JP2013191347A - Electromagnetic wave heating device, and exhaust air cleaning device having the same - Google Patents

Electromagnetic wave heating device, and exhaust air cleaning device having the same Download PDF

Info

Publication number
JP2013191347A
JP2013191347A JP2012055455A JP2012055455A JP2013191347A JP 2013191347 A JP2013191347 A JP 2013191347A JP 2012055455 A JP2012055455 A JP 2012055455A JP 2012055455 A JP2012055455 A JP 2012055455A JP 2013191347 A JP2013191347 A JP 2013191347A
Authority
JP
Japan
Prior art keywords
electromagnetic wave
electric field
heating device
mode
specific
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012055455A
Other languages
Japanese (ja)
Other versions
JP5982892B2 (en
Inventor
Yoshihiko Matsui
良彦 松井
Yuma Yamazaki
悠真 山崎
Kazuaki Senda
和章 仙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Fuji Electronics Industry Co Ltd
Original Assignee
Denso Corp
Fuji Electronics Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp, Fuji Electronics Industry Co Ltd filed Critical Denso Corp
Priority to JP2012055455A priority Critical patent/JP5982892B2/en
Publication of JP2013191347A publication Critical patent/JP2013191347A/en
Application granted granted Critical
Publication of JP5982892B2 publication Critical patent/JP5982892B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Processes For Solid Components From Exhaust (AREA)
  • Constitution Of High-Frequency Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electromagnetic wave heating device capable of maintaining a propagation mode of an electromagnetic wave in a specific mode to a change in physical property of a heated object by a simple configuration, and to provide an exhaust air cleaning device having the electromagnetic wave heating device.SOLUTION: An electromagnetic wave heating device 1 comprises: an electromagnetic wave generator 4 for oscillating at least a high-frequency electromagnetic wave; a cavity waveguide 2; an antenna 40 provided vertically to a longitudinal direction of the cavity waveguide 2; and electromagnetic wave reflection plates 5 and 6 provided at both ends of the cavity waveguide 2. In the electromagnetic wave heating device 1, a resonance cavity 20 is sectioned inside the cavity waveguide 2, and a dielectric heated object 3 housed inside the resonance cavity 20 is heated. In the reflection plate 5 that is an upstream side to the antenna 40 among the electromagnetic wave reflection plates 5 and 6, specific electric field shielding plates 7 protruding inward and shielding an electric field in a specific direction are provided.

Description

本発明は、電磁波を利用して被加熱物を加熱する電磁波加熱装置において電磁波の伝播モードを特定のモードに維持する電磁波伝播モード形成手段を有する電磁波加熱装置、並びに、それを備えた排気浄化装置に関する。   The present invention relates to an electromagnetic wave heating apparatus having an electromagnetic wave propagation mode forming means for maintaining an electromagnetic wave propagation mode in a specific mode in an electromagnetic wave heating apparatus that heats an object to be heated using electromagnetic waves, and an exhaust purification apparatus including the same. About.

従来、内燃機関の燃焼排気流路にハニカム構造体からなる多孔質フィルタや触媒担持フィルタを配設し、燃焼排気中に含まれる粒子状物質、NOx等の有害物質を、多孔質フィルタへの吸着や触媒による分解によって除去する排気浄化装置が広く用いられている。   Conventionally, a porous filter made of a honeycomb structure or a catalyst-carrying filter is disposed in a combustion exhaust passage of an internal combustion engine to adsorb harmful substances such as particulate matter and NOx contained in the combustion exhaust to the porous filter. Exhaust gas purification devices that are removed by decomposition with a catalyst are widely used.

しかし、従来のフィルタを介した排気浄化装置では、冷間始動時には、触媒が活性化温度に達しておらず、排気中の有害物質が触媒によって除去されることなく流出する虞があり、また、フィルタの目詰まりにより、流路抵抗の増加や、排気浄化能力の低下を招く虞がある。   However, in the exhaust gas purification device via the conventional filter, at the time of cold start, the catalyst has not reached the activation temperature, and there is a risk that harmful substances in the exhaust gas will flow out without being removed by the catalyst, The clogging of the filter may cause an increase in flow path resistance and a decrease in exhaust purification capability.

このような問題に対して、特許文献1には、マイクロ波加熱によって早期に触媒を活性温度にまで昇温させるべく、排ガスが通される円筒形のマイクロ波共振空胴管と、この共振空胴管内に収容された、排ガスが透過可能な触媒担体と、前記共振空胴管内に触媒加熱のためのマイクロ波を導入するための導波手段であって、前記共振空胴管内にこの空胴管の中心軸と垂直な方向に挿入された、マイクロ波導入用のアンテナを有する導波手段とを備えた排ガス浄化装置が開示されている。   In order to solve such a problem, Patent Document 1 discloses a cylindrical microwave resonant cavity tube through which exhaust gas is passed in order to quickly raise the catalyst to an active temperature by microwave heating, and this resonant cavity. A catalyst carrier that is permeable to exhaust gas, and is a waveguide means for introducing a microwave for heating the catalyst into the resonant cavity tube, the cavity inside the resonant cavity tube; An exhaust gas purifying apparatus is disclosed that includes a waveguide means having an antenna for introducing a microwave inserted in a direction perpendicular to the central axis of the tube.

マイクロ波加熱原理の一つとして、被加熱物を構成する分子の電気的に中性状態であった永久双極子を高周波の電界により変位・分極させ、その周波数に応じて激しく振動させることにより、分子間に摩擦熱を発生させて、被加熱物である誘電体を発熱・昇温させることができる。
したがって、電界強度の高い部分では、それだけ被加熱物の分子振動が激しく、被加熱物の温度が上昇することになる。
One of the principles of microwave heating is to displace and polarize the permanent dipole that was in an electrically neutral state of the molecules that make up the object to be heated by a high-frequency electric field and vibrate vigorously according to the frequency. By generating frictional heat between molecules, the dielectric as the object to be heated can be heated and heated.
Therefore, in the portion where the electric field strength is high, the molecular vibration of the object to be heated is so intense that the temperature of the object to be heated increases.

一方、磁性特性を有する被加熱物、導電性を有する被加熱物では、それぞれ磁場加熱、表皮電流によるジュール熱による加熱が起こり、被加熱物を発熱・昇温させることができる。
特許文献1では、マイクロ波を発振するアンテナとマイクロ波反射金網までの距離、及び、空胴の直径を最適化することにより、共振空胴管内に特定のモードのマイクロ波を発生させようとしている。
On the other hand, in a heated object having magnetic characteristics and a heated object having conductivity, heating by Joule heat due to magnetic field heating and skin current occurs, respectively, and the heated object can be heated and heated.
In Patent Document 1, an attempt is made to generate a microwave of a specific mode in a resonant cavity tube by optimizing the distance between the antenna that oscillates the microwave and the microwave reflecting wire mesh, and the diameter of the cavity. .

また、非特許文献1には、DPFの誘電特性として、誘電体内での損失を考慮した誘電体の誘電特性について記載されており、複素誘電率εとして、下記式1の関係は成り立つことが知られている。
ε=ε+jε=εε(1+jtanδ)・・・式1
ただし、ε:複素比誘電率
ε:誘電損率
ε:絶対誘電率(8.8542×10−12(F/m))
ε:比誘電率
tanδ:誘電正接(=ε(虚部)/ε(実部))
j:虚数単位
さらに、非特許文献1には、ディーゼル排気浄化装置において、ディーゼルパティキュレートフィルタ(DPF)のPM捕集量(g/L)と、比誘電率εr、及び、誘電正接tanδとの間の関係が示されており、(非特許文献1、第4図参照)、PM捕集量の増加と共に、DPFの比誘電率ε、及び、誘電正接tanδが指数関数的に上昇することが記載されている。
Non-Patent Document 1 describes the dielectric characteristics of a DPF considering the loss in the dielectric as the dielectric characteristics of the DPF, and the relationship of the following formula 1 may hold as the complex dielectric constant ε 3. Are known.
ε 3 = ε 1 + jε 2 = ε 0 ε r (1 + jtan δ) Equation 1
Where ε 1 : complex dielectric constant
ε 2 : dielectric loss factor
ε 0 : absolute dielectric constant (8.8542 × 10 −12 (F / m))
ε r : relative permittivity
tan δ: dielectric loss tangent (= ε 2 (imaginary part) / ε 1 (real part))
j: Imaginary unit Further, in Non-Patent Document 1, in a diesel exhaust purification system, the amount of PM trapped by a diesel particulate filter (DPF) (g / L), relative permittivity εr, and dielectric loss tangent tanδ (See Non-Patent Document 1, FIG. 4), the relative permittivity ε r and the dielectric loss tangent tan δ of the DPF increase exponentially with the increase in the amount of PM trapped. Is described.

また、一般的に誘電体の被誘電率εは、温度依存性があり、誘電体の温度変化によっても変化することが知られている。 Further, it is generally known that the dielectric constant ε r of a dielectric has temperature dependence and changes with a temperature change of the dielectric.

このため、PM捕集量の変化や、排気温度の変化等により、マイクロ波加熱装置の被加熱物であるフィルタの比誘電率ε、及び、誘電正接tanδが変化する。
特許文献2にあるように、共振空胴管の直径、及び、アンテナから反射面までの距離を一定に維持したとしても、フィルタの比誘電率ε及び誘電正接tanδの変化によって電磁波加熱装置から電磁波を発振したときに被加熱物収容空間内に励起される電磁波の伝播モードは、その時々の負荷条件によって変化し、特定のモードに維持するのが困難となることが判明した。
このような伝播モードの変化が起こると、電界強度のピーク位置が変化するので、必然的に加熱部位の変動を招き、フィルタに担持した触媒の早期の活性化が困難となったり、フィルタの特定の部位に堆積した被捕集物の加熱除去が困難となったりして、排気浄化装置としての機能が著しく低下する虞がある。
For this reason, the relative permittivity ε r and the dielectric loss tangent tan δ of the filter that is the object to be heated of the microwave heating device change due to a change in the amount of PM collected, a change in the exhaust temperature, and the like.
As described in Patent Document 2, even if the diameter of the resonant cavity tube and the distance from the antenna to the reflecting surface are kept constant, the electromagnetic wave heating device is affected by changes in the relative permittivity ε r and the dielectric loss tangent tan δ of the filter. It has been found that the propagation mode of the electromagnetic wave excited in the space to be heated when the electromagnetic wave is oscillated changes depending on the load condition at that time, and it becomes difficult to maintain the specific mode.
When such a change in the propagation mode occurs, the peak position of the electric field strength changes, which inevitably leads to fluctuations in the heated part, making it difficult to activate the catalyst carried on the filter early or specifying the filter. There is a possibility that it becomes difficult to heat and remove the collected matter accumulated in the part, and the function as the exhaust gas purification device is remarkably deteriorated.

このような問題に対して、反射板の位置を移動させることによって、励起されるモードを一定とすることも考えられるが、反射板を移動するための手段が必要となり、排気浄化装置の複雑化、大型化を招く虞がある。
さらに、捕集物の堆積量の変化や、温度変化に伴い刻々と変化するフィルタの比誘電率ε及び誘電正接tanδに応じた反射板の位置を特定することは、極めて困難であり、実用的でない。
To solve this problem, it may be possible to make the excited mode constant by moving the position of the reflecting plate. However, a means for moving the reflecting plate is required, which complicates the exhaust emission control device. There is a risk of increasing the size.
Furthermore, it is extremely difficult to identify the position of the reflector according to the relative permittivity ε r and the dielectric loss tangent tan δ of the filter that changes with the change in the amount of collected matter and the temperature. Not right.

そこで、本発明は、かかる実情に鑑み、電磁波加熱装置において、被加熱物の物性に変化が生じても、簡易な構成により、電磁波の伝播モードを特定のモードに維持可能とする電磁波加熱装置を提供すると共に、この電磁波加熱装置を備えて、被加熱物であるフィルタの物性が変化しても電磁波の伝播モードを特定のモードに維持して、加熱部位の変動を抑制して、安定した排気浄化能力を維持できる排気浄化装置を提供することを目的とする。   Therefore, in view of such circumstances, the present invention provides an electromagnetic wave heating device that can maintain the propagation mode of electromagnetic waves in a specific mode with a simple configuration even if the physical properties of the object to be heated change. In addition to providing this electromagnetic wave heating device, even if the physical properties of the filter to be heated change, the electromagnetic wave propagation mode is maintained in a specific mode, the fluctuation of the heated part is suppressed, and stable exhaust An object of the present invention is to provide an exhaust purification device capable of maintaining the purification capability.

請求項1の発明では、少なくとも、高周波の電磁波を発振する電磁波発生器(4)と、該電磁波を伝送する略筒状の空胴導波管(2)と、該空胴導波管(2)の長手方向に対して垂直に設けられ、上記電磁波発生器(4)から送られた電磁波を上記空胴導波管(2)の内側に発振するアンテナ(40)と、上記空胴導波管(2)の両端に設けられ、電磁波を反射する電磁波反射板(5、6)とを具備し、上記空胴導波管(2)の内側に電磁波の定在波を発生させる共振空胴(20)を区画して、その内側に収容した誘電性の被加熱物(3)を加熱する電磁波加熱装置(1)であって、上記電磁波反射板(5、6)の内、上記アンテナ(40)に対して上流側となる反射板(5)に内側に向かって突出して、急激なインピーダンスの変化により、特定方向の電界を遮る特定電界遮蔽板(7)を設けたことを特徴とする。   In the invention of claim 1, at least an electromagnetic wave generator (4) that oscillates a high-frequency electromagnetic wave, a substantially cylindrical cavity waveguide (2) that transmits the electromagnetic wave, and the cavity waveguide (2 ) And an antenna (40) that oscillates the electromagnetic wave transmitted from the electromagnetic wave generator (4) inside the cavity waveguide (2), and the cavity waveguide. Resonant cavities that are provided at both ends of the tube (2) and have electromagnetic wave reflectors (5, 6) that reflect electromagnetic waves and generate standing waves of electromagnetic waves inside the cavity waveguide (2). An electromagnetic wave heating device (1) that divides (20) and heats a dielectric object to be heated (3) accommodated therein, wherein the antenna (of the electromagnetic wave reflectors (5, 6)) 40) projecting inward to the reflector (5) on the upstream side with respect to 40), due to a sudden impedance change Characterized in that a specific electric field shielding plate for shielding an electric field in a specific direction (7).

請求項2の発明では、上記特定電界遮蔽板(7、7a〜7j)は、励振させたい伝播モードの電界強度が低くなる位置、又は、励振させたくない伝播モードの電界強度が高くなる位置に突設させる。   In the invention of claim 2, the specific electric field shielding plate (7, 7a to 7j) is located at a position where the electric field intensity of the propagation mode desired to be excited becomes low, or at a position where the electric field intensity of the propagation mode not desired to be excited becomes high. Make it project.

請求項3の発明では、上記特定電界遮蔽板(7e、7f)を電磁波反射板(5e、5f)と共に回転させる回転手段(8、8f)を具備する。   According to a third aspect of the present invention, there is provided rotating means (8, 8f) for rotating the specific electric field shielding plate (7e, 7f) together with the electromagnetic wave reflecting plate (5e, 5f).

請求項4の発明では、上記特定電界遮蔽板(7、7g、7h)の一部、又は、全部を上記反射板の内側となる上記空胴導波管内への突出と、外側への収納とを切り換える可動手段(70、70h)を具備する。   In the invention of claim 4, a part or all of the specific electric field shielding plate (7, 7g, 7h) is projected into the hollow waveguide, which is the inside of the reflecting plate, and stored outside. Movable means (70, 70h) for switching between.

請求項5の発明では、排気浄化フィルタを通過させることによって被処理排気中の特定成分を除去する排気浄化装置(10)であって、請求項1に記載の電磁波加熱装置(1)を備え、上記空胴導波管(2)を被処理排気の流れる排気流路とし、上記電磁波反射板(5、6)を、上記被処理排気は透過し、上記電磁波は反射するように、上記電磁波の波長の2分の1より小さい開口径の格子を設けた気体透過電磁波反射板(5、6)によって形成し、上記排気浄化フィルタ(3)を上記被加熱物(3)としたことを特徴とする。   The invention according to claim 5 is an exhaust purification device (10) for removing a specific component in the exhaust gas to be treated by passing through an exhaust purification filter, comprising the electromagnetic wave heating device (1) according to claim 1, The cavity waveguide (2) is used as an exhaust passage through which the exhaust to be treated flows, and the electromagnetic wave is reflected by the electromagnetic wave reflectors (5, 6) so that the exhaust to be treated is transmitted and the electromagnetic waves are reflected. It is formed by a gas transmission electromagnetic wave reflection plate (5, 6) provided with a grating having an aperture diameter smaller than a half of the wavelength, and the exhaust purification filter (3) is the heated object (3). To do.

請求項1の発明によれば、上記反射板の内側近傍において、上記特定電解遮蔽板(7)を設けた位置のインピーダンスが急激に変化し、上記特定電界遮蔽板(7)に直交する方向の電界が遮断・吸収され、或いは、電磁波が反射され、上記特定電界遮蔽板(7)に沿うように形成された電界のみが維持されるので、被加熱物(3)の物性の変化や、使用環境の変化が生じても、上記空胴導波管(2)内に励振される定在波の伝播モードは、常に、特定のモードのみとなる。
したがって、従来のように、被加熱物(3)の物性の変化に応じて、電磁波反射板(6)の位置を移動させる必要がなく、極めて簡単な構成により、電磁波の伝播モードを任意に設定することが可能な電磁波加熱装置(1)が実現できる。
According to the first aspect of the present invention, in the vicinity of the inside of the reflector, the impedance at the position where the specific electrolytic shielding plate (7) is provided changes abruptly, in a direction perpendicular to the specific electric field shielding plate (7). Since the electric field is blocked / absorbed, or the electromagnetic wave is reflected, and only the electric field formed along the specific electric field shielding plate (7) is maintained, the physical properties of the object to be heated (3) are changed and used. Even if the environment changes, the propagation mode of the standing wave excited in the cavity waveguide (2) is always only a specific mode.
Therefore, it is not necessary to move the position of the electromagnetic wave reflector (6) according to the change in physical properties of the object to be heated (3) as in the prior art, and the electromagnetic wave propagation mode can be arbitrarily set with a very simple configuration. An electromagnetic wave heating device (1) that can be realized can be realized.

より、具体的には、請求項2ないし4のいずれかに示した比較的に簡易な構成により、特定の伝播モードを上記空胴導波管(2)内に発生させ、被加熱物の特定の部位を指向的に加熱可能な電磁波加熱装置が実現できる。   More specifically, a specific propagation mode is generated in the cavity waveguide (2) with a relatively simple structure as set forth in any one of claims 2 to 4, and the object to be heated is specified. An electromagnetic wave heating device capable of directionally heating the part can be realized.

さらに、請求項5の発明によれば、被加熱物(3)である上記排気浄化フィルタの誘電率等の物性が変化した場合であっても、上記特定電界遮蔽板(7)によって、発生する電磁波の伝播モードを特定のモードに維持することで、上記排気浄化フィルタ(3)の特定の部位を効果的に加熱したり、発生する伝播モードを任意に制御することで、上記排気浄化フィルタ(3)を均一に加熱したりすることが可能となる。したがって、排気浄化装置(10)を速やかに効率よく再生したり、早期に活性化を図ったりすることが可能となる。   Furthermore, according to the invention of claim 5, even if the physical property such as the dielectric constant of the exhaust purification filter as the object to be heated (3) is changed, it is generated by the specific electric field shielding plate (7). By maintaining the electromagnetic wave propagation mode in a specific mode, the specific part of the exhaust purification filter (3) can be effectively heated, or the generated propagation mode can be arbitrarily controlled, so that the exhaust purification filter ( 3) can be heated uniformly. Therefore, the exhaust gas purification device (10) can be quickly and efficiently regenerated or activated at an early stage.

本発明の第1の実施形態における電磁波加熱装置を備えた排気浄化装置を示し、(a)は、一部切り欠き斜視図、(b)は、A−A断面から見た径方向平面図、(c)、(d)、(e)は、本発明の作用効果を示す径方向平面図1 shows an exhaust emission control device provided with an electromagnetic wave heating device according to a first embodiment of the present invention, wherein (a) is a partially cutaway perspective view, and (b) is a radial plan view as seen from a cross section AA; (C), (d), (e) are radial plan views showing the effects of the present invention. 図1の排気浄化装置において、被加熱物をディーゼル機関の燃焼排気中の粒子状物質を捕集するDPFとした場合の効果を説明するための図であって、(a)は、被可熱物であるハニカムフィルタの概要を示す長手方向縦断面図、(b)は、被加熱物収容空間内の流速分布、及び、DPFにおけるPM捕集分布を示す長手方向縦断面図In the exhaust emission control device of FIG. 1, it is a figure for demonstrating the effect at the time of making a to-be-heated object DPF which collects the particulate matter in the combustion exhaust of a diesel engine, Comprising: (a) (B) is a longitudinal cross-sectional view showing the flow velocity distribution in the space to be heated and the PM collection distribution in the DPF. 空胴導波管内に○TE11モードを励振した場合の電磁界分布を示し、(a)は径方向断面図、(b)は、長手方向側面図、(c)は長手方向平面図2 shows an electromagnetic field distribution when a TE 11 mode is excited in a cavity waveguide, (a) is a radial cross-sectional view, (b) is a longitudinal side view, and (c) is a longitudinal plan view. 空胴導波管内に○TE21モードを励振した場合の電磁界分布を示し、(a)は径方向断面図、(b)は、長手方向側面図、(c)は長手方向平面図2 shows an electromagnetic field distribution when a TE 21 mode is excited in a cavity waveguide, (a) is a radial cross-sectional view, (b) is a longitudinal side view, and (c) is a longitudinal plan view. (a)は、実施例1における電磁波加熱装置の要部を示し、(b)は、実施例3における電磁波加熱装置の要部を示し、(c)は、実施例5のおける電磁波加熱装置の要部を示し、それぞれの枝番の1は、長手方向側面図、枝番の2は、径方向断平面図(A) shows the principal part of the electromagnetic wave heating device in Example 1, (b) shows the principal part of the electromagnetic wave heating device in Example 3, and (c) shows the electromagnetic wave heating device in Example 5. The main part is shown, each branch number 1 is a longitudinal side view, and branch number 2 is a radial sectional plan view. 本発明の効果を示し、(a)、(b)、(c)は、実施例1において、負荷条件が同じで、それぞれ、共振空胴長さを300mm、410mm、460mmに変化させたときの電界強度分布シミュレーション図The effect of this invention is shown, (a), (b), (c), when the load conditions are the same in Example 1 and the resonant cavity length is changed to 300 mm, 410 mm, and 460 mm, respectively. Electric field strength distribution simulation diagram 比較例の問題点を示し、(a)、(b)、(c)は、比較例において、負荷条件が同じで、それぞれ、共振空胴長さを300mm、410mm、460mmに変化させたときの電界強度分布シミュレーション図The problems of the comparative example are shown, and (a), (b), and (c) are the same when the load conditions are the same in the comparative example and the resonant cavity length is changed to 300 mm, 410 mm, and 460 mm, respectively. Electric field strength distribution simulation diagram 本発明の効果を示し、(a)、(b)、(c)は、実施例5において、負荷条件が同じで、それぞれ、共振空胴長さを300mm、410mm、460mmに変化させたときの電界強度分布シミュレーション図The effect of this invention is shown, (a), (b), (c) is when load conditions are the same in Example 5 and the resonant cavity length is changed to 300 mm, 410 mm, and 460 mm, respectively. Electric field strength distribution simulation diagram 比較例と共に本発明の効果を示し、共振空胴長さと発生モードとの相関を示す特性図A characteristic diagram showing the effect of the present invention together with a comparative example and showing the correlation between the resonant cavity length and the generation mode 本発明に係る遮蔽板の取付位置を回転させたときの効果を示し、(a)、(b)、(c)は、それぞれ、実施例1、実施例6、実施例7に対応し、それぞれの枝番の1は、各実施例における径方向平面図、枝番の2は、それぞれの電界強度分布シミュレーション図、枝番の3は、それぞれの発生モードを示す電磁界分布図The effect at the time of rotating the attachment position of the shielding board which concerns on this invention is shown, (a), (b), (c) respectively corresponds to Example 1, Example 6, Example 7, The branch number 1 is a radial plan view in each embodiment, the branch number 2 is an electric field intensity distribution simulation diagram, and the branch number 3 is an electromagnetic field distribution diagram showing each generation mode. 本発明の第2の実施形態における電磁波加熱装置とその変形例を示し、(a)、(b)は、それぞれ、実施例8、実施例9に対応し、それぞれの枝番の1は、径方向平面図、枝番の2は、長手方向側面図The electromagnetic wave heating apparatus in the 2nd Embodiment of this invention and its modification are shown, (a), (b) respond | corresponds to Example 8 and Example 9, respectively, 1 of each branch number is a diameter. Directional plan view, branch number 2 is a longitudinal side view 本発明の第3の実施形態における電磁波加熱装置とその変形例を示し、(a)、(b)は、それぞれ、実施例10、実施例10に対応し、(a−1)、(a―4)、(b−1)は、縦断面図、(a―2)、(a―5)、(b−2)は、径方向平面図、(a−3)、(a−6)、(b−3)は、それぞれの発生モードを示す電磁界分布図The electromagnetic wave heating apparatus and its modification in the 3rd Embodiment of this invention are shown, (a), (b) respond | corresponds to Example 10 and Example 10, respectively, (a-1), (a- 4), (b-1) are longitudinal sectional views, (a-2), (a-5), (b-2) are radial plan views, (a-3), (a-6), (B-3) is an electromagnetic field distribution diagram showing each generation mode. 本発明の第1の実施形態における電磁波加熱装置の変形例を示し、(a)は、縦断面図、(b)は、径方向平面図、(c)は、発生モードを示す電磁界分布図The modification of the electromagnetic wave heating apparatus in the 1st Embodiment of this invention is shown, (a) is a longitudinal cross-sectional view, (b) is a radial direction top view, (c) is an electromagnetic field distribution figure which shows generation | occurrence | production mode. 本発明の電磁波加熱装置を備えた排気浄化装置の効果を示し、(a)は、○TE11モードにおける温度変化を示す特性図、(b)は、○TE21モードにおける温度変化を示す特性図The effect of the exhaust emission control device provided with the electromagnetic wave heating device of the present invention is shown, (a) is a characteristic diagram showing the temperature change in the TE 11 mode, (b) is a characteristic diagram showing the temperature change in the TE 21 mode. 本発明の電磁波加熱装置を備えた排気浄化装置の効果を示し、(a)は、PMが堆積したDPFの状態を示す図面代用写真、(b)は、本実施形態において発生する○TE21モードを示す電磁界分布図、(c)は、DPFを加熱中の状態を示す図面代用写真、(d)は、加熱後に特定位置のPMが燃焼除去されたDPFの状態を示す図面代用写真The effect of the exhaust emission control device provided with the electromagnetic wave heating device of the present invention is shown, (a) is a drawing-substituting photograph showing the state of the DPF on which PM is deposited, and (b) is a TE 21 mode generated in this embodiment. (C) is a drawing substitute photograph showing a state during heating of the DPF, (d) is a drawing substitute photograph showing a state of the DPF in which PM at a specific position is burned and removed after heating. 本発明の第4の実施形態として、矩形導波管を用いた場合を示し、(a)は、□TE10モードを発生させる遮蔽板の位置とそのモードのにおける電磁界分布を示し、(b)は、□TE11モードを発生させる遮蔽板の位置とそのモードにおける電磁界分布図。As a fourth embodiment of the present invention, a case where a rectangular waveguide is used is shown. (A) shows a position of a shielding plate that generates a □ TE 10 mode and an electromagnetic field distribution in that mode. ) Is the position of the shielding plate that generates the □ TE 11 mode and the electromagnetic field distribution diagram in that mode.

図1を参照して、本発明の第1の実施形態における電磁波加熱装置1と、それを用いた排気浄化装置10について説明する。
なお、以下に示す幾つかの実施例の説明において、本実施形態と共通する構成については、同じ符号、又は、同じ符号に枝番を付したので、本実施形態において説明した内容については、重複する説明を省略し、相違点を中心に説明する。
With reference to FIG. 1, the electromagnetic wave heating apparatus 1 and the exhaust gas purification apparatus 10 using the same in the 1st Embodiment of this invention are demonstrated.
In the following description of several examples, the same reference numerals are assigned to the same components as those in the present embodiment, or the same reference numerals are given branch numbers, and the contents described in the present embodiment are not duplicated. Description will be omitted, and differences will be mainly described.

図1(a)に示すように、本発明の電磁波加熱装置1は、空胴導波管2と、共振空胴20と、誘電性の被加熱物3と、電磁波発生器4と、アンテナ40と電磁波反射板5、6と、特定電界遮蔽板7とによって構成されている。
空胴導波管2は、略筒状で、電磁波発生器4からアンテナ40を介して発振された電磁波RFを伝送する。
なお、空胴導波管は、大きく分けて、矩形と円形とに大別され、矩形導波管の基本モードである□TE10モードと同じ特徴を有しながら、円形導波管においては、呼び名が変わり、○TE11モードとなる。
以下の実施形態においては、空胴導波管2として、円形導波管を用いた場合を例として説明してある。
As shown in FIG. 1A, an electromagnetic wave heating device 1 of the present invention includes a cavity waveguide 2, a resonant cavity 20, a dielectric object 3 to be heated, an electromagnetic wave generator 4, and an antenna 40. And the electromagnetic wave reflection plates 5 and 6 and the specific electric field shielding plate 7.
The cavity waveguide 2 is substantially cylindrical and transmits the electromagnetic wave RF oscillated from the electromagnetic wave generator 4 via the antenna 40.
The cavity waveguide is roughly divided into a rectangular shape and a circular shape, and has the same characteristics as the □ TE 10 mode which is a fundamental mode of the rectangular waveguide. nickname is changed, the ○ TE 11 mode.
In the following embodiment, the case where a circular waveguide is used as the cavity waveguide 2 is described as an example.

アンテナ40は、空胴導波管2の長手方向に対して垂直に設けられている。
空胴導波管2の両端には、電磁波RFを反射する電磁波反射板5、6が設けられている。空胴導波管2の内側の電磁波反射板5、6によって区画された空間は、アンテナ40から発振された電磁波RFの定在波を発生させる共振空胴20を構成すると共に、被加熱物3を収容する被加熱物収容空間を兼ねている。
電磁波反射板5、6内のアンテナ40に対して上流側となる反射板5には、本発明の要部である特定の電荷を遮る特定電界遮蔽板7が設けられている。
このため、電磁波反射板5の特定電界遮蔽板7の設けられた部位のインピーダンスが急激に変化しており、電磁波が反射される。
なお、アンテナ40の下流側となる反射板6との間には、誘電性の被加熱物3が存在するため、反射板6に特定遮蔽板7を設けても、本発明の効果は発揮できないものと考えられる。
The antenna 40 is provided perpendicular to the longitudinal direction of the cavity waveguide 2.
Electromagnetic wave reflectors 5 and 6 that reflect the electromagnetic wave RF are provided at both ends of the cavity waveguide 2. The space defined by the electromagnetic wave reflectors 5 and 6 inside the cavity waveguide 2 constitutes a resonant cavity 20 that generates a standing wave of the electromagnetic wave RF oscillated from the antenna 40, and the object to be heated 3 It also serves as a heated object storage space for storing the object.
The reflection plate 5 on the upstream side with respect to the antenna 40 in the electromagnetic wave reflection plates 5 and 6 is provided with a specific electric field shielding plate 7 that blocks a specific charge, which is a main part of the present invention.
For this reason, the impedance of the site | part in which the specific electric field shielding board 7 of the electromagnetic wave reflecting plate 5 was provided is changing rapidly, and electromagnetic waves are reflected.
In addition, since the dielectric to-be-heated object 3 exists between the reflecting plates 6 on the downstream side of the antenna 40, even if the specific shielding plate 7 is provided on the reflecting plate 6, the effect of the present invention cannot be exhibited. It is considered a thing.

特定電界遮蔽板7は、共振空胴20内に発生する伝播モードから所望のモードのみを取り出す、特定モード形成手段として設けられており、本例えば、所望の伝播モードとして、○TE21のみを励振させたい場合、本図(c)、(d)に示すように、共振空胴20の内側に伝送された電磁波RFの伝播モードの内、○TE11モードや、高次反射波等の不要なモードを発生させる特定方向の電界を遮り、本図(e)に示すように、所望の伝播モード(○TE21モード)のみを維持することができる。
このような構成とすることによって、被加熱物3の温度や誘電率等の物性の変化や、使用環境温度の変化等があっても、共振空胴20の内側に所望するモード以外の伝播モードが発生するのを抑制し、被加熱物3の特定の位置のみを加熱したり、特定電界遮蔽板7の突設位置や突出長さを可変とすることにより、被加熱物3の温度や誘電率等の物性の変化、使用環境の変化等があっても、発生する伝播モードを所望するモードに意図的に変化させ、被加熱物3を均等に加熱したりすることが可能である。
The specific electric field shielding plate 7 is provided as a specific mode forming means for extracting only a desired mode from the propagation modes generated in the resonance cavity 20, and for example, as the desired propagation mode, only the TE 21 is excited. If desired, as shown in FIGS. 2C and 2D, among the propagation modes of the electromagnetic wave RF transmitted to the inside of the resonance cavity 20, the TE 11 mode, higher-order reflected waves, etc. are unnecessary. An electric field in a specific direction that generates a mode is blocked, and only a desired propagation mode (OTE 21 mode) can be maintained as shown in FIG.
By adopting such a configuration, even if there is a change in physical properties such as the temperature and dielectric constant of the article to be heated 3 or a change in the operating environment temperature, a propagation mode other than the desired mode inside the resonance cavity 20 Is suppressed, and only the specific position of the object to be heated 3 is heated, or the protrusion position and the protrusion length of the specific electric field shielding plate 7 are made variable so that the temperature and dielectric of the object to be heated 3 can be changed. Even if there is a change in physical properties such as a rate, a change in use environment, etc., it is possible to intentionally change the generated propagation mode to a desired mode and to uniformly heat the article 3 to be heated.

また、従来のように、特定の伝播モードを維持するのに電磁波反射板5、6を移動させる必要がなく、電磁波加熱装置1を極めて簡単な構成とすることができる、
なお、本発明の電磁波加熱装置1においては、高周波の電磁波RFとして、例えば、波長λcが、10μm〜1mで、周波数fが300MHz〜3THzのマイクロ波が好適に用いられる。
さらに、電磁波発生器4には、マグネトロンや半導体高周波発生器等の公知の電磁波発生手段が用いられる。
一方、電磁波反射板5とアンテナ40との距離は、使用される電磁波RFの波長λcの1/4、又は、その奇数倍に設定されている。
Further, as in the prior art, there is no need to move the electromagnetic wave reflectors 5 and 6 to maintain a specific propagation mode, and the electromagnetic wave heating device 1 can have a very simple configuration.
In the electromagnetic wave heating device 1 of the present invention, for example, a microwave having a wavelength λc of 10 μm to 1 m and a frequency f of 300 MHz to 3 THz is suitably used as the high-frequency electromagnetic wave RF.
Further, the electromagnetic wave generator 4 uses a known electromagnetic wave generating means such as a magnetron or a semiconductor high frequency generator.
On the other hand, the distance between the electromagnetic wave reflector 5 and the antenna 40 is set to ¼ of the wavelength λc of the electromagnetic wave RF to be used, or an odd multiple thereof.

特定電界遮蔽板7は、金属、SiC等の半導体のいずれかを用いて、略平板状、平板に複数の貫通孔を有するパンチングメタル状、網状のいずれかに形成されている。
また、特定電界遮蔽板7の長さL7は、使用される電磁波の波長λcの8分の1以上、2倍以下の長さで設定することができる。
さらに、空胴導波管2の直径Dを1/2λcとした場合、特定電界遮蔽板7の幅Wは、電磁波反射板5の中心側に、直径1/8λcの仮想円以上の空間を形成するよう、1/8λc以上、3/16λc以下の範囲で適宜設定し得る。
なお、本発明において、特定電界遮蔽板7の板厚tは、10μm以上あれば、特定電界の遮断効果を発揮できるので、特に限定するものではないが、実用上、0.5mm〜5mmに設定してある。
The specific electric field shielding plate 7 is formed in a substantially flat plate shape, a punching metal shape having a plurality of through holes in the flat plate, or a net shape using any one of metals, SiC, and the like.
Further, the length L7 of the specific electric field shielding plate 7 can be set to a length that is not less than 1/8 and not more than 2 times the wavelength λc of the electromagnetic wave used.
Furthermore, when the diameter D of the cavity waveguide 2 is set to 1 / 2λc, the width W of the specific electric field shielding plate 7 forms a space larger than a virtual circle having a diameter of 1 / 8λc on the center side of the electromagnetic wave reflection plate 5. Thus, it can be set as appropriate within the range of 1 / 8λc or more and 3 / 16λc or less.
In the present invention, if the thickness t of the specific electric field shielding plate 7 is 10 μm or more, the specific electric field blocking effect can be exerted. Therefore, although not particularly limited, it is practically set to 0.5 mm to 5 mm. It is.

加えて、図1に示した特定電界遮蔽板7は、例示に過ぎず、本発明を限定するものではなく、特定電界遮蔽板7の配設枚数、配設位置に応じて、維持される伝播モードを変えることが可能で、所望の伝播モードに応じて特定電界遮蔽板7の配設枚数、配設位置を適宜設定することができる。   In addition, the specific electric field shielding plate 7 shown in FIG. 1 is merely an example and does not limit the present invention, and the propagation maintained depending on the number of arranged specific electric field shielding plates 7 and the arrangement position. The mode can be changed, and the number of the specific electric field shielding plates 7 to be arranged and the arrangement position can be appropriately set according to a desired propagation mode.

空胴導波管2は、円筒管、楕円管、矩形管のいずれを用いても良いが、使用する導波管によって、上述の如く、円形導波管を用いた場合と矩形導波管とではモードの呼び名が変わるため、本発明においては、円形導波管を用いた場合の○TE11モードは、矩形導波管の場合の□TE10モードに相当し、円形導波管の○TE21モードは、矩形導波管においては、□TE11モードに相当する。
したがって、使用する空胴導波管の形状に応じて、特定電界遮蔽板7の取付位置、大きさを調整して、維持される伝播モードを所望のモードに設定することができる。
The cavity waveguide 2 may be any of a cylindrical tube, an elliptical tube, and a rectangular tube. However, depending on the waveguide to be used, a circular waveguide and a rectangular waveguide may be used as described above. Since the name of the mode is changed, in the present invention, the ○ TE 11 mode when the circular waveguide is used corresponds to the □ TE 10 mode in the case of the rectangular waveguide. The 21 mode corresponds to the □ TE 11 mode in the rectangular waveguide.
Therefore, the propagation mode to be maintained can be set to a desired mode by adjusting the mounting position and size of the specific electric field shielding plate 7 according to the shape of the cavity waveguide to be used.

また、空胴導波管2を被処理排気の流れる排気流路(2)とし、電磁波反射板5、6を、被処理排気GEXは透過し、電磁波は反射するように、電磁波の波長λcの2分の1より小さい開口径の格子を設けた気体透過電磁波反射板(5、6)によって形成し、被処理排気を浄化する排気浄化フィルタ(3)を被加熱物3とすることにより、電磁波加熱装置1を備えた排気浄化装置10とすることが可能となる。
本実施形態においては、図略の内燃機関、焼却炉、燃焼炉、火力発電機等から排出される燃焼排気を被処理排気とし、被処理排気中に含まれる未燃燃料、粒子状物質、NOx、SOF、VOC等の特定成分を除去する。
Further, the wavelength of the electromagnetic wave λc is set so that the cavity waveguide 2 serves as an exhaust flow path (2) through which the exhaust to be treated flows, and the exhaust gas G EX is transmitted through the electromagnetic wave reflection plates 5 and 6 and the electromagnetic waves are reflected. By forming an exhaust purification filter (3) for purifying exhaust gas to be treated, which is formed by a gas transmission electromagnetic wave reflection plate (5, 6) provided with a lattice having an aperture diameter smaller than one half of the above, The exhaust gas purification device 10 including the electromagnetic wave heating device 1 can be obtained.
In this embodiment, combustion exhaust discharged from an unillustrated internal combustion engine, incinerator, combustion furnace, thermal power generator or the like is treated exhaust, and unburned fuel, particulate matter, NOx contained in the treated exhaust , SOF, VOC and other specific components are removed.

被処理排気中の如何なる成分を除去するかに応じて、被加熱物3として用いられる排気浄化フィルタの性能が適宜選択される。
例えば、ディーゼル機関の燃焼排気中に含まれる粒子状物質を除去する場合には、コーディエライトや炭化硅素等の公知の多孔質セラミック材料からなるハニカム構造のいわゆるディーゼルパティクレートフィルタ(以下、DPFと称する。)が用いられる。
The performance of the exhaust gas purification filter used as the article to be heated 3 is appropriately selected according to what component in the exhaust gas to be treated is removed.
For example, when removing particulate matter contained in the combustion exhaust of a diesel engine, a so-called diesel particulate filter (hereinafter referred to as DPF) having a honeycomb structure made of a known porous ceramic material such as cordierite or silicon carbide. Is used).

なお、本発明者らの鋭意試験により、排気管直径Dをφ133.8mm、DPFの直径φ126.2mmの排気浄化装置10に本発明を適用した場合、共振空胴長さLを300mmから500mmに5mm刻みで変化さ、さらに、DPF3の物性について、被誘電率εを1.5〜2.4に変化させ、tanδを0.1〜0.18に変化させても、空胴導波管2内に励振される定在波を、常に、特定の伝播モードに維持できることが判明した。その具体的な試験方法、結果については、後述する。 In addition, when the present invention is applied to the exhaust gas purification apparatus 10 having an exhaust pipe diameter D of φ133.8 mm and a DPF diameter of φ126.2 mm, the resonance cavity length L is changed from 300 mm to 500 mm by the present inventors' earnest test. Even if the dielectric constant ε r is changed to 1.5 to 2.4 and the tan δ is changed to 0.1 to 0.18, the cavity waveguide is changed in units of 5 mm. It has been found that the standing wave excited in 2 can always be maintained in a specific propagation mode. Specific test methods and results will be described later.

図2を参照して、いわゆる、ウォールスルータイプのDPFを用いた例について説明する。
本図(a)に示すように、DPF3は、例えば、コーディエライト、アルミナ、シリカ、チタニア、窒化珪素、炭化珪素といった酸化物、窒化物、炭化物等の多孔質セラミック材料からなる隔壁によって区画され、長手方向に伸びる略筒状のセルを多数設けてハニカム構造体を形成し、被処理排気GEXの入口側開口端300と入り口側閉塞端310とが交互に並び、処理済排気GTRTDの出口側開口301と出口側閉塞端311とが交互に並ぶように、各セルの入口側開口端と出口側開口端のいずれか一方を交互に目封止して、入口側開口300から流入した被処理排気GEXが多孔質のセル壁30を透過する際に、粒子状物質PMを捕集して、出口側開口端301から処理済排気GTRTDとして排出する。
An example using a so-called wall-through type DPF will be described with reference to FIG.
As shown in FIG. 4A, the DPF 3 is partitioned by partition walls made of a porous ceramic material such as cordierite, alumina, silica, titania, silicon nitride, silicon carbide, oxides, nitrides, carbides, and the like. the honeycomb structure is formed by providing a number of substantially cylindrical cells extending in the longitudinal direction, the inlet-side opening end 300 of the processed exhaust G EX and the inlet-side closed end 310 is alternately arranged, the treated exhaust G Trtd Either the inlet-side opening end or the outlet-side opening end of each cell was alternately plugged so that the outlet-side openings 301 and the outlet-side closed ends 311 were alternately arranged, and flowed from the inlet-side opening 300. When the exhaust gas G EX to be processed passes through the porous cell wall 30, the particulate matter PM is collected and discharged from the outlet side opening end 301 as the processed exhaust gas GTRTD .

このとき、本図(b)に示すように、排気流路2の内側に区画された被加熱物収容空間20を流れる被処理排気GEXの流速は、中心部が早く、排気流路2の壁面に近いほど遅くなっている。
このため、本図(b)に斜線で覆った領域、即ち、DPFの外径側により多くの粒子状物質が堆積する傾向となる。
At this time, as shown in this figure (b), the flow speed of the to-be-treated exhaust G EX flowing through the heated object accommodating space 20 defined inside the exhaust flow path 2 is fast in the center, and the exhaust flow path 2 The closer to the wall, the slower.
For this reason, a large amount of particulate matter tends to be deposited in the region covered by the oblique lines in FIG. 5B, that is, the outer diameter side of the DPF.

本発明の、電磁波加熱装置1を用いれば、被加熱物3であるフィルタに粒子状物質等が堆積したり、排気流路20内を流れる被処理排気の温度が変化したり、使用環境が変化したりして、フィルタの誘電率等の物性が変化した場合であっても、特定電界遮蔽板7によって、発生する電磁波の伝播モードを特定のモードに維持することで、フィルタの特定の部位を効果的に加熱して、PM等の堆積物、捕集物を早期に燃焼除去し、排気浄化機能の維持を図ったり、早期に触媒を活性化させたりすることが可能となる。   If the electromagnetic wave heating device 1 of the present invention is used, particulate matter or the like is deposited on the filter that is the object to be heated 3, the temperature of the exhaust gas to be treated flowing in the exhaust passage 20 changes, or the use environment changes. Even if the physical properties such as the dielectric constant of the filter change, the specific electric field shielding plate 7 maintains the propagation mode of the generated electromagnetic wave in the specific mode, so that the specific part of the filter is By heating effectively, deposits and collected matter such as PM are burned and removed at an early stage, and the exhaust purification function can be maintained or the catalyst can be activated at an early stage.

また、本発明の電磁波加熱装置1を排気浄化装置10として用いた場合、被加熱物3として用いられるフィルタはDPFに限るものではなく、加熱によって再生化したり、加熱によって活性化したりすることを要するフィルタであれば、処理対象となる被処理排気の種類はディーゼル排気に限定するものではないので、ガソリン排気、気体燃料排気等、被処理排気の種類を問わず、内燃機関、焼却炉、燃焼炉、火力発電機等から排出される燃焼排気を被処理排気とし、処理対象に応じた公知のフィルタを適宜採用することができる。
例えば、加熱によって活性化する白金、その他の遷移金属、又は、その化合物等を含む触媒を担持したフィルタの表面に被処理排気を流し、酸化還元反応により分解除去するものでも良い。
In addition, when the electromagnetic wave heating device 1 of the present invention is used as the exhaust gas purification device 10, the filter used as the article to be heated 3 is not limited to the DPF, and needs to be regenerated by heating or activated by heating. In the case of a filter, the type of exhaust to be processed is not limited to diesel exhaust, and therefore, regardless of the type of exhaust to be processed, such as gasoline exhaust and gaseous fuel exhaust, internal combustion engines, incinerators, combustion furnaces A combustion exhaust discharged from a thermal power generator or the like can be used as an exhaust to be processed, and a known filter corresponding to a processing target can be appropriately employed.
For example, the exhaust gas to be treated may flow on the surface of a filter carrying a catalyst containing platinum, other transition metals activated by heating, or a compound thereof, and the like, and decomposed and removed by an oxidation-reduction reaction.

一方、空胴導波管2内に定在波を発生させた場合、図3に示す、○TE11モードや、図4に示す○TE21モードなどの様々なモードが発生し得る。
○TE11モードでは、図3(a)に示すように、径方向断面において電界Eの定在波について、周方向に2つの腹が存在し、径方向に1つの腹が存在する。
空胴導波管2の長手方向においては、図3(b)、(c)に示すような電磁界分布が生じる。
○TE21モードでは、図4(a)に示すように、径方向断面において電界Eの定在波について、周方向に4つの腹が存在し、径方向に1つの腹が存在する。
空胴導波管2の長手方向においては、図3(b)、(c)に示すような電磁界分布が生じる。
On the other hand, when a standing wave is generated in the cavity waveguide 2, various modes such as the ○ TE 11 mode shown in FIG. 3 and the ○ TE 21 mode shown in FIG. 4 can be generated.
In the TE 11 mode, as shown in FIG. 3 (a), there are two antinodes in the circumferential direction and one antinode in the radial direction with respect to the standing wave of the electric field E in the radial section.
In the longitudinal direction of the cavity waveguide 2, an electromagnetic field distribution as shown in FIGS. 3B and 3C occurs.
In the TE 21 mode, as shown in FIG. 4A, there are four antinodes in the circumferential direction and one antinode in the radial direction with respect to the standing wave of the electric field E in the radial cross section.
In the longitudinal direction of the cavity waveguide 2, an electromagnetic field distribution as shown in FIGS. 3B and 3C occurs.

図5を参照して、本発明の要部である特定モード形成手段として設けた、特定電界遮蔽板7について詳述する。
本図(a)に示す実施例1では、取付角度θとして、アンテナ40の中心軸に沿った平面を中心C/Lに対して、時計回りに45°傾けて、最初の特定電界遮蔽板7が設けられ、等間隔に計4枚の特定電荷遮蔽板7が取り付けてある。
さらに、特定電界遮蔽板7の長さ(遮蔽板長さ)Lは、電磁波反射板5から、アンテナ40に向かって、アンテナ40から発振される電磁波の波長λcの1/8に設定してある。
With reference to FIG. 5, the specific electric field shielding plate 7 provided as the specific mode forming means which is the main part of the present invention will be described in detail.
In Example 1 shown in this figure (a), as the mounting angle θ, the plane along the central axis of the antenna 40 is inclined 45 ° clockwise with respect to the center C / L, and the first specific electric field shielding plate 7 is formed. A total of four specific charge shielding plates 7 are attached at equal intervals.
Further, the length (shielding plate length) L 7 of the specific electric field shielding plate 7 is set to 1/8 of the wavelength λc of the electromagnetic wave oscillated from the antenna 40 toward the antenna 40 from the electromagnetic wave reflecting plate 5. is there.

以下の説明において、実施例1の特定電界遮蔽板7を遮蔽板Aと称する。
本図(b)に示す実施例4では、遮蔽板長さLaとして、特定電界遮蔽板7aを、波長λcの2倍に設定した点が相違し、取付角度θ、その他の条件は、実施例1と同一である。本実施例4における特定電界遮蔽板7aを遮蔽板Bと称する。
本図(c)に示す実施例5では、特定遮蔽板7bの取付角度θbとして、アンテナ40の中心軸に沿った平面を中心C/Lに対して、時計回りに90°の角度を設けた位置と、中心C/Lに対して対象の位置との2枚の特定電界遮蔽板7を取り付けた点が相違し、遮蔽板長さL、その他の条件は、実施例1と同一である。本実施例5における特定電界遮蔽板7bを遮蔽板Cと称する。
In the following description, the specific electric field shielding plate 7 of Example 1 is referred to as a shielding plate A.
In Example 4 shown in this figure (b), the specific electric field shielding plate 7a is set to be twice the wavelength λc as the shielding plate length L 7 a, and the mounting angle θ and other conditions are as follows. The same as in the first embodiment. The specific electric field shielding plate 7a in Example 4 is referred to as a shielding plate B.
In Example 5 shown in this figure (c), as the mounting angle θb of the specific shielding plate 7b, an angle of 90 ° is provided clockwise with respect to the center C / L of the plane along the central axis of the antenna 40. The difference is that the two specific electric field shielding plates 7 of the position and the target position with respect to the center C / L are attached, and the shielding plate length L 7 and other conditions are the same as those in the first embodiment. . The specific electric field shielding plate 7b in the fifth embodiment is referred to as a shielding plate C.

本発明の効果を確認すべく、空胴導波管2の共振空胴長さLを300mmから500mmまで、5mmずつ変化させ、さらに、被加熱物3の被誘電率εを1.5、1.7、2.4、誘電正接tanδを0.10、0.11、0.18として、空胴導波管2内に励振される伝播モードの変化についてシミュレーションによる解析を行った。
比較例1〜3として、特定電界遮蔽板7を設けていない、電磁波加熱装置を用いて、同様の解析を行った。
表1に、比較例と共に、本発明の実施例1〜7の試験条件を示す。
In order to confirm the effect of the present invention, the resonant cavity length L of the cavity waveguide 2 is changed by 5 mm from 300 mm to 500 mm, and the dielectric constant ε r of the object to be heated 3 is 1.5, Assuming 1.7, 2.4, and dielectric loss tangent tan δ of 0.10, 0.11, and 0.18, analysis of the change in the propagation mode excited in the cavity waveguide 2 was performed by simulation.
As Comparative Examples 1 to 3, the same analysis was performed using an electromagnetic wave heating device in which the specific electric field shielding plate 7 was not provided.
Table 1 shows the test conditions of Examples 1 to 7 of the present invention together with the comparative example.

図6、図7、図8を参照して実施例1、比較例、実施例5における伝播モードのシミュレーション結果について説明する。なお、これらの図は、本発明者等が行ったシミュレーション結果の典型的な一部の結果を示すものである。
図6(a)、(b)、(c)のいずれにおいても、○TE21モードが発生していることが分かる。
実施例1では、共振空胴長さLを300mm〜500mmに変化させても常に○TE21モードを維持することができることが判明した。
The propagation mode simulation results in Example 1, Comparative Example, and Example 5 will be described with reference to FIGS. These drawings show typical partial results of simulation results performed by the present inventors.
In any of FIGS. 6A, 6B, and 6C, it can be seen that the TETE 21 mode occurs.
In Example 1, it has been found that even when the resonant cavity length L is changed from 300 mm to 500 mm, the ◯ TE 21 mode can always be maintained.

図7に示すように、本発明の要部である特定電界遮蔽板7を設けていない比較例の場合、図7(a)、(b)、(c)のいずれにおいても、定在波に乱れを生じ、○TE11モードと、○TE21モードが混在している状態となっている。
さらに、図8に示す実施例5では、遮蔽板Cを用いることによって、図8(a)、(b)、(c)のいずれにおいても、アンテナ40のDPF側では、○TE11モードが発生し、入射側(電磁波反射板5側)では、○TE21モードが発生していることが分かる。
As shown in FIG. 7, in the case of the comparative example in which the specific electric field shielding plate 7 which is the main part of the present invention is not provided, in any of FIGS. 7 (a), (b), and (c) Disturbance is caused, and the state of the TETE 11 mode and the TETE 21 mode is mixed.
Further, in the fifth embodiment shown in FIG. 8, by using the shielding plate C, a TE 11 mode is generated on the DPF side of the antenna 40 in any of FIGS. 8 (a), (b), and (c). In addition, on the incident side (electromagnetic wave reflection plate 5 side), it can be seen that the TETE 21 mode is generated.

図9に、表1に示した、比較例1〜3と実施例1〜5のシミュレーション結果を示す。本図に示すように、比較例1〜3のいずれにおいても、共振空胴長さLによって、励振される伝播モードとして、○TE11と○TE21の異なるモードが発生していることが分かる。
また、比較例1〜比較例3を比較すると、従来の電磁波加熱装置においては、被加熱物3の比誘電率εが高くなるほど、○TE21から○TE11に変化する共振空胴管長さLが短くなっている。
したがって、本発明の要部である特定電界遮蔽板7を有していない従来の電磁波加熱装置において、励振されるモードを被加熱物3の被誘電率ε、及び、誘電正接tanδの変化に拘わらず、一定のモードに維持しようとした場合、共振空胴長さLを変化させる必要があることが分かる。
FIG. 9 shows simulation results of Comparative Examples 1 to 3 and Examples 1 to 5 shown in Table 1. As shown in this figure, in any of Comparative Examples 1 to 3, it is understood that different modes of ○ TE 11 and ○ TE 21 are generated as the propagation modes excited by the resonance cavity length L. .
Further, when Comparative Examples 1 to 3 are compared, in the conventional electromagnetic wave heating apparatus, the resonant cavity tube length that changes from ○ TE 21 to ○ TE 11 as the relative dielectric constant ε r of the article 3 to be heated increases. L is shorter.
Therefore, in the conventional electromagnetic wave heating apparatus that does not have the specific electric field shielding plate 7 which is the main part of the present invention, the excited mode is changed to the dielectric constant ε r and the dielectric loss tangent tan δ of the article 3 to be heated. Regardless, it can be seen that the resonant cavity length L needs to be changed when trying to maintain a constant mode.

しかし、電磁波加熱装置を排気浄化装置として使用した場合、被加熱物である排気浄化フィルタの物性は、捕集・堆積するPMの量や、被処理気体の温度によって刻々と変化するものであるので、排気浄化フィルタの物性を特定し、かつ、その物性に応じて共振空胴長さLを変化させるのは極めて困難であると考えられる。
ところが、本発明においては、実施例1〜3に示すように、被可熱物3の物性を変化させても、常に、○TE21モードを維持することができる。
さらに、実施例4に示すように、遮蔽板Bを用いた場合、即ち、遮蔽板長さL7を、電磁波RFの波長λcの2倍とした場合には、一部の共振空胴長さLにおいて、○TE21モード以外の伝播モードが発生し、特定電界遮蔽板として、実施例1に用いた遮蔽板Aの、遮蔽板長さL7、即ち、波長λcの1/8より短いものを用いた場合、遮蔽板の効果が発揮されず、比較例と同様、異なる伝播モードが混在することになる。
以上のことから、本発明の要部である、遮蔽板長さL7は、1/8λc以上、2λc以下とするのが望ましいことが判明した。
However, when an electromagnetic wave heating device is used as an exhaust purification device, the physical properties of the exhaust purification filter that is the object to be heated change every moment depending on the amount of PM collected and deposited and the temperature of the gas to be treated. It is considered extremely difficult to specify the physical properties of the exhaust purification filter and change the resonance cavity length L in accordance with the physical properties.
However, in the present invention, as shown in Examples 1 to 3, the TE 21 mode can always be maintained even when the physical properties of the heatable material 3 are changed.
Further, as shown in the fourth embodiment, when the shielding plate B is used, that is, when the shielding plate length L7 is twice the wavelength λc of the electromagnetic wave RF, a part of the resonant cavity length L is obtained. , A propagation mode other than the TE 21 mode is generated, and the specific electric field shield plate is the shield plate A used in Example 1 with a shield plate length L7, that is, shorter than 1/8 of the wavelength λc. If this occurs, the effect of the shielding plate is not exhibited, and different propagation modes are mixed as in the comparative example.
From the above, it has been found that the shielding plate length L7, which is the main part of the present invention, is desirably 1 / 8λc or more and 2λc or less.

さらに、実施例5に示すように、遮蔽板Cを用いることにより、300mm〜500mmの任意の共振空胴長さLにおいて、共振空胴20内に励振される伝播モードを常に、○TE11モードとすることもできる。 Further, as shown in the fifth embodiment, by using the shielding plate C, the propagation mode excited in the resonance cavity 20 at any resonance cavity length L of 300 mm to 500 mm is always set to the ○ TE 11 mode. It can also be.

また、図10(a−1)、(b−1)、(c−1)に実施例1、実施例6、実施例7として示すように、同じ大きさの特定電界遮蔽板7を同じ枚数だけ、等間隔で設けた場合であても、中心面C/Lに対して最初の特定電界遮蔽板7、7c、7dの取付角度θ(それぞれ、45°、30°、15°)を変えることにより、本図(a−2)、(b−2)、(c−2)、(a−3)、(b−3)、(c−3)電界強度の高くなる位置を変えて、同じ伝播モード(○TE21)の定在波を発生させることができる。 Moreover, as shown in FIGS. 10 (a-1), (b-1), and (c-1) as Example 1, Example 6, and Example 7, the same number of specific electric field shielding plates 7 having the same size are used. However, even in the case where they are provided at equal intervals, the mounting angle θ (45 °, 30 °, 15 °, respectively) of the first specific electric field shielding plates 7, 7c, 7d with respect to the center plane C / L is changed. (A-2), (b-2), (c-2), (a-3), (b-3), (c-3) by changing the position where the electric field strength becomes high, A standing wave in the propagation mode (○ TE 21 ) can be generated.

さらに、図11(a)、(b)に示す実施例8、実施例9のように、電磁波反射板5e、5fに回転手段8、8fを設けることによって、特定電界遮蔽板7e、7fを電磁波反射板5e、5fと共に回転させることも可能となる。
このような構成とすることによって、特定電界遮蔽板7e、7fが、空洞導波管2e、2f内を流れる被処理排気を攪拌すると共に、共振空洞20内で発生する定在波も周方向に回転させることが可能となり、被処理排気が、攪拌されながら排気浄化フィルタ3を通過するので、排気浄化フィルタ3に対する負荷が均一化されると共に、電界強度の高い位置が排気浄化フィルタの周方向に回転するので、加熱温度も均一化され、排気浄化装置としての性能を向上させることも可能となる。
本図(a)の実施例8では、回転手段8として、電磁波反射板5eの外周にギア歯81を設け、モータ80で回転させるように構成している。
本図(b)の実施例9では、回転手段8fとして、電磁波反射板5fの外周にベアリング等を設けて、空洞導波管2hに回転可能に取り付けると共に、特定電界遮蔽板7fを僅かに傾斜させ、被処理排気が通過する際に風車のように回転するように構成している。
Further, as in the eighth and ninth embodiments shown in FIGS. 11 (a) and 11 (b), by providing the electromagnetic wave reflecting plates 5e and 5f with the rotating means 8 and 8f, the specific electric field shielding plates 7e and 7f are made to be electromagnetic waves. It can also be rotated together with the reflectors 5e and 5f.
With such a configuration, the specific electric field shielding plates 7e and 7f agitate the exhaust to be processed flowing in the cavity waveguides 2e and 2f, and standing waves generated in the resonance cavity 20 are also circumferentially generated. Since the exhaust gas to be treated passes through the exhaust gas purification filter 3 while being agitated, the load on the exhaust gas purification filter 3 is made uniform, and the position where the electric field strength is high is in the circumferential direction of the exhaust gas purification filter. Since it rotates, the heating temperature is also made uniform, and the performance as an exhaust gas purification device can be improved.
In Example 8 of this figure (a), as the rotation means 8, the gear tooth | gear 81 is provided in the outer periphery of the electromagnetic wave reflecting plate 5e, and it is comprised so that it may be rotated with the motor 80. FIG.
In Example 9 of this figure (b), as the rotation means 8f, a bearing or the like is provided on the outer periphery of the electromagnetic wave reflection plate 5f and is rotatably attached to the cavity waveguide 2h, and the specific electric field shielding plate 7f is slightly inclined. The exhaust gas is configured to rotate like a windmill when the exhaust to be treated passes.

さらに、図12(a)、(b)に示す実施例10、実施例11のように、特定電界遮蔽板7g、7hの一部、又は、全部を油圧装置70、70hによって、可動に設けても良い。実施例10では、4枚の特定電界遮蔽板7、7gの内、対角線上に並ぶ2枚を固定とし、他方の2枚を可動としている。全ての特定電界遮蔽板7、7gが突出している場合には、○TE21モードが形成され、可動とした2枚を引き込んだときには、○TE11モードが形成される。
実施例11では、全ての特定電界遮蔽板7hを可動としている。全ての特定電界遮蔽板7hが突出している場合には、実施例10と同様、○TE21モードとなり、特定電界遮蔽板7hの引き込み方によって、発生する○TE11モードを回転させて発生させることも可能となる。
Further, as in Example 10 and Example 11 shown in FIGS. 12A and 12B, a part or all of the specific electric field shielding plates 7g and 7h are movably provided by the hydraulic devices 70 and 70h. Also good. In Example 10, two of the four specific electric field shielding plates 7 and 7g arranged on the diagonal line are fixed, and the other two are movable. When all the specific electric field shielding plates 7 and 7g protrude, the ○ TE 21 mode is formed, and when the two movable plates are drawn, the ○ TE 11 mode is formed.
In Example 11, all the specific electric field shielding plates 7h are movable. When all the specific electric field shielding plates 7h are projected, as in the case of Example 10, it becomes the ○ TE 21 mode, and the generated ○ TE 11 mode is generated by rotating the specific electric field shielding plate 7h by pulling it in. Is also possible.

また、本実施形態においては、特定電界遮蔽板(7、7g、7h)の一部、又は、全部を反射板5の内側となる空胴導波管2内への突出と、外側への収納とを切り換える可動手段(70、70h)として、油圧ピストンを例に示したが、電磁ソレノイドや、ピニオンギアとモータとを組み合わせたもの等が適用可能である。
したがって、本発明では、電磁波反射板5に取り付ける特定電界遮蔽板7に直交する電界が遮蔽されるので、特定電界遮蔽板7の取付位置、枚数を切り替えることによって、被加熱物3をどのように加熱するかに応じて、任意の方向の電界を遮蔽し、所望の伝播モードのみを維持させるようにすることができる。
本発明によれば、被可熱物3の物性や、使用環境に拘わらず、共振空胴長さLを変えずとも、共振空胴20内に励振される伝播モードを所望のモードとなるように任意に設定することができるのである。
Further, in the present embodiment, a part or all of the specific electric field shielding plate (7, 7g, 7h) protrudes into the cavity waveguide 2 which is the inside of the reflection plate 5, and is stored outside. As the movable means (70, 70h) for switching between the above, a hydraulic piston is shown as an example, but an electromagnetic solenoid, a combination of a pinion gear and a motor, or the like is applicable.
Therefore, in the present invention, since the electric field orthogonal to the specific electric field shielding plate 7 attached to the electromagnetic wave reflection plate 5 is shielded, how to change the object 3 to be heated by switching the attachment position and the number of the specific electric field shielding plates 7. Depending on whether it is heated, the electric field in any direction can be shielded and only the desired propagation mode can be maintained.
According to the present invention, the propagation mode excited in the resonant cavity 20 becomes a desired mode without changing the resonant cavity length L, regardless of the physical properties of the heatable material 3 and the use environment. It can be set arbitrarily.

また、特定電界遮蔽板7の取付位置、大きさ、枚数を変化させることにより、所望の伝播モードに維持することもできると考えられる。
例えば、特定電界遮蔽板7jを図13に示すような位置に6カ所突設することによって、○TE11モードのみを励振させることもできる。
上記の実施例に示したように、本発明においては、励振させたい伝播モードの電界強度が低くなる位置、又は、励振させたくない伝播モードの電界強度が高くなる位置に特定電界遮蔽板を突設させることにより、極めて容易に、任意のモードの維持を図ることができる。
In addition, it is considered that a desired propagation mode can be maintained by changing the mounting position, size, and number of the specific electric field shielding plates 7.
For example, by six locations projecting a certain electric field shielding plate 7j the position shown in FIG. 13, it is also possible to excite only ○ TE 11 mode.
As shown in the above embodiments, in the present invention, the specific electric field shielding plate is protruded at a position where the electric field intensity of the propagation mode desired to be excited is low or a position where the electric field intensity of the propagation mode not desired to be excited is high. By setting, any mode can be maintained very easily.

図14、図15、表2を参照して、本発明の電磁波加熱装置1を排気浄化装置に用いた場合の効果を確認すべく行った試験結果について説明する。
○TE11モードを狙って、特定電界遮蔽板7を、反射板5の中心軸上の2カ所に突設させた場合、図14(a)、及び表2に示すように、DPF3の中心位置の温度Tと外周側の位置の温度Tとの温度差が少なくなっている。
これは、図8に示した○TE11モードにおける電界強度分布のシミュレーション結果とも良く一致している。
また、○TE21モードを狙って、特定電界遮蔽板7を、反射板5の4カ所に突設させた場合、図14(b)、及び表2に示すように、DPF3の中心位置の温度T1より、外周側の位置の温度T2の方が高くなる傾向にある。
これは、図7に示した○TE21モードにおける電界強度分布のシミュレーション結果とも良く一致している。
With reference to FIG. 14, FIG. 15, and Table 2, the test result performed in order to confirm the effect at the time of using the electromagnetic wave heating apparatus 1 of this invention for an exhaust gas purification apparatus is demonstrated.
○ When the specific electric field shielding plate 7 is projected at two locations on the central axis of the reflecting plate 5 aiming at the TE 11 mode, as shown in FIG. 14A and Table 2, the center position of the DPF 3 temperature difference between the temperature T 2 of the position of the temperatures T 1 and the outer peripheral side is low.
This agrees well with the simulation result of the electric field intensity distribution in the TETE 11 mode shown in FIG.
Further, when the specific electric field shielding plate 7 is projected at four locations on the reflecting plate 5 aiming at the TE 21 mode, the temperature at the center position of the DPF 3 as shown in FIG. The temperature T2 at the outer peripheral side tends to be higher than T1.
This agrees well with the simulation result of the electric field intensity distribution in the TETE 21 mode shown in FIG.

さらに、図15(a)に示すように、加熱前は、真っ黒にPMが堆積した状態のDPFを、本図(b)に示すような位置にアンテナ40を突出させて、特定電界遮蔽板7によって、○TE21モードが励振するように、マイクロ波を照射したところ、加熱中は、本図(c)に示すように、○TE21モードの強電界が発生した位置に合わせて、DPF3の温度が高温となる赤熱している様子が観察され、加熱後にDPF3を取り出したところ、本図(c)に示すようにDPF3の特定の部位において、PMが燃焼除去されている様子が確認された。
図16を参照して、本発明の第4の実施形態における電磁波加熱装置1dとして、空胴導波管を矩形導波管とした場合について説明する。
本図(a)に示すように、□TE10モードを励振させるためには、例えば、矩形導波管2の長径の中心に位置するように、電磁波反射板5dに、特定電界遮蔽板7kを設け、本図(b)に示すように、□TE11モート゛を励振させるためには、例えば、矩形導波管の長径の中心、及び、短径の中心に位置するように、特定電界遮蔽板7lを設けてある。
さらに、本実施形態においても、上述の変形例を適宜採用し得る。
Further, as shown in FIG. 15A, before heating, the DPF in a state where PM is deposited in black is projected from the antenna 40 at a position as shown in FIG. Accordingly, as ○ TE 21 mode is excited, it was irradiated with microwave, during heating, as shown in the figure (c), in accordance with the position where the strong electric field of ○ TE 21 mode occurs, the DPF3 When the DPF 3 was taken out after heating, a state where the temperature became red hot was observed, and it was confirmed that PM was burned and removed at a specific portion of the DPF 3 as shown in FIG. .
With reference to FIG. 16, a case where a cavity waveguide is a rectangular waveguide will be described as the electromagnetic wave heating device 1d according to the fourth embodiment of the present invention.
As shown in FIG. 6A, in order to excite the □ TE10 mode, for example, a specific electric field shielding plate 7k is provided on the electromagnetic wave reflection plate 5d so as to be positioned at the center of the long diameter of the rectangular waveguide 2. In order to excite the □ TE 11 mode, as shown in FIG. 5B, for example, the specific electric field shielding plate 7l is positioned so as to be located at the center of the long diameter and the center of the short diameter of the rectangular waveguide. Is provided.
Further, in the present embodiment, the above-described modification examples can be appropriately adopted.

1 電磁波加熱装置
10 排気浄化装置
2 空胴導波管(排気流路)
20 共振空胴(被加熱物収容空間)
3 被加熱物(排気浄化フィルタ)
4 電磁波発生器
40 アンテナ
5、6 電磁波反射板
7 特定電界遮蔽板
EX 被処理排気
TRTD 処理済排気
L 共振空胴長さ(被加熱物収容空間長さ)
DESCRIPTION OF SYMBOLS 1 Electromagnetic wave heating apparatus 10 Exhaust purification apparatus 2 Cavity waveguide (exhaust flow path)
20 Resonant cavity (space to be heated)
3 Object to be heated (exhaust gas purification filter)
4 Electromagnetic wave generator 40 Antennas 5 and 6 Electromagnetic wave reflector 7 Specific electric field shielding plate G EX Exhaust gas G TRTD- treated exhaust gas L Resonant cavity length (space to be heated containing space)

特開平7−127436号公報JP-A-7-127436

National Technical Report Vol.41 No.3 6月号 1995年、339p−346p、 「ディーゼル排ガス浄化装置」、藤原 宣彦、信江 等隆、松本 孝広 著National Technical Report Vol. 41 no. 3 June 1995, 339p-346p, "Diesel exhaust gas purification device", Nobuhiko Fujiwara, Toshitaka Nobue, Takahiro Matsumoto

Claims (5)

少なくとも、高周波の電磁波を発振する電磁波発生器(4)と、該電磁波を伝送する略筒状の空胴導波管(2)と、該空胴導波管(2)の長手方向に対して垂直に設けられ、上記電磁波発生器(4)から送られた電磁波を上記空胴導波管(2)の内側に発振するアンテナ(40)と、上記空胴導波管(2)の両端に設けられ、電磁波を反射する電磁波反射板(5、6)とを具備し、上記空胴導波管(2)の内側に電磁波の定在波を発生させる共振空胴(20)を区画して、その内側に収容した誘電性の被加熱物(3)を加熱する電磁波加熱装置(1)であって、
上記電磁波反射板(5、6)の内、上記アンテナ(40)に対して上流側となる反射板(5)に内側に向かって突出して、急激なインピーダンスの変化により、特定方向の電界を遮る特定電界遮蔽板(7)を設けたことを特徴とする電磁波加熱装置。
An electromagnetic wave generator (4) that oscillates at least a high-frequency electromagnetic wave, a substantially cylindrical cavity waveguide (2) that transmits the electromagnetic wave, and a longitudinal direction of the cavity waveguide (2) An antenna (40) provided vertically and oscillating the electromagnetic wave sent from the electromagnetic wave generator (4) inside the cavity waveguide (2), and at both ends of the cavity waveguide (2) An electromagnetic wave reflector (5, 6) for reflecting electromagnetic waves, and a resonant cavity (20) for generating a standing wave of electromagnetic waves inside the cavity waveguide (2); An electromagnetic wave heating device (1) for heating a dielectric object (3) accommodated inside thereof,
Of the electromagnetic wave reflection plates (5, 6), the reflection plate (5) on the upstream side of the antenna (40) protrudes inward, and an electric field in a specific direction is blocked by a sudden impedance change. An electromagnetic wave heating device provided with a specific electric field shielding plate (7).
上記特定電界遮蔽板(7、7a〜7j)は、励振させたい伝播モードの電界強度が低くなる位置、又は、励振させたくない伝播モードの電界強度が高くなる位置に突設させたことを特徴とする請求項1に記載の電磁波加熱装置。 The specific electric field shielding plates (7, 7a to 7j) are provided so as to protrude at a position where the electric field intensity of the propagation mode desired to be excited is low, or at a position where the electric field intensity of the propagation mode not desired to be excited is high. The electromagnetic wave heating device according to claim 1. 上記特定電界遮蔽板(7e、7f)を電磁波反射板(5e、5f)と共に回転させる回転手段(8、8f)を具備する請求項1又は2に記載の電磁波加熱装置。   The electromagnetic wave heating device according to claim 1 or 2, further comprising a rotating means (8, 8f) for rotating the specific electric field shielding plate (7e, 7f) together with the electromagnetic wave reflection plate (5e, 5f). 上記特定電界遮蔽板(7、7g、7h)の一部、又は、全部を上記反射板の内側となる上記空胴導波管内への突出と、外側への収納とを切り換える可動手段(70、70h)を具備する請求項1又は2に記載の電磁波加熱装置。   Movable means (70, 7) for switching a part or all of the specific electric field shielding plate (7, 7g, 7h) between the protrusion into the cavity waveguide which is the inner side of the reflecting plate and the outer housing. The electromagnetic wave heating device according to claim 1 or 2, comprising 70h). 排気浄化フィルタを通過させることによって被処理排気中の特定成分を除去する排気浄化装置(10)であって、
請求項1ないし4のいずれか1項に記載の電磁波加熱装置(1)を備え、上記空胴導波管(2)を被処理排気の流れる排気流路とし、上記電磁波反射板(5、6)を、上記被処理排気は透過し、上記電磁波は反射するように、上記電磁波の波長の2分の1より小さい開口径の格子を設けた気体透過電磁波反射板(5、6)によって形成し、上記排気浄化フィルタ(3)を上記被加熱物(3)としたことを特徴とする排気浄化装置。
An exhaust purification device (10) that removes a specific component in exhaust gas to be treated by passing through an exhaust purification filter,
An electromagnetic wave heating device (1) according to any one of claims 1 to 4, wherein the hollow waveguide (2) is an exhaust passage through which exhaust gas to be treated flows, and the electromagnetic wave reflector (5, 6). ) Is formed by a gas-transmitting electromagnetic wave reflector (5, 6) provided with a grating having an aperture diameter smaller than a half of the wavelength of the electromagnetic wave so that the treated exhaust gas is transmitted and the electromagnetic wave is reflected. An exhaust gas purification apparatus, wherein the exhaust gas purification filter (3) is the heated object (3).
JP2012055455A 2012-03-13 2012-03-13 Electromagnetic wave heating device and exhaust purification device provided with the same Expired - Fee Related JP5982892B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012055455A JP5982892B2 (en) 2012-03-13 2012-03-13 Electromagnetic wave heating device and exhaust purification device provided with the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012055455A JP5982892B2 (en) 2012-03-13 2012-03-13 Electromagnetic wave heating device and exhaust purification device provided with the same

Publications (2)

Publication Number Publication Date
JP2013191347A true JP2013191347A (en) 2013-09-26
JP5982892B2 JP5982892B2 (en) 2016-08-31

Family

ID=49391404

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012055455A Expired - Fee Related JP5982892B2 (en) 2012-03-13 2012-03-13 Electromagnetic wave heating device and exhaust purification device provided with the same

Country Status (1)

Country Link
JP (1) JP5982892B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127436A (en) * 1993-11-04 1995-05-16 Zexel Corp Exhaust emission control device by microwave heating
JP2011122526A (en) * 2009-12-11 2011-06-23 Denso Corp Exhaust emission control device
JP2011163341A (en) * 2010-01-15 2011-08-25 Denso Corp Exhaust emission control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127436A (en) * 1993-11-04 1995-05-16 Zexel Corp Exhaust emission control device by microwave heating
JP2011122526A (en) * 2009-12-11 2011-06-23 Denso Corp Exhaust emission control device
JP2011163341A (en) * 2010-01-15 2011-08-25 Denso Corp Exhaust emission control device

Also Published As

Publication number Publication date
JP5982892B2 (en) 2016-08-31

Similar Documents

Publication Publication Date Title
JP5311105B2 (en) Exhaust gas purification equipment
JP5163695B2 (en) Exhaust gas purification device for internal combustion engine
JP5493063B2 (en) Gas processing apparatus, gas processing system, gas processing method, exhaust gas processing system and internal combustion engine using the same
US7513921B1 (en) Exhaust gas filter apparatus capable of regeneration of a particulate filter and method
JP2009036199A5 (en)
US6271509B1 (en) Artificial dielectric device for heating gases with electromagnetic energy
US10603617B2 (en) Microwave irradiation apparatus and exhaust gas purification apparatus
CN101056685A (en) Diesel particulate filter using micro-wave regeneraiton
WO2004068510A2 (en) Field concentrators for artificial dielectric systems and devices
WO2013039123A1 (en) Heating device
JP5982892B2 (en) Electromagnetic wave heating device and exhaust purification device provided with the same
JP2017131851A (en) Catalyst material for microwave heating, catalyzer for microwave heating, and production method
JP2016053341A (en) Exhaust emission control device
JP6547339B2 (en) Microwave heating device
JP2003239725A (en) Particulate removal device
JP5282727B2 (en) Exhaust purification device
JP6604111B2 (en) Filter device
MARIN et al. Research on microwave heating conditions of cordierite cylindrical shape for after treatment applications
JPH0471620A (en) High-frequency heating exhaust gas purifier
JP4898851B2 (en) Exhaust gas purification device
JP2005108449A (en) Microwave heating device
US20150300226A1 (en) Em energy application for treating exhaust gases
JP2016046154A (en) Microwave heating device and exhaust gas purification device
JPH09330786A (en) Device using microwaves
JP6737110B2 (en) Filter device, vehicle, filter device monitoring system, and filter device monitoring program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150302

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20150311

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150312

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150317

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150604

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150604

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160317

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160705

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160718

R151 Written notification of patent or utility model registration

Ref document number: 5982892

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees