JP2013192333A - Gelatinous polymer device having colossal dielectricity and manufacturing method therefor - Google Patents

Gelatinous polymer device having colossal dielectricity and manufacturing method therefor Download PDF

Info

Publication number
JP2013192333A
JP2013192333A JP2012055892A JP2012055892A JP2013192333A JP 2013192333 A JP2013192333 A JP 2013192333A JP 2012055892 A JP2012055892 A JP 2012055892A JP 2012055892 A JP2012055892 A JP 2012055892A JP 2013192333 A JP2013192333 A JP 2013192333A
Authority
JP
Japan
Prior art keywords
gel
polymer material
polymer
dielectric constant
colossal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012055892A
Other languages
Japanese (ja)
Other versions
JP5946299B2 (en
Inventor
Toshihiro Hirai
利博 平井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shinshu University NUC
Original Assignee
Shinshu University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shinshu University NUC filed Critical Shinshu University NUC
Priority to JP2012055892A priority Critical patent/JP5946299B2/en
Publication of JP2013192333A publication Critical patent/JP2013192333A/en
Application granted granted Critical
Publication of JP5946299B2 publication Critical patent/JP5946299B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Organic Insulating Materials (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a gelatinous polymer device having a colossal dielectricity using a gelatinous polymer material applicable to new applications.SOLUTION: A gelatinous polymer device 1 comprises: a gelatinous polymer material 2 having colossal dielectricity; and electrodes 3, 3 for applying a low frequency bias voltage to the gelatinous polymer material 2. The insulating polymer compound composing the gelatinous polymer material 2 includes any one or more than one polymer compound selected from a group of polyvinyl chloride, polyacrylonitrile, nylon, polyethylene terephthalate, polypropylene, polyethylene, polyketone, polyvinyl alcohol, polyvinyl acetate, polymethyl metacrylate, poly n-butyl acrylate, cellulose, wool, and the like. Relative permittivity of the gelatinous polymer material 2 is 1000 or more at 1 Hz, and 100 or more at 10 Hz.

Description

本発明は、コロッサル誘電性(巨大誘電性ともいう。)を持つゲル状ポリマーデバイス(高分子素子)及びその製造方法に関し、更に詳しくは、微細アクチュエータ素子、自律応答性変形材料、ソフトチャック、微細部品搬送機能材、ミクロスイッチ、マイクロバルブ、マイクロポンプ、マイクロソフト伸縮アクチュエータ、マイクロフィンガー、変形センサー、圧力センサーアクチュエータ等に利用できるゲル状ポリマーデバイス及びその製造方法に関する。   The present invention relates to a gel-like polymer device (polymer element) having a colossal dielectric property (also referred to as giant dielectric property) and a manufacturing method thereof, and more specifically, a fine actuator element, an autonomously responsive deformation material, a soft chuck, a fine chuck, The present invention relates to a gel-like polymer device that can be used for a component conveying function material, a micro switch, a micro valve, a micro pump, a Microsoft telescopic actuator, a micro finger, a deformation sensor, a pressure sensor actuator, and the like, and a manufacturing method thereof.

ポリ塩化ビニル(PVC)は、低誘電性の絶縁高分子樹脂として広く使われている。また、PVCに可塑剤を添加した柔軟な高分子材料であるPVC可塑化柔軟体(以下「可塑化PVC」という。)も、テープ、チューブ、壁紙等、広範な分野で多様な用途に利用されている。可塑剤もまた、低誘電率の化学物質である。PVC樹脂及び可塑化PVCのいずれも、低誘電率材料として優れた性能を持ち、多くの用途展開が図られてきた。そして、これらの材料は、電場印加に対して安定した絶縁性等を持つことが期待さている材料である。一方、これらの材料は、外部からの電場等の刺激に対して自律的に応答することは全く期待されていない。   Polyvinyl chloride (PVC) is widely used as a low dielectric insulating polymer resin. PVC plasticized flexible bodies (hereinafter referred to as “plasticized PVC”), which is a flexible polymer material in which a plasticizer is added to PVC, are also used in various fields such as tapes, tubes, and wallpaper. ing. Plasticizers are also low dielectric constant chemicals. Both PVC resin and plasticized PVC have excellent performance as a low dielectric constant material, and many applications have been developed. These materials are materials that are expected to have a stable insulation property against electric field application. On the other hand, these materials are not expected to respond autonomously to stimuli such as an external electric field.

電場に応答して自律的に駆動する素材としては、一般に、イオン伝導性高分子(高分子電解質)等のように、電場に応答することが自明の素材が知られている。しかし、イオン伝導性高分子を用いた駆動素子は、低電場で駆動するものの、変形の様式(主に屈曲変形)が限定される上、電流によるエネルギー損失が大きいために充分な性能(応力、速度等)を得ることが困難である。   As a material that autonomously drives in response to an electric field, a material that is obvious to respond to an electric field, such as an ion conductive polymer (polymer electrolyte), is generally known. However, although the driving element using the ion conductive polymer is driven by a low electric field, the deformation mode (mainly bending deformation) is limited and the energy loss due to the current is large, so that sufficient performance (stress, Speed etc.) is difficult to obtain.

また、導電性高分子も駆動素子の材料として応用されている。この導電性高分子も電場に応答することが知られており、非対称な媒質の吸着等を活用した駆動素子も開発され、注目を集めている。しかし、イオン伝導性高分子の場合と同様、電流による発熱等のエネルギー損失等が避けられず、耐久性等で実用的な駆動素子にはなり得ていない。   Conductive polymers are also used as materials for drive elements. This conductive polymer is also known to respond to an electric field, and a driving element utilizing asymmetric medium adsorption has been developed and attracting attention. However, as in the case of the ion conductive polymer, energy loss such as heat generation due to current cannot be avoided, and it cannot be a practical driving element in terms of durability.

本発明者は、低誘電率の可塑化PVCが、常識に反して、極めて特異的な大変形を電場印加により生じることを見出し、駆動素子への応用を検討している(特許文献1及び非特許文献1を参照)。   The present inventor has found that plasticizing PVC having a low dielectric constant causes extremely specific large deformation by applying an electric field, contrary to common sense, and is considering application to a driving element (Patent Document 1 and Non-Patent Document 1). (See Patent Document 1).

特開2010−191048号公報JP 2010-191048 A

米国特許7,933,081号US Patent 7,933,081

低誘電性の汎用高分子材料であるPVCは、電場に対する応答性が期待できないために注目されることはなかったが、上記のように、本発明者は、低誘電率の可塑化PVCに電場を印加することで極めて特異的な大変形を起こすことを見出した。さらに、本発明者は、可塑化PVCが変形する原理として、可塑化PVCが電気レオロジー的に特異的な特性を持つことがなければならないとして、その実態の解明に注力してきた。   PVC, which is a low dielectric general-purpose polymer material, has not been noticed because it cannot be expected to be responsive to an electric field. However, as described above, the present inventors have applied an electric field to plasticized PVC having a low dielectric constant. It was found that a very specific large deformation was caused by applying. Furthermore, the present inventor has focused on elucidating the actual state that plasticized PVC must have electrorheologically specific characteristics as a principle of deformation of plasticized PVC.

本発明は、そうした可塑化PVCのようなゲル状高分子材料の原理解明の過程で見出されたものであって、その目的は、エネルギー損失が小さく、新しい用途に応用できるコロッサル誘電性を持つゲル状ポリマーデバイス及びその製造方法を提供することにある。   The present invention was discovered in the process of elucidating the principle of such a gel-like polymer material such as plasticized PVC, and its purpose is low energy loss and has a corrosal dielectric that can be applied to new applications. The object is to provide a gel polymer device and a method for producing the same.

本発明者は、可塑化PVCのようなゲル状高分子材料の原理解明の過程で、特定の可塑化PVCが電場印加での極めて大きな誘電率を低周波数域で示すことを見出した。本発明は、こうした知見に基づいて完成されたものである。   In the process of elucidating the principle of a gel-like polymer material such as plasticized PVC, the present inventor has found that a specific plasticized PVC exhibits a very large dielectric constant when an electric field is applied in a low frequency range. The present invention has been completed based on these findings.

上記課題を解決するための本発明に係るゲル状ポリマーデバイスは、コロッサル誘電性を持つゲル状高分子材料と、該ゲル状高分子材料に低周波のバイアス電圧を印加する電極とを有することを特徴とする。   A gel-like polymer device according to the present invention for solving the above-described problems has a gel-like polymer material having a corrosal dielectric property and an electrode for applying a low-frequency bias voltage to the gel-like polymer material. Features.

この発明によれば、コロッサル誘電性を持つゲル状高分子材料と、低周波のバイアス電圧を印加する電極とを有するので、そのゲル状高分子材料がイオン伝導性高分子材料や導電性高分子材料でなくても、印加されたバイアス電圧に応答して自律的に駆動する。こうしたゲル状ポリマーデバイスは、エネルギー損失が小さく、新用途に期待できる機能素子として利用できる。   According to the present invention, since the gel-like polymer material having the colossal dielectric property and the electrode for applying the low-frequency bias voltage are included, the gel-like polymer material is an ion conductive polymer material or a conductive polymer. Even if it is not a material, it is driven autonomously in response to an applied bias voltage. Such a gel polymer device has a small energy loss and can be used as a functional element expected for new applications.

本発明に係るゲル状ポリマーデバイスにおいて、前記ゲル状高分子材料を構成する絶縁性高分子化合物が、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ナイロン(Nylon)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリケトン(PK)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル(PVAc)、ポリメチルメタクリレート(PMMA)、ポリnブチルアクリレート(PnBA)、セルロース、羊毛等の群から選ばれるいずれか1又は2以上の高分子化合物である。   In the gel polymer device according to the present invention, the insulating polymer compound constituting the gel polymer material is polyvinyl chloride (PVC), polyacrylonitrile (PAN), nylon (Nylon), polyethylene terephthalate (PET), From the group of polypropylene (PP), polyethylene (PE), polyketone (PK), polyvinyl alcohol (PVA), polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA), poly nbutyl acrylate (PnBA), cellulose, wool, etc. Any one or two or more polymer compounds selected.

本発明に係るゲル状ポリマーデバイスにおいて、前記ゲル状高分子材料の比誘電率が1Hzで1000以上、10Hzで100以上である。   In the gel polymer device according to the present invention, the gel polymer material has a relative dielectric constant of 1000 or more at 1 Hz and 100 or more at 10 Hz.

上記課題を解決するための本発明に係るゲル状ポリマーデバイスの製造方法は、上記本発明に係るゲル状ポリマーデバイスを製造する方法であって、絶縁性高分子化合物をゲル状にしてコロッサル誘電性を持つゲル状高分子材料を準備する工程と、該ゲル状高分子材料に低周波のバイアス電圧を印加するための電極を形成する工程と、を有することを特徴とする。   The method for producing a gel polymer device according to the present invention for solving the above-mentioned problem is a method for producing the gel polymer device according to the present invention, wherein the insulating polymer compound is made into a gel and is subjected to a collosal dielectric property. And a step of forming an electrode for applying a low-frequency bias voltage to the gel-like polymer material.

本発明に係るゲル状ポリマーデバイス及びその製造方法によれば、コロッサル誘電性を持つゲル状高分子材料を有するので、そのゲル状高分子材料がイオン伝導性高分子材料や導電性高分子材料でなくても、印加されたバイアス電圧に応答して自律的に駆動する。こうしたゲル状ポリマーデバイスは、エネルギー損失が小さく、新用途に期待できる機能素子として利用できる。   According to the gel polymer device and the manufacturing method thereof according to the present invention, since the gel polymer material having the colossal dielectric property is included, the gel polymer material is an ion conductive polymer material or a conductive polymer material. Even if not, it is driven autonomously in response to the applied bias voltage. Such a gel polymer device has a small energy loss and can be used as a functional element expected for new applications.

本発明に係るゲル状ポリマーデバイスの一例を示す模式的な構成図である。It is a typical block diagram which shows an example of the gel-like polymer device which concerns on this invention. PVA(重合度1000)/DMSOゲルのFT−IRスペクトルを示すグラフである。It is a graph which shows the FT-IR spectrum of PVA (degree of polymerization 1000) / DMSO gel. PVA(重合度500)/DMSOゲルの誘電率を示すグラフである。It is a graph which shows the dielectric constant of PVA (degree of polymerization 500) / DMSO gel. 周波数1000Hz及び10000HzでのPVA:DMSO=1:3のゲル誘電率のPVA重合度依存性を示すグラフである。It is a graph which shows the PVA polymerization degree dependence of the gel dielectric constant of PVA: DMSO = 1: 3 in frequency 1000Hz and 10000Hz. PVC(重合度3728)/DBAゲルのFT−IRスペクトルを示すグラフである。It is a graph which shows the FT-IR spectrum of PVC (degree of polymerization 3728) / DBA gel.

以下、本発明に係るゲル状ポリマーデバイス及びその製造方法について説明するが、本発明は下記の説明及び図面に記載された内容のみに限定されない。   Hereinafter, although the gel-like polymer device concerning the present invention and its manufacturing method are explained, the present invention is not limited only to the contents indicated in the following explanation and drawings.

本発明に係るゲル状ポリマーデバイス1は、図1に示すように、コロッサル誘電性を持つゲル状高分子材料2と、そのゲル状高分子材料2に低周波のバイアス電圧を印加するための電極3,3とを有することに特徴がある。以下、各構成要素について説明する。   As shown in FIG. 1, a gel-like polymer device 1 according to the present invention includes a gel-like polymer material 2 having a colossal dielectric property and electrodes for applying a low-frequency bias voltage to the gel-like polymer material 2. 3 and 3. Hereinafter, each component will be described.

(ゲル状高分子材料)
ゲル状高分子材料2は、低周波領域でコロッサル誘電性(巨大誘電性)を持つゲルである。そのコロッサル誘電性は、1Hzで1000以上、10Hzで100以上の比誘電率を持つものである。
(Gel polymer material)
The gel-like polymer material 2 is a gel having a colossal dielectric property (giant dielectric property) in a low frequency region. The colossal dielectric has a relative dielectric constant of 1000 or more at 1 Hz and 100 or more at 10 Hz.

ゲル状高分子材料2は、イオン性材料や導電性材料を含まず、それらのイオン性材料や導電性材料に基づいたイオン伝導性や電気導電性を示さない。にもかかわらず、低周波のバイアス電圧を印加した場合に、そのゲル状高分子材料2を主に構成する絶縁性高分子化合物の誘電率からは想像できない高い誘電率を示す。その誘電率は、ゲル状高分子材料2の種類やゲル化の程度にもよるので一概には言えないが、例えば、比誘電率が10程度のゲル状高分子材料2に1Hzのバイアス電圧を印加すると、ゲル状高分子材料2の比誘電率を1000以上に増加させることができる。また、10Hzのバイアス電圧でも、比誘電率を100以上に増加させることができる。特に後述の実施例3で示すように、ゲル状高分子材料2に1ミリHzのバイアス電圧を印加すると、ゲル状高分子材料2の比誘電率を1×10近くの巨大誘電率にまで増加させることができる。また、100Hzのバイアス電圧でも、100を超える巨大誘電率にまで向上させることができる。 The gel-like polymer material 2 does not include an ionic material or a conductive material, and does not exhibit ionic conductivity or electrical conductivity based on the ionic material or conductive material. Nevertheless, when a low-frequency bias voltage is applied, a high dielectric constant that cannot be imagined from the dielectric constant of the insulating polymer compound that mainly constitutes the gel polymer material 2 is exhibited. The dielectric constant depends on the type of gel-like polymer material 2 and the degree of gelation, and thus cannot be generally stated. For example, a 1 Hz bias voltage is applied to the gel-like polymer material 2 having a relative dielectric constant of about 10. When applied, the dielectric constant of the gel polymer material 2 can be increased to 1000 or more. In addition, the dielectric constant can be increased to 100 or more even with a bias voltage of 10 Hz. In particular, as shown in Example 3 to be described later, when a bias voltage of 1 mm Hz is applied to the gel-like polymer material 2, the relative permittivity of the gel-like polymer material 2 is increased to a giant dielectric constant close to 1 × 10 6. Can be increased. Further, even a bias voltage of 100 Hz can be improved to a giant dielectric constant exceeding 100.

コロッサル誘電性(巨大誘電性)は無機材料では知られているが、低誘電率材料である汎用高分子では知られておらず、本発明で初めて実現できる巨大な誘電率(コロッサル誘電率)であるということができる。ゲル状高分子材料2はコロッサル誘電率を示すが、一方で高抵抗材料であることから、電流のリーク(0.1μA)によるエネルギー損失が従来の高分子電解質系(数mA)に比べて無視できる程に小さい。そのため、超省エネルギー、超高効率デバイスに応用できるという利点がある。   Colossal dielectric properties (giant dielectric properties) are known for inorganic materials, but are not known for general-purpose polymers that are low dielectric constant materials. It can be said that there is. Gel-like polymer material 2 exhibits a colossal dielectric constant, but on the other hand, it is a high-resistance material, so energy loss due to current leakage (0.1 μA) is negligible compared to the conventional polymer electrolyte system (several mA). As small as possible. Therefore, there is an advantage that it can be applied to a super energy saving and ultra high efficiency device.

(絶縁性高分子化合物)
ゲル状高分子材料2は、絶縁性高分子化合物を主に含む。すなわち、絶縁性高分子化合物はゲル状高分子材料2を構成する化合物であり、イオン性材料や導電性材料を含まず、且つそれ自体がイオン伝導性や電気導電性を示さない絶縁材料である。この絶縁性高分子化合物に後述の可塑化剤や有機溶媒等のゲル化剤を配合してゲル状にする前では、一般的な絶縁性の高分子化合物である。絶縁性高分子化合物は、誘電率が小さく、通常、比誘電率として2〜9程度の範囲である。しかし、こうした絶縁性高分子化合物をゲル化したゲル状高分子材料2は、イオン性材料や導電性材料を含まないので、それらイオン性材料や導電性材料に基づいて流れる電流による発熱等のエネルギー損失が極めて小さい。
(Insulating polymer compound)
The gel-like polymer material 2 mainly contains an insulating polymer compound. That is, the insulating polymer compound is a compound constituting the gel polymer material 2 and does not include an ionic material or a conductive material, and is an insulating material that does not exhibit ionic conductivity or electrical conductivity. . Before this insulating polymer compound is mixed with a gelling agent such as a plasticizer or an organic solvent described later to form a gel, it is a general insulating polymer compound. The insulating polymer compound has a small dielectric constant, and usually has a relative dielectric constant of about 2 to 9. However, since the gel-like polymer material 2 obtained by gelling such an insulating polymer compound does not include an ionic material or a conductive material, energy such as heat generated by a current flowing based on the ionic material or the conductive material. The loss is extremely small.

絶縁性高分子化合物としては、例えば、ポリ塩化ビニル(PVC)、ポリアクリロニトリル(PAN)、ナイロン(Nylon)、ポリエチレンテレフタレート(PET)、ポリプロピレン(PP)、ポリエチレン(PE)、ポリケトン(PK)、ポリビニルアルコール(PVA)、ポリ酢酸ビニル(PVAc)、ポリメチルメタクリレート(PMMA)、ポリnブチルアクリレート(PnBA)、セルロース、羊毛等の群から選ばれるいずれか1又は2以上の高分子化合物を用いることができる。   Examples of the insulating polymer compound include polyvinyl chloride (PVC), polyacrylonitrile (PAN), nylon (Nylon), polyethylene terephthalate (PET), polypropylene (PP), polyethylene (PE), polyketone (PK), polyvinyl It is possible to use any one or two or more polymer compounds selected from the group consisting of alcohol (PVA), polyvinyl acetate (PVAc), polymethyl methacrylate (PMMA), poly nbutyl acrylate (PnBA), cellulose, wool and the like. it can.

(ゲル化)
ゲル状高分子材料2は、上記絶縁性高分子化合物をゲル化したものである。ゲル化は、絶縁性高分子化合物にゲル化剤を付与して行うことができる。ゲル化剤は、絶縁性高分子化合物の種類にもよるが、例えば、可塑化剤、有機溶媒等を用いることができる。可塑化剤や有機溶媒等のゲル化剤は、所望のゲル強度となるようにその配合量が決められる。
(Gelation)
The gel polymer material 2 is obtained by gelling the insulating polymer compound. Gelation can be performed by adding a gelling agent to the insulating polymer compound. For example, a plasticizer or an organic solvent can be used as the gelling agent, although it depends on the type of the insulating polymer compound. The amount of the gelling agent such as a plasticizer or an organic solvent is determined so as to obtain a desired gel strength.

ゲル強度としては、2kg/cm以上5kg/cm以下の範囲内であることが好ましく、ゲル強度をこの範囲にすることにより、ゲル状ポリマーデバイス1として多様な用途に適用できる。ゲル強度が2kg/cm未満では、軟らかすぎて測定できず、場合によってはゾル化してゲル状ポリマーデバイス1として用いることができないことがある。一方、ゲル強度が5kg/cmを超えると、硬くなってしまい、ゲル状ポリマーデバイス1として用いることができないことがある。なお、ゲル強度は、引張試験機を用い、ゲル状高分子材料2を測定用の試料形状に成形して測定できる。 The gel strength is preferably in a range of 2 kg / cm 2 or more 5 kg / cm 2 or less, the gel strength by this range can be applied to various applications as gel polymer device 1. When the gel strength is less than 2 kg / cm 2, the gel strength is too soft to be measured, and in some cases, the gel strength may not be used as the gel polymer device 1. On the other hand, when the gel strength exceeds 5 kg / cm 2 , the gel strength becomes hard and may not be used as the gel polymer device 1. The gel strength can be measured by forming the gel polymer material 2 into a sample shape for measurement using a tensile tester.

ゲル化のために配合する可塑剤としては、公知の絶縁性の可塑剤を用いることができる。例えば、フタル酸ジオクチル、フタル酸ジイソノニル、フタル酸ジイソデシル、フタル酸ジブチル(フタル酸ジ−n−ブチル)等のフタル酸エステル;アジピン酸ジオクチル、アジピン酸ジイソノニル等のアジピン酸エステル;トリメリット酸トリオクチル等のトリメリット酸エステル;ポリエステル;リン酸トリクレシル等のリン酸エステル;アセチルクエン酸トリブチル等のクエン酸エステル;エポキシ化大豆油、エポキシ化亜麻仁油等のエポキシ化植物油;セバシン酸エステル;アゼライン酸エステル;マレイン酸エステル;安息香酸エステル等を挙げることができる。   As a plasticizer blended for gelation, a known insulating plasticizer can be used. For example, dioctyl phthalate, diisononyl phthalate, diisodecyl phthalate, dibutyl phthalate (di-n-butyl phthalate); adipic acid esters such as dioctyl adipate, diisononyl adipate; trioctyl trimellitic acid, etc. Polyester; Phosphate ester such as tricresyl phosphate; Citric acid ester such as acetyltributyl citrate; Epoxidized vegetable oil such as epoxidized soybean oil and epoxidized linseed oil; Sebacic acid ester; Azelaic acid ester; Maleic acid ester; benzoic acid ester and the like.

いずれの可塑剤を用いるかは絶縁性高分子化合物の種類によって選択される。また、その可塑剤の配合割合も絶縁性高分子化合物の種類によって設定されるが、通常、可塑剤を多く配合することが好ましい。配合割合は、絶縁性高分子化合物:可塑剤(質量比)=1:2〜1:20の範囲内とすることが好ましい。このように、可塑剤の配合量を一般的な可塑剤の配合量の数倍〜20倍に高めて可塑剤の配合比を高めることで、従来のものとは事情が一変し、コロッサル誘電性を持つゲル状高分子材料2とすることができる。   Which plasticizer is used is selected depending on the type of the insulating polymer compound. Further, the blending ratio of the plasticizer is set depending on the type of the insulating polymer compound, but it is usually preferable to blend a large amount of the plasticizer. The blending ratio is preferably in the range of insulating polymer compound: plasticizer (mass ratio) = 1: 2 to 1:20. In this way, by increasing the blending amount of the plasticizer to several to 20 times the blending amount of a general plasticizer and increasing the blending ratio of the plasticizer, the situation is completely changed from the conventional one, and the corrosal dielectric property is changed. The gel polymer material 2 having

ゲル化のために配合する有機溶媒として、ベンゼン、トルエン等の低誘電率(ε=2〜8)の有機溶媒を用いてもよいし、ジメチルスルホキシド(DMSO)、ジメチルホルムアミド(DMF)等の高誘電率(ε=20〜40)の有機溶媒を用いてもよい。   As an organic solvent blended for gelation, an organic solvent having a low dielectric constant (ε = 2 to 8) such as benzene or toluene may be used, or a high solvent such as dimethyl sulfoxide (DMSO) or dimethylformamide (DMF). An organic solvent having a dielectric constant (ε = 20 to 40) may be used.

いずれの有機溶媒を用いるかは絶縁性高分子化合物の種類によって選択される。また、その有機溶媒の配合割合も絶縁性高分子化合物の種類によって設定されるが、通常、有機溶媒は上記した可塑剤ほどは配合しない。配合割合は、絶縁性高分子化合物:有機溶媒(質量比)=1:2〜1:8の範囲内とすることが好ましい。このように、有機溶媒の配合量を一般的な有機溶媒の配合量よりも多くすることで、従来のものとは事情が一変し、コロッサル誘電性を持つゲル状高分子材料2とすることができる。   Which organic solvent is used is selected depending on the type of the insulating polymer compound. Further, the blending ratio of the organic solvent is also set depending on the type of the insulating polymer compound, but usually the organic solvent is not blended as much as the plasticizer described above. The blending ratio is preferably in the range of insulating polymer compound: organic solvent (mass ratio) = 1: 2 to 1: 8. Thus, by making the blending amount of the organic solvent larger than the blending amount of the general organic solvent, the situation is completely changed from that of the conventional one, and the gel-like polymer material 2 having a colossal dielectric property can be obtained. it can.

なお、可塑剤や有機溶媒の配合割合を多くすると力学物性が低下し、ゲル状からゾル状に変化するために使用に耐えない状態となるが、多量の可塑剤や有機溶媒を配合させてもゲル状態を維持できるように絶縁性高分子化合物の分子量等を調整することで、巨大な誘電率を有したゲル状高分子材料2とすることができる。具体的には、上記したゲル強度の範囲になるように、分子量(重量平均分子量)が調整された絶縁性高分子化合物を用いる。   If the blending ratio of the plasticizer and organic solvent is increased, the mechanical properties decrease, and the gel form changes to the sol form, so that it cannot be used. However, even if a large amount of plasticizer or organic solvent is blended, By adjusting the molecular weight or the like of the insulating polymer compound so that the gel state can be maintained, the gel polymer material 2 having a huge dielectric constant can be obtained. Specifically, an insulating polymer compound whose molecular weight (weight average molecular weight) is adjusted so as to be in the above-described gel strength range is used.

そうした絶縁性高分子化合物の分子量としては、例えば、1×10以上1×10以下とすることができ、この範囲で分子量を調整して用いることができる。例えば、軟らかくなりすぎる場合には、分子量が大きめの絶縁性高分子化合物を用い、硬くなりすぎる場合には、分子量が小さめの絶縁性高分子化合物を用いることが好ましい。 The molecular weight of such an insulating polymer compound can be, for example, 1 × 10 4 or more and 1 × 10 6 or less, and the molecular weight can be adjusted and used within this range. For example, it is preferable to use an insulating polymer compound having a large molecular weight when it is too soft, and to use an insulating polymer compound having a small molecular weight when it is too hard.

(電極)
電極3は、ゲル状高分子材料2に低周波のバイアス電圧を印加するために設けられる。電極3の配置は特に限定されないが、例えば、図1に示すように、ゲル状高分子材料2を挟むように設けられる。電極3を構成する材料も特に限定されず、アルミニウム、銅、チタン等の金属材料、インジウム錫オキサイド、カーボン材料等の導電性無機材料、導電性有機材料等、公知の電極材料を選択して用いることができる。電極の形状も特に限定されず、ゲル状ポリマーデバイス1の形状に応じた任意の形状であればよい。
(electrode)
The electrode 3 is provided for applying a low-frequency bias voltage to the gel polymer material 2. Although arrangement | positioning of the electrode 3 is not specifically limited, For example, as shown in FIG. 1, it is provided so that the gel-like polymer material 2 may be pinched | interposed. The material constituting the electrode 3 is not particularly limited, and a known electrode material such as a metal material such as aluminum, copper or titanium, a conductive inorganic material such as indium tin oxide or carbon material, or a conductive organic material is selected and used. be able to. The shape of the electrode is not particularly limited, and may be any shape according to the shape of the gel polymer device 1.

電極3は電源に接続され、その電源から低周波のバイアス電圧が供給される。   The electrode 3 is connected to a power source, and a low frequency bias voltage is supplied from the power source.

以上説明したように、本発明に係るゲル状ポリマーデバイス1及びその製造方法によれば、コロッサル誘電性を持つゲル状の高分子材料に低周波のバイアス電圧を付与することにより、そのゲル状高分子材料がイオン伝導性高分子材料や導電性高分子材料でなくても、そのバイアス電圧に応答して自律的に駆動するゲル状ポリマーデバイスを提供できる。その結果、新しい用途に応用できる。   As described above, according to the gel polymer device 1 and the manufacturing method thereof according to the present invention, by applying a low-frequency bias voltage to a gel polymer material having a colossal dielectric property, Even if the molecular material is not an ion conductive polymer material or a conductive polymer material, a gel polymer device that autonomously drives in response to the bias voltage can be provided. As a result, it can be applied to new applications.

ゲル状ポリマーデバイス1としては、微細アクチュエータ素子、自律応答性変形材料(人工瞳レンズ等)、ソフトチャック、微細部品搬送機能材、ミクロスイッチ、マイクロバルブ、マイクロポンプ、マイクロソフト伸縮アクチュエータ(ソレノイドタイプ)、マイクロフィンガー、焦点可変レンズ、超省エネルギー駆動素子、高効率デバイス、柔軟駆動素子、人工筋肉、変形センサー、圧力センサー等を挙げることができる。   The gel polymer device 1 includes a fine actuator element, an autonomously responsive deformable material (artificial pupil lens, etc.), a soft chuck, a fine component transfer function material, a micro switch, a micro valve, a micro pump, a Microsoft telescopic actuator (solenoid type), Examples include a microfinger, a variable focus lens, a super energy saving drive element, a high efficiency device, a flexible drive element, an artificial muscle, a deformation sensor, a pressure sensor, and the like.

以下の実験例により、本発明を具体的に説明する。   The present invention will be specifically described by the following experimental examples.

[実験例1]
重合度が500のポリビニルアルコール(PVA)を10質量%含む水溶液と、ジメチルスルホキシド(DMSO)を10質量%含む水溶液とを、PVA:DMSO(質量比)が1:0.2、1:0.6、1:1、1:2、1:3の5種類になるように調製した。各溶液をポリスチレンシャーレにキャストし、35℃で2日間乾燥した。さらに、20℃で8時間真空乾燥させ、5種類のPVA/DMSOゲルを得た。なお、このゲル状高分子材料2は、ポリ塩化ビニルも可塑剤も使用しないゲル状材料であり、環境への負担の少ないゲル状高分子材料2として有利である。
[Experiment 1]
An aqueous solution containing 10% by mass of polyvinyl alcohol (PVA) having a degree of polymerization of 500 and an aqueous solution containing 10% by mass of dimethyl sulfoxide (DMSO) have a PVA: DMSO (mass ratio) of 1: 0.2, 1: 0. 6, 1: 1, 1: 2, and 1: 3. Each solution was cast into a polystyrene dish and dried at 35 ° C. for 2 days. Furthermore, it vacuum-dried at 20 degreeC for 8 hours, and obtained 5 types of PVA / DMSO gels. The gel-like polymer material 2 is a gel-like material that does not use polyvinyl chloride or a plasticizer, and is advantageous as the gel-like polymer material 2 with less burden on the environment.

さらに、重合度が1000と1700のPVAを用いて上記同様の手順で、計10種類のPVA/DMSOゲルを得た。   Furthermore, a total of 10 types of PVA / DMSO gels were obtained in the same procedure as described above using PVA having a polymerization degree of 1000 and 1700.

(測定)
作製したPVA/DMSOゲルをフーリエ変換赤外分光光度計(FT−IR)を用いて、減衰全反射法によりDMSO含有量によるスルホキシド基のピーク位置の変化を確認した。また、作製したPVA/DMSOゲルの誘電率は、インピーダンス測定装置を用い、全測定周波数で測定した。
(Measurement)
Using the Fourier transform infrared spectrophotometer (FT-IR), the produced PVA / DMSO gel was confirmed to change the peak position of the sulfoxide group depending on the DMSO content by the attenuated total reflection method. Moreover, the dielectric constant of the produced PVA / DMSO gel was measured at all measurement frequencies using an impedance measuring device.

(結果)
図2は、PVA(重合度1000)/DMSOゲルのFT−IRスペクトルを示すグラフである。DMSOのスルホキシド基は通常、1060〜1040cm−1に伸縮運動に帰属できるピークを示す。PVA/DMSOゲルでは、DMSOのスルホキシド基とPVAのヒドロキシル基との間の水素結合によりスルホキシド基の伸縮運動が弱まり、ピーク位置が全体的に波数の小さい方にシフトしている。
(result)
FIG. 2 is a graph showing an FT-IR spectrum of PVA (degree of polymerization 1000) / DMSO gel. The sulfoxide group of DMSO usually shows a peak that can be attributed to stretching motion at 1060 to 1040 cm −1 . In the PVA / DMSO gel, the stretching movement of the sulfoxide group is weakened by the hydrogen bond between the sulfoxide group of DMSO and the hydroxyl group of PVA, and the peak position is shifted to the smaller wave number as a whole.

図3は、PVA(重合度500)/DMSOゲルの誘電率を示すグラフである。PVA/DMSOゲルも誘電率は、全測定周波数でDMSO含有量の増加と共に上昇した。特に、PVA:DMSO=1:2及び1:3のゲルでは、1000Hz〜1×10Hzの高周波領域において、DMSOの誘電率よりも高くなった。これは、多量のDMSOによってPVAのポリマー鎖が束縛状態から開放されたことで、電場の極性変化に分子の双極子が追随しやすくなり、双極子の配向がより効率的に起こったためであろうと考えられる。 FIG. 3 is a graph showing the dielectric constant of PVA (polymerization degree 500) / DMSO gel. The dielectric constant of PVA / DMSO gel also increased with increasing DMSO content at all measurement frequencies. In particular, in the gels of PVA: DMSO = 1: 2 and 1: 3, the dielectric constant of DMSO was higher in the high frequency region of 1000 Hz to 1 × 10 6 Hz. This is probably because the polymer chain of PVA was released from the constrained state by a large amount of DMSO, making it easier for the dipole of the molecule to follow the polarity change of the electric field, and the orientation of the dipole to occur more efficiently. Conceivable.

図4は、周波数1000Hz及び10000HzでのPVA:DMSO=1:3のゲル誘電率のPVA重合度依存性を示すグラフである。誘電率は、重合度が大きいほど低くなった。具体的な誘電率は、重合度500では、1000Hzで1.35×10、10000Hzで3000であり、重合度1000では、1000Hzで8500、10000Hzで1000であり、重合度1700では、1000Hzで3500、10000Hzで500であった。これは、PVAの重合度が大きいほど、PVAと水素結合したDMSOのモビリティが制御されたためであると考えられる。この実験の範囲内では、重合度が500〜1000の範囲が好ましい。 FIG. 4 is a graph showing the PVA polymerization degree dependence of the gel dielectric constant of PVA: DMSO = 1: 3 at frequencies of 1000 Hz and 10000 Hz. The dielectric constant decreased with increasing degree of polymerization. The specific dielectric constant is 1.35 × 10 4 at 1000 Hz, 3000 at 10000 Hz at a polymerization degree of 500, 1000 at 8500 at 1000 Hz, 1000 at 1000 Hz, and 3500 at 1000 Hz at a polymerization degree of 1700. It was 500 at 10,000 Hz. This is considered to be because the mobility of DMSO hydrogen-bonded to PVA is controlled as the degree of polymerization of PVA increases. Within the range of this experiment, a polymerization degree of 500 to 1000 is preferable.

[実験例2]
重合度が3728のポリ塩化ビニル(PVC)とアジピン酸ジブチル(DBA)とを1:1、1:2、1:3、1:5、1:7、1:9の質量比でそれぞれ配合し、十分に撹拌した。各溶液を150℃で予熱したガラスセルに注いだ。ガラスセルの対向する壁面には、予めアルミニウム電極を配置しておき、注入した溶液を150℃で20〜30分間加熱して、電極間に挟まれたゲル状高分子材料2である可塑化PVCを得た。
[Experiment 2]
Polyvinyl chloride (PVC) having a polymerization degree of 3728 and dibutyl adipate (DBA) were blended at a mass ratio of 1: 1, 1: 2, 1: 3, 1: 5, 1: 7, 1: 9, respectively. Stir well. Each solution was poured into a glass cell preheated at 150 ° C. An aluminum electrode is placed in advance on the opposing wall surface of the glass cell, and the injected solution is heated at 150 ° C. for 20 to 30 minutes, and plasticized PVC that is a gel-like polymer material 2 sandwiched between the electrodes Got.

実施例1と同様の方法で誘電率を測定した。図5は、PVC(重合度3728)/DBAゲルのFT−IRスペクトルを示すグラフである。その結果、ゲル状高分子材料2に1Hzのバイアス電圧を印加すると、ゲル状高分子材料2の比誘電率を1000以上に増加させることができた。また、10Hzのバイアス電圧でも、100以上の誘電率に向上させることができた。   The dielectric constant was measured by the same method as in Example 1. FIG. 5 is a graph showing an FT-IR spectrum of PVC (degree of polymerization 3728) / DBA gel. As a result, when a bias voltage of 1 Hz was applied to the gel polymer material 2, the relative dielectric constant of the gel polymer material 2 could be increased to 1000 or more. Further, even with a 10 Hz bias voltage, the dielectric constant could be improved to 100 or more.

[実験例3]
重合度が1140のポリ塩化ビニル(PVC)とアジピン酸ジブチル(DBA)とを1:9の質量比で配合し、十分に撹拌した。この溶液を150℃で予熱したガラスセルに注いだ。ガラスセルの対向する壁面には、予めアルミニウム電極を配置しておき、注入した溶液を150℃で20〜30分間加熱して、電極間に挟まれたゲル状の可塑化PVCを得た。
[Experiment 3]
Polyvinyl chloride (PVC) having a polymerization degree of 1140 and dibutyl adipate (DBA) were blended at a mass ratio of 1: 9, and sufficiently stirred. This solution was poured into a glass cell preheated at 150 ° C. An aluminum electrode was previously placed on the opposing wall surface of the glass cell, and the injected solution was heated at 150 ° C. for 20 to 30 minutes to obtain a gelled plasticized PVC sandwiched between the electrodes.

実施例1と同様の方法で誘電率を測定した。その結果、ゲル状高分子材料2に1ミリHzのバイアス電圧を印加すると、ゲル状高分子材料2の比誘電率を1×10近くの巨大誘電率にまで増加させることができた。また、100Hzのバイアス電圧でも、100を超える巨大誘電率にまで向上させることができた。 The dielectric constant was measured by the same method as in Example 1. As a result, when a bias voltage of 1 milliHz was applied to the gel polymer material 2, the dielectric constant of the gel polymer material 2 could be increased to a giant dielectric constant close to 1 × 10 6 . Further, even with a bias voltage of 100 Hz, it was possible to improve the giant dielectric constant exceeding 100.

1 ゲル状ポリマーデバイス
2 ゲル状高分子材料
3 電極
1 Gel Polymer Device 2 Gel Polymer Material 3 Electrode

Claims (4)

コロッサル誘電性を持つゲル状高分子材料と、該ゲル状高分子材料に低周波のバイアス電圧を印加する電極とを有することを特徴とするゲル状ポリマーデバイス。   A gel-like polymer device comprising: a gel-like polymer material having a colossal dielectric property; and an electrode for applying a low-frequency bias voltage to the gel-like polymer material. 前記ゲル状高分子材料を構成する絶縁性高分子化合物が、ポリ塩化ビニル、ポリアクリロニトリル、ナイロン、ポリエチレンテレフタレート、ポリプロピレン、ポリエチレン、ポリケトン、ポリビニルアルコール、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリnブチルアクリレート、セルロース及び羊毛の群から選ばれるいずれか1又は2以上の高分子化合物である、請求項1に記載のゲル状ポリマーデバイス。   The insulating polymer compound constituting the gel polymer material is polyvinyl chloride, polyacrylonitrile, nylon, polyethylene terephthalate, polypropylene, polyethylene, polyketone, polyvinyl alcohol, polyvinyl acetate, polymethyl methacrylate, poly nbutyl acrylate, The gel polymer device according to claim 1, which is any one or two or more polymer compounds selected from the group consisting of cellulose and wool. 前記ゲル状高分子材料の比誘電率が1Hzで1000以上、10Hzで100以上である、請求項1又は2に記載のゲル状ポリマーデバイス。   The gel-like polymer device according to claim 1 or 2, wherein the gel-like polymer material has a relative dielectric constant of 1000 or more at 1 Hz and 100 or more at 10 Hz. 絶縁性高分子化合物をゲル状にしてコロッサル誘電性を持つゲル状高分子材料を準備する工程と、該ゲル状高分子材料に低周波のバイアス電圧を印加するための電極を形成する工程と、を有することを特徴とするゲル状ポリマーデバイスの製造方法。   A step of preparing an insulating polymer compound in a gel state and preparing a gel-like polymer material having a colossal dielectric property; a step of forming an electrode for applying a low-frequency bias voltage to the gel-like polymer material; A method for producing a gel-like polymer device, comprising:
JP2012055892A 2012-03-13 2012-03-13 Gel-like polymer device having colossal dielectric property and manufacturing method thereof Active JP5946299B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012055892A JP5946299B2 (en) 2012-03-13 2012-03-13 Gel-like polymer device having colossal dielectric property and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055892A JP5946299B2 (en) 2012-03-13 2012-03-13 Gel-like polymer device having colossal dielectric property and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2013192333A true JP2013192333A (en) 2013-09-26
JP5946299B2 JP5946299B2 (en) 2016-07-06

Family

ID=49392071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055892A Active JP5946299B2 (en) 2012-03-13 2012-03-13 Gel-like polymer device having colossal dielectric property and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5946299B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507930A (en) * 2011-03-09 2014-03-27 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Electroactive polymer energy converter
JP2020096470A (en) * 2018-12-13 2020-06-18 三菱ケミカル株式会社 Actuator

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180657A (en) * 1981-04-30 1982-11-06 Nissin Electric Co Ltd Composition having high dielectric constant
JPS61249902A (en) * 1985-04-27 1986-11-07 Nitto Electric Ind Co Ltd Antifouling gelatinous composition
JPS62151824A (en) * 1985-12-26 1987-07-06 Matsushita Electric Ind Co Ltd Vari-focal lens
JP2002105327A (en) * 2000-09-28 2002-04-10 Fuji Xerox Co Ltd Polymer gel composition and method for producing the same, and optical element using the same
JP2003505865A (en) * 1999-07-20 2003-02-12 エスアールアイ インターナショナル Improved electroactive polymer
JP2006140850A (en) * 2004-11-12 2006-06-01 Canon Inc Voltage conversion element and apparatus employing element
JP2006208947A (en) * 2005-01-31 2006-08-10 Fuji Xerox Co Ltd Optical element and its light control method
JP2007011120A (en) * 2005-07-01 2007-01-18 Konica Minolta Holdings Inc Optical element
JP2008252958A (en) * 2007-03-29 2008-10-16 Kuraray Co Ltd Actuator and electrode for use in the actuator
JP2009528558A (en) * 2006-03-03 2009-08-06 ユニヴェルシテ ラヴァル Method and apparatus for generating spatially modulated electric fields and electro-optical tuning using liquid crystals
JP2010191048A (en) * 2009-02-17 2010-09-02 Suwa Optronics:Kk Lens driving mechanism
JP2013190547A (en) * 2012-03-13 2013-09-26 Shinshu Univ Gel-like polymer device exhibiting electrooptic effect and method for manufacturing the same
JP2014531389A (en) * 2011-09-16 2014-11-27 ジ オーストラリアン ナショナル ユニバーシティ Giant dielectric constant material

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57180657A (en) * 1981-04-30 1982-11-06 Nissin Electric Co Ltd Composition having high dielectric constant
JPS61249902A (en) * 1985-04-27 1986-11-07 Nitto Electric Ind Co Ltd Antifouling gelatinous composition
JPS62151824A (en) * 1985-12-26 1987-07-06 Matsushita Electric Ind Co Ltd Vari-focal lens
JP2003505865A (en) * 1999-07-20 2003-02-12 エスアールアイ インターナショナル Improved electroactive polymer
JP2002105327A (en) * 2000-09-28 2002-04-10 Fuji Xerox Co Ltd Polymer gel composition and method for producing the same, and optical element using the same
JP2006140850A (en) * 2004-11-12 2006-06-01 Canon Inc Voltage conversion element and apparatus employing element
JP2006208947A (en) * 2005-01-31 2006-08-10 Fuji Xerox Co Ltd Optical element and its light control method
JP2007011120A (en) * 2005-07-01 2007-01-18 Konica Minolta Holdings Inc Optical element
JP2009528558A (en) * 2006-03-03 2009-08-06 ユニヴェルシテ ラヴァル Method and apparatus for generating spatially modulated electric fields and electro-optical tuning using liquid crystals
JP2008252958A (en) * 2007-03-29 2008-10-16 Kuraray Co Ltd Actuator and electrode for use in the actuator
JP2010191048A (en) * 2009-02-17 2010-09-02 Suwa Optronics:Kk Lens driving mechanism
JP2014531389A (en) * 2011-09-16 2014-11-27 ジ オーストラリアン ナショナル ユニバーシティ Giant dielectric constant material
JP2013190547A (en) * 2012-03-13 2013-09-26 Shinshu Univ Gel-like polymer device exhibiting electrooptic effect and method for manufacturing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014507930A (en) * 2011-03-09 2014-03-27 バイエル・インテレクチュアル・プロパティ・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Electroactive polymer energy converter
JP2020096470A (en) * 2018-12-13 2020-06-18 三菱ケミカル株式会社 Actuator
JP7225755B2 (en) 2018-12-13 2023-02-21 三菱ケミカル株式会社 actuator

Also Published As

Publication number Publication date
JP5946299B2 (en) 2016-07-06

Similar Documents

Publication Publication Date Title
Lee et al. Water‐processable, stretchable, self‐healable, thermally stable, and transparent ionic conductors for actuators and sensors
Wang et al. Self-healing and highly stretchable gelatin hydrogel for self-powered strain sensor
Li et al. Recent Progress on Self‐Healable Conducting Polymers
Zhao et al. Multifunctional ionic conductive double-network hydrogel as a long-term flexible strain sensor
Jian et al. Antifreezing and stretchable organohydrogels as soft actuators
Zhu et al. Polysaccharide-based fast self-healing ion gel based on acylhydrazone and metal coordination bonds
Mendez et al. Bioinspired mechanically adaptive polymer nanocomposites with water-activated shape-memory effect
JP5392669B2 (en) Polymer flexible actuator
Kataoka et al. Highly conductive ionic-liquid gels prepared with orthogonal double networks of a low-molecular-weight gelator and cross-linked polymer
KR102292189B1 (en) Organo ion-conductive polymer gel elastomer and manufacturing method for the same
Pringpromsuk et al. Multifunctional stimuli-responsive shape memory polyurethane gels for soft actuators
Chen et al. Polybenzoxazole nanofiber-reinforced moisture-responsive soft actuators
Mohanta et al. Stretchable electrolytes for stretchable/flexible energy storage systems–Recent developments
Srisawasdi et al. Electromechanical response of silk fibroin hydrogel and conductive polycarbazole/silk fibroin hydrogel composites as actuator material
Yang et al. Highly Conductive, Stretchable, Adhesive, and Self‐Healing Polymer Hydrogels for Strain and Pressure Sensor
Zhao et al. Investigation into response characteristics of the chitosan gel artificial muscle
JP5986402B2 (en) Gel-like polymer device showing electro-optic effect
JP5946299B2 (en) Gel-like polymer device having colossal dielectric property and manufacturing method thereof
Suen et al. The role of interfaces in ionic liquid‐based hybrid materials (ionogels) for sensing and energy applications
JPWO2006025399A1 (en) Polymer film or fiber deformation method and polymer actuator
Wang et al. Application of hydrogel for energy storage and conversion
Zhou et al. High-strength, stretchable, and self-recoverable copolymer-supported deep eutectic solvent gels based on dense and dynamic hydrogen bonding for high-voltage and safe flexible supercapacitors
Qian et al. NIR responsive and conductive PNIPAM/PANI nanocomposite hydrogels with high stretchability for self-sensing actuators
CN105121538A (en) Method for manufacturing composite material which is polarizable under the action of a weak electric field
NZ745563A (en) Improved hydrophilic compositions

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160308

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160427

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160531

R150 Certificate of patent or registration of utility model

Ref document number: 5946299

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250