JP5282727B2 - Exhaust purification device - Google Patents

Exhaust purification device Download PDF

Info

Publication number
JP5282727B2
JP5282727B2 JP2009281254A JP2009281254A JP5282727B2 JP 5282727 B2 JP5282727 B2 JP 5282727B2 JP 2009281254 A JP2009281254 A JP 2009281254A JP 2009281254 A JP2009281254 A JP 2009281254A JP 5282727 B2 JP5282727 B2 JP 5282727B2
Authority
JP
Japan
Prior art keywords
exhaust
waveguide
frequency
high frequency
treated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009281254A
Other languages
Japanese (ja)
Other versions
JP2011122526A (en
Inventor
重夫 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2009281254A priority Critical patent/JP5282727B2/en
Publication of JP2011122526A publication Critical patent/JP2011122526A/en
Application granted granted Critical
Publication of JP5282727B2 publication Critical patent/JP5282727B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust emission control device capable of decomposing specific components contained in treated gas by efficiently utilizing high frequency energy with simple constitution, and excelling in mountability. <P>SOLUTION: The exhaust emission control device includes at least a high frequency oscillating means 30 oscillating a high frequency RF, and a waveguide 10 transmitting the high frequency RF oscillated from the high frequency generating means 30. The passage directions 11, 12 of exhaust passages through which treated exhaust flows, are made coincident with the transmitting direction of the waveguide 10 to interpose the waveguide 10 in the exhaust passages 11, 12. The treated exhaust permeates an inlet side opening of the waveguide 10 communicating with the before-treatment exhaust passage 11 through which exhaust before treated flows, and an outlet side opening of the waveguide 10 communicating with the treated exhaust passage 12 through which the treated exhaust flows. Gas permeable high frequency reflecting walls 20, 21 are provided for reflecting the high frequency RF oscillated from the high frequency generating means 30, and the waveguide 10 is set to such a length that the standing waves of the high frequency RF are formed between the gas permeable high frequency reflecting walls 20, 21 provided at both ends of the waveguide 10. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、内燃機関、焼却炉、燃焼炉、火力発電機等から排出される燃焼排気中に含まれる未燃燃料、粒子状物質、NOx、SOF、VOC等の特定成分をマイクロ波プラズマによって分解除去する排気浄化装置に関する。   The present invention decomposes specific components such as unburned fuel, particulate matter, NOx, SOF, and VOC contained in combustion exhaust discharged from an internal combustion engine, an incinerator, a combustion furnace, a thermal power generator, etc. by microwave plasma. The present invention relates to an exhaust purification device to be removed.

従来、内燃機関の燃焼排気流路にハニカム構造体からなる多孔質フィルタや触媒担持フィルタを配設し、燃焼排気中に含まれる粒子状物質、NOx等の有害物質を、多孔質フィルタへの吸着や触媒による分解によって除去する排気浄化装置が広く用いられている。   Conventionally, a porous filter made of a honeycomb structure or a catalyst-carrying filter is disposed in a combustion exhaust passage of an internal combustion engine to adsorb harmful substances such as particulate matter and NOx contained in the combustion exhaust to the porous filter. Exhaust gas purification devices that are removed by decomposition with a catalyst are widely used.

しかし、従来のフィルタを介した排気浄化装置では、フィルタの目詰まりによる流路抵抗の増加や、触媒の経年劣化によって排気浄化能力が低下する虞がある。   However, in a conventional exhaust gas purification device via a filter, there is a possibility that the exhaust gas purification capability may be reduced due to an increase in flow resistance due to clogging of the filter or due to aging of the catalyst.

このような問題に対して、特許文献1には、内燃機関の排気ガスを排出する排気管の途中に設けられた加熱室と、前記加熱室に高周波エネルギを発生し供給する高周波発生手段と、前記加熱室に収納され、高周波エネルギを吸収して発熱する高周波発熱体と、前記加熱室に収納され、内燃機関から排出される排気ガスの流れに対し、前記高周波発熱体の後方に配置され、前記排気ガスの熱と前記高周波発熱体より発生する熱で加熱される排気ガス中に含まれる有害物質を分解する浄化手段とを備えた内燃機関用排気ガス浄化装置が開示されている。   For such a problem, Patent Document 1 discloses a heating chamber provided in the middle of an exhaust pipe for exhausting exhaust gas from an internal combustion engine, and high-frequency generating means for generating and supplying high-frequency energy to the heating chamber. A high-frequency heating element that is housed in the heating chamber and generates heat by absorbing high-frequency energy, and is disposed behind the high-frequency heating element with respect to the flow of exhaust gas that is housed in the heating chamber and exhausted from the internal combustion engine, An exhaust gas purifying apparatus for an internal combustion engine is disclosed that includes a purification means for decomposing harmful substances contained in the exhaust gas heated by the heat of the exhaust gas and the heat generated by the high-frequency heating element.

特許文献2には、排気通路の一部にセラミック又はセラミック内張りの反応管を介装し、これに直交する導波管又は空洞共振器からマイクロ波電界を反応管内に流れる排ガスに印加するに当たり、導波管又は空洞共振管の上流側において排気ガスを予備電離することによりマイクロ波プラズマの安定生成を促し、このプラズマ中で排気微粒子や未燃焼炭化水素等を排気中の過剰酸素と反応させることにより内燃機関排気微粒子を燃焼除去する方法が開示されている。   In Patent Document 2, when a ceramic or ceramic-lined reaction tube is interposed in a part of the exhaust passage, and a microwave electric field is applied to the exhaust gas flowing in the reaction tube from a waveguide or a cavity resonator orthogonal thereto, Promote the stable generation of microwave plasma by pre-ionizing the exhaust gas upstream of the waveguide or cavity resonator tube, and reacting exhaust particulates and unburned hydrocarbons with excess oxygen in the exhaust in this plasma Discloses a method of burning off internal combustion engine exhaust particulates.

ところが、特許文献1にあるような、高周波発生手段から供給された高周波エネルギを直接排気中に含まれる有害物質の分解に用いるのではなく、高周波エネルギを高周波発熱体に吸収させ、高周波発熱体の熱によって排気中の有害物質の分解を間接的に行う排気浄化装置では、高周波発生手段に極めて高い出力が要求されるため、電源容量の限られた自動車等に搭載する場合、供給可能なエネルギが不足し十分な浄化能力を発揮できない虞がある。   However, the high-frequency energy supplied from the high-frequency generating means as in Patent Document 1 is not directly used for decomposing harmful substances contained in the exhaust, but the high-frequency heating element absorbs the high-frequency energy and In an exhaust purification device that indirectly decomposes harmful substances in the exhaust by heat, the high frequency generating means requires a very high output, so when it is installed in an automobile with a limited power capacity, the energy that can be supplied is There is a risk that it will be insufficient and will not be able to demonstrate sufficient purification capacity.

また、特許文献1の排気ガス浄化装置では、高周波発生手段で発生した高周波は導波管を介して排気管内に導入されている。このとき、排気ガスの流入側には、高周波が遮断される開口部が設けられ、下流側には、高周波発熱体へ給電するための開口部が設けられ、高周波発熱体の下流側で高周波の漏れを防止する高周波遮断手段が設けられているため、排気管内に導入された高周波の伝送方向が変わるだけでなく、導波管と排気管との管径が大きく異なるため、共振状態を維持することができず高周波が分散し、エネルギ効率が低下する虞がある。   Further, in the exhaust gas purifying apparatus of Patent Document 1, the high frequency generated by the high frequency generating means is introduced into the exhaust pipe through the waveguide. At this time, an opening for blocking high frequency is provided on the inflow side of the exhaust gas, and an opening for supplying power to the high frequency heating element is provided on the downstream side. Since the high frequency cutoff means for preventing leakage is provided, not only the transmission direction of the high frequency introduced into the exhaust pipe is changed, but also the waveguide diameter and the exhaust pipe are greatly different, so that the resonance state is maintained. However, high frequency is dispersed and energy efficiency may be reduced.

加えて、高周波の伝送方向が変わっても共振状態を維持するためにはスタブチューナやEHチューナ等の調整手段を設ける必要があり、装置の体格が大きくなるので、車両等の限られた空間には、搭載が困難となる虞もある。   In addition, it is necessary to provide adjusting means such as a stub tuner or EH tuner in order to maintain the resonance state even if the high-frequency transmission direction changes, and the physique of the device becomes large, so that it can be used in a limited space such as a vehicle. May be difficult to mount.

一方、特許文献2にあるような、導波管又は空洞共振管の上流側において排気ガスを予備電離することによりマイクロ波プラズマの安定生成を図ろうとした場合、予備電離した排気ガスが空洞共振管に到達するまでの距離によっては電離状態が維持されず放電エネルギが無駄となる虞もある。   On the other hand, as described in Patent Document 2, when the exhaust gas is pre-ionized upstream of the waveguide or the cavity resonance tube to try to stably generate the microwave plasma, the pre-ionized exhaust gas is used as the cavity resonance tube. Depending on the distance to reach, the ionization state may not be maintained and the discharge energy may be wasted.

そこで、本発明は、かかる実情に鑑み、簡易な構成で高周波エネルギを効率よく利用し被処理ガス中に含まれる特定成分の分解が可能で搭載性にすぐれた排気浄化装置の提供を目的とする。   Therefore, in view of such circumstances, the present invention has an object to provide an exhaust emission control device that can efficiently decompose high-frequency energy with a simple configuration and can decompose specific components contained in the gas to be processed, and has excellent mountability. .

第1の発明では、被処理排気中に含まれる特定成分に高周波を照射し、分解する排気浄化装置であって、少なくとも、高周波を発振する高周波発振手段と、該高周波発生手段から発振された高周波を伝送する導波管とを具備し、被処理排気の流れる排気流路の流路方向と上記導波管の伝送方向とを一致させて上記排気流路に上記導波管を介装し、処理前の被排気が流れる処理前排気流路に連通する上記導波管の入口側開口と、処理済の被排気が流れる処理済排気流路に連通する上記導波管の出口側開口とに、被処理排気は透過し、上記高周波発生手段から発振された高周波は反射する気体透過性高周波反射壁を設けると共に、上記導波管を上記導波管の両端に設けた上記気体透過性高周波反射壁の間で上記高周波の定在波が形成される長さに設定すると共に、高電圧を発生する高電圧発生手段と、該高電圧発生手段からの高電圧の印加により上記導波管内に放電を行う放電手段を具備し、該放電手段を、上記定在波の腹となる位置で放電可能となるように配設せしめたことを特徴とする(請求項1)。 The first aspect of the invention is an exhaust emission control device that irradiates and decomposes a specific component contained in the exhaust gas to be treated, and includes at least a high-frequency oscillation means that oscillates a high frequency, and a high-frequency wave oscillated from the high-frequency generation means A waveguide for transmitting the exhaust gas, the flow path direction of the exhaust flow path through which the exhaust to be treated flows matches the transmission direction of the waveguide, and the waveguide is interposed in the exhaust flow path, An inlet-side opening of the waveguide that communicates with the pre-treatment exhaust flow path through which the untreated exhaust flows, and an outlet-side opening of the waveguide that communicates with the treated exhaust flow path through which the treated exhaust flows. The gas-permeable high-frequency reflection is provided with a gas-permeable high-frequency reflection wall that transmits the exhaust to be treated and reflects the high-frequency wave oscillated from the high-frequency generating means, and the waveguide is provided at both ends of the waveguide. The length that the above high-frequency standing wave is formed between the walls With a constant, high voltage generating means for generating a high voltage, provided with a discharge means for performing discharge to the waveguide by applying a high voltage from the high voltage generating means, the said discharge means, said standing wave It is arranged so as to be able to discharge at a position where it becomes an antinode (claim 1).

第1の発明によれば、導波管内に高周波発生手段から発振された高周波が定在波を形成し、導波管内に電界強度の高い定在波の腹に当たる領域と電界強度の低い定在波の節に当たる領域とが流路方向に一定周期で形成され、処理前排気流路から導波管内に導入された被処理排気は、必ず電界強度の高い領域を通過することになり、このとき、被処理排気中に含まれる特定成分が直接的に高周波エネルギを吸収し、電離されプラズマ状態となって分解され、処理済排気流路へ排出される。
また、被処理排気中の特定成分に対して強電界領域において高周波エネルギを直接的にしかも集中的に作用させるので効果的に被処理排気の浄化を行うことができる。
本発明では、高周波エネルギのみならず、放電エネルギが加わることでより効果的に被処理排気中の特定成分のプラズマ化を促進し、被処理排気の浄化が進む。
また、高周波エネルギと放電エネルギとの相乗効果により、それぞれに供給するエネルギは、同様の効果を発揮するために、単独で供給する場合に比して少なくすることができる。
このとき、電界強度の高い位置で、高周波エネルギと放電エネルギとが同時に被処理排気中の特定成分に供給されるので、さらに、効果的に被処理排気中の特定成分のプラズマ化を促進し、被処理排気の浄化が進む。
According to the first invention, the high frequency generated from the high frequency generating means in the waveguide forms a standing wave, and the region corresponding to the antinode of the standing wave having a high electric field strength and the standing in which the electric field strength is low. A region corresponding to a wave node is formed at a constant period in the flow path direction, and the treated exhaust gas introduced from the pre-treatment exhaust flow channel into the waveguide always passes through the region where the electric field strength is high. The specific component contained in the exhaust to be treated directly absorbs the high frequency energy, is ionized and decomposes into a plasma state, and is discharged to the treated exhaust passage.
Further, since the high-frequency energy is directly and intensively applied to the specific component in the exhaust gas to be processed in the strong electric field region, the exhaust gas to be processed can be effectively purified.
In the present invention, not only high-frequency energy but also discharge energy is applied, so that the conversion of the specific component in the exhaust gas to be processed into plasma is more effectively promoted, and purification of the exhaust gas to be processed proceeds.
Further, due to the synergistic effect of the high frequency energy and the discharge energy, the energy supplied to each can be reduced as compared with the case where the energy is supplied alone in order to achieve the same effect.
At this time, since the high frequency energy and the discharge energy are simultaneously supplied to the specific component in the exhaust gas to be processed at a position where the electric field strength is high, the plasma conversion of the specific component in the exhaust gas to be processed is further effectively promoted, Purification of the exhaust to be treated proceeds.

第3の発明によれば、電界強度の高い位置で、高周波エネルギと放電エネルギとが同時に被処理排気中の特定成分に供給されるので、さらに、効果的に被処理排気中の特定成分のプラズマ化を促進し、被処理排気の浄化が進む。   According to the third aspect of the invention, since the high frequency energy and the discharge energy are simultaneously supplied to the specific component in the exhaust gas to be processed at a position where the electric field strength is high, the plasma of the specific component in the exhaust gas to be processed is further effectively obtained. To promote the purification of exhaust gas to be treated.

の発明では、上記放電手段を複数設ける(請求項)。 In the second aspect of the invention, providing a plurality of said discharge means (claim 2).

の発明によれば、被処理排気が導波管内を移動する際に、高周波エネルギのみならず、放電エネルギが複数回に渡って繰り返し供給されるので、より確実に被処理排気中の特定成分のプラズマ化を促進し、被処理排気の浄化が進む。 According to the second invention, when the exhaust gas to be processed moves in the waveguide, not only the high frequency energy but also the discharge energy is repeatedly supplied over a plurality of times. Promoting the conversion of components into plasma and purifying the exhaust to be treated.

具体的には、第の発明のように、上記高周波発振手段から上記導波管に高周波を発振するアンテナを上記導波管の出口側開口から上記定在波の1/4波長又は3/4波長の距離に設ける(請求項)。 Specifically, as in the third aspect of the invention, an antenna that oscillates a high frequency from the high-frequency oscillation means to the waveguide is connected to a 1/4 wavelength or 3 / of the standing wave from the outlet side opening of the waveguide. 4 provided at a distance of a wavelength (claim 3).

の発明によれば、導波管内に高周波の定在波を確実に形成することができ、効果的に被処理排気中の特定成分のプラズマ化を促進し、被処理排気を浄化する排気浄化装置が実現できる。 According to the third aspect of the present invention, the high-frequency standing wave can be reliably formed in the waveguide, and the exhaust gas that effectively promotes the conversion of the specific component in the exhaust gas to be processed into plasma and purifies the exhaust gas to be processed. A purification device can be realized.

具体的には、第の発明のように、上記高周波は、周波数1GHzから10GHzのマイクロ波であるのが望ましい(請求項4)Specifically, as in the fourth invention, the high frequency is desirably a microwave 10GHz from the frequency 1 GHz (claim 4).

の発明では、上記被処理排気が、内燃機関、焼成炉、焼却炉、燃焼炉、火力発電機から排出される燃焼排気のいずれかであり、上記特定成分が、未燃焼炭化水素、カーボン、粒子状物質(PM)、可溶性有機成分(SOF)、揮発性有機化合物(VOC)、窒素酸化物(NOx)のいずれかである(請求項)。 In the fifth invention, the exhaust to be treated is any one of an internal combustion engine, a firing furnace, an incinerator, a combustion furnace, and a combustion exhaust discharged from a thermal power generator, and the specific component is an unburned hydrocarbon, carbon , particulate matter (PM), soluble organic fraction (SOF), is either volatile organic compounds (VOC), nitrogen oxides (NOx) (claim 5).

の発明によれば、排気流路の流路抵抗が変化せず、内燃機関等の燃焼効率に影響を与えることなく、PM等の特定成分を、プラズマ化し、若しくは酸化し、無害化して処理済排気として排出することができる。 According to the fifth invention, the flow resistance of the exhaust flow path does not change, and the specific component such as PM is converted into plasma or oxidized and rendered harmless without affecting the combustion efficiency of the internal combustion engine or the like. It can be discharged as treated exhaust.

本発明の第1の実施形態における排気浄化装置の概要を示す構成図。The block diagram which shows the outline | summary of the exhaust gas purification apparatus in the 1st Embodiment of this invention. 本発明の第1の実施形態における排気浄化装置における導波管内に発生する定在波の様子を示し、(a)は、磁界と電流とを示す平面図、(b)は、磁界と電流とを示す側面図、(c)は、電界を示す縦断面図、(d)は、電界を示す横断面図、(e)は、流路方向の電界分布を示す特性図、(f)は、横断面方向の電界分布を示す特性図。The mode of the standing wave which generate | occur | produces in the waveguide in the exhaust gas purification apparatus in the 1st Embodiment of this invention is shown, (a) is a top view which shows a magnetic field and an electric current, (b) is a magnetic field, an electric current, and (C) is a longitudinal sectional view showing the electric field, (d) is a transverse sectional view showing the electric field, (e) is a characteristic diagram showing the electric field distribution in the flow path direction, and (f) is The characteristic view which shows electric field distribution of a cross-sectional direction. 本発明の第2の実施形態における排気浄化装置における導波管内に発生する定在波の様子を示し、(a)は、磁界と電流とを示す平面図、(b)は、電界を示す縦断面図、(c)は、流路方向の電界分布を示し、定在波の状態を表す特性図、(d)は、電界と磁界を示す横断面図、(e)は、横断面方向の電界分布を示す特性図。The mode of the standing wave which generate | occur | produces in the waveguide in the exhaust gas purification apparatus in the 2nd Embodiment of this invention is shown, (a) is a top view which shows a magnetic field and an electric current, (b) is a longitudinal section which shows an electric field (C) is a characteristic diagram showing the state of a standing wave, (d) is a cross-sectional view showing an electric field and a magnetic field, and (e) is a cross-sectional view. The characteristic view which shows electric field distribution. 発明の第3の実施形態における排気浄化装置の概要を示す構成図。The block diagram which shows the outline | summary of the exhaust gas purification apparatus in the 3rd Embodiment of invention.

本発明は、被処理排気として、内燃機関、焼成炉、焼却炉、燃焼炉、火力発電機から排出される燃焼排気のいずれかであり、被処理排気中に含まれる特定成分が、未燃焼炭化水素、カーボン、粒子状物質(PM)、可溶性有機成分(SOF)、揮発性有機化合物(VOC)、窒素酸化物(NOx)のいずれかである場合に、目詰まり等によって燃焼排気の流れる排気流路の流路抵抗が変化することがないので、内燃機関等の燃焼効率に影響を与えることなく、PM等の特定成分を、プラズマ化し、若しくは酸化し、無害化して処理済排気として排出することができる排気浄化装置であり、特に、自動車エンジンの始動時における排気中のPMやNOxの低減に好適なものである。   The present invention is any one of combustion exhaust discharged from an internal combustion engine, a firing furnace, an incinerator, a combustion furnace, and a thermal power generator as a treated exhaust, and a specific component contained in the treated exhaust is unburned carbonized. Exhaust flow in which combustion exhaust flows due to clogging when it is any of hydrogen, carbon, particulate matter (PM), soluble organic component (SOF), volatile organic compound (VOC), or nitrogen oxide (NOx) Since the flow resistance of the road does not change, specific components such as PM are converted into plasma or oxidized, rendered harmless and discharged as treated exhaust without affecting the combustion efficiency of the internal combustion engine, etc. The exhaust gas purification apparatus is particularly suitable for reducing PM and NOx in the exhaust gas at the start of the automobile engine.

図1を参照して、本発明の第1の実施形態における排気処理装置1の概要について説明する。
排気処理装置1は、被処理排気中に含まれるPM等の特定成分に高周波RFを照射し、分解する排気浄化装置であって、マイクロ波等の高周波RFを発振する高周波発振手段30と、高周波発振手段30から発振された高周波RFを伝送する導波管10とを具備し、被処理排気の流れる排気流路11、12の流路方向と導波管10の伝送方向とを一致させて排気流路11、12に導波管を介装し、処理前の被排気が流れる処理前排気流路11に連通する導波管10の入口側開口と、処理済の被排気が流れる処理済排気流路12に連通する導波管の出口側開口とに、被処理排気は透過し、高周波発振手段30から発振された高周波RFは反射する気体透過性高周波反射壁20、21を設けると共に、導波管10を導波管10の両端に設けた気体透過性高周波反射壁20、21の間で高周波RFの定在波が形成される長さに設定してある。
具体的には、高周波発振手段30として、周波数1GHzから10GHzのマイクロ波、特に2.54GHzのマイクロ波を発振するマグネトロンが好適である。また、マグネトロンの発振出力は、例えば、100W〜300Wのものを用いることができる。
気体透過性高周波反射壁20、21としては、使用する高周波RFの遮断波長に応じた開口を有する、パンチングメタル、金網等を用いることができる。
With reference to FIG. 1, the outline | summary of the exhaust-air-treatment apparatus 1 in the 1st Embodiment of this invention is demonstrated.
The exhaust treatment apparatus 1 is an exhaust purification apparatus that irradiates a specific component such as PM contained in the exhaust gas to be treated with high frequency RF and decomposes the high frequency oscillation means 30 that oscillates high frequency RF such as microwaves, And a waveguide 10 that transmits the high-frequency RF oscillated from the oscillation means 30, and the exhaust flow paths 11 and 12 through which the exhaust gas to be treated flows and the transmission direction of the waveguide 10 are made to coincide with each other. An opening on the inlet side of the waveguide 10 that communicates with the pre-treatment exhaust flow path 11 in which the waveguides are interposed in the flow paths 11 and 12 and the unprocessed exhaust flows, and the processed exhaust in which the processed exhaust flows. Gas-permeable high-frequency reflection walls 20 and 21 that transmit the exhaust to be processed and reflect the high-frequency RF oscillated from the high-frequency oscillating means 30 are provided in the opening on the outlet side of the waveguide that communicates with the flow path 12. Gas with wave tube 10 provided at both ends of waveguide 10 It is set to a length that the standing wave of the high frequency RF between the over-soluble high-frequency reflection wall 20, 21 is formed.
Specifically, a magnetron that oscillates a microwave with a frequency of 1 GHz to 10 GHz, particularly a microwave with a frequency of 2.54 GHz is suitable as the high-frequency oscillation means 30. Moreover, the oscillation output of a magnetron can use the thing of 100W-300W, for example.
As the gas-permeable high-frequency reflecting walls 20 and 21, a punching metal, a wire net, or the like having an opening corresponding to the cutoff wavelength of the high-frequency RF to be used can be used.

高周波発振手段30からアンテナ31を介して発振された高周波RFは、導波管10内で定在波を形成し、導波管10内に電界強度の高い定在波の腹に当たる領域と電界強度の低い定在波の節に当たる領域とが流路方向に一定周期で形成され、処理前排気流路から導波管内に導入された被処理排気は、必ず電界強度の高い領域を通過することになり、このとき、被処理排気中に含まれる特定成分が高周波エネルギを直接吸収し、電離されプラズマ状態となって、分解され、処理済排気流路へ排出される。
また、被処理排気中の特定成分に対して強電界領域において高周波エネルギを直接的に、かつ、集中的に作用させるので、効果的に被処理排気の浄化を行うことができる。
The high frequency RF oscillated from the high frequency oscillating means 30 via the antenna 31 forms a standing wave in the waveguide 10, and a region corresponding to the antinode of the standing wave having a high electric field strength and the electric field strength. The region corresponding to the node of the standing wave having a low frequency is formed at a constant period in the flow path direction, and the treated exhaust gas introduced into the waveguide from the pre-treatment exhaust flow channel must pass through the region where the electric field strength is high. At this time, the specific component contained in the exhaust to be treated directly absorbs the high frequency energy, is ionized to be in a plasma state, decomposed, and discharged to the treated exhaust flow path.
Moreover, since the high frequency energy is directly and intensively applied to the specific component in the exhaust gas to be processed in the strong electric field region, the exhaust gas to be processed can be effectively purified.

さらに、本実施形態においては、高電圧を発生する高電圧発生手段50と、高電圧発生手段50からの高電圧の印加により導波管10内に放電を行う放電手段40が設けられており、高周波エネルギのみならず、放電エネルギが加わることができる構成となっている。
また、放電手段40は、定在波の腹となる位置で放電可能となるように配設され、定在波の1/2波長毎に放電手段を複数設けるのが望ましい。
Further, in the present embodiment, a high voltage generating unit 50 that generates a high voltage, and a discharging unit 40 that discharges in the waveguide 10 by applying a high voltage from the high voltage generating unit 50 are provided. In addition to the high-frequency energy, the discharge energy can be applied.
Further, it is desirable that the discharging means 40 is disposed so as to be able to discharge at a position where the antinode of the standing wave is present, and a plurality of discharging means are preferably provided for each half wavelength of the standing wave.

なお、本発明において、放電手段40の具体的な構成としては、少なくとも絶縁体41を介して導波管10の壁面に固定され、高電圧を印加したときに導波管10内に放電できる放電電極42を具備するものであれば、コロナ放電、アーク放電、無声放電、延面放電、気中放電、プラズマ放電、イオン放電など如何なる形式のものであっても良い。
また、高電圧発生装置30は、連続的に高電圧を印加するものでも、パルス的に高電圧を印加するものでも良い。
このような構成とすることにより、電界強度の高い位置で、高周波エネルギと放電エネルギとが同時に被処理排気中の特定成分に供給され、さらに、複数の放電手段40を設けることにより被処理排気が導波管10内を移動する際に、高周波エネルギのみならず、放電エネルギが複数回に渡って繰り返し供給されるので、より確実に被処理排気中の特定成分のプラズマ化を促進し、被処理排気の浄化が進む。
In the present invention, the specific configuration of the discharge means 40 is a discharge that is fixed to the wall surface of the waveguide 10 through at least the insulator 41 and can discharge into the waveguide 10 when a high voltage is applied. As long as the electrode 42 is provided, any type such as corona discharge, arc discharge, silent discharge, surface discharge, air discharge, plasma discharge and ion discharge may be used.
The high voltage generator 30 may be a device that applies a high voltage continuously or a device that applies a high voltage in pulses.
With such a configuration, the high frequency energy and the discharge energy are simultaneously supplied to the specific component in the exhaust to be processed at a position where the electric field strength is high, and furthermore, the exhaust to be processed is provided by providing a plurality of discharge means 40. When moving in the waveguide 10, not only high-frequency energy but also discharge energy is repeatedly supplied over a plurality of times, so that the specific component in the exhaust gas to be processed can be more reliably promoted to be processed, Exhaust purification proceeds.

具体的には、高周波発振手段30から導波管10に高周波RFを発振するアンテナ31は導波管10の出口側開口から電界の変化よって形成される定在波の1/4波長又は3/4波長の距離に設けてあり、導波管10の両端の気体透過性高周波反射壁20、21の位置に定在波の節が発生するように、導波管10の長さが調整されている。
このような構成とすることによって導波管10内に高周波の定在波を確実に形成することができ、効果的に被処理排気中の特定成分のプラズマ化を促進し、被処理排気を浄化する排気浄化装置が実現できる。
Specifically, the antenna 31 that oscillates the high frequency RF from the high frequency oscillating means 30 to the waveguide 10 is ¼ wavelength or 3/3 of the standing wave formed by the change of the electric field from the outlet side opening of the waveguide 10. The length of the waveguide 10 is adjusted so that a standing wave node is generated at the positions of the gas permeable high-frequency reflection walls 20 and 21 at both ends of the waveguide 10. Yes.
By adopting such a configuration, it is possible to reliably form a high-frequency standing wave in the waveguide 10 and effectively promote the conversion of the specific component in the exhaust gas to be processed into plasma, thereby purifying the exhaust gas to be processed. An exhaust purification device that performs this can be realized.

さらに具体的には、導波管10として、(社)日本電子情報技術産業協会(旧称(社)日本電子機会工業会)発行のJEITA規格(旧称EIAJ規格)TT3001A〜TT3011Aにある方形導波管WRI−22、26(国際電気標準会議IEC規格:R22、26相当)、円形導波管WCI−22、25、30(IEC規格:C22相当)等をモードに併せて適宜用いることができる。   More specifically, the waveguide 10 is a rectangular waveguide in JEITA standards (formerly EIAJ standards) TT3001A to TT3011A issued by the Japan Electronics and Information Technology Industries Association (formerly the Japan Electronics Opportunity Industry Association). WRI-22, 26 (International Electrotechnical Commission IEC standard: equivalent to R22, 26), circular waveguide WCI-22, 25, 30 (IEC standard: equivalent to C22) and the like can be used as appropriate in accordance with the mode.

図2を参照して、導波管10として、方形導波管(WRI−26)を用いた場合の基本モード(H10)における電磁界分布について説明する。
本図(a)は、磁界Hと電流Iとを示す平面図、(b)は、磁界Hと電流Iとを示す側面図、(c)は、電界Eを示す縦断面図、(d)は、電界Eを示す横断面図、(e)は、流路方向の電界分布を示し、定在波を表す特性図、(f)は、横断面方向の電界分布を示す特性図である。
With reference to FIG. 2, the electromagnetic field distribution in the fundamental mode (H 10 ) when a rectangular waveguide (WRI-26) is used as the waveguide 10 will be described.
This figure (a) is a top view which shows the magnetic field H and the electric current I, (b) is a side view which shows the magnetic field H and the electric current I, (c) is a longitudinal cross-sectional view which shows the electric field E, (d). Is a cross-sectional view showing the electric field E, (e) is a characteristic diagram showing the electric field distribution in the flow path direction and showing a standing wave, and (f) is a characteristic diagram showing the electric field distribution in the cross-sectional direction.

本実施例において、導波管10の開口は、a=86.4mm、b=43.2mmに設定してある。
例えば、高周波RFの周波数が2.45GHzのマイクロ波であるとき、波長は、約122.4mmであるので、気体透過性高周波反射壁20、21としては、1/2波長、即ち、開口径約6cmより小さい開口径の格子を有する金網が設けてある。
本実施形態では、出口側開口から3/4波長、即ち、約91.8mmの位置に、アンテナ31が設けられている。
In this embodiment, the opening of the waveguide 10 is set to a = 86.4 mm and b = 43.2 mm.
For example, when the frequency of the high-frequency RF is a microwave of 2.45 GHz, the wavelength is about 122.4 mm. Therefore, the gas-permeable high-frequency reflection walls 20 and 21 have ½ wavelength, that is, an opening diameter of about A wire mesh having a grid with an opening diameter of less than 6 cm is provided.
In the present embodiment, the antenna 31 is provided at a position of 3/4 wavelength from the exit side opening, that is, about 91.8 mm.

アンテナ31から発振されたマイクロ波は、導波管10内に伝播し、気体透過性高周波反射壁20、21を透過することなく反射され、導波管10内に定在波を形成する。
このとき、管内波長λは、約17.35cmの周期で、電界強度の高い領域と電界強度の低い領域とが繰り返し表れる。図中に、電界をE、磁界をH、電流をIで示した。
遮断波長 :λ=2a=17.28(cm)
遮断周波数:f=V/2a=17.36(GHz)
管内波長 :λ=λ/√{〔1−(λ/1.728)〕}
=17.35cm
a:導波管長辺(cm)
λ:自由空間波長(cm)
したがって、定在波の腹に合わせるように、約17.35cm毎に、放電手段40を設ければ、マイクロ波の強電界領域と放電場とを一致させ、極めて効率よく、被処理排気中のPM、NOx等の特定成分をプラズマ化し、分解できる。
The microwave oscillated from the antenna 31 propagates into the waveguide 10 and is reflected without passing through the gas-permeable high-frequency reflection walls 20 and 21 to form a standing wave in the waveguide 10.
At this time, the in-tube wavelength λ g repeats a region having a high electric field strength and a region having a low electric field strength with a period of about 17.35 cm. In the figure, the electric field is represented by E, the magnetic field is represented by H, and the current is represented by I.
Cutoff wavelength: λ c = 2a = 17.28 (cm)
Cutoff frequency: f c = V c /2a=17.36 ( GHz)
In-tube wavelength: λ g = λ 0 / √ {[1- (λ 0 /1.728) 2 ]}
= 17.35 cm
a: Waveguide long side (cm)
λ 0 : Free space wavelength (cm)
Therefore, if the discharge means 40 is provided at intervals of about 17.35 cm so as to match the antinodes of the standing wave, the strong electric field region of the microwave and the discharge field are made to coincide with each other in the exhaust to be treated extremely efficiently. Specific components such as PM and NOx can be converted into plasma and decomposed.

PM、Nox等の特定成分を含む被処理排気が、導波管10内を通過するときに電界強度の高い定在波の腹に当たる領域を複数回繰り返して通過するので、この間に特定成分が効率よくプラズマ化される。   The exhaust to be treated containing specific components such as PM and Nox repeatedly passes through the region corresponding to the antinode of the standing wave having a high electric field strength when passing through the waveguide 10, so that the specific component is efficient during this period. It is well plasmad.

図3を参照して、本発明の第2の実施形態として、円形導波管10a(WCI22)を用いた場合の基本モード(H11)における電磁界分布について説明する。円形導波管10aを用いた場合のH11モードは、方形導波管10を用いた場合のH10モードに対応するものである。本図(a)は、磁界Hと電流Iとを示す平面図、(b)は、電界Eを示す縦断面図、(c)は、流路方向の電界分布を示し、定在波の状態を表す特性図、(d)は、電界Eと磁界Hを示す横断面図、(e)は、横断面方向の電界分布を示す特性図である。 With reference to FIG. 3, the electromagnetic field distribution in the fundamental mode (H 11 ) when the circular waveguide 10a (WCI 22) is used will be described as a second embodiment of the present invention. The H 11 mode when the circular waveguide 10a is used corresponds to the H 10 mode when the rectangular waveguide 10 is used. This figure (a) is a plan view showing the magnetic field H and the current I, (b) is a longitudinal sectional view showing the electric field E, (c) shows the electric field distribution in the flow path direction, standing wave state (D) is a cross-sectional view showing the electric field E and the magnetic field H, and (e) is a characteristic view showing the electric field distribution in the cross-sectional direction.

本実施形態においては、約18cm毎に、放電手段40を設ければ、マイクロ波の強電界領域と放電場とを一致させ、極めて効率よく、被処理排気中のPM、NOx等の特定成分をプラズマ化し、分解できる。
遮断波長 :λ=2a=1.706d(cm)
遮断周波数:f=V/2a=17.59(GHz)
管内波長 :λ=λ/√{〔1−(λ/1.706d)〕}
=17.97(cm)
d:導波管内径(cm)
λ:自由空間波長(cm)
In the present embodiment, if the discharge means 40 is provided at intervals of about 18 cm, the strong electric field region of the microwave is matched with the discharge field, and specific components such as PM and NOx in the exhaust gas to be treated are extremely efficiently obtained. It can be turned into plasma and decomposed.
Cutoff wavelength: λ c = 2a = 1.706d (cm)
Cutoff frequency: f c = V c /2a=17.59 ( GHz)
In-tube wavelength: λ g = λ 0 / √ {[1- (λ 0 / 1.706d) 2 ]}
= 17.97 (cm)
d: Waveguide inner diameter (cm)
λ 0 : Free space wavelength (cm)

図4を参照して、本発明の第3の実施形態における排気浄化装置1bについて説明する。上記実施形態においては、放電手段40として、高電圧発生装置50から高電圧を印加したときに、放電電極41と、導波管10との間若しくは、被処理排気中への放電が行われるものを使用した例を示したが、本実施形態のように、放電電極41aとこれに対向する接地電極41bとの間で、放電するようなものを用いても良い。   With reference to FIG. 4, an exhaust emission control device 1b according to a third embodiment of the present invention will be described. In the above embodiment, as the discharge means 40, when a high voltage is applied from the high voltage generator 50, discharge is performed between the discharge electrode 41 and the waveguide 10 or into the exhaust to be treated. However, it is also possible to use an electrode that discharges between the discharge electrode 41a and the ground electrode 41b facing the discharge electrode 41a as in the present embodiment.

なお、放電電極41、41a、41bの形状は、図1、図4に示したような、棒状又は針状のものに限定するものではなく、平板状でも良いし、軸の先端に球状の放電部を設けたものでも良いし、一般に点火プラグとして用いられるような、絶縁体を介して対向する中心電極と接地電極とに間でアーク放電を発生するものでも良いし、長軸状の中心電極を覆う筒状の絶縁体と同心に配設した環状の接地電極とによって、絶縁体の内側に放電空間を区画したプラズマ点火プラグを用いても良い。   The shape of the discharge electrodes 41, 41a, 41b is not limited to a rod-like or needle-like shape as shown in FIGS. 1 and 4, but may be a flat plate shape or a spherical discharge at the tip of the shaft. It is also possible to use an arc discharge between a center electrode and a ground electrode facing each other via an insulator, such as those generally used as a spark plug, or a long-axis center electrode A plasma ignition plug in which a discharge space is defined inside the insulator by a cylindrical insulator covering the electrode and an annular ground electrode disposed concentrically may be used.

また、本発明は上記実施形態に限定するものではなく、被処理排気流路の一部に両端に被処理排気は透過し、高周波は反射する導波管を気体透過性高周波反射壁を設けて、導波管内に高周波の定在波を形成して、被処理排気中の特定成分をプラズマ化する本発明の趣旨を逸脱しない限りにおいて適宜変更し得るものであり、複数の高周波を発信するアンテナを並べて配設したり、二つのアンテナの軸方向が直交するように配設したりする構成として、被処理排気中の特定成分がプラズマ化される機会を増やすようにしても良い。   Further, the present invention is not limited to the above-described embodiment, and a waveguide that transmits the exhaust to be processed and reflects the high frequency at both ends of a part of the exhaust flow path to be processed is provided with a gas-permeable high-frequency reflection wall. An antenna that emits a plurality of high frequencies can be appropriately changed without departing from the gist of the present invention, in which a high-frequency standing wave is formed in the waveguide and the specific component in the exhaust gas to be treated is turned into plasma. May be arranged side by side or arranged so that the axial directions of the two antennas are orthogonal to each other, the chance that the specific component in the exhaust gas to be treated is converted into plasma may be increased.

さらに、本発明の排気浄化装置は、単独の使用により上述の効果を発揮し得るものであるが、従来のフィルタを用いた排気浄化装置の上流側又は下流側に設けて、補助排気浄化装置として用いても良い。   Furthermore, although the exhaust purification apparatus of the present invention can exhibit the above-mentioned effects when used alone, it is provided on the upstream side or the downstream side of an exhaust purification apparatus using a conventional filter as an auxiliary exhaust purification apparatus. It may be used.

1 排気浄化装置
10 導波管
11 処理前排気流路
12 処理済排気流路
20 入口側高周波反射壁
21 出口側高周波反射壁
30 高周波発振手段(マグネトロン)
31 高周波発振アンテナ
40 放電手段
41 絶縁部
42 放電部
50 高電圧電源
DESCRIPTION OF SYMBOLS 1 Exhaust purification apparatus 10 Waveguide 11 Pre-process exhaust flow path 12 Processed exhaust flow path 20 Inlet side high frequency reflective wall 21 Outlet side high frequency reflective wall 30 High frequency oscillation means (magnetron)
31 High-frequency oscillation antenna 40 Discharge means 41 Insulation part 42 Discharge part 50 High-voltage power supply

特開平6−2535号公報JP-A-6-2535 特開2003−176710号公報JP 2003-176710 A

Claims (5)

被処理排気中に含まれる特定成分に高周波を照射し、分解する排気浄化装置であって、
少なくとも、高周波を発振する高周波発振手段と、該高周波発振手段から発振された高周波を伝送する導波管とを具備し、
被処理排気の流れる排気流路の流路方向と上記導波管の伝送方向とを一致させて上記排気流路に上記導波管を介装し、
処理前の被排気が流れる処理前排気流路に連通する上記導波管の入口側開口と、処理済の被排気が流れる処理済排気流路に連通する上記導波管の出口側開口とに、被処理排気は透過し、上記高周波発振手段から発振された高周波は反射する気体透過性高周波反射壁を設けると共に、
上記導波管を上記導波管の両端に設けた上記気体透過性高周波反射壁の間で上記高周波の定在波が形成される長さに設定すると共に、
高電圧を発生する高電圧発生手段と、該高電圧発生手段からの高電圧の印加により上記導波管内に放電を行う放電手段を具備し、
上記放電手段は、上記定在波の腹となる位置で放電可能となるように配設したことを特徴とする排気浄化装置。
An exhaust purification device that irradiates and decomposes a specific component contained in the exhaust gas to be treated,
At least a high frequency oscillation means for oscillating a high frequency, and a waveguide for transmitting the high frequency oscillated from the high frequency oscillation means,
The flow path direction of the exhaust flow path through which the exhaust to be treated flows matches the transmission direction of the waveguide, and the waveguide is interposed in the exhaust flow path,
An inlet-side opening of the waveguide that communicates with the pre-treatment exhaust flow path through which the untreated exhaust flows, and an outlet-side opening of the waveguide that communicates with the treated exhaust flow path through which the treated exhaust flows. In addition, a gas-permeable high-frequency reflecting wall is provided that transmits the exhaust to be treated and reflects the high-frequency wave oscillated from the high-frequency oscillation means.
The waveguide is set to a length at which the high-frequency standing wave is formed between the gas-permeable high-frequency reflection walls provided at both ends of the waveguide , and
A high voltage generating means for generating a high voltage, and a discharging means for discharging into the waveguide by applying a high voltage from the high voltage generating means,
The exhaust gas purification apparatus according to claim 1, wherein the discharge means is disposed so as to be able to discharge at a position that is an antinode of the standing wave .
上記放電手段を複数設けた請求項1に記載の排気浄化装置。 The exhaust emission control device according to claim 1, wherein a plurality of the discharge means are provided . 上記高周波発振手段から上記導波管に高周波を発振するアンテナを上記導波管の出口側開口から上記定在波の1/4波長又は3/4波長の距離に設けた請求項1又は2に記載の排気浄化装置。 The antenna according to claim 1 or 2, wherein an antenna that oscillates a high frequency from the high-frequency oscillation means to the waveguide is provided at a distance of 1/4 wavelength or 3/4 wavelength of the standing wave from an opening on the exit side of the waveguide. The exhaust emission control device described. 上記高周波が、周波数1GHzから10GHzのマイクロ波である請求項1ないし3のいずれか1項に記載の排気浄化装置。 The exhaust emission control device according to any one of claims 1 to 3 , wherein the high frequency is a microwave having a frequency of 1 GHz to 10 GHz . 上記被処理排気が、内燃機関、焼成炉、焼却炉、燃焼炉、火力発電機から排出される燃焼排気のいずれかであり、上記特定成分が、未燃焼炭化水素、カーボン、粒子状物質、可溶性有機成分(SOF)、揮発性有機化合物(VOC)、窒素酸化物(NOx)のいずれかである請求項1ないし4のいずれか1項に記載の排気浄化装置。 The exhaust to be treated is any one of combustion exhaust discharged from an internal combustion engine, a firing furnace, an incinerator, a combustion furnace, a thermal power generator, and the specific component is unburned hydrocarbon, carbon, particulate matter, soluble The exhaust emission control device according to any one of claims 1 to 4, wherein the exhaust purification device is any one of an organic component (SOF), a volatile organic compound (VOC), and a nitrogen oxide (NOx) .
JP2009281254A 2009-12-11 2009-12-11 Exhaust purification device Expired - Fee Related JP5282727B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009281254A JP5282727B2 (en) 2009-12-11 2009-12-11 Exhaust purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009281254A JP5282727B2 (en) 2009-12-11 2009-12-11 Exhaust purification device

Publications (2)

Publication Number Publication Date
JP2011122526A JP2011122526A (en) 2011-06-23
JP5282727B2 true JP5282727B2 (en) 2013-09-04

Family

ID=44286641

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009281254A Expired - Fee Related JP5282727B2 (en) 2009-12-11 2009-12-11 Exhaust purification device

Country Status (1)

Country Link
JP (1) JP5282727B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5982892B2 (en) * 2012-03-13 2016-08-31 株式会社デンソー Electromagnetic wave heating device and exhaust purification device provided with the same
JP7406316B2 (en) 2019-07-04 2023-12-27 一般財団法人電力中央研究所 Combustion equipment and combustion method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07127436A (en) * 1993-11-04 1995-05-16 Zexel Corp Exhaust emission control device by microwave heating
JPH10288027A (en) * 1997-04-17 1998-10-27 Zexel Corp High frequency heating catalyst
JP2003176710A (en) * 2001-12-07 2003-06-27 Michio Uemura Method for eliminating exhaust particulate in internal combustion engine using microwave
JP4896629B2 (en) * 2006-08-25 2012-03-14 日本碍子株式会社 Exhaust gas treatment equipment
WO2011034190A1 (en) * 2009-09-17 2011-03-24 イマジニアリング株式会社 Plasma-generation device

Also Published As

Publication number Publication date
JP2011122526A (en) 2011-06-23

Similar Documents

Publication Publication Date Title
JP5311105B2 (en) Exhaust gas purification equipment
JP4151645B2 (en) Exhaust gas purification apparatus and control method thereof
JP4082347B2 (en) Plasma injector and exhaust gas purification system
EP2181761B1 (en) Gas treatment device and gas treatment system using plasma
US5433832A (en) Exhaust treatment system and method
JP2009036199A5 (en)
KR20040043094A (en) Device and method for exhaust gas after-treatment
KR100304235B1 (en) Multi-electrode corona discharge pollutant destruction apparatus
JP2004536007A (en) Method for converting a fuel usable in an internal combustion engine or a gas turbine into a synthesis gas by plasma catalytic conversion and a plasma catalytic converter used for the method
JP7255935B2 (en) Intake plasma generation system and method
US20060070372A1 (en) Exhaust gas reactor
JP4301094B2 (en) Fuel or reducing agent addition apparatus and method, and plasma torch
JP5282727B2 (en) Exhaust purification device
US10293303B2 (en) Modular plasma reformer treatment system
KR100893735B1 (en) Plasma reactor for diesel particulate filter trap and apparatus for soot reduction using the same
JP6051371B2 (en) Plasma generator
US20050106085A1 (en) Reactor for treating a gas flow with plasma, particularly exhaust gases produced by the internal combustion engine in a motor vehicle
KR100375423B1 (en) Plasma device for removing exhaust gas from diesel engine
JP5879617B2 (en) Plasma generator
JP2006169982A (en) Fuel or reducing agent adding device, internal combustion engine and exhaust emission control device
JP2006170001A (en) Fuel or reducing agent adding device, internal combustion engine and exhaust emission control device
KR20030018976A (en) Apparatus for purifying exhaust gas of diesel engine by using micro wave and thereof method
RU2291971C2 (en) Device for purifying exhaust gases of diesel engines
JP5906497B2 (en) Plasma generator
JP2002221026A (en) Exhaust emission control device for internal combustion engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130409

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R151 Written notification of patent or utility model registration

Ref document number: 5282727

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees