamic change mixed therein, and to effectively obtain a brain activity signal from which the noise component has been removed.

本発明に従う代表的な生体光計測装置は、例えば被験者の頭部の血行動態を計測するため、被験者の頭部の複数の照射点に光を照射する光照射部と、この照射光が生体の中を経由または生体内で反射されてでてきた光を検出する一つまたは複数の光検出部と、光検出部により得られた光信号を分離する分離演算部と、分離演算部により得られる分離信号から選別基準によって信号を選択する選択部と、選択部により選択された分離信号から信号を再構成する再構成演算部と、分離演算部、選択部、再構成演算部でのパラメータ入力および結果表示を行う表示部、により構成される。   A representative biological light measurement device according to the present invention includes, for example, a light irradiation unit that irradiates light to a plurality of irradiation points on a subject's head in order to measure hemodynamics of the subject's head, and Obtained by one or a plurality of light detection units that detect light that has passed through or reflected in the living body, a separation calculation unit that separates an optical signal obtained by the light detection unit, and a separation calculation unit A selection unit that selects a signal from the separation signal according to a selection criterion, a reconstruction calculation unit that reconstructs the signal from the separation signal selected by the selection unit, and parameter input in the separation calculation unit, the selection unit, and the reconstruction calculation unit It is comprised by the display part which displays a result.

より具体的には、上記光照射部の計測用光源として、可視から近赤外領域にかけての複数波長の光源を用いることにより、酸素化ヘモグロビン濃度変化と脱酸素化ヘモグロビン濃度変化をそれぞれ示す計測信号を求めることが可能である(非特許文献3など)。このように得られた一方または双方の要素の計測信号に対し、分離演算部では、例えば独立成分解析を行い、計測信号を複数の独立成分(分離信号)に分離する。選択部では、2つのモデル波型との類似性に基づき分離信号を選別する。   More specifically, measurement signals indicating changes in oxygenated hemoglobin concentration and changes in deoxygenated hemoglobin concentration by using a light source having a plurality of wavelengths from the visible to the near-infrared region as the measurement light source of the light irradiation unit. (Non-patent Document 3 etc.). For the measurement signal of one or both elements obtained in this way, the separation calculation unit performs, for example, independent component analysis, and separates the measurement signal into a plurality of independent components (separated signals). The selection unit selects the separation signal based on the similarity between the two model wave forms.

例えば、モデル波形の一方を脳活動モデル波形とし、もう一方を同期雑音モデル波形とした場合、脳活動モデル波型との相関係数がある値以上であり、かつ脳活動モデル波形との相関係数のほうが同期雑音モデル波形との相関係数よりも大きな値を示す分離信号を脳活動信号として選別する。これにより、雑音除去が実現される。   For example, if one of the model waveforms is a brain activity model waveform and the other is a synchronous noise model waveform, the correlation coefficient with the brain activity model waveform is greater than a certain value and the correlation with the brain activity model waveform A separated signal whose number is larger than the correlation coefficient with the synchronous noise model waveform is selected as a brain activity signal. Thereby, noise removal is realized.

実験課題に同期して発生し信号に混入する雑音成分の分離・除去を可能にし、雑音の少ない信号を提供する。   It enables separation / removal of noise components generated in synchronization with the experimental task and mixed in the signal, and provides a signal with less noise.

本発明の実施例の装置構成を示すブロック図である。It is a block diagram which shows the apparatus structure of the Example of this invention. 上記実施例における計測信号の例を示す波形図である。It is a wave form diagram which shows the example of the measurement signal in the said Example. 上記実施例の分離演算部により算出された分離信号の例である。It is an example of the isolation | separation signal calculated by the isolation | separation calculating part of the said Example. 上記実施例の記録部に記録されているモデル波形である。It is a model waveform currently recorded on the recording part of the said Example. 各分離信号と2つのモデル波形との相関係数が作る2次元空間上の区分によって分離信号を判別する判別方法の概念を示す概念図である。It is a conceptual diagram which shows the concept of the discriminating method which discriminate | determines a separated signal by the division | segmentation on the two-dimensional space which the correlation coefficient of each separated signal and two model waveforms produces. 上記実施例の同期雑音に対応するモデル波形の別の例である。It is another example of the model waveform corresponding to the synchronous noise of the said Example.

実施例として具体的な構成図を図1に示す。   FIG. 1 shows a specific configuration diagram as an embodiment.

生体光計測用のインターフェイス部110は、被験者の頭部の一部または全体に取り付ける。光照射部101の光源で発光する波長が690nmと830nmの混合光が照射用光ファイバー111によりインターフェイス部110に導かれている。これによりインターフェイス部110の装着で定められる複数の照射点から光が生体に照射される。インターフェイス部110には検出用光ファイバー114が取りつけられ、それぞれの端部は光検出部102の光検出器に接続される。これにより、生体内を通過して各検出点に到達した光各光検出器で検出される。   The biological light measurement interface unit 110 is attached to a part or the whole of the subject's head. Mixed light having a wavelength of 690 nm and 830 nm emitted from the light source of the light irradiation unit 101 is guided to the interface unit 110 by the irradiation optical fiber 111. As a result, the living body is irradiated with light from a plurality of irradiation points determined when the interface unit 110 is mounted. An optical fiber 114 for detection is attached to the interface unit 110, and each end is connected to a photodetector of the photodetector 102. Thereby, each light detector that has passed through the living body and reached each detection point is detected.

実施例では、脳活動信号を得るために、被検者に所定のタスクを周期的に実行させ、その間に上記構成により計測された光信号に基づく計測信号波形を記憶部103に記録する。周期的なタスクを課すことが被験者の脳活動への刺激となり、それに応答する脳の血行動態変化を取得するのが実施例の計測目的である。周期的タスクに代え被検者に視覚刺激などを周期的に与える場合もある。これらを今後は実験刺激と呼ぶ
ここで、照射する光の波長は他のものでもよい。用いる波長の組み合わせは3つ以上でもよい。また、光検出部102で得られた光信号に対し、何らかの演算処理を行った計測信号波形を記憶部103に記録してもよい。
In the embodiment, in order to obtain a brain activity signal, the subject is caused to periodically execute a predetermined task, and a measurement signal waveform based on the optical signal measured by the above configuration is recorded in the storage unit 103 during that period. Imposing a periodic task serves as a stimulus to the brain activity of the subject, and the purpose of measurement in the embodiment is to acquire a hemodynamic change in the brain that responds to the stimulus. In some cases, a visual stimulus or the like is periodically given to the subject instead of the periodic task. These are hereinafter referred to as experimental stimuli. Here, the wavelength of the irradiated light may be other. Three or more combinations of wavelengths may be used. Further, a measurement signal waveform obtained by performing some arithmetic processing on the optical signal obtained by the light detection unit 102 may be recorded in the storage unit 103.

次に記録された計測信号波形は分離演算部121に読み出され、使用者の選択する手法、設定に基づく分離演算が施される。分離演算部で分離された信号(以下、分離信号とする)は使用者の選択する手法、設定によって選択部122で手動または自動的に選択され、選択部122で選択された信号(以下、選択信号とする)は使用者の選択する手法、設定に基づき再構成演算部123で再構成される。分離演算部、選択部、再構成演算部でのパラメータ入力および結果の表示は表示部124で行われる。以降、詳細を説明する。   Next, the recorded measurement signal waveform is read by the separation calculation unit 121, and a separation calculation based on the method and setting selected by the user is performed. A signal separated by the separation calculation unit (hereinafter referred to as a separation signal) is manually or automatically selected by the selection unit 122 depending on the method and setting selected by the user, and the signal selected by the selection unit 122 (hereinafter referred to as selection). The signal is reconfigured by the reconstruction calculation unit 123 based on the method and setting selected by the user. Parameter input and result display in the separation calculation unit, selection unit, and reconstruction calculation unit are performed on the display unit 124. Hereinafter, details will be described.

まず各検出器で得る光検出信号を、光が透過してきた経路により分離識別しなければならない。この経路の識別の代表的な手法は、一つの検出点に近接する複数の照射点から、同時にではなく、時間的に順次切り替えて光を照射する手法である。検出器からの検出信号は、照射側の順次切り替えに対応してデマルチプレクサで分配して各経路の計測信号とする。経路の識別の他の手法として、複数照射点の照射光をそれぞれ異なる周波数で強度変調することも有効である。この場合は光検出部ではそれぞれの周波数の参照信号を用いて検出器からの検出信号を同期検波することで、どの照射点を起点とする光かを識別したそれぞれの計測信号が得られる。また、これに代えて複数の照射点それぞれの照射光に、固有の符号にもとづくディジタル振幅変調を施す手法を採用してもよい。光照射部101および光検出部102は上記した経路識別手法のいずれかを実現するよう構成される。   First, the light detection signal obtained by each detector must be separated and identified by the path through which light has passed. A typical method for identifying the path is a method of irradiating light from a plurality of irradiation points close to one detection point, not simultaneously but sequentially. The detection signal from the detector is distributed by a demultiplexer corresponding to the sequential switching on the irradiation side, and used as a measurement signal for each path. As another method of path identification, it is also effective to modulate the intensity of irradiation light at a plurality of irradiation points at different frequencies. In this case, the photodetection unit synchronously detects the detection signal from the detector using the reference signal of each frequency, thereby obtaining each measurement signal that identifies which irradiation point is the starting light. Alternatively, a technique may be employed in which the digital amplitude modulation based on a unique code is applied to the irradiation light at each of the plurality of irradiation points. The light irradiation unit 101 and the light detection unit 102 are configured to realize any one of the path identification methods described above.

光照射部101および光検出部102は、上記のように経路識別された計測信号に対し、さらに各波長成分の計測信号に分離識別する手段も有する。この波長識別にも、例えば各波長の光源のドライブ信号ごとに異なる周波数で振幅変長し、つまり変調周波数の異なる強度変調をした複数波長光の混合光を用い、光検出部では同期検波の参照周波数により各波長成分を分離識別する手法が採用できる。上述した特許文献1には、経路すなわち計測点の識別と波長成分の識別の双方に変調周波数の異なる強度変調を用いた光計測装置が記載される。経路すなわち計測点の識別と波長成分の識別の1方にのみ変調周波数の異なる強度変調を採用し、他方は別の手法とする組み合わせも勿論有効である。   The light irradiation unit 101 and the light detection unit 102 also have means for separating and identifying the measurement signals whose paths are identified as described above into measurement signals of each wavelength component. For this wavelength identification as well, for example, a mixed light of multiple wavelengths with different amplitudes, that is, intensity modulation with different modulation frequencies, is used for each wavelength light source drive signal. A technique for separating and identifying each wavelength component by frequency can be employed. Patent Document 1 described above describes an optical measurement device that uses intensity modulation with different modulation frequencies for both identification of a path, that is, a measurement point and identification of a wavelength component. Of course, a combination in which intensity modulation having a different modulation frequency is employed in only one of the path, that is, the measurement point identification and the wavelength component identification, and the other is another technique is also effective.

以上のようにして経路、および波長成分ごとに分離識別された各計測点の計測信号の波形は光検出部102から記憶部103に出力され、記録される。次に、各計測点の波長690nmの計測信号と波長830nmの計測信号のサンプリング値を読み出し、両方の値からその計測点における酸素化ヘモグロビン濃度を算出して再び記憶部103に格納する。このようにして、各計測点の酸素化ヘモグロビン濃度変化の波形を算出して、その結果を記憶部103に格納する。酸素化ヘモグロビンだけでなく脱酸素化ヘモグロビンの濃度変化を算出して利用してもよい。なお、体内を透過した2波長の透過光量から酸素化ヘモグロビン及び脱酸素化ヘモグロビンの濃度相対値を算出する手法の詳細は、非特許文献4に記載される。   The waveform of the measurement signal at each measurement point separated and identified for each path and wavelength component as described above is output from the light detection unit 102 to the storage unit 103 and recorded. Next, the sampling values of the measurement signal with the wavelength of 690 nm and the measurement signal with the wavelength of 830 nm at each measurement point are read out, and the oxygenated hemoglobin concentration at the measurement point is calculated from both values and stored in the storage unit 103 again. In this way, the waveform of the oxygenated hemoglobin concentration change at each measurement point is calculated, and the result is stored in the storage unit 103. Not only oxygenated hemoglobin but also deoxygenated hemoglobin concentration change may be calculated and used. The details of the technique for calculating the relative concentration values of oxygenated hemoglobin and deoxygenated hemoglobin from the amount of transmitted light having two wavelengths transmitted through the body are described in Non-Patent Document 4.

図2に算出された各計測点の酸素化ヘモグロビン濃度変化の例を示す。波形201、202、203、204はそれぞれ異なる計測点の酸素化ヘモグロビン濃度変化の波形であり、横軸は時間(秒)で、縦軸はヘモグロビン濃度変化量(mM・mm)である。このように、脳活動の反応(血行動態変化)の出かた、脳活動とは区別すべき全身性血行動態変化の混入の度合い、センサノイズの混合の度合いなどは計測点により様々である。   FIG. 2 shows an example of oxygenated hemoglobin concentration change at each measurement point calculated. Waveforms 201, 202, 203, and 204 are oxygenated hemoglobin concentration change waveforms at different measurement points, with the horizontal axis representing time (seconds) and the vertical axis representing hemoglobin concentration change (mM · mm). As described above, how to respond to brain activity (hemodynamic change), the degree of mixing of systemic hemodynamic changes that should be distinguished from brain activity, the degree of mixing of sensor noise, and the like vary depending on the measurement point.

次に、分離演算部121で行われる具体的な演算手法を説明する。   Next, a specific calculation method performed by the separation calculation unit 121 will be described.

分離演算部121では計測点の計測信号、ここでは酸素化ヘモグロビン濃度変化を示す信号波形を、加法的にそれを構成する複数の成分波形であり、相互に統計的独立が成り立つ分離信号波形に分離する。分離手法の一つとしてTDDICA法(非特許文献2)を用いることができる。この手法は独立成分解析法と呼ばれる手法の一つである。   The separation calculation unit 121 separates the measurement signal at the measurement point, here the signal waveform indicating the oxygenated hemoglobin concentration change, into a plurality of component waveforms that compose it additively, and separated into separate signal waveforms that are statistically independent of each other To do. As one of separation methods, the TDDICA method (Non-patent Document 2) can be used. This method is one of the methods called an independent component analysis method.

4箇所の計測点でサンプリング点数Tからなる(数1)に示す計測信号Xが、(数2)に示すn 個の独立成分からなる原信号Sの混合係数行列Aによる線形的混合信号X=ASと表されると仮定し、   A measurement signal X represented by (Equation 1) consisting of sampling points T at four measurement points is a linear mixed signal X = a mixture coefficient matrix A of the original signal S consisting of n independent components represented by (Equation 2). Assuming that AS is represented,

原信号成分の独立条件と計測信号Xのみから混合行列Aと原信号Sを推定する。推定は白色化と回転によって行う。 The mixing matrix A and the original signal S are estimated from only the independent condition of the original signal component and the measurement signal X. Estimation is performed by whitening and rotation.

白色化は計測信号の混合により線形独立な信号に変えることである。それは計測信号Xの分散共分散行列Cを用いて(数3)のように与えられる。   Whitening is changing to a linearly independent signal by mixing measurement signals. It is given as (Equation 3) using the variance-covariance matrix C of the measurement signal X.

独立成分からなる原信号Sの推定値Uは適切な回転行列Rを用いて(数4)で与えられる。 The estimated value U of the original signal S composed of independent components is given by (Expression 4) using an appropriate rotation matrix R.

この回転行列を決定するのは上記独立条件である。ここでは遅延相関がK個の遅延時間τk (k = 1, 2, …, K) でゼロになることを独立と定義する。現実にはこれを実現することは困難なので、その代わりに相関の大きさを最小にするという条件にする。これを実現するのは次の式(数5)で表される損失関数を最小にする回転行列Rである。 It is the above independent condition that determines this rotation matrix. Here, it is defined as independent that the delay correlation becomes zero at K delay times τ k (k = 1, 2,..., K). In reality, it is difficult to realize this, but instead, the condition is to minimize the magnitude of the correlation. This is realized by the rotation matrix R that minimizes the loss function expressed by the following equation (Equation 5).

ここでx’は転置を表し<・>tは時間平均を表す。混合係数行列の推定値は(数6)で与えられる。 Here, x ′ represents a transpose and <•> t represents a time average. The estimated value of the mixing coefficient matrix is given by (Equation 6).

各センサーに印加されるノイズを陽に取り扱うこともできる。その場合X=ASの代わりに、観測ノイズNを右辺に加えた(数7)が用いられる。   Noise applied to each sensor can be handled explicitly. In that case, instead of X = AS, (Equation 7) in which the observation noise N is added to the right side is used.

このとき白色化ではなく擬白色化となり、ノイズ成分の共分散行列Gを用いて(数8)のように行われる。 At this time, not whitening but pseudo whitening is performed, and the noise component covariance matrix G is used as shown in (Expression 8).

以降はセンサノイズを考慮しない場合と同様である。行列Gは別途推定しておく必要がある。レスト状態の一区間を多項式でフィッティングしそのときの残差から行列Gを推定することが可能である。 The subsequent steps are the same as when sensor noise is not considered. The matrix G needs to be estimated separately. It is possible to fit a section of the rest state with a polynomial and estimate the matrix G from the residual at that time.

計測点数が4の場合について述べたが、一般の数でも同様の手続きで分離の演算が可能である。以上の演算により分離信号Uと混合係数列Rが得られる。   Although the case where the number of measurement points is four has been described, separation can be performed by a similar procedure with a general number. The separation signal U and the mixing coefficient sequence R are obtained by the above calculation.

ここで、より高精度な信号分離のために、分離演算を行う前にフィルタリング処理を行ってもよい。目的の信号の周波数帯域が既知の場合、その周波数帯域とは異なる帯域を減ずるフィルタリング処理が有効である。すなわち本実施例では、被検体に課する周期的タスクもしくは刺激に対する脳活動の応答の周波数帯域を通過し、それから外れる帯域の信号成分を抑制するフィルタを用い、フィルタを通過した計測信号を分離演算部に入力するのが望ましい。   Here, in order to perform signal separation with higher accuracy, a filtering process may be performed before performing the separation operation. When the frequency band of the target signal is known, a filtering process for reducing a band different from the frequency band is effective. In other words, in this embodiment, a filter that suppresses signal components in a band that passes through and deviates from the frequency band of the response of the brain activity to the periodic task or stimulus imposed on the subject, and separates the measurement signal that has passed through the filter. It is desirable to input to the department.

以上のような分離演算により得た分離信号波形の例を図3に示す。図3の301、302、303、304は、それぞれ一つの計測点の酸素化ヘモグロビン濃度変化波形から分離演算により得た分離信号波形である。図中の網掛け部分は被検体にタスクを実行させた期間を示す。本実施例の計測目的は、脳活動信号波形を得ることにある。ところが、酸素化ヘモグロビン濃度変化波形を加法的に構成する成分波形には、種々のタイプの成分波形がある。すなわち実行させたタスクとの同期が見られない等、タスクに伴う脳活動を反映する可能性が低いとして明らかに除外できる雑音信号を示す分離波形の他に、タスク実行と同期して変化し、タスクの繰り返しの間の波形再現性がある等の点では脳活動の応答信号と同じ特徴を有する分離波形も出現する。後者を同期雑音と呼ぶ。   An example of the separated signal waveform obtained by the separation operation as described above is shown in FIG. Reference numerals 301, 302, 303, and 304 in FIG. 3 denote separated signal waveforms obtained by separation calculation from the oxygenated hemoglobin concentration change waveform at one measurement point. The shaded portion in the figure indicates the period during which the subject has executed the task. The measurement purpose of this embodiment is to obtain a brain activity signal waveform. However, there are various types of component waveforms that additively constitute the oxygenated hemoglobin concentration change waveform. In other words, in addition to the separation waveform that shows the noise signal that can be clearly excluded as the possibility of reflecting the brain activity associated with the task is low, such as not being synchronized with the executed task, it changes in synchronization with the task execution, A separated waveform having the same characteristics as the response signal of the brain activity appears in that there is a waveform reproducibility between repeated tasks. The latter is called synchronous noise.

そこで本実施例では、2つのモデル波形それぞれと、各分離信号との相関係数が作る2次元空間上の区分によって分離信号を判別し、脳活動信号のみを選択する。この選択部122での分離信号の選択について次に説明する。   Therefore, in this embodiment, the separated signal is discriminated based on the two-dimensional space created by the correlation coefficient between each of the two model waveforms and each separated signal, and only the brain activity signal is selected. Next, selection of the separation signal by the selection unit 122 will be described.

まず、選択部122では予め記録部に記録されているモデル関数を元に、実際に信号計測の際に被検者に適用した実験刺激の時間タイミングの情報を用い、2つのモデル波形が生成される。作成されるモデル波形の例を図4に示す。401は実験刺激に対する典型的な脳活動の応答を表す第1のモデル波形である。また402は典型的な同期雑音信号を表す第2のモデル波形である。   First, the selection unit 122 generates two model waveforms based on the model function recorded in advance in the recording unit, using information on the time timing of the experimental stimulus actually applied to the subject at the time of signal measurement. The An example of the model waveform to be created is shown in FIG. 401 is a first model waveform representing a response of typical brain activity to an experimental stimulus. Reference numeral 402 denotes a second model waveform representing a typical synchronous noise signal.

そして、これら第1、第2のモデル波形との相関係数を図3のそれぞれの分離波形について算出する。そして第1、第2のモデル波形それぞれと、各分離信号との相関係数が作る2次元空間上の区分によって分離信号を判別し、脳活動信号を選択する。図5はその判別法を示す概念図である。図5の横軸は第1のモデル波形と各分離信号との相関係数の軸であり、右端が相関係数最大値である。図5の縦軸は第2のモデル波形と各分離信号との相関係数の軸であり、上端が相関係数最大値である。本実施例の選択部122では、これら2軸がつくる2次元空間上で、第1のモデル波形との相関係数の値が、所定の閾値より大きく、且つ第2のモデル波形との相関係数の値より大きい領域に属する分離波形を脳活動を反映した分離波形として選択する。図5では境界線501は第1のモデル波形との相関係数の値が上記所定の閾値である線である。つまり境界線501より左の領域にプロットされる点513や点514に対応する分離波形は第1のモデル波形との相関係数の値が上記所定の閾値より小なので除外される。境界線502は第1のモデル波形との相関係数との第2のモデル波形との相関係数が等しい線であり、よって境界線502より左上側にある例えば点512に対応する分離波形は第1のモデル波形との相関係数が第2のモデル波形との相関係数より小なので除外される。結局境界線501より右側で、かつ境界線502より右下側の領域にプロットされる、例えば点511に対応する分離波形が脳活動を反映した分離波形として選択される。図5に記入した例では一つの分離波形のみが選択されたが、脳活動を反映した分離波形として選択されるのは一つの分離波形であるとは限らず、複数の場合もある。   Then, a correlation coefficient with the first and second model waveforms is calculated for each separated waveform in FIG. Then, the separated signal is discriminated by the classification in the two-dimensional space created by the correlation coefficient between each of the first and second model waveforms and each separated signal, and the brain activity signal is selected. FIG. 5 is a conceptual diagram showing the discrimination method. The horizontal axis in FIG. 5 is the axis of the correlation coefficient between the first model waveform and each separated signal, and the right end is the maximum value of the correlation coefficient. The vertical axis in FIG. 5 is the axis of the correlation coefficient between the second model waveform and each separated signal, and the upper end is the correlation coefficient maximum value. In the selection unit 122 of the present embodiment, the value of the correlation coefficient with the first model waveform is larger than a predetermined threshold in the two-dimensional space created by these two axes, and the correlation with the second model waveform A separation waveform belonging to a region larger than the number value is selected as a separation waveform reflecting brain activity. In FIG. 5, a boundary line 501 is a line whose correlation coefficient value with the first model waveform is the predetermined threshold value. That is, the separated waveforms corresponding to the points 513 and 514 plotted in the region on the left of the boundary line 501 are excluded because the value of the correlation coefficient with the first model waveform is smaller than the predetermined threshold value. The boundary line 502 is a line in which the correlation coefficient with the second model waveform is equal to the correlation coefficient with the first model waveform. Therefore, the separated waveform corresponding to, for example, the point 512 on the upper left side of the boundary line 502 is Since the correlation coefficient with the first model waveform is smaller than the correlation coefficient with the second model waveform, it is excluded. Eventually, a separation waveform corresponding to, for example, the point 511 plotted on the right side of the boundary line 501 and the lower right side of the boundary line 502 is selected as a separation waveform reflecting brain activity. In the example shown in FIG. 5, only one separated waveform is selected. However, it is not necessarily one separated waveform that is selected as a separated waveform reflecting brain activity, and there may be a plurality of separated waveforms.

次に再構成演算部(123)では選択部での信号選択に基づき、信号の再構成を行う。この信号の再構成の処理は、独立成分解析法の再構成方法により再構成する。具体的には、前記手順により選択された脳活動信号に対応する混合係数(ただし混合係数は独立成分解析によって得られている)を乗じ、選択された脳活動信号が複数ある場合にはそれらを足し合わせ,再構成波形とする。   Next, the reconstruction calculation unit (123) performs signal reconstruction based on the signal selection by the selection unit. This signal reconstruction processing is reconstructed by a reconstruction method of an independent component analysis method. Specifically, when there are a plurality of selected brain activity signals, they are multiplied by the mixing coefficient corresponding to the brain activity signal selected by the above procedure (however, the mixing coefficient is obtained by independent component analysis). Add together to obtain a reconstructed waveform.

上述の実施例では、予め記録部に記録されているモデル関数を元に第1、第2のモデル波形を生成した。このモデル波形の生成に用いるモデル関数は、信号計測時に被検体に繰り返し適用する実験刺激の種類別に準備して記録しておくのが好ましい。すなわち、実際に適用した実験刺激に合わせて、記録された複数のモデル関数から第1のモデル波形生成用、第2のモデル波形生成用のモデル関数をそれぞれ選択可能としておくことが好ましい。これらモデル関数は、実験刺激を適用した計測結果から導出される。年齢別、もしくは健常者と非健常者の別などの計測結果が蓄積されていれば、これらの区別に応じてモデル関数を選択可能としておくのが更に好ましい。   In the above-described embodiment, the first and second model waveforms are generated based on the model function recorded in advance in the recording unit. The model function used to generate the model waveform is preferably prepared and recorded for each type of experimental stimulus that is repeatedly applied to the subject during signal measurement. That is, it is preferable that the first model waveform generation function and the second model waveform generation model function can be selected from a plurality of recorded model functions in accordance with the actually applied experimental stimulus. These model functions are derived from measurement results to which experimental stimuli are applied. It is more preferable that the model function can be selected in accordance with the distinction when the measurement results for each age, or for the healthy person and the non-healthy person are accumulated.

また、実験刺激に対する典型的な脳活動の応答を表す第1のモデル波形は上記のように計測結果から導出したモデル関数から生成し、同期雑音を表す第2のモデル波形は、生成した第1のモデル波形の微分波形とすることも可能である。さらに、第2のモデル波形は、図6に示すような、上昇に続く下降、それに続く上昇のパターンで定義されるモデル波形(N字パターンのモデル波形)として用いても良い。   Further, the first model waveform representing the response of typical brain activity to the experimental stimulus is generated from the model function derived from the measurement result as described above, and the second model waveform representing the synchronous noise is generated from the first model waveform. It is also possible to use a differential waveform of the model waveform. Further, the second model waveform may be used as a model waveform (an N-shaped pattern model waveform) defined by a descending pattern followed by a rising pattern followed by a rising pattern as shown in FIG.

本発明により、生体光計測装置、光トポグラフィイ装置の計測信号の精度が増し、利用範囲を広めて、この種の装置の診療分野および医学的分析分野への貢献度を一層高めることが見込まれる。   The present invention is expected to increase the accuracy of measurement signals of biological optical measurement devices and optical topography devices, widen the range of use, and further increase the contribution of this type of device to the medical field and medical analysis field. .

101 光照射部
102 光検出部
103 記憶部
110 インターフェイス部
111 光ファイバー
121 分離演算部
122 選択部
123 再構成演算部
124 表示部
201 計測点1での酸素化ヘモグロビン濃度変化
202 計測点2での酸素化ヘモグロビン濃度変化
203 計測点3での酸素化ヘモグロビン濃度変化
204 計測点4での酸素化ヘモグロビン濃度変化
301 酸素化ヘモグロビン濃度変化の分離信号1
302 酸素化ヘモグロビン濃度変化の分離信号2
303 酸素化ヘモグロビン濃度変化の分離信号3
304 酸素化ヘモグロビン濃度変化の分離信号4
401 モデル波形1
402 モデル波形2
501 条件による境界線1
502 条件による境界線2
511 分離信号の一つに対応するプロット点
512 分離信号の一つに対応するプロット点
513 分離信号の一つに対応するプロット点
514 分離信号の一つに対応するプロット点
601 同期雑音に対応するモデル波形
101 Light irradiation unit
102 Photodetector
103 Memory
110 Interface section
111 optical fiber
121 Separation calculation unit
122 Selector
123 Reconstruction calculation unit
124 Display
201 Changes in oxygenated hemoglobin concentration at measurement point 1
202 Changes in oxygenated hemoglobin concentration at measurement point 2
203 Change in oxygenated hemoglobin concentration at measurement point 3
204 Changes in oxygenated hemoglobin concentration at measurement point 4
301 Separation signal 1 of oxygenated hemoglobin concentration change
302 Separation signal 2 of oxygenated hemoglobin concentration change
303 Separation signal 3 of oxygenated hemoglobin concentration change
304 Separation signal 4 of oxygenated hemoglobin concentration change
401 Model waveform 1
402 Model waveform 2
501 Border 1 by condition
Boundary line 2 based on 502 conditions
511 Plot point corresponding to one of the separated signals
Plot points corresponding to one of 512 separated signals
513 Plot points corresponding to one of the separated signals
514 Plot point corresponding to one of the separated signals
601 Model waveform corresponding to synchronous noise

Claims (6)

被験者の頭部の血行動態を計測するため、一つまたは複数の照射点から光を照射する光
照射部と、
前記被験者の頭部を経由または反射してきた光を一つまたは複数の検出点でそれぞれ検
出する光検出部と、
前記光検出部の検出出力に基づく計測部位の光信号波形を記録する記録部と、
加法的に前記光信号波形を構成し、相互に統計的独立が成り立つ複数の分離信号波形に前記光信号波形を分離する分離演算部と、
前記分離演算部で分離した分離信号波形のそれぞれについて第1のモデル波形との類似度、第2のモデル波形との類似度を算出し、これら類似度をもとに前記複数の分離信号波形から脳活動の応答を反映する分離信号波形を選択する選択部と、
選択された分離信号波形から前記被検体の応答を再構成して結果を表示する表示部を有する生体光計測装置であって、
前記記録部で記録する前記光信号波形は、前記被験者に周期的なタスクもしくは刺激を与えながら計測した光信号波形であり、前記選択部で用いる前記第1のモデル波形は前記周期的なタスクもしくは刺激に対する典型的な脳活動の応答を表すモデル波形、前記第2のモデル波形は同期雑音を表すモデル波形であり、
前記選択部は、前記第1のモデル波形と各分離信号波形との第1の相関係数と、前記第2のモデル波形と各分離信号波形のとの第2の相関係数との2次元空間上の区分により前記複数の分離信号波形からを選択することを特徴とする生体光計測装置
In order to measure the hemodynamics of the subject's head, a light irradiation unit that emits light from one or more irradiation points,
A light detection unit for detecting light passing through or reflecting the head of the subject at one or more detection points, and
A recording unit for recording the optical signal waveform of the measurement site based on the detection output of the light detection unit;
A separation operation unit that additively configures the optical signal waveform and separates the optical signal waveform into a plurality of separated signal waveforms that are statistically independent from each other;
The degree of similarity with the first model waveform and the degree of similarity with the second model waveform are calculated for each of the separated signal waveforms separated by the separation operation unit, and the plurality of separated signal waveforms are calculated based on these similarities. A selector that selects a separated signal waveform that reflects the response of the brain activity;
A biological light measurement device having a display unit for reconstructing the response of the subject from the selected separated signal waveform and displaying the result ,
The optical signal waveform to be recorded by the recording unit is an optical signal waveform measured while giving a periodic task or stimulus to the subject, and the first model waveform used by the selection unit is the periodic task or A model waveform representing a response of typical brain activity to a stimulus, and the second model waveform is a model waveform representing synchronous noise;
The selection unit has a two-dimensional structure of a first correlation coefficient between the first model waveform and each separated signal waveform and a second correlation coefficient between the second model waveform and each separated signal waveform. A biological light measuring device, wherein a plurality of separated signal waveforms are selected according to a division in space .
前記選択部は、前記第1の相関係数の値が所定の閾値以上であり、かつ前記第2の相関係数の値よりも大である区分に属する分離信号を、脳活動の応答を反映する分離信号波形として選択すること特徴とする請求項に記載の生体光計測装置。 The selection unit reflects a response of brain activity to a separated signal belonging to a category in which the value of the first correlation coefficient is greater than or equal to a predetermined threshold value and greater than the value of the second correlation coefficient The biological light measuring device according to claim 1 , wherein the biological light measuring device is selected as a separated signal waveform to be selected. 前記選択部で用いる第1、第2のモデル波形は、それぞれ前記記録部に記録されたモデル信号パターンから生成されたものであることを特徴とする請求項に記載の生体光計測装置。 The biological light measurement apparatus according to claim 1 , wherein the first and second model waveforms used in the selection unit are each generated from a model signal pattern recorded in the recording unit. 前記第2のモデル波形は、前記記録部に記録されたモデル信号パターンから生成された前記第1のモデル波形を微分して生成されることを特徴とする請求項に記載の生体光計測装置。 The biological light measurement apparatus according to claim 1 , wherein the second model waveform is generated by differentiating the first model waveform generated from a model signal pattern recorded in the recording unit. . 前記第2のモデル波形は、上昇波型とそれに続く下降波型、更にそれに続く上昇波型のパターンで定義されるモデル波形であることを特徴とする請求項に記載の生体光計測装置。 The biological light measurement apparatus according to claim 1 , wherein the second model waveform is a model waveform defined by an ascending wave type, a subsequent falling wave type, and a subsequent rising wave type pattern. 前記記録部から読みだされる光信号波形に対し、脳活動の応答の周波数帯域を通過し、それから外れる帯域の信号成分を抑制するフィルタリング処理を施して前記分離演算部に入力することを特徴とする請求項に記載の生体光計測装置。 The optical signal waveform read from the recording unit is subjected to a filtering process for suppressing a signal component in a band that passes through a frequency band of a response of brain activity and deviates from the frequency band, and is input to the separation calculation unit. The biological light measurement device according to claim 1 .
JP2012052488A 2012-03-09 2012-03-09 Biological light measurement device Active JP5909388B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012052488A JP5909388B2 (en) 2012-03-09 2012-03-09 Biological light measurement device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012052488A JP5909388B2 (en) 2012-03-09 2012-03-09 Biological light measurement device

Publications (2)

Publication Number Publication Date
JP2013183961A JP2013183961A (en) 2013-09-19
JP5909388B2 true JP5909388B2 (en) 2016-04-26

Family

ID=49385938

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012052488A Active JP5909388B2 (en) 2012-03-09 2012-03-09 Biological light measurement device

Country Status (1)

Country Link
JP (1) JP5909388B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2015141423A1 (en) * 2014-03-18 2017-04-06 株式会社日立製作所 Biological light measurement device and biological light measurement method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4474145B2 (en) * 2003-11-12 2010-06-02 株式会社日立メディコ Optical measuring device
JP4631510B2 (en) * 2005-03-31 2011-02-16 株式会社島津製作所 Brain function information monitoring device
JP5034477B2 (en) * 2006-12-15 2012-09-26 株式会社日立製作所 Biological light measurement device

Also Published As

Publication number Publication date
JP2013183961A (en) 2013-09-19

Similar Documents

Publication Publication Date Title
JP5034477B2 (en) Biological light measurement device
US10980458B2 (en) Photoacoustic apparatus and control method thereof
JP4474145B2 (en) Optical measuring device
JP6596089B2 (en) Methods and equipment for use in allergy testing
US9167970B2 (en) Non-invasive optical imaging for measuring pulse and arterial elasticity in the brain
WO2015151587A1 (en) Measurement device, measurement method, program, and recording medium
JP5948831B2 (en) Measuring device, measuring method, program, and recording medium
JP6025888B2 (en) Photoacoustic apparatus, apparatus and method
US11026608B2 (en) Cerebral oximetry using time-gated direct sequence spread spectrum
JPWO2015151586A1 (en) Measuring device, measuring method, program, and recording medium
JP6211628B2 (en) Biological light measurement device and biological light measurement method using the same
JP4012900B2 (en) Biological light measurement device
JP5909388B2 (en) Biological light measurement device
JP3777178B2 (en) Corneal turbidity analyzer
JPWO2018194056A1 (en) Information processing method, information processing apparatus, and program for calculating blood absorption spectrum
US20190099083A1 (en) Information processing apparatus and information processing method
JP5679629B2 (en) Optical brain function measuring device
JP6419281B2 (en) Information processing apparatus and method
JP2017108924A (en) Biological information acquisition device and biological information acquisition method
JP6482412B2 (en) Viscosity characteristics acquisition device, viscoelastic characteristics acquisition method, viscoelastic characteristics acquisition program, and recording medium for recording the program
JP6028100B2 (en) Biological light measurement data analysis apparatus, analysis method, and program therefor
JP2011506915A (en) Method and measuring instrument for collecting spectroscopic examination signals from biological tissue
CN104869913B (en) Biological optical measurement device and signal separation method for same
KR101317824B1 (en) Method of processing physiological signal
JP6048245B2 (en) Signal processing apparatus, pulse wave measuring apparatus, and signal processing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160301

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160328

R151 Written notification of patent or utility model registration

Ref document number: 5909388

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation due to abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350