JP6028100B2 - Biological light measurement data analysis apparatus, analysis method, and program therefor - Google Patents

Biological light measurement data analysis apparatus, analysis method, and program therefor Download PDF

Info

Publication number
JP6028100B2
JP6028100B2 JP2015526111A JP2015526111A JP6028100B2 JP 6028100 B2 JP6028100 B2 JP 6028100B2 JP 2015526111 A JP2015526111 A JP 2015526111A JP 2015526111 A JP2015526111 A JP 2015526111A JP 6028100 B2 JP6028100 B2 JP 6028100B2
Authority
JP
Japan
Prior art keywords
series data
time series
data analysis
biological light
measurement data
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015526111A
Other languages
Japanese (ja)
Other versions
JPWO2015004789A1 (en
Inventor
卓成 桂
卓成 桂
木口 雅史
雅史 木口
田中 宏和
宏和 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Application granted granted Critical
Publication of JP6028100B2 publication Critical patent/JP6028100B2/en
Publication of JPWO2015004789A1 publication Critical patent/JPWO2015004789A1/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/145Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue
    • A61B5/1455Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters
    • A61B5/14551Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases
    • A61B5/14553Measuring characteristics of blood in vivo, e.g. gas concentration, pH value; Measuring characteristics of body fluids or tissues, e.g. interstitial fluid, cerebral tissue using optical sensors, e.g. spectral photometrical oximeters for measuring blood gases specially adapted for cerebral tissue

Description

本発明は、生体内の情報を得るための生体光計測方法に関し、特に、脳活動状態を評価するため頭部の複数点で光計測を行い、その計測データから脳内血流変化に依存した信号を算出し、その結果を画像表示する生体光計測データ解析装置および解析方法に関する。   The present invention relates to a biological light measurement method for obtaining in-vivo information, and in particular, optical measurement is performed at a plurality of points on the head in order to evaluate a brain activity state, and the measurement data depends on changes in blood flow in the brain. The present invention relates to a biological light measurement data analysis apparatus and an analysis method for calculating a signal and displaying the result as an image.

生体に対する透過性が高い、可視から近赤外領域に光強度のピーク波長を持つ光を用いると、生体内部の情報を無侵襲に計測することが可能である。これは、計測される光信号の対数値が吸光物質の濃度とその光路長の積に比例することを示したLambert-Beer則に基づく。この法則を発展させ、生体中の「酸素化ヘモグロビン(Hb)」と「脱酸素化Hb」、および「総Hb(酸素化Hbと脱酸素化Hbの総和)」の相対的濃度変化(以下、Hb信号と呼ぶ)を計測する技術が開発されてきた。特に、この技術を用いて人間の大脳皮質におけるHb信号を無侵襲に多点同時計測する技術が提案され(非特許文献1)、研究および臨床面において利用されている。上記文献では、大脳皮質のHb信号を計測することにより、人の脳機能を計測する方法が開示されている。具体的には、人の知覚機能や運動機能の賦活に伴い、その機能を司る大脳皮質領野の血液量が局所的に増加し、該当部位の酸素化Hb信号や脱酸素化Hb信号が変化するため、脳の活動状況が評価できる。この技術は、被験者に対し無侵襲且つ低拘束で、簡便に脳機能を計測できる特長を有し、また、血行動態や血液循環の状態などを評価できるため、従来にない脳機能計測方法として期待されている。   When light having a peak wavelength of light intensity in the visible to near-infrared region with high permeability to a living body is used, information inside the living body can be measured non-invasively. This is based on the Lambert-Beer law which showed that the logarithm of the measured optical signal is proportional to the product of the concentration of the light-absorbing substance and its optical path length. By developing this law, the relative concentration change of “oxygenated hemoglobin (Hb)” and “deoxygenated Hb” and “total Hb (sum of oxygenated and deoxygenated Hb)” Techniques for measuring (referred to as Hb signals) have been developed. In particular, a technique for non-invasive simultaneous measurement of multiple Hb signals in the human cerebral cortex using this technique has been proposed (Non-Patent Document 1) and used in research and clinical aspects. The above document discloses a method for measuring a human brain function by measuring an Hb signal of the cerebral cortex. Specifically, with the activation of human perceptual function and motor function, the blood volume in the cortical cortex area that controls the function increases locally, and the oxygenated Hb signal and deoxygenated Hb signal at the corresponding site change Therefore, the activity status of the brain can be evaluated. This technology is expected to be an unprecedented method for measuring brain function because it has features that it can measure brain function easily and non-invasively with low restraint on subjects, and it can evaluate hemodynamics and blood circulation. Has been.

しかし、この計測技術で計測した信号には、皮膚血流など脳以外の部位を発生源とする生体信号や、脳を発生源とする信号であっても目的とする脳機能とは無関係な信号、頭部の動きによるアーチファクト等の雑音成分が混在していることを複数の研究が指摘している。例えば、言語流暢性課題を用いた研究は、「計測領域の皮膚を圧迫すると、従来の活動信号が消失する」という結果を示し、前額部におけるHb信号変化の大部分が皮膚血流に起因する可能性を指摘した(非特許文献2)。   However, the signals measured by this measurement technology include biological signals that originate from parts other than the brain, such as skin blood flow, and signals that are irrelevant to the target brain function, even if signals originate from the brain. Several studies have pointed out that noise components such as artifacts due to head movement are mixed. For example, a study using a language fluency task shows that the conventional activity signal disappears when the skin in the measurement area is compressed. Most of the Hb signal change in the forehead is due to skin blood flow. The possibility of doing was pointed out (nonpatent literature 2).

これらの雑音成分に対する改善策として、例えば複数の照射点−検出点間(Source-Detector: S-D)距離を計測できる装置を使った方法も多く提案されている。通常、大脳皮質近傍の深さを計測するためにS-D距離を約3 cmに設定して計測することが多いが、より短いS-D距離を設定すると浅い部分の信号を計測することができる。このような方法は、例えば特許文献3に開示されている。しかし、複数のS-D距離を計測するためには、検出器あるいは光源を増やす必要があり、また装置構成が複雑になるため、コストが高くなるという問題があった。   As measures for improving these noise components, for example, many methods using an apparatus capable of measuring a plurality of irradiation point-detection point (Source-Detector: S-D) distances have been proposed. Usually, in order to measure the depth in the vicinity of the cerebral cortex, the S-D distance is set to about 3 cm in many cases. However, if a shorter S-D distance is set, a signal in a shallow part can be measured. Such a method is disclosed in Patent Document 3, for example. However, in order to measure a plurality of S-D distances, it is necessary to increase the number of detectors or light sources, and the apparatus configuration becomes complicated, resulting in a problem of increased cost.

また、装置構成は従来の1つのS-D距離のみであって、雑音成分信号を除去する方法がいくつか提案されている。例えば、独立成分解析(ICA)により成分を分離した後、全身性血行動態と考えられる成分を除去する方法である(特許文献1−2)。   Further, the apparatus configuration is only one conventional S-D distance, and several methods for removing noise component signals have been proposed. For example, after separating components by independent component analysis (ICA), a component considered to be systemic hemodynamics is removed (Patent Document 1-2).

また、光トポグラフィ計測信号が観測対象とする脳活動にともなう血中ヘモグロビン濃度変化についての既知の条件を用いる方法がある。すなわち、従来の研究から、脳活動に伴い血中の「酸素化Hb濃度」が増加するとそれに伴い「脱酸素Hb濃度」が減少することが知られている。そこで、光トポグラフィ計測により得られた酸素化Hb濃度変化と脱酸素化Hb濃度変化の時系列信号の間の相関係数が正になってしまっている時刻の信号に1よりも小さい係数を乗じ信号振幅を圧縮することにより、全時系列中の雑音成分の影響を低減する方法が提案されている(非特許文献3)。しかしながら、この方法では目的信号が雑音信号に隠れて重畳してしまっている場合に信号成分も雑音成分と等価に信号振幅が圧縮されてしまうため、その時刻での信号・雑音比の向上は実現されていない。   In addition, there is a method of using a known condition for a blood hemoglobin concentration change associated with a brain activity to be observed by an optical topography measurement signal. That is, it is known from conventional research that when the “oxygenated Hb concentration” in the blood increases with brain activity, the “deoxygenated Hb concentration” decreases accordingly. Therefore, the signal at the time when the correlation coefficient between the time series signal of oxygenated Hb concentration change and deoxygenated Hb concentration change obtained by optical topography measurement is positive is multiplied by a coefficient smaller than 1. A method of reducing the influence of noise components in the entire time series by compressing the signal amplitude has been proposed (Non-Patent Document 3). However, with this method, when the target signal is hidden and superimposed on the noise signal, the signal component is also compressed with the signal amplitude equivalent to the noise component, so the signal / noise ratio at that time is improved. It has not been.

また、上記の酸素化Hb濃度変化と脱酸素化Hb濃度変化の逆相関系と、上記の独立成分解析などの信号成分分離手法とを組み合わせ、分離された信号成分から酸素化Hbと脱酸素化Hbの関係が逆相関となるような脳活動信号成分のみを選別する手法は容易に類推されるが、以下の二つの課題があげられる。一つは前述のように、統計的な計測信号の特徴が必ずしも正しい信号成分分離を導くとは限らないという課題である。そしてもう一つは、従来の信号分離手法では、酸素化Hbの信号成分分離演算と脱酸素化Hbのそれは個別の処理として実行されていたため、必ずしも特徴の類似した(逆相関ではあるが)共通の信号成分を抽出できるとは限らないという課題である。   Also, combining the above-mentioned inverse correlation system between oxygenated Hb concentration change and deoxygenated Hb concentration change and signal component separation methods such as the above independent component analysis, oxygenated Hb and deoxygenated from the separated signal components A method of selecting only brain activity signal components whose Hb relationship is inversely correlated is easily analogized, but there are the following two problems. One problem is that, as described above, statistical measurement signal characteristics do not always lead to correct signal component separation. The other is that, in the conventional signal separation method, the signal component separation calculation of oxygenated Hb and that of deoxygenated Hb are executed as separate processes, so the features are not necessarily similar (although it is an inverse correlation). It is a problem that it is not always possible to extract the signal component.

上記の二つの課題のうち、前者の信号分離方法に関する課題に対しては、非特許文献4に新たな手法が提案されている。これは、脳活動を誘発する実験タスクが繰り返し行われた場合に、その繰り返しに同期して出現する信号変化を抽出する手法であり、信号の独立性を用いる方法よりも効果的に実験タスクに同期した信号成分を抽出可能である。しかし、後者の課題に対する解決法は示されていない。   Of the two problems described above, a new technique is proposed in Non-Patent Document 4 for the problem related to the former signal separation method. This is a technique for extracting signal changes that appear in synchronization with repeated repetition of an experimental task that induces brain activity, and is more effective than an approach that uses signal independence. Synchronized signal components can be extracted. However, no solution to the latter problem has been shown.

特許第4379155号公報Japanese Patent No. 4379155 特許第4631510号公報Japanese Patent No. 4631510 米国特許第7072701B2号明細書US Pat. No. 7,072,701 B2

Maki, A et al., ”Spatial and temporal analysis of human motor activity using noninvasive NIR topography” Medical Physics 22, 1997-2005 (1995).Maki, A et al., “Spatial and temporal analysis of human motor activity using noninvasive NIR topography” Medical Physics 22, 1997-2005 (1995). Takahashi, T et al., “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” NeuroImage 59, 991-1002 (2011).Takahashi, T et al., “Influence of skin blood flow on near-infrared spectroscopy signals measured on the forehead during a verbal fluency task,” NeuroImage 59, 991-1002 (2011). Cui X et al.,” Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics.” Neuroimage 15:49(4):3039-46 (2010)Cui X et al., ”Functional near infrared spectroscopy (NIRS) signal improvement based on negative correlation between oxygenated and deoxygenated hemoglobin dynamics.” Neuroimage 15:49 (4): 3039-46 (2010) Tanaka H et al.,” Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data.” Neuroimage 1;64:308-27 (2013)Tanaka H et al., “Task-related component analysis for functional neuroimaging and application to near-infrared spectroscopy data.” Neuroimage 1; 64: 308-27 (2013)

背景技術で述べたように、従来の生体光計測方法では、装置構成が複雑になったり、独立成分解析のような統計的な仮定が必要であったりして、酸素化ヘモグロビン濃度変化信号や脱酸素化ヘモグロビン濃度変化信号以外の雑音信号が混入している生体光計測信号から、脳活動信号を最適に導出することは困難であった。   As described in the background art, in the conventional biological light measurement method, the apparatus configuration is complicated, or statistical assumptions such as independent component analysis are required. It has been difficult to optimally derive a brain activity signal from a biological light measurement signal mixed with a noise signal other than the oxygenated hemoglobin concentration change signal.

本発明は、装置構成を複雑にすることなく、雑音信号を含む生体光計測信号から、雑音を除去した脳活動信号を導出することができる生体光データ解析装置および解析方法を提供することを目的とする。   An object of the present invention is to provide a biological optical data analysis device and an analysis method capable of deriving a brain activity signal from which noise is removed from a biological optical measurement signal including a noise signal without complicating the device configuration. And

本発明は、繰り返し行われた実験タスクに対応する脳活動信号は毎回の繰り返しで同様の信号変化を示し、なおかつ脳活動信号である酸素化ヘモグロビン濃度変化信号と脱酸素化ヘモグロビン濃度変化信号とが逆相関の関係にあるという条件のもとで、ほぼ同時に観測された複数の計測領域から得られた信号のそれぞれに最適化した重み係数を乗じ合成した信号を脳活動信号成分として算出する。   According to the present invention, the brain activity signal corresponding to the repeated experiment task shows the same signal change at each repetition, and the oxygenated hemoglobin concentration change signal and the deoxygenated hemoglobin concentration change signal which are brain activity signals are Under the condition that there is an inverse correlation relationship, a signal obtained by multiplying and synthesizing each of the signals obtained from a plurality of measurement regions observed almost simultaneously with optimized weighting factors is calculated as a brain activity signal component.

本発明の代表的な一例を挙げるならば、生体内で透過、散乱、反射した光を複数の計測点で検出して得た時系列データを解析する生体光計測データ解析装置において、前記複数点の時系列データに混合係数を乗じて混合時系列データを作成し、前記混合時系列データの繰り返し期間の類似度を表す評価関数を作成する評価関数作成部と、前記混合時系列データの混合係数を、前記混合時系列データから算出される時間的に繰り返し計測された信号間の類似度が最も高くなるように導出する重み係数演算部と、前記複数点の時系列データに、前記重み係数演算部で導出した前記混合係数を乗じて雑音成分を除去した時系列データを求める信号合成部とを具備し、前記混合係数の導出において、前記複数点のそれぞれにおいてほぼ同時に計測され、かつ特定の変換処理を用いることにより互いに正の相関関係を導出可能な2種類以上の時系列データを用いることを特徴とするものである。   If a typical example of the present invention is given, in the biological light measurement data analysis apparatus for analyzing time-series data obtained by detecting light transmitted, scattered, and reflected in a living body at a plurality of measurement points, the plurality of points The time series data is multiplied by the mixing coefficient to create mixed time series data, and an evaluation function creating unit that creates an evaluation function representing the similarity of the repetition period of the mixed time series data, and the mixing coefficient of the mixed time series data Is calculated so that the similarity between signals repeatedly measured in time calculated from the mixed time-series data is the highest, and the weight coefficient calculation is performed on the time-series data of the plurality of points. A signal synthesizing unit that obtains time-series data obtained by removing the noise component by multiplying the mixing coefficient derived by the unit, and is substantially simultaneously measured at each of the plurality of points in the derivation of the mixing coefficient. And it is characterized in the use of time-series data of two or more can be derived positively correlated with each other by using a specific conversion.

また、本発明の他の一例を挙げるならば、生体内で透過、散乱、反射した光を複数の計測点で検出して得た時系列データを解析する生体光計測データ解析方法において、前記複数点の時系列データに混合係数を乗じて混合時系列データを作成し、前記混合時系列データの繰り返し期間の類似度を表す評価関数を作成する評価関数作成ステップと、前記混合時系列データの混合係数を、前記混合時系列データから算出される時間的に繰り返し計測された信号間の類似度が最も高くなるように導出する重み係数演算ステップと、前記複数点の時系列データに、前記重み係数演算部で導出した前記混合係数を乗じて雑音成分を除去した時系列データを求める信号合成ステップとを具備し、前記混合係数の導出処理において、前記複数点のそれぞれにおいてほぼ同時に計測され、かつ特定の変換処理を用いることにより互いに正の相関関係を導出可能な2種類以上の時系列データを用いることを特徴とするものである。   As another example of the present invention, in the biological light measurement data analysis method for analyzing time-series data obtained by detecting light transmitted, scattered, and reflected in a living body at a plurality of measurement points, A time series data of points is multiplied by a mixing coefficient to create mixed time series data, and an evaluation function creating step for creating an evaluation function representing a similarity in a repetition period of the mixed time series data, and the mixing of the mixed time series data A weight coefficient calculating step for deriving a coefficient so that the similarity between signals repeatedly measured in time calculated from the mixed time series data is the highest, and the weight coefficient in the time series data of the plurality of points A signal synthesis step for obtaining time series data obtained by removing the noise component by multiplying the mixing coefficient derived by the arithmetic unit, and in each of the plurality of points in the mixing coefficient derivation process There are those characterized by using the time-series data of two or more can be derived positively correlated with each other by using a substantially be measured simultaneously, and specific conversion.

本発明の生体光計測データ解析装置および解析方法は、繰り返し行われた実験タスクの開始および終了時刻のみを用いた演算方法であるため、独立成分解析のような統計的な仮定を必要とせず、より強力に脳活動信号を導出することができる。   Since the biological light measurement data analysis apparatus and analysis method of the present invention is a calculation method using only the start and end times of the repeated experimental task, it does not require statistical assumptions such as independent component analysis, Brain activity signals can be derived more powerfully.

本発明の実施例1の生体光計測データ解析装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the biological light measurement data analysis apparatus of Example 1 of this invention. 本発明の実施例1の生体光計測データ解析方法のフローチャートである。It is a flowchart of the biological light measurement data analysis method of Example 1 of this invention. 本実施例で用いた生体光計測データの実験タスクシーケンスの図である。It is a figure of the experiment task sequence of the biological light measurement data used in the present Example. 本発明の実施例1の生体光計測データ解析方法を適用した例を示す図であり、(a)生体光計測データの元データの例(時系列データ)、(b)従来のTRCA法を適用し雑音を除去した例、(c)本発明手法のチャンネル拡張TRCA法を適用し雑音を除去した例である。It is a figure which shows the example which applied the biological optical measurement data analysis method of Example 1 of this invention, (a) The example of original data (time series data) of biological optical measurement data, (b) The conventional TRCA method is applied And (c) an example in which noise is removed by applying the channel extension TRCA method of the method of the present invention. 本発明の実施例3の生体光計測データ解析装置の画面構成例である。It is a screen structural example of the biological light measurement data analysis apparatus of Example 3 of this invention.

本発明の実施の形態を、図面を参照しつつ説明する。   Embodiments of the present invention will be described with reference to the drawings.

本発明の基本的な形態は、空間的に異なる位置である複数の点で光計測されたデータXと、それと正または逆相関の関係にある観測データYを入力すると、脳活動信号以外の雑音成分を除去した補正済みデータZが出力される生体光データ解析装置および解析方法である。   The basic form of the present invention is that when data X optically measured at a plurality of points at spatially different positions and observation data Y that has a positive or negative correlation with it are input, noise other than brain activity signals is input. It is a biological light data analysis apparatus and analysis method for outputting corrected data Z from which components have been removed.

先ず、本発明の核となる雑音成分の算出法について詳細に述べる。   First, a method for calculating a noise component which is the core of the present invention will be described in detail.

はじめに元データとして、N計測点(チャンネル: ch)で計測した生体光計測データの時系列データX(計測時間T)を行列で示す(数式1)。   First, as original data, time series data X (measurement time T) of biological light measurement data measured at N measurement points (channel: ch) is shown in a matrix (Formula 1).

Figure 0006028100
ここで、xi(t)は平均値が0、標準偏差が1になるよう標準化した。また、必要に応じて、高周波雑音を除く平滑化処理や低周波揺らぎを除くハイパスフィルタなどの前処理も実施する。各チャンネルch(i)のデータxi(t)に任意の係数(混合係数、重み係数)w(i)をかけて和を取ると、一つの混合時系列データy(t)が作成できる(数式2)。
Figure 0006028100
Here, x i (t) was standardized so that the average value was 0 and the standard deviation was 1. In addition, preprocessing such as a smoothing process that removes high-frequency noise and a high-pass filter that removes low-frequency fluctuations is performed as necessary. When data x i (t) of each channel ch (i) is multiplied by an arbitrary coefficient (mixing coefficient, weighting coefficient) w (i) and summed, one mixed time series data y (t) can be created ( Formula 2).

Figure 0006028100
ここで、Wは混合係数列を、添え字iはch番号を表す。
Figure 0006028100
Here, W represents a mixing coefficient sequence, and the subscript i represents a ch number.

従来の手法であるTRCA(Task-Related Component Analysis)について説明する。TRCA法は、複数の時系列信号(例えば繰り返し実験タスクに対する信号変化)が同様の変化を示すという仮定に基づく演算方法である。この仮説に基づけば、入力信号である複数の観測点から観測された時系列信号Xに、Xの雑音を低減するように最適な重み係数wを乗じ合成することで導出された混合信号y1について、N回の繰り返し実験タスクの開始・終了時刻に合わせて混合信号y1から切り出されたN個の時系列信号区分y(1〜N)のそれぞれは同様の変化を示すと考えられる。したがって、例えば、y(1〜N)の類似度を数式3に示すような時系列区分間の共分散のCとして表わすとすると、Cが大きな値を示すことがy(1〜N)の類似度が高いことを意味する。そこで、TRCA法ではCを最大化するようなXの混合係数wを導出するという課題設定をおき演算処理を行う。The conventional method TRCA (Task-Related Component Analysis) will be described. The TRCA method is an arithmetic method based on the assumption that a plurality of time series signals (for example, signal changes for repeated experimental tasks) show similar changes. Based on this hypothesis, the mixed signal y1 derived by multiplying the time series signal X observed from a plurality of observation points as the input signal by the optimum weighting factor w so as to reduce the noise of X is synthesized. It is considered that each of the N time-series signal segments y (1 to N) cut out from the mixed signal y1 in accordance with the start / end times of the N repetition experiment tasks shows the same change. Thus, for example, similar y when the similarity (1 to N) and expressed as C of the covariance between the time series division as shown in Equation 3, C that indicates a large value y (1 to N) Means high. Therefore, in the TRCA method, an arithmetic processing is performed by setting a problem of deriving a mixing coefficient w of X that maximizes C.

N個の時系列区分y(1〜N)について、k番目の時系列区分y(k)とl番目の時系列区分y(l)の共分散はFor N time series segments y (1 to N) , the covariance of the k th time series segment y (k) and the l th time series segment y (l) is

Figure 0006028100
と定義され、評価関数となる。なお、共分散を平均で割れば、相関係数となる。
Figure 0006028100
And is an evaluation function. Note that the correlation coefficient is obtained by dividing the covariance by the average.

繰り返し事象の総当たりの共分散の和Rは、   The sum R of the round-robin covariances is

Figure 0006028100
と表わされる。ここで、
Figure 0006028100
It is expressed as here,

Figure 0006028100
である。ただし、i、 jは計測点番号を意味する。この評価関数を共分散和とよぶ。この共分散和が最大となるような混合係数wを求めることにより、繰り返し事象に対応して再現される脳活動信号を抽出することが可能であると考える。ただし、最大化計算における発散を防ぐため、境界条件として、
Figure 0006028100
It is. However, i and j mean measurement point numbers. This evaluation function is called a covariance sum. It is considered that a brain activity signal reproduced in response to a repetitive event can be extracted by obtaining a mixing coefficient w that maximizes the covariance sum. However, to prevent divergence in the maximization calculation, as a boundary condition,

Figure 0006028100
を同時に満たすものとする。
Figure 0006028100
At the same time.

この最大化は以下の式で表わされる。   This maximization is expressed by the following equation.

Figure 0006028100
これはRayleigh-Ritz定理から
Figure 0006028100
From the Rayleigh-Ritz theorem

Figure 0006028100
の固有ベクトルがwとなる。このとき、固有値は各固有ベクトルにより合成されるyの妥当性を示す指標となる。以上が、従来のTRCA法の説明である。
Figure 0006028100
The eigenvector of is w. At this time, the eigenvalue is an index indicating the validity of y synthesized by each eigenvector. The above is an explanation of the conventional TRCA method.

従来のTRCA法において酸素化Hbまたは脱酸素化Hbのどちらかのみを用い演算していたのに対し、本発明では、両方の信号を同時に演算に用いる。すなわち、酸素化Hbと脱酸素化Hbの関係は理想的には逆相関となることを利用し、M個の計測点(チャンネル)から得られた信号について、酸素化Hbの信号XoxyからIn the conventional TRCA method, calculation is performed using only oxygenated Hb or deoxygenated Hb. In the present invention, both signals are used for calculation simultaneously. That is, the relationship of oxygenated Hb and deoxygenated Hb utilizes the fact that the ideally inverse correlation, the signals obtained from M measurement points (channel), from a signal X the oxy oxygenated Hb

Figure 0006028100
とし、脱酸素化Hbの信号XDeoxy
Figure 0006028100
And deoxygenated Hb signal X Deoxy

Figure 0006028100
とし、共分散の演算を行う。つまり、見かけ上の計測点数を増やし計算を行う。なお、酸素化Hbおよび脱酸素化Hbの計測は、異なる波長の光を当てて、同時に計測すればよい。そして、導出された共分散和を用い以降の計算は通常のTRCA法と同様に行い、最適化された混合係数wを求める。これは時刻情報を保持した計算方法であり、そのため酸素化Hbと脱酸素化Hbとで同時刻に生じている雑音成分の除去に効果的である。例えば体や頭部の動きに伴う雑音信号が対象となる。本手法をチャンネル拡張TRCAとする。
Figure 0006028100
And calculate the covariance. That is, the number of apparent measurement points is increased and calculation is performed. Note that oxygenated Hb and deoxygenated Hb may be measured simultaneously by applying light of different wavelengths. Then, the subsequent calculation using the derived covariance sum is performed in the same manner as the normal TRCA method, and the optimized mixing coefficient w is obtained. This is a calculation method that retains time information, and is therefore effective in removing noise components generated at the same time in oxygenated Hb and deoxygenated Hb. For example, a noise signal accompanying the movement of the body or head is targeted. This method is called channel expansion TRCA.

本発明の実施例1の、生体光計測データ解析装置の基本構成を、生体光計測装置も含めて、図1に示す。   FIG. 1 shows the basic configuration of the biological light measurement data analysis apparatus according to the first embodiment of the present invention, including the biological light measurement apparatus.

生体光計測装置では、光照射部10で可視から赤外領域に属する波長の光を発生し、その光を光ファイバー30を介して計測インターフェイス部40に導き、被験者の頭部に照射する。頭部内部を通過した複数の光をインターフェイス部40で受光し、その光を光ファイバー30を介して光検出部20に導き、光検出部20で電気信号として検出する。インターフェイス部40では、所定の間隔で格子状の点に照射部および検出部を交互に配置することにより、複数地点の血液変化量信号を得ている。光検出部20で検出された生体光計測データは、記憶部50に記憶され、その後の解析に用いられる。   In the biological light measurement device, light having a wavelength belonging to the visible to infrared region is generated by the light irradiation unit 10, and the light is guided to the measurement interface unit 40 through the optical fiber 30 to irradiate the head of the subject. The plurality of lights that have passed through the inside of the head are received by the interface unit 40, the light is guided to the light detection unit 20 through the optical fiber 30, and the light detection unit 20 detects it as an electrical signal. The interface unit 40 obtains blood change amount signals at a plurality of points by alternately arranging irradiation units and detection units at lattice points at predetermined intervals. The biological light measurement data detected by the light detection unit 20 is stored in the storage unit 50 and used for subsequent analysis.

本発明の生体光計測データ解析装置は、主に演算部60で構成される。演算部60は、評価関数作成部62、重み係数演算部64、信号合成部66、ユーザインターフェイス部68を備えている。   The biological light measurement data analysis apparatus of the present invention is mainly composed of a calculation unit 60. The calculation unit 60 includes an evaluation function creation unit 62, a weight coefficient calculation unit 64, a signal synthesis unit 66, and a user interface unit 68.

記憶部50に記憶した生体光計測データは演算部60で処理される。演算部60では、ユーザインターフェイス部68で使用者によって設定されたパラメータを使用することができる。設定するパラメータとしては、評価関数やTRCAの選択などである。演算部60では2種類の生体光データを使用するため、記憶部50には2種類以上の生体光計測データを記憶している。   The biological light measurement data stored in the storage unit 50 is processed by the calculation unit 60. In the calculation unit 60, parameters set by the user in the user interface unit 68 can be used. Parameters to be set include selection of an evaluation function and TRCA. Since the calculation unit 60 uses two types of biological light data, the storage unit 50 stores two or more types of biological light measurement data.

評価関数作成部62では、記憶部50から読み込んだ2種類の生体光データ(X、Y)について、実験タスクに対する再現性に関する評価関数R(数式4)を作成する。重み係数演算部64は、作成された評価関数Rを用いて、合成信号の実験タスクに対する再現性を最大化するような合成用の重み係数Wを導出する。信号合成部66では、入力された生体光データ(X,Y)と合成用重み係数Wとを掛け合わせ、数式1で表される合成信号Zを導出する。   The evaluation function creating unit 62 creates an evaluation function R (Formula 4) relating to reproducibility with respect to the experimental task for the two types of biological light data (X, Y) read from the storage unit 50. The weighting factor calculation unit 64 uses the created evaluation function R to derive a weighting factor W for synthesis that maximizes the reproducibility of the synthesized signal for the experimental task. The signal synthesis unit 66 multiplies the input biological light data (X, Y) and the synthesis weight coefficient W to derive the synthesis signal Z expressed by Equation 1.

表示部70は、得られた合成信号Zを表示する。なお、記憶部50および表示部70を含めて、本発明の生体光計測データ解析装置としてもよい。   The display unit 70 displays the obtained composite signal Z. In addition, it is good also as a biological light measurement data analysis apparatus of this invention including the memory | storage part 50 and the display part 70. FIG.

図2に、本発明の実施例1に対応する、生体光計測データ解析方法のフローチャートを示す。はじめに、評価関数作成ステップS110で、2種類の生体光データX,Yを読み込み、実験タスクに対する再現性に関する評価関数Rを作成する。この場合、ユーザインタフェイス部68の入力部から入力された解析パラメータを利用する場合もある。
次に、重み係数演算ステップS120で、作成された評価関数Rを用いて、合成信号の実験タスクに対する再現性を最大化するような合成用の重み係数Wを導出する。
そして、信号合成ステップS130で、入力された生体光データ(X,Y)と合成用重み係数Wとを掛け合わせて合成信号Zを導出する。
FIG. 2 shows a flowchart of the biological light measurement data analysis method corresponding to the first embodiment of the present invention. First, in the evaluation function creation step S110, two types of biological light data X and Y are read, and an evaluation function R relating to reproducibility for the experiment task is created. In this case, the analysis parameter input from the input unit of the user interface unit 68 may be used.
Next, in the weighting factor calculation step S120, a weighting factor W for synthesis that maximizes the reproducibility of the synthesized signal for the experimental task is derived using the created evaluation function R.
Then, in the signal synthesis step S130, the input biological light data (X, Y) and the synthesis weight coefficient W are multiplied to derive a synthesized signal Z.

本発明のプログラムは、コンピュータに、図2のフローチャートに記載した処理を実行させるものである。   The program of the present invention causes a computer to execute the processing described in the flowchart of FIG.

図3および図4に、この解析方法を、実際の脳機能計測データに適用した例を示す。ここでは、実際の人の頭部から観測した信号を用いている。実験では被験者に対し、図3に示すように、画面に呈示される図形の位置を覚えるという課題(タスク)301を8秒間、約30-40秒の安静期間302を挟んで8回繰り返した。計測部位は、被験者の前額部である。   3 and 4 show an example in which this analysis method is applied to actual brain function measurement data. Here, a signal observed from an actual human head is used. In the experiment, as shown in FIG. 3, the subject (task) 301 to memorize the position of the graphic presented on the screen was repeated 8 times for 8 seconds with a rest period 302 of about 30-40 seconds. The measurement site is the forehead portion of the subject.

図4(a)の雑音成分を除去していない生体光計測データ(元データ)、図4(b)の従来のTRCA法を用いた場合、および図4(c)の本発明による方法を適用した場合の補正データを比較する。各図において、横軸は時間の経過(秒)を表し、縦軸は振幅を表す。図4(a)において、符号401は脱酸素化ヘモグロビン信号を、符号402は酸素化ヘモグロビン信号を示し、8回のタスク403の応答信号を示す。元データでは、計測中の150秒前後のあたりに大きな信号変化が見られるが、その振幅が大きく、また繰り返し実験タスクに同期していないことから雑音成分と考えられる。   The biological light measurement data (original data) from which noise components are not removed in FIG. 4 (a), the conventional TRCA method in FIG. 4 (b) is used, and the method according to the present invention in FIG. 4 (c) is applied. Compare the correction data. In each figure, the horizontal axis represents the passage of time (seconds), and the vertical axis represents the amplitude. In FIG. 4A, reference numeral 401 indicates a deoxygenated hemoglobin signal, reference numeral 402 indicates an oxygenated hemoglobin signal, and a response signal of eight tasks 403. In the original data, a large signal change is observed around 150 seconds during measurement, but it is considered to be a noise component because its amplitude is large and it is not synchronized with repeated experimental tasks.

これに対し、図4(b)に示される、従来のTRCA法を適用して雑音除去した結果(符号411)では、それらの雑音は元データに比べると大きく減少しているが、150秒付近の雑音によると考えられる変化や、220秒付近にはスパイク状の雑音成分も見られる。   On the other hand, in the result (reference numeral 411) of removing noise by applying the conventional TRCA method shown in FIG. 4B, those noises are greatly reduced compared to the original data, but around 150 seconds. There is also a change that seems to be due to noise and spike-like noise components around 220 seconds.

これに対し、図4(c)に示される本発明手法を適用して雑音除去した結果(符号421)では、150秒付近の雑音の影響が低減されており、またスパイク状の雑音も除去されている。   On the other hand, in the result of removing noise by applying the method of the present invention shown in FIG. 4 (c) (reference numeral 421), the influence of noise in the vicinity of 150 seconds is reduced, and spike noise is also removed. ing.

図4(b)および図4(c)の右側の図に、8回の繰り返しの実験タスクに応じた信号変化を加算平均した結果を示す。符号412で示される従来のTRCA法では雑音の影響により課題終了後に信号が減少しているが、符号422で示される本発明手法では雑音の影響が低減され理想的な信号パターンとなっている。この結果から本発明手法が有効であることが明らかである。   FIG. 4B and FIG. 4C show the results of averaging the signal changes corresponding to the experimental task repeated eight times. In the conventional TRCA method indicated by reference numeral 412, the signal decreases after completion of the task due to the influence of noise. However, in the method of the present invention indicated by reference numeral 422, the influence of noise is reduced and an ideal signal pattern is obtained. From this result, it is clear that the method of the present invention is effective.

以下に、本発明の実施例2について説明する。実施例2では数式4で表される共分散和を導出する際に使用する繰り返し実験課題に応じた時系列区分y(1〜N)、すなわちx(1〜N)を、酸素化Hbの時系列区分The second embodiment of the present invention will be described below. In Example 2, the time-series division y (1-N) corresponding to the repeated experiment task used when deriving the covariance sum represented by Formula 4 is changed to x (1-N) when oxygenated Hb. Series division

Figure 0006028100
と、脱酸素化Hbの時系列信号にマイナスを乗じた時系列区分
Figure 0006028100
And time series division of deoxygenated Hb time series signal minus

Figure 0006028100
とし、x(1〜2N)から導出される共分散和を用い最適な混合係数wを算出する。この手法では、酸素化Hbと脱酸素化Hbの計測点に関する情報、すなわち空間的な位置情報は保持されており、特定の観測部位において、酸素化Hbと脱酸素化Hbの信号変化が同一である混合信号yを導出する。雑音除去に関しても同様に、酸素化Hbと脱酸素化Hbとで共通した計測部位に特異的な成分を低減することができる。本手法を時系列拡張TRCAとする。
Figure 0006028100
And an optimal mixing coefficient w is calculated using a covariance sum derived from x (1 to 2N) . In this method, information about the measurement points of oxygenated Hb and deoxygenated Hb, that is, spatial position information, is retained, and the signal changes of oxygenated Hb and deoxygenated Hb are the same at a specific observation site. A certain mixed signal y is derived. Similarly, with respect to noise removal, it is possible to reduce components specific to the measurement site common to oxygenated Hb and deoxygenated Hb. This method is called time-series extended TRCA.

上記実施例1、2を組み合わせることにより、酸素化Hbと脱酸素化Hbとで同時刻に生じた雑音と、同一計測部位で生じた雑音との両方を効果的に除去可能である。図5に、本発明の実施例3のユーザインターフェイス部の入力画面構成を図示する。画面は、時系列拡張TRCAとチャンネル拡張TRCAとを選択し、両方を行ったり、2つの処理を繰り返し行う設定が可能となっている。モニター画面501において、符号502で示される解析方法の選択機能1、および符号503で示される解析方法の選択機能2で、時系列拡張TRCAとチャンネル拡張TRCAとを選択することができる。また、符号504で示される繰り返し回数を設定する機能で、解析方法の選択機能1および解析方法の選択機能2の繰り返し回数を設定することができる。実行ボタン505を押すことにより、選択した処理を繰り返し行う。   By combining the first and second embodiments, it is possible to effectively remove both noise generated at the same time by oxygenated Hb and deoxygenated Hb and noise generated at the same measurement site. FIG. 5 illustrates an input screen configuration of the user interface unit according to the third embodiment of the present invention. The screen can be set to select both time-series expansion TRCA and channel expansion TRCA, perform both, or repeat two processes. On the monitor screen 501, the time series expansion TRCA and the channel expansion TRCA can be selected by the analysis method selection function 1 indicated by reference numeral 502 and the analysis method selection function 2 indicated by reference numeral 503. In addition, the function for setting the number of repetitions indicated by reference numeral 504 can set the number of repetitions for the analysis method selection function 1 and the analysis method selection function 2. By pressing the execution button 505, the selected process is repeated.

10 光照射部
20 光検出部
30 光ファイバー
40 計測インターフェイス部
50 記憶部
60 演算部
62 評価関数作成部
64 重み係数演算部
66 信号合成部
68 ユーザインターフェイス部
70 表示部
301 実験タスク期間
302 安静期間
401 脱酸素化ヘモグロビン信号
402 酸素化ヘモグロビン信号
403 タスク(課題)
411 従来のTRCA法による雑音除去後の信号
412 信号411を繰り返しで加算平均した信号
421 本発明のTRCA法による雑音除去後の信号
422 信号421を繰り返しで加算平均した信号
501 モニター画面
502 解析方法の選択機能1
503 解析方法の選択機能2
504 繰り返し回数を設定する機能
505 実行機能
DESCRIPTION OF SYMBOLS 10 Light irradiation part 20 Light detection part 30 Optical fiber 40 Measurement interface part 50 Storage part 60 Calculation part 62 Evaluation function creation part 64 Weight coefficient calculation part 66 Signal composition part 68 User interface part 70 Display part 301 Experimental task period 302 Rest period 401 Departure Oxygenated hemoglobin signal 402 Oxygenated hemoglobin signal 403 Task (task)
411 Signal 412 after removal of noise by conventional TRCA method Signal 421 obtained by repeatedly adding and averaging signal 411 Signal 422 after removal of noise by TRCA method of the present invention Signal 501 by repeatedly adding and averaging signal 421 Monitor screen 502 Analysis method Selection function 1
503 Analysis method selection function 2
504 Function for setting the number of repetitions 505 Execution function

Claims (15)

生体内で透過、散乱、反射した光を複数の計測点で検出して得た時系列データを解析する生体光計測データ解析装置において、
前記複数点の時系列データに混合係数を乗じて混合時系列データを作成し、前記混合時系列データの繰り返し期間の類似度を表す評価関数を作成する評価関数作成部と、
前記混合時系列データの混合係数を、前記混合時系列データから算出される時間的に繰り返し計測された信号間の類似度が最も高くなるように導出する重み係数演算部と、
前記複数点の時系列データに、前記重み係数演算部で導出した前記混合係数を乗じて雑音成分を除去した時系列データを求める信号合成部とを具備し、
前記混合係数の導出において、前記複数点のそれぞれにおいてほぼ同時に計測され、かつ特定の変換処理を用いることにより互いに正の相関関係を導出可能な2種類以上の時系列データを用いることを特徴とする生体光計測データ解析装置。
In a biological light measurement data analysis device that analyzes time-series data obtained by detecting light transmitted, scattered, and reflected in a living body at a plurality of measurement points,
An evaluation function creating unit that creates mixed time series data by multiplying the time series data of the plurality of points by a mixing coefficient, and creates an evaluation function representing the similarity of the repetition period of the mixed time series data;
A weighting factor calculation unit for deriving the mixing coefficient of the mixed time series data so that the similarity between signals repeatedly measured in time calculated from the mixed time series data is the highest,
A signal synthesizing unit that obtains time series data obtained by multiplying the time series data of the plurality of points by the mixing coefficient derived by the weighting factor computing unit to remove noise components;
In the derivation of the mixing coefficient, two or more types of time-series data that are measured almost simultaneously at each of the plurality of points and are capable of deriving a positive correlation with each other by using a specific conversion process are used. Biological light measurement data analysis device.
請求項1に記載の生体光計測データ解析装置において、
前記、繰り返し計測された信号間の類似度として、共分散あるいは相関係数の値を使うことを特徴とする生体光計測データ解析装置。
The biological light measurement data analysis apparatus according to claim 1,
The biological light measurement data analysis apparatus characterized by using a value of covariance or correlation coefficient as the similarity between the repeatedly measured signals.
請求項1に記載の生体光計測データ解析装置において、
前記、互いに正の相関関係を導出可能な2種類以上の時系列データとして、酸素化ヘモグロビン濃度変化と脱酸素化ヘモグロビン濃度変化を用い、変換処理として脱酸素化ヘモグロビンの符号を逆転することを特徴とする生体光計測データ解析装置。
The biological light measurement data analysis apparatus according to claim 1,
The oxygenated hemoglobin concentration change and the deoxygenated hemoglobin concentration change are used as two or more types of time series data from which a positive correlation can be derived, and the sign of the deoxygenated hemoglobin is reversed as a conversion process. Biological light measurement data analysis device.
請求項1に記載の生体光計測データ解析装置において、
前記、類似度を最大化する混合係数の導出を、固有値問題として算出することを特徴とする生体光計測データ解析装置。
The biological light measurement data analysis apparatus according to claim 1,
The biological light measurement data analysis apparatus characterized in that the derivation of the mixing coefficient that maximizes the similarity is calculated as an eigenvalue problem.
請求項1に記載の生体光計測データ解析装置において、
前記、互いに正の相関関係を導出可能な2種類以上の時系列データを、計測チャンネルの拡張に用いたことを特徴とする生体光計測データ解析装置。
The biological light measurement data analysis apparatus according to claim 1,
The biological light measurement data analysis apparatus characterized in that two or more types of time-series data capable of deriving a positive correlation with each other are used for extending a measurement channel.
請求項1に記載の生体光計測データ解析装置において、
前記、互いに正の相関関係を導出可能な2種類以上の時系列データを、計測時間の拡張に用いたことを特徴とする生体光計測データ解析装置。
The biological light measurement data analysis apparatus according to claim 1,
The biological light measurement data analysis apparatus characterized in that two or more types of time series data capable of deriving a positive correlation with each other are used for extending measurement time.
請求項1に記載の生体光計測データ解析装置において、
前記、互いに正の相関関係を導出可能な2種類以上の時系列データを、計測チャンネルおよび計測時間の拡張に用いたことを特徴とする生体光計測データ解析装置。
The biological light measurement data analysis apparatus according to claim 1,
The biological optical measurement data analysis apparatus characterized in that two or more types of time series data capable of deriving a positive correlation with each other are used for extending a measurement channel and a measurement time.
生体内で透過、散乱、反射した光を複数の計測点で検出して得た時系列データを解析する生体光計測データ解析方法において、
前記複数点の時系列データに混合係数を乗じて混合時系列データを作成し、前記混合時系列データの繰り返し期間の類似度を表す評価関数を作成する評価関数作成ステップと、
前記混合時系列データの混合係数を、前記混合時系列データから算出される時間的に繰り返し計測された信号間の類似度が最も高くなるように導出する重み係数演算ステップと、
前記複数点の時系列データに、前記重み係数演算ステップで導出した前記混合係数を乗じて雑音成分を除去した時系列データを求める信号合成ステップとを具備し、
前記混合係数の導出処理において、前記複数点のそれぞれにおいてほぼ同時に計測され、かつ特定の変換処理を用いることにより互いに正の相関関係を導出可能な2種類以上の時系列データを用いることを特徴とする生体光計測データ解析方法。
In the biological light measurement data analysis method for analyzing time-series data obtained by detecting light transmitted, scattered, and reflected in a living body at a plurality of measurement points,
An evaluation function creating step of creating a mixed time series data by multiplying the time series data of the plurality of points by a mixing coefficient, and creating an evaluation function representing the similarity of the repetition period of the mixed time series data;
A weighting factor calculation step for deriving the mixing coefficient of the mixed time series data so that the similarity between the signals repeatedly measured in time calculated from the mixed time series data is the highest;
A signal synthesis step of obtaining time series data obtained by multiplying the time series data of the plurality of points by the mixing coefficient derived in the weighting factor calculation step to remove noise components;
The mixing coefficient derivation process uses two or more types of time-series data that are measured almost simultaneously at each of the plurality of points and that can derive a positive correlation with each other by using a specific conversion process. To analyze biological light measurement data.
請求項8に記載の生体光計測データ解析方法において、
前記、繰り返し計測された信号間の類似度として、共分散あるいは相関係数の値を使うことを特徴とする生体光計測データ解析方法。
The biological light measurement data analysis method according to claim 8,
The biological light measurement data analysis method characterized by using a covariance or a correlation coefficient value as the similarity between the repeatedly measured signals.
請求項8に記載の生体光計測データ解析方法において、
前記、互いに正の相関関係を導出可能な2種類以上の時系列データとして、酸素化ヘモグロビン濃度変化と脱酸素化ヘモグロビン濃度変化を用い、変換処理として脱酸素化ヘモグロビンの符号を逆転することを特徴とする生体光計測データ解析方法。
The biological light measurement data analysis method according to claim 8,
The oxygenated hemoglobin concentration change and the deoxygenated hemoglobin concentration change are used as two or more types of time series data from which a positive correlation can be derived, and the sign of the deoxygenated hemoglobin is reversed as a conversion process. The biological optical measurement data analysis method.
請求項8に記載の生体光計測データ解析方法において、
前記、類似度を最大化する混合係数の導出を、固有値問題として算出することを特徴とする生体光計測データ解析方法。
The biological light measurement data analysis method according to claim 8,
The biological light measurement data analysis method characterized in that the derivation of the mixing coefficient that maximizes the similarity is calculated as an eigenvalue problem.
請求項8に記載の生体光計測データ解析方法において、
前記、互いに正の相関関係を導出可能な2種類以上の時系列データを、計測チャンネルの拡張に用いたことを特徴とする生体光計測データ解析方法。
The biological light measurement data analysis method according to claim 8,
The biological light measurement data analysis method, wherein two or more types of time series data capable of deriving a positive correlation with each other are used for extending a measurement channel.
請求項8に記載の生体光計測データ解析方法において、
前記、互いに正の相関関係を導出可能な2種類以上の時系列データを、計測時間の拡張に用いたことを特徴とする生体光計測データ解析方法。
The biological light measurement data analysis method according to claim 8,
A biological light measurement data analysis method, wherein two or more types of time series data capable of deriving a positive correlation with each other are used for extending measurement time.
請求項8に記載の生体光計測データ解析方法において、
前記、互いに正の相関関係を導出可能な2種類以上の時系列データを、計測チャンネルおよび計測時間の拡張に用いたことを特徴とする生体光計測データ解析方法。
The biological light measurement data analysis method according to claim 8,
The biological optical measurement data analysis method, wherein two or more types of time series data capable of deriving a positive correlation with each other are used for extending a measurement channel and a measurement time.
コンピュータに、生体内で透過、散乱、反射した光を複数の計測点で検出して得た時系列データの解析を実行させるためのプログラムであって、
前記複数点の時系列データに混合係数を乗じて混合時系列データを作成し、前記混合時系列データの繰り返し期間の類似度を表す評価関数を作成する評価関数作成ステップと、
前記混合時系列データの混合係数を、前記混合時系列データから算出される時間的に繰り返し計測された信号間の類似度が最も高くなるように導出する重み係数演算ステップと、
前記複数点の時系列データに、前記重み係数演算部で導出した前記混合係数を乗じて雑音成分を除去した時系列データを求める信号合成ステップとを実行させ、
前記混合係数の導出処理において、前記複数点のそれぞれにおいてほぼ同時に計測され、かつ特定の変換処理を用いることにより互いに正の相関関係を導出可能な2種類以上の時系列データを用いることを特徴とするプログラム。
A program for causing a computer to analyze time-series data obtained by detecting light transmitted, scattered, and reflected in a living body at a plurality of measurement points,
An evaluation function creating step of creating a mixed time series data by multiplying the time series data of the plurality of points by a mixing coefficient, and creating an evaluation function representing the similarity of the repetition period of the mixed time series data;
A weighting factor calculation step for deriving the mixing coefficient of the mixed time series data so that the similarity between the signals repeatedly measured in time calculated from the mixed time series data is the highest;
A signal synthesizing step for obtaining time-series data obtained by multiplying the time-series data of the plurality of points by the mixing coefficient derived by the weighting factor calculation unit to remove noise components;
The mixing coefficient derivation process uses two or more types of time-series data that are measured almost simultaneously at each of the plurality of points and that can derive a positive correlation with each other by using a specific conversion process. Program to do.
JP2015526111A 2013-07-11 2013-07-11 Biological light measurement data analysis apparatus, analysis method, and program therefor Expired - Fee Related JP6028100B2 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/069065 WO2015004789A1 (en) 2013-07-11 2013-07-11 Device and method for analyzing biooptical measurement data, and program therefor

Publications (2)

Publication Number Publication Date
JP6028100B2 true JP6028100B2 (en) 2016-11-16
JPWO2015004789A1 JPWO2015004789A1 (en) 2017-02-23

Family

ID=52279511

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015526111A Expired - Fee Related JP6028100B2 (en) 2013-07-11 2013-07-11 Biological light measurement data analysis apparatus, analysis method, and program therefor

Country Status (2)

Country Link
JP (1) JP6028100B2 (en)
WO (1) WO2015004789A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148797A (en) * 2006-12-15 2008-07-03 Hitachi Ltd Biological light measurement apparatus

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008148797A (en) * 2006-12-15 2008-07-03 Hitachi Ltd Biological light measurement apparatus

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JPN6013050920; Hirokazu Tanaka et al.: 'Task-related component analysis for functional neuroimaging and application to near-infrared spectro' NeuroImage Vol.64, 201301, pp.308-327 *

Also Published As

Publication number Publication date
WO2015004789A1 (en) 2015-01-15
JPWO2015004789A1 (en) 2017-02-23

Similar Documents

Publication Publication Date Title
JP4474145B2 (en) Optical measuring device
US9131889B2 (en) Cognitive impairment determination apparatus, cognitive impairment determination system and program
JP5034477B2 (en) Biological light measurement device
JP4631510B2 (en) Brain function information monitoring device
Hu et al. Recognition of stimulus-evoked neuronal optical response by identifying chaos levels of near-infrared spectroscopy time series
JP4561524B2 (en) Signal analysis apparatus and signal analysis method
US9167970B2 (en) Non-invasive optical imaging for measuring pulse and arterial elasticity in the brain
Scarpa et al. A reference-channel based methodology to improve estimation of event-related hemodynamic response from fNIRS measurements
EP1402820B1 (en) Biological optical measuring instrument
Zhang et al. Correcting physiological noise in whole-head functional near-infrared spectroscopy
JP5370475B2 (en) Optical biological measurement apparatus and analysis method
Barati et al. Functional data analysis view of functional near infrared spectroscopy data
Aarabi et al. Characterization of the relative contributions from systemic physiological noise to whole-brain resting-state functional near-infrared spectroscopy data using single-channel independent component analysis
Rho et al. A preliminary quantitative EEG study on Augmented Reality Guidance of Manual Tasks
JP2005245636A (en) Method and apparatus for biophotonic measurement using near-infrared light
Raatikainen et al. Combined spatiotemporal ICA (stICA) for continuous and dynamic lag structure analysis of MREG data
Sun et al. Extracting heartrate from optical signal of functional near-infrared spectroscopy based on mathematical morphology
JP6028100B2 (en) Biological light measurement data analysis apparatus, analysis method, and program therefor
JP5679629B2 (en) Optical brain function measuring device
KR101919907B1 (en) Apparatus and method for monitoring interpersonal interaction based on multiple neurophysiological signals
JP5733117B2 (en) Brain activity state analysis device, rehabilitation assist device, thought control type drive device, thought control type display device, measurement point selection method, measurement point selection program
WO2014170941A1 (en) Biooptical measurement data analysis device and method
JP5909388B2 (en) Biological light measurement device
US11589750B2 (en) Method for obtaining near-infrared spectroscopy cerebral signal
EP4125558B1 (en) System, method, and apparatus for multi-spectral photoacoustic imaging

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161011

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161017

R150 Certificate of patent or registration of utility model

Ref document number: 6028100

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees