JP2013190174A - Ice making machine - Google Patents

Ice making machine Download PDF

Info

Publication number
JP2013190174A
JP2013190174A JP2012057605A JP2012057605A JP2013190174A JP 2013190174 A JP2013190174 A JP 2013190174A JP 2012057605 A JP2012057605 A JP 2012057605A JP 2012057605 A JP2012057605 A JP 2012057605A JP 2013190174 A JP2013190174 A JP 2013190174A
Authority
JP
Japan
Prior art keywords
temperature
ice
ice making
value
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012057605A
Other languages
Japanese (ja)
Other versions
JP5695592B2 (en
Inventor
Yoichi Ogawa
洋一 小川
Kazuhisa Iwamoto
和久 岩本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fukushima Galilei Co Ltd
Original Assignee
Fukushima Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fukushima Industries Corp filed Critical Fukushima Industries Corp
Priority to JP2012057605A priority Critical patent/JP5695592B2/en
Publication of JP2013190174A publication Critical patent/JP2013190174A/en
Application granted granted Critical
Publication of JP5695592B2 publication Critical patent/JP5695592B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Production, Working, Storing, Or Distribution Of Ice (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an ice making machine of which setting method for ice-making completion temperature is improved to ensure the shape of ice having an appropriate range even when room temperature or temperature of supplied water changes during making ice.SOLUTION: An ice making machine includes an operation control part 51 for controlling the operation condition of a refrigeration device 4 and ice-making structure, a temperature setting part 52 for sending control data to the operation control part 51 and a temperature detection part 53. The temperature setting part 52 sets a temporary value of ice-making completion temperature on the basis of a detection value of a room temperature detection part 63 for detecting indoor temperature, a detection value of a supplied water temperature detection part 64 for detecting the temperature of water in a water supply tube 32, and an ice shape setting value set by an ice shape setting part 65. The temporary value is still used as ice-making completion temperature for ice making in such a condition that the set temporary value is in a range between predetermined upper limit temperature and lower limit temperature. The upper limit temperature is used as ice-making completion temperature for ice making in such a condition where the temporary value is more than the upper limit temperature. The lower limit temperature is used as ice-making completion temperature for ice making in such a condition where the temporary value is less than the lower limit temperature.

Description

本発明は、キューブ状あるいは板状の氷を生成する製氷機に関し、なかでも氷を生成する過程における冷凍装置および製氷構造の運転状態を制御する制御方法に改良を加えたものである。   The present invention relates to an ice making machine that generates cube-shaped or plate-shaped ice, and in particular, is an improvement of a control method for controlling the operating state of a refrigeration apparatus and an ice-making structure in the process of generating ice.

製氷機が設置される室内の温度(室温)にかかわらず所望の形状の氷を得るために、室温に応じて製氷完了温度を変動させることが、例えば特許文献1に公知である。そこでの製氷機は、下向きに開口する一群のセル(製氷小室)を有する製氷ケース(冷却器)と、各セルへ向かって製氷用水を噴出供給する給水部と、氷の下面中央に形成される窪み(穴)の径を4段階(15φ、10φ、5φ、1φ)に設定する設定手段とを備えている。この窪みの設定値と室温とに基づいて、製氷完了温度が設定されている。具体的には、窪みの直径値が大きく室温が高いほど、製氷完了温度は高い値に設定される。   In order to obtain ice having a desired shape regardless of the temperature (room temperature) in the room where the ice making machine is installed, it is known, for example, in Patent Document 1 to vary the ice making completion temperature in accordance with the room temperature. The ice making machine there is formed at the center of the lower surface of the ice, an ice making case (cooler) having a group of cells (ice making chambers) that open downward, a water supply unit that blows and supplies ice making water to each cell. Setting means for setting the diameter of the depression (hole) in four stages (15φ, 10φ, 5φ, 1φ). The ice making completion temperature is set based on the set value of the depression and the room temperature. Specifically, the ice making completion temperature is set to a higher value as the diameter value of the depression is larger and the room temperature is higher.

本発明では、室温と製氷用水の温度(給水温)とに応じて製氷完了温度を変動させるが、これに関連して、室温および給水温に応じて製氷時間(製氷工程の開始から完了までの時間)を変動させることが、特許文献2に公知である。そこでは、窪みの設定値と室温と給水温とに基づいて、製氷時間が設定されている。具体的には、窪みの直径値が小さく室温および給水温が高いほど、製氷時間は長めに設定される。   In the present invention, the ice making completion temperature is changed according to the room temperature and the temperature of the ice making water (feed water temperature). In this regard, the ice making time (from the start to the completion of the ice making process) is changed according to the room temperature and the water supply temperature. It is known from Patent Document 2 that the time is varied. There, the ice making time is set based on the set value of the depression, the room temperature, and the water supply temperature. Specifically, the ice making time is set longer as the diameter value of the depression is smaller and the room temperature and the water supply temperature are higher.

特開昭58−210470号公報JP 58-210470 A 特開昭58−210471号公報JP 58-210471 A

製氷機で使用される製氷用水は、製氷機が設置される建物の外の水道管と、建物内の水道管とを順に通って、製氷機内へ引き込まれる。製氷機内の氷が満量であるなどの理由で製氷工程が長時間行われなかった場合、建物内の水道管に滞留する水の温度は、建物内の気温近くまで上昇あるいは下降する。これにより、建物外と建物内の水温に差が生じる。特に夏季や冬季は、冷暖房の使用によって建物の内外の気温差が大きくなりやすく、従っ
て内外の水温差も大きくなりやすい。
The ice making water used in the ice making machine is drawn into the ice making machine through the water pipe outside the building where the ice making machine is installed and the water pipe inside the building in order. If the ice making process is not performed for a long time because the ice in the ice making machine is full, the temperature of the water staying in the water pipe in the building rises or falls to near the temperature in the building. Thereby, a difference arises in the water temperature inside and outside the building. Particularly in summer and winter, the temperature difference between the inside and outside of the building tends to increase due to the use of air conditioning, and therefore the water temperature difference between the inside and outside tends to increase.

給水温を検出し、これに基づき製氷完了温度を設定する製氷機において、建物外と建物内の水温差が大きい状態で製氷工程を開始すると、最初は建物内に滞留していた水が製氷用水として使用されるので、建物内の水の温度が給水温として検出され、これに基づき製氷完了温度が設定される。しかし、建物内の水はやがて使い切られ、その後は、製氷工程の開始時に建物外にあった水、すなわち建物外の気温に近い温度の水が、製氷機内へ引き込まれる。つまり、製氷完了温度の設定時に検出した給水温とは異なる温度の水が、製氷用水として使用されることになり、その結果、製氷ケース内に形成される氷の形状(例えば、窪みの形状)を設定するための設定手段を備える製氷機において、次のような不都合を生じることがある。   In an ice maker that detects the water supply temperature and sets the ice making completion temperature based on this, if the ice making process is started with a large water temperature difference between the outside and inside of the building, the water initially retained in the building Therefore, the temperature of water in the building is detected as the water supply temperature, and the ice making completion temperature is set based on this. However, the water in the building is eventually used up, and thereafter, water that was outside the building at the start of the ice making process, that is, water having a temperature close to the temperature outside the building is drawn into the ice making machine. That is, water having a temperature different from the water supply temperature detected at the time of setting the ice making completion temperature is used as ice making water. As a result, the shape of ice formed in the ice making case (for example, the shape of a dent) In an ice making machine provided with setting means for setting the following, the following inconvenience may occur.

建物外よりも建物内の気温が高い場合(冬季など)は、建物内の水を使い切った後、それよりも低い温度の水が製氷用水として使用される。つまり、製氷工程の途中で給水温が低下する。これにより、製氷ケースの温度(ケース温度)の低下速度が速くなり、その結果、ケース温度が製氷完了温度に達するまでの時間、すなわち製氷時間が短くなる。ここで、上記設定手段における所望の氷の形状が比較的大きい(窪みが小さい)場合は、製氷時間が少し短くなっても、氷の形状が所望より少し小さく(窪みが大きく)なる程度でさほど問題は無いが、所望の氷の形状が最小(窪みが最大)もしくはそれに近い場合に製氷時間が短くなると、得られる氷が小さくなり過ぎるおそれがある。   When the temperature inside the building is higher than outside the building (such as in winter), the water inside the building is used up, and then water at a lower temperature is used as ice making water. That is, the feed water temperature decreases during the ice making process. As a result, the rate of decrease in the temperature of the ice making case (case temperature) increases, and as a result, the time until the case temperature reaches the ice making completion temperature, ie, the ice making time is shortened. Here, when the desired ice shape in the setting means is relatively large (the depression is small), the ice shape is slightly smaller than desired (the depression is large) even if the ice making time is slightly shortened. Although there is no problem, if the ice making time is shortened when the desired ice shape is minimum (the dent is maximum) or close to it, the resulting ice may be too small.

建物外よりも建物内の気温が低い場合(夏季など)は、建物内の水を使い切った後、それよりも高い温度の水が製氷用水として使用される。つまり、製氷工程の途中で給水温が上昇する。これにより、ケース温度の低下速度が遅くなって、製氷時間が長くなる。ここで、上記設定手段における所望の氷の形状が比較的小さい(窪みが大きい)場合は、製氷時間が少し長くなっても、氷の形状が所望より少し大きく(窪みが小さく)なる程度でさほど問題は無いが、所望の氷の形状が最大(窪みが最小)もしくはそれに近い場合に製氷時間が長くなると、氷が成長し過ぎるおそれがある。   When the temperature inside the building is lower than outside the building (summer season, etc.), the water inside the building is used up, and then water at a higher temperature is used as ice making water. That is, the feed water temperature rises during the ice making process. This slows down the case temperature and increases the ice making time. Here, when the desired ice shape in the setting means is relatively small (the depression is large), the ice shape is slightly larger than desired (the depression is small) even if the ice making time is a little longer. There is no problem, but if the desired ice shape is the maximum (the dent is minimum) or close to it, if the ice making time is long, the ice may grow too much.

上記のように給水温の変化は氷の形状に影響するが、室温の変化によっても同様の問題が生じるおそれがある。すなわち、製氷完了温度を設定して製氷工程を開始してから、その途中で室温が低下すると、その低下前に比べて凝縮器における放熱効率が上昇する。また、放熱効率の上昇に伴って冷凍装置の冷却能力が上昇するため、ケース温度の低下速度が速くなり、従って製氷時間が短くなる。所望の氷の形状が最小もしくはそれに近い設定のときに製氷時間が短くなると、得られる氷が小さくなり過ぎるおそれがある。逆に、製氷工程の途中で室温が上昇すると、その上昇前に比べてケース温度の低下速度が遅くなるので製氷時間が長くなる。所望の氷の形状が最大もしくはそれに近い設定のときに製氷時間が長くなると、氷が成長し過ぎるおそれがある。   As described above, the change in the water supply temperature affects the shape of the ice, but the same problem may occur due to the change in the room temperature. That is, if the ice making process is started by setting the ice making completion temperature and the room temperature is lowered during the process, the heat radiation efficiency in the condenser is increased as compared to before the drop. Further, since the cooling capacity of the refrigeration apparatus increases as the heat radiation efficiency increases, the case temperature decreasing speed is increased, and therefore the ice making time is shortened. If the ice making time is shortened when the desired ice shape is set to a minimum or close to it, the resulting ice may be too small. Conversely, if the room temperature rises in the middle of the ice making process, the rate of case temperature decrease is slower than before the rise, so the ice making time becomes longer. If the ice making time is long when the desired ice shape is set to the maximum or close to it, the ice may grow too much.

特許文献1では、窪みの設定が最大(15φ)あるいは最小(1φ)の場合にも、室温が上昇するに従って製氷完了温度を上昇させて、室温にかかわらず所望の窪みを有する氷が得られるようにしている。しかし、この設定は、製氷工程の途中で室温が大きく変動した場合に対応できない。すなわち、窪みの設定が最大(15φ)の場合に、製氷工程の途中で室温が低下すると、上記の理由から製氷時間が短くなるので、得られる氷が小さくなり過ぎる(窪みが15φよりも大きくなり過ぎる)おそれがある。また、窪みの設定が最小(1φ)の場合に、製氷工程の途中で室温が上昇して製氷時間が長くなると、氷が成長し過ぎてセルからはみ出るおそれがある。また、最小(1φ)の窪みを有する氷が形成された後、すなわち氷がセルいっぱいに成長した後も製氷工程を続けると、電力を無駄に消費してしまう。   In Patent Document 1, even when the depression is set to the maximum (15φ) or minimum (1φ), the ice making completion temperature is raised as the room temperature rises, so that ice having a desired depression can be obtained regardless of the room temperature. I have to. However, this setting cannot be used when the room temperature fluctuates greatly during the ice making process. That is, when the setting of the depression is maximum (15φ), if the room temperature is lowered during the ice making process, the ice making time will be shortened for the above reason, so that the resulting ice becomes too small (the depression becomes larger than 15φ). Too much). In addition, when the depression is set to the minimum (1φ), if the room temperature rises during the ice making process and the ice making time becomes long, the ice may grow too much and protrude from the cell. Further, if the ice making process is continued even after the ice having the minimum (1φ) depression is formed, that is, after the ice has grown to fill the cell, power is wasted.

本発明の目的は、製氷完了温度の設定方法を改良することにより、製氷工程の途中で室温や給水温が変動した場合でも、得られる氷が小さくなり過ぎ、あるいは逆に氷が成長し過ぎるのを解消して、氷の形状を確実に適正範囲内にすることができる製氷機を提供することにある。   The object of the present invention is to improve the ice making completion temperature setting method, so that even when the room temperature or the feed water temperature fluctuates during the ice making process, the obtained ice becomes too small, or conversely, the ice grows too much. An object of the present invention is to provide an ice making machine that can eliminate the problem and ensure that the shape of ice is within an appropriate range.

本発明に係る製氷機は、冷凍装置4および製氷構造と、これら両者の運転状態を制御する運転制御部51と、運転制御部51に制御データを渡す温度設定部52およびケース温度検出部53とを備えている。温度設定部52は、製氷機が設置される室内の気温を検出する室温検出部63の検出値と、給水管32内の製氷用水の温度を検出する給水温検出部64の検出値と、氷形状設定部65で設定された氷形状設定値とに基づいて、製氷完了温度の暫定値を設定するように構成されている。温度設定部52で設定した製氷完了温度の暫定値が、予め設定された上限温度と下限温度の範囲内にある条件下では、前記暫定値をそのまま製氷完了温度として製氷を行い、前記暫定値が上限温度を上回る条件下では、上限温度を製氷完了温度として製氷を行い、前記暫定値が下限温度を下回る条件下では、下限温度を製氷完了温度として製氷を行うことを特徴とする。   The ice making machine according to the present invention includes a refrigeration apparatus 4 and an ice making structure, an operation control unit 51 that controls the operation state of both, a temperature setting unit 52 that passes control data to the operation control unit 51, and a case temperature detection unit 53. It has. The temperature setting unit 52 includes a detection value of a room temperature detection unit 63 that detects the temperature of the room in which the ice making machine is installed, a detection value of a water supply temperature detection unit 64 that detects the temperature of ice-making water in the water supply pipe 32, and ice. The provisional value of the ice making completion temperature is set based on the ice shape setting value set by the shape setting unit 65. Under the condition that the provisional value of the ice making completion temperature set by the temperature setting unit 52 is within the range between the preset upper limit temperature and lower limit temperature, ice making is performed with the provisional value as it is, and the provisional value is Ice making is performed with the upper limit temperature set as the ice making completion temperature under conditions exceeding the upper limit temperature, and ice making is performed with the lower limit temperature set as the ice making completion temperature under conditions where the provisional value is lower than the lower limit temperature.

室温検出部63および給水温検出部64で検出される室温および給水温について、それぞれ基準値を設定する。室温検出部63および給水温検出部64の検出値がそれぞれの基準値と等しくかつ氷形状設定部65において氷形状が最小に設定されている場合に温度設定部52で設定される製氷完了温度の暫定値を、製氷完了温度の上限温度として設定する。室温検出部63および給水温検出部64の検出値がそれぞれの基準値と等しくかつ氷形状設定部65において氷形状が最大に設定されている場合に温度設定部52で設定される製氷完了温度の暫定値を、製氷完了温度の下限温度として設定する。   Reference values are set for the room temperature and the water supply temperature detected by the room temperature detection unit 63 and the water supply temperature detection unit 64, respectively. The ice making completion temperature set by the temperature setting unit 52 when the detection values of the room temperature detection unit 63 and the feed water temperature detection unit 64 are equal to the respective reference values and the ice shape setting unit 65 sets the ice shape to the minimum. The provisional value is set as the upper limit temperature of the ice making completion temperature. The ice making completion temperature set by the temperature setting unit 52 when the detection values of the room temperature detection unit 63 and the feed water temperature detection unit 64 are equal to the respective reference values and the ice shape setting unit 65 sets the ice shape to the maximum. The provisional value is set as the lower limit temperature of the ice making completion temperature.

本発明では、室温および給水温と氷形状設定値とに基づいて製氷完了温度の暫定値を設定し、この暫定値が予め設定された上限温度と下限温度の範囲内にある条件下では、暫定値をそのまま製氷完了温度として製氷を行った。また、暫定値が上限温度を上回る条件下では、上限温度を製氷完了温度として製氷を行い、暫定値が下限温度を下回る条件下では、下限温度を製氷完了温度として製氷を行った。本発明において製氷完了温度の暫定値は、従来の製氷完了温度と同様に設定する。すなわち、室温や給水温が高いほど、ケース温度の低下速度が遅くなるため暫定値を高く設定する。さらに、氷形状設定値が示す氷の形状が小さいほど、製氷時間が短くて済むため暫定値を高く設定する。   In the present invention, a provisional value of the ice making completion temperature is set based on the room temperature, the feed water temperature, and the ice shape setting value, and the provisional value is provisionally set within the range of the preset upper limit temperature and lower limit temperature. Ice making was carried out with the value as it was at the ice making completion temperature. In addition, under the condition where the provisional value exceeds the upper limit temperature, ice making was performed with the upper limit temperature as the ice making completion temperature, and under the condition where the provisional value was lower than the lower limit temperature, ice making was performed with the lower limit temperature as the ice making completion temperature. In the present invention, the provisional value of the ice making completion temperature is set similarly to the conventional ice making completion temperature. That is, the higher the room temperature and the water supply temperature, the slower the case temperature decrease rate, so the provisional value is set higher. Furthermore, the smaller the ice shape indicated by the ice shape setting value, the shorter the ice making time, so the provisional value is set higher.

上限温度を設定するのは、氷形状設定値が示す氷の形状が最小もしくはそれに近い場合に、室温や給水温の低下により生じる不都合を回避するためである。すなわち、製氷工程の途中で室温や給水温が低下すると、その低下前に比べてケース温度の低下速度が速くなるので製氷時間が短くなる。氷の形状が最小もしくはそれに近い設定のときに製氷時間が短くなると、得られる氷が小さくなり過ぎる。これは、製氷工程の開始時の室温と給水温が比較的高い場合であり、またこのような場合に、製氷完了温度の暫定値は最も高く設定される。つまり、得られる氷が小さくなり過ぎるおそれがある場合に、製氷完了温度の暫定値は特に高くなる。そこで本発明では、製氷完了温度に上限温度を設定し、暫定値が上限温度を上回る条件下では、暫定値よりも低い上限温度を製氷完了温度として製氷を行った。これによれば、上限温度が設定されていなかった従来よりも製氷完了温度を低くして、その分だけ製氷時間を長くして氷を成長させることができ、従って、氷が小さくなり過ぎるのを解消することができる。   The upper limit temperature is set in order to avoid inconvenience caused by a decrease in the room temperature or the water supply temperature when the ice shape indicated by the ice shape set value is minimum or close thereto. That is, when the room temperature or the water supply temperature is lowered during the ice making process, the case temperature is reduced faster than before the ice temperature is lowered, so that the ice making time is shortened. If the ice making time is shortened when the ice shape is at a minimum or close to that, the resulting ice will be too small. This is a case where the room temperature and the water supply temperature at the start of the ice making process are relatively high. In such a case, the provisional value of the ice making completion temperature is set to the highest. That is, the provisional value of the ice making completion temperature is particularly high when there is a possibility that the obtained ice will be too small. Therefore, in the present invention, the upper limit temperature is set as the ice making completion temperature, and the ice making is performed with the upper limit temperature lower than the provisional value as the ice making completion temperature under the condition that the provisional value exceeds the upper limit temperature. According to this, it is possible to grow ice by lowering the ice making completion temperature lower than before, where the upper limit temperature has not been set, and extending the ice making time accordingly, so that the ice becomes too small. Can be resolved.

下限温度を設定するのは、氷形状設定値が示す氷の形状が最大もしくはそれに近い場合に、室温や給水温の上昇により生じる不都合を回避するためである。すなわち、製氷工程の途中で室温や給水温が上昇すると、その上昇前に比べてケース温度の低下速度が遅くなるので製氷時間が長くなる。氷の形状が最大もしくはそれに近い設定のときに製氷時間が長くなると、氷が成長し過ぎる。これは、製氷工程の開始時の室温と給水温が比較的低い場合であり、またこのような場合に、製氷完了温度の暫定値は最も低く設定される。つまり、氷が成長し過ぎるおそれがある場合に、製氷完了温度の暫定値は特に低くなる。そこで本発明では、製氷完了温度に下限温度を設定し、暫定値が下限温度を下回る条件下では、暫定値よりも高い下限温度を製氷完了温度として製氷を行った。これによれば、下限温度が設定されていなかった従来よりも製氷完了温度を高くして、その分だけ製氷時間を短くすることができ、従って、氷が成長し過ぎるのを解消することができる。また、氷が成長し過ぎる前に製氷工程を終えることにより、電力の無駄な消費を解消できる。   The reason why the lower limit temperature is set is to avoid inconvenience caused by an increase in the room temperature or the water supply temperature when the ice shape indicated by the ice shape setting value is at or near the maximum. That is, if the room temperature or the water supply temperature rises during the ice making process, the case temperature decreases at a slower rate than before the rise, so the ice making time becomes longer. If the ice making time is long when the ice shape is at or near maximum, the ice grows too much. This is a case where the room temperature and the water supply temperature at the start of the ice making process are relatively low. In such a case, the provisional value of the ice making completion temperature is set to the lowest. In other words, the provisional value of the ice making completion temperature is particularly low when there is a possibility that the ice will grow too much. Therefore, in the present invention, the lower limit temperature is set as the ice making completion temperature, and the ice making is performed with the lower limit temperature higher than the provisional value as the ice making completion temperature under the condition that the provisional value is lower than the lower limit temperature. According to this, the ice making completion temperature can be made higher than the conventional case where the lower limit temperature has not been set, and the ice making time can be shortened accordingly, so that it is possible to eliminate excessive ice growth. . Also, by ending the ice making process before the ice grows too much, wasteful power consumption can be eliminated.

以上のように、製氷完了温度に上限温度を設定すると、仮に製氷工程の途中で室温や給水温が低下しても、得られる氷が小さくなり過ぎることが無く、製氷完了温度に下限温度を設定すると、仮に製氷工程の途中で室温や給水温が上昇しても、氷が成長し過ぎることが無い。このように、本発明によれば、製氷工程の途中で室温や給水温が変動した場合でも、得られる氷が小さくなり過ぎ、あるいは逆に氷が成長し過ぎるのを解消して、氷の形状を確実に適正範囲内にすることができる。   As described above, if the upper limit temperature is set for the ice making completion temperature, even if the room temperature or water supply temperature falls during the ice making process, the obtained ice will not become too small, and the lower limit temperature is set for the ice making completion temperature. Then, even if the room temperature or the water supply temperature rises during the ice making process, the ice does not grow too much. As described above, according to the present invention, even when the room temperature or the water supply temperature fluctuates during the ice making process, the obtained ice becomes too small, or conversely, the ice does not grow too much. Can be reliably within the appropriate range.

室温検出部63および給水温検出部64の検出値がそれぞれの基準値と等しくかつ氷形状設定部65が最小設定である場合に温度設定部52で設定される製氷完了温度の暫定値(最高基準暫定値)を、製氷完了温度の上限温度として設定する。これによれば、ケース温度が少なくとも最高基準暫定値に達するまでは製氷工程を続けることができ、最小設定よりも小さく使用に適さない氷が得られるのをより確実に防止できる。すなわち、室温および給水温の検出値が基準値と等しい基準温度条件では、ケース温度が最高基準暫定値に達するまで製氷工程を行うことにより、最小設定の形状の氷を得ることができる。また、基準温度条件よりも低温の温度条件では、基準温度条件に比べてケース温度の低下速度が速くなるが、その分製氷完了温度の暫定値が最高基準暫定値よりも低く設定されて、当該暫定値がそのまま製氷完了温度となるので、当該製氷完了温度に達するまで製氷工程を行って、最小設定の形状の氷を得ることができる。基準温度条件よりも高温の温度条件では、基準温度条件に比べてケース温度の低下速度が遅くなり、その分製氷完了温度の暫定値が最高基準暫定値よりも高く設定されるが、当該暫定値よりも低い最高基準暫定値が製氷完了温度となるので、この製氷完了温度に達するまで製氷工程を行って、最小設定と同等もしくはそれより大きい氷を得ることができる。つまり、最高基準暫定値を製氷完了温度の上限温度とする本発明によれば、室温および給水温の高低にかかわらず、最小設定と同等もしくはそれより大きい氷を確実に得ることができる。   Temporary value of ice making completion temperature (maximum reference) set by temperature setting unit 52 when detected values of room temperature detection unit 63 and feed water temperature detection unit 64 are equal to the respective reference values and ice shape setting unit 65 is the minimum setting. (Provisional value) is set as the upper limit temperature of the ice making completion temperature. According to this, the ice making process can be continued until the case temperature reaches at least the maximum reference provisional value, and it is possible to more reliably prevent the ice that is smaller than the minimum setting and unsuitable for use. In other words, under the reference temperature condition in which the detected values of the room temperature and the feed water temperature are equal to the reference value, the ice having the minimum setting shape can be obtained by performing the ice making process until the case temperature reaches the maximum reference provisional value. Also, in the temperature condition lower than the reference temperature condition, the case temperature decreases at a faster rate than the reference temperature condition, but the provisional value of the ice making completion temperature is set lower than the maximum reference provisional value, and Since the provisional value becomes the ice making completion temperature as it is, the ice making process can be performed until the ice making completion temperature is reached, and the ice having the minimum setting shape can be obtained. In the temperature condition higher than the reference temperature condition, the case temperature decreases at a slower rate than the reference temperature condition, and the provisional value of the ice making completion temperature is set higher than the maximum reference provisional value. Since the lower maximum reference provisional value becomes the ice making completion temperature, the ice making process can be performed until the ice making completion temperature is reached, and ice that is equal to or larger than the minimum setting can be obtained. That is, according to the present invention in which the highest reference provisional value is the upper limit temperature of the ice making completion temperature, ice that is equal to or larger than the minimum setting can be reliably obtained regardless of the room temperature and the feed water temperature.

室温検出部63および給水温検出部64の検出値がそれぞれの基準値と等しくかつ氷形状設定部65が最大設定である場合に温度設定部52で設定される製氷完了温度の暫定値(最低基準暫定値)を、製氷完了温度の下限温度として設定する。これによれば、ケース温度が遅くとも最低基準暫定値に達した時点で製氷工程を終えることができ、氷が最大設定を超えて成長し過ぎるのをより確実に防止できる。すなわち、先の基準温度条件では、ケース温度が最高基準暫定値に達するまで製氷工程を行うことにより、最大設定の形状の氷を得ることができる。また、基準温度条件よりも高温の温度条件では、基準温度条件に比べてケース温度の低下速度が遅くなるが、その分製氷完了温度の暫定値が最低基準暫定値よりも高く設定されて、当該暫定値がそのまま製氷完了温度となるので、当該製氷完了温度に達した時点で製氷工程を終えて、最大設定の形状の氷を得ることができる。基準温度条件よりも低温の温度条件では、基準温度条件に比べてケース温度の低下速度が速くなり、その分製氷完了温度の暫定値が最高基準暫定値よりも低く設定されるが、当該暫定値よりも高い最低基準暫定値が製氷完了温度となるので、この製氷完了温度に達した時点で製氷工程を終えて、最大設定と同等もしくはそれより小さい氷を得ることができる。つまり、最低基準暫定値を製氷完了温度の下限温度とする本発明によれば、室温および給水温の高低にかかわらず、最大設定と同等もしくはそれより小さい氷を確実に得ることができる。   Temporary value of ice making completion temperature (minimum standard) set by temperature setting unit 52 when detected values of room temperature detection unit 63 and feed water temperature detection unit 64 are equal to the respective reference values and ice shape setting unit 65 is at the maximum setting. (Provisional value) is set as the lower limit temperature of the ice making completion temperature. According to this, the ice making process can be completed when the case temperature reaches the minimum reference provisional value at the latest, and it is possible to more reliably prevent the ice from growing beyond the maximum setting. That is, under the previous reference temperature condition, the ice having the maximum setting shape can be obtained by performing the ice making process until the case temperature reaches the maximum reference provisional value. In addition, in the temperature condition higher than the reference temperature condition, the case temperature decreases at a slower rate than the reference temperature condition, but the provisional value of the ice making completion temperature is set higher than the minimum reference provisional value, and Since the provisional value becomes the ice making completion temperature as it is, the ice making process is finished when the ice making completion temperature is reached, and the ice having the maximum setting shape can be obtained. When the temperature condition is lower than the reference temperature condition, the case temperature decreases at a faster rate than the reference temperature condition, and the provisional value of the ice making completion temperature is set lower than the maximum reference provisional value. Since the higher minimum reference provisional value becomes the ice making completion temperature, the ice making process is finished when the ice making completion temperature is reached, and ice that is equal to or smaller than the maximum setting can be obtained. That is, according to the present invention in which the minimum reference provisional value is the lower limit temperature of the ice making completion temperature, it is possible to reliably obtain ice that is equal to or smaller than the maximum setting regardless of the room temperature and the water supply temperature.

製氷完了温度テーブルの作成手順を示すフローチャートである。It is a flowchart which shows the preparation procedure of the ice making completion temperature table. 本発明の実施例に係る製氷機の全体構成を示す図である。It is a figure which shows the whole structure of the ice making machine based on the Example of this invention. 実施例に係る製氷機の製氷構造の縦断正面図である。It is a vertical front view of the ice making structure of the ice making machine which concerns on an Example. 実施例に係る製氷機の制御系を示すブロック図である。It is a block diagram which shows the control system of the ice making machine which concerns on an Example. 製氷完了温度テーブルの一部を示す図である。It is a figure which shows a part of ice making completion temperature table. 製氷完了温度テーブルの作成手順を示す図である。It is a figure which shows the preparation procedure of the ice making completion temperature table.

(実施例) 本発明に係る製氷機の実施例を、図1から図6を用いて説明する。図2に示すように製氷機1は、断熱構造の製氷室2と、この製氷室2の下側に配置された機械室3とを備えている。製氷室2の上部には、冷凍装置4により冷却される製氷ケース5と、製氷ケース5へ製氷用水を供給する給水部6などの製氷構造が配置されており、製氷室2の下部が、製氷ケース5で作製された氷を貯える貯氷空間となっている。 (Example) The Example of the ice making machine based on this invention is described using FIGS. 1-6. As shown in FIG. 2, the ice making machine 1 includes an ice making chamber 2 having a heat insulating structure, and a machine room 3 arranged below the ice making chamber 2. An ice making structure such as an ice making case 5 cooled by the refrigeration apparatus 4 and a water supply unit 6 for supplying ice making water to the ice making case 5 is arranged at the upper part of the ice making chamber 2. It is an ice storage space for storing the ice produced in Case 5.

冷凍装置4は、冷凍サイクルを構成する圧縮機8、凝縮器9、膨張弁10、および蒸発器11と、これらを接続して冷媒循環用の通路を形成する冷媒配管12と、ホットガス循環用の通路を形成するホットガス管13などで構成される。圧縮機8および凝縮器9は、凝縮器9用のファン14とともに機械室3に配置されている。蒸発器11は、製氷室2内において製氷ケース5に密着するように配置されている。ホットガス管13は、凝縮器9および膨張弁10を迂回して圧縮機8と蒸発器11を直接繋いでおり、冷媒配管12における圧縮機8と凝縮器9の間から分岐されて、膨張弁10と蒸発器11の間へ合流している。ホットガス管13には、これを開閉するための電磁弁15が配置されている。   The refrigeration apparatus 4 includes a compressor 8, a condenser 9, an expansion valve 10, and an evaporator 11 constituting a refrigeration cycle, a refrigerant pipe 12 that connects these to form a refrigerant circulation passage, and a hot gas circulation The hot gas pipe 13 is formed to form the passage. The compressor 8 and the condenser 9 are disposed in the machine room 3 together with the fan 14 for the condenser 9. The evaporator 11 is disposed in the ice making chamber 2 so as to be in close contact with the ice making case 5. The hot gas pipe 13 bypasses the condenser 9 and the expansion valve 10 and directly connects the compressor 8 and the evaporator 11. The hot gas pipe 13 is branched from between the compressor 8 and the condenser 9 in the refrigerant pipe 12 to expand the expansion valve. 10 and the evaporator 11 are joined together. The hot gas pipe 13 is provided with an electromagnetic valve 15 for opening and closing the pipe.

製氷工程時には、圧縮機8から凝縮器9、膨張弁10、および蒸発器11を経由して圧縮機8へ戻る冷媒の流れが形成されて、液状の冷媒が蒸発器11で蒸発することにより、蒸発器11と接触する製氷ケース5が冷却される。離氷工程時には、ホットガス管13の電磁弁15が開操作されて、圧縮機8から蒸発器11へ向かってホットガスが吐出されることにより、製氷ケース5が温められる。   During the ice making process, a refrigerant flow from the compressor 8 to the compressor 8 via the condenser 9, the expansion valve 10, and the evaporator 11 is formed, and the liquid refrigerant evaporates in the evaporator 11, The ice making case 5 in contact with the evaporator 11 is cooled. During the deicing process, the solenoid valve 15 of the hot gas pipe 13 is opened, and hot gas is discharged from the compressor 8 toward the evaporator 11 to warm the ice making case 5.

図3に示すように製氷ケース5は、下向きに開口する一群のセル19が縦横格子状に区画された四角皿状に形成されており、製氷室2の上端部に設けたユニットベース20に固定されている。蒸発器11は、蛇行状に形成したパイプで構成されて、製氷ケース5の上面に固定されている。これら製氷ケース5および蒸発器11は、熱伝導性に優れた金属、例えば銅などで形成される。   As shown in FIG. 3, the ice making case 5 is formed in a square dish shape in which a group of cells 19 opening downward are divided into vertical and horizontal grids, and is fixed to a unit base 20 provided at the upper end of the ice making chamber 2. Has been. The evaporator 11 is configured by a meandering pipe and is fixed to the upper surface of the ice making case 5. The ice making case 5 and the evaporator 11 are made of a metal having excellent thermal conductivity, such as copper.

給水部6は、製氷ケース5の下面側に対向配置された水皿23と、水皿23の下側に取り付けられた水タンク24と、水タンク24に取り付けられた水ポンプ25とを備える。水皿23は、下向きに開口する四角皿状に形成されており、その内部に水路枠26を一体に備えている。水皿23の上壁には、セル19へ向かって製氷用水を噴出供給する多数のノズル27と、各ノズル27を挟んで配置される一対の戻し孔28とが形成されている。ノズル27は水路枠26で区画された通水路29に連通しており、この通水路29の基端に水ポンプ25が接続されている。戻し孔28は水路枠26の枠外部分に上下貫通状に形成されており、戻し孔28を流下した水は水タンク24で回収される。   The water supply unit 6 includes a water tray 23 disposed opposite to the lower surface side of the ice making case 5, a water tank 24 attached to the lower side of the water tray 23, and a water pump 25 attached to the water tank 24. The water tray 23 is formed in a square dish shape that opens downward, and is integrally provided with a water channel frame 26 therein. On the upper wall of the water dish 23, a large number of nozzles 27 that spray and supply ice-making water toward the cell 19 and a pair of return holes 28 that are disposed with the nozzles 27 interposed therebetween are formed. The nozzle 27 communicates with a water passage 29 defined by a water passage frame 26, and a water pump 25 is connected to the base end of the water passage 29. The return hole 28 is formed in a vertically penetrating manner in the outer portion of the water channel frame 26, and the water flowing down the return hole 28 is collected by the water tank 24.

給水部6への製氷用水の供給は給水管32を介して行われる。給水管32の上流端は、機械室3側に設けた引出口から製氷機1の外側へ引き出されて、製氷機1の外部の給水口33(図2参照)に接続されている。給水管32の下流端は水皿23の上面に臨んでおり、そこには複数の下向きの散水口34が一定間隔おきに設けられている。給水管32の一個所には、給水管32を開閉して水皿23への水の供給を制御するための電磁弁35が配置されている。   Ice making water is supplied to the water supply unit 6 through a water supply pipe 32. The upstream end of the water supply pipe 32 is drawn out of the ice making machine 1 from an outlet provided on the machine room 3 side, and is connected to a water supply port 33 (see FIG. 2) outside the ice making machine 1. The downstream end of the water supply pipe 32 faces the upper surface of the water tray 23, and there are a plurality of downward sprinkling ports 34 provided at regular intervals. An electromagnetic valve 35 for controlling the supply of water to the water tray 23 by opening and closing the water supply pipe 32 is disposed at one location of the water supply pipe 32.

水皿23の一方の外側面には傾動アーム38が固定されており、この傾動アーム38の上端部が水平軸39を介してユニットベース20に軸支されている。給水部6の全体は、水平軸39のまわりにユニットベース20に対して上下揺動自在に構成されており、水皿23の上面が製氷ケース5の各セル19に対向する上方の製氷姿勢と、水皿23の揺動先端側が製氷ケース5から離れて水皿23の上面が揺動先端側に向かって下り傾斜する下方の離氷姿勢とに姿勢切り換え可能に構成されている。給水部6の姿勢を切り換えるための駆動手段は、モータ40(図4参照)とばね(図示せず)を駆動源として構成されている。水タンク24の揺動先端壁と水皿23との間には、戻し孔28へ流れ込まなかった水を水タンク24へ流し込むための隙間41が確保されている。   A tilt arm 38 is fixed to one outer surface of the water dish 23, and an upper end portion of the tilt arm 38 is pivotally supported on the unit base 20 via a horizontal shaft 39. The entire water supply unit 6 is configured to be swingable up and down with respect to the unit base 20 around a horizontal shaft 39, and the upper ice making posture in which the upper surface of the water dish 23 faces each cell 19 of the ice making case 5. The oscillating tip side of the water dish 23 is separated from the ice making case 5, and the posture can be switched to a lower icing attitude in which the upper surface of the water dish 23 is inclined downward toward the oscillating tip side. The driving means for switching the posture of the water supply unit 6 includes a motor 40 (see FIG. 4) and a spring (not shown) as a driving source. A gap 41 for flowing water that has not flowed into the return hole 28 into the water tank 24 is secured between the swinging tip wall of the water tank 24 and the water tray 23.

水タンク24の揺動先端側には、水タンク24からの排水を行うための排水路44が形成されており、図2に示すように給水部6の下方には、排水路44からの排水を受け止める排水パン45が配置されている。排水パン45へ排出された水は、排水管46を介して製氷機1の外部へ排出される。   A drainage channel 44 for draining water from the water tank 24 is formed on the swinging tip side of the water tank 24, and drainage from the drainage channel 44 is provided below the water supply unit 6 as shown in FIG. A drain pan 45 is provided for receiving the waste water. The water discharged to the drain pan 45 is discharged outside the ice making machine 1 through the drain pipe 46.

製氷工程においては、冷凍装置4により製氷ケース5が冷却されるとともに給水部6が製氷姿勢となって、給水管32の各散水口34から水皿23の上面へ向かって製氷用水が散水されて、戻し孔28あるいは隙間41を介して水タンク24内へ流れ込む。水タンク24内の製氷用水は、水ポンプ25によって通水路29へ送り込まれて、各ノズル27からセル19へ向かって噴出供給される。この製氷用水がセル19内で凝固することにより、セル19内にキューブ状の氷が形成される。セル19内で凝固せずに水皿23の上面へ落下した製氷用水は、戻し孔28を介して水タンク24へ戻る。製氷工程が完了すると、冷凍装置4による製氷ケース5の冷却と、給水管32からの散水と、セル19への製氷用水の噴出供給とを停止して、各セル19から氷を分離する離氷工程へ移行する。   In the ice making process, the ice making case 5 is cooled by the refrigeration apparatus 4 and the water supply unit 6 is in an ice making posture, and ice making water is sprinkled from each water spout 34 of the water supply pipe 32 toward the upper surface of the water tray 23. Then, it flows into the water tank 24 through the return hole 28 or the gap 41. The ice-making water in the water tank 24 is sent to the water passage 29 by the water pump 25 and is jetted and supplied from each nozzle 27 toward the cell 19. The ice-making water is solidified in the cell 19 to form cube-shaped ice in the cell 19. The ice-making water that has fallen to the upper surface of the water dish 23 without solidifying in the cell 19 returns to the water tank 24 through the return hole 28. When the ice making process is completed, the cooling of the ice making case 5 by the refrigeration apparatus 4, the water spray from the water supply pipe 32, and the supply of the ice making water to the cells 19 are stopped, and the ice removal is performed to separate the ice from each cell 19. Move to the process.

離氷工程においては、給水部6が離氷姿勢となって各セル19の下面が開放されるとともに、圧縮機8から蒸発器11へ向かってホットガスが吐出されて製氷ケース5が温められる。これにより、製氷ケース5と接触する面において氷が融解し、水皿23へ向かって分離落下する。落下した氷は、水皿23の上面に沿って滑り落ちて、水皿23の揺動先端から製氷室2の下部の貯氷空間へ向かって落下する。このとき、給水管32から水皿23の上面へ除氷水が散水されて、ノズル27や戻し孔28に引っ掛かった氷が洗い流される。この除氷水は、戻し孔28あるいは隙間41を介して水タンク24内へ流れ込み、水タンク24内に残った余剰の製氷用水とともに、排水路44から排水パン45へ排出される。   In the deicing process, the water supply unit 6 is in the deicing posture, the lower surface of each cell 19 is opened, and hot gas is discharged from the compressor 8 toward the evaporator 11 to warm the ice making case 5. As a result, the ice melts on the surface in contact with the ice making case 5 and falls down toward the water tray 23. The fallen ice slides down along the upper surface of the water tray 23 and falls from the rocking tip of the water tray 23 toward the ice storage space below the ice making chamber 2. At this time, the deicing water is sprinkled from the water supply pipe 32 to the upper surface of the water tray 23, and the ice caught in the nozzle 27 and the return hole 28 is washed away. The deicing water flows into the water tank 24 through the return hole 28 or the gap 41 and is discharged from the drainage channel 44 to the drainage pan 45 together with the surplus ice-making water remaining in the water tank 24.

図4に示すように、本実施例に係る製氷機1の制御系は、製氷工程および離氷工程を制御する運転制御部51と、製氷室2内の貯氷量を検出する貯氷量検出部50と、製氷ケース5の温度(ケース温度)を検出するケース温度検出部53と、製氷完了温度を設定する温度設定部52などで構成される。運転制御部51は、貯氷量検出部50で検出される貯氷量が一定以下に減少すると製氷工程を開始し、ケース温度検出部53で検出されるケース温度が製氷完了温度まで低下すると、製氷工程を完了して離氷工程を開始する。製氷工程および離氷工程において運転制御部51は、冷凍装置4を構成する圧縮機8、膨張弁10、ファン14、およびホットガス管13の電磁弁15と、給水部6の水ポンプ25と、給水管32の電磁弁35と、給水部6の姿勢を切り換える駆動手段のモータ40などを制御する。   As shown in FIG. 4, the control system of the ice making machine 1 according to this embodiment includes an operation control unit 51 that controls the ice making process and the ice removing process, and an ice storage amount detection unit 50 that detects the ice storage amount in the ice making chamber 2. And a case temperature detecting unit 53 that detects the temperature (case temperature) of the ice making case 5, a temperature setting unit 52 that sets the ice making completion temperature, and the like. The operation control unit 51 starts the ice making process when the ice storage amount detected by the ice storage amount detection unit 50 decreases below a certain level, and when the case temperature detected by the case temperature detection unit 53 decreases to the ice making completion temperature, the ice making step. And start the de-icing process. In the ice making process and the deicing process, the operation control unit 51 includes the compressor 8, the expansion valve 10, the fan 14, the electromagnetic valve 15 of the hot gas pipe 13, the water pump 25 of the water supply unit 6, and the refrigeration apparatus 4. The electromagnetic valve 35 of the water supply pipe 32, the motor 40 of the drive means which switches the attitude | position of the water supply part 6, etc. are controlled.

運転制御部51により製氷工程が開始されると、温度設定部52によって製氷完了温度が設定される。温度設定部52は、機種検出部61、周波数検出部62、室温検出部63および給水温検出部64による検出値と、氷形状設定部65における氷形状設定値と、温度設定部52内の記憶部66に記憶されている製氷完了温度テーブルとを参照して、製氷完了温度を設定する。機種検出部61は製氷機1の機種を検出し、周波数検出部62は製氷機1の電源周波数を検出する。周波数検出部62による電源周波数の検出は、例えば特公平7−35939号公報に記載されている方法で行うことができる。   When the ice making process is started by the operation control unit 51, the ice making completion temperature is set by the temperature setting unit 52. The temperature setting unit 52 is a value detected by the model detection unit 61, the frequency detection unit 62, the room temperature detection unit 63, and the feed water temperature detection unit 64, the ice shape setting value in the ice shape setting unit 65, and the storage in the temperature setting unit 52. The ice making completion temperature is set with reference to the ice making completion temperature table stored in the unit 66. The model detection unit 61 detects the model of the ice making machine 1, and the frequency detection unit 62 detects the power supply frequency of the ice making machine 1. The detection of the power supply frequency by the frequency detection unit 62 can be performed by a method described in Japanese Patent Publication No. 7-35939, for example.

室温検出部63は、製氷機1が設置される室内の気温を検出するものであって、例えば機械室3側に配置される。給水温検出部64は、給水管32内の製氷用水の温度を検出するものであって、電磁弁35より10cm程度上流側に配置されている。室温の検出値Taおよび給水温の検出値Twは、それぞれについて設けられた下閾値T1・T3および上閾値T2・T4と比較されて、次の9通りの温度条件[A]〜[I]のいずれかに属するか判定される。
[A] Ta<T1 ,Tw<T3 (室温:低,給水温:低)
[B] Ta<T1 ,T3≦Tw<T4 (室温:低,給水温:中)
[C] Ta<T1 , T4≦Tw (室温:低,給水温:高)
[D] T1≦Ta<T2,Tw<T3 (室温:中,給水温:低)
[E] T1≦Ta<T2,T3≦Tw<T4 (室温:中,給水温:中)
[F] T1≦Ta<T2, T4≦Tw (室温:中,給水温:高)
[G] T2≦Ta,Tw<T3 (室温:高,給水温:低)
[H] T2≦Ta,T3≦Tw<T4 (室温:高,給水温:中)
[I] T2≦Ta, T4≦Tw (室温:高,給水温:高)
Ta:室温の検出値 T1:室温の下閾値 T2:室温の上閾値
Tw:給水温の検出値 T3:給水温の下閾値 T4:給水温の上閾値
本実施例では、T1=10℃、T2=30℃、T3=9℃、T4=16℃に設定した。
The room temperature detection unit 63 detects the temperature in the room where the ice making machine 1 is installed, and is disposed, for example, on the machine room 3 side. The water supply temperature detection unit 64 detects the temperature of the ice making water in the water supply pipe 32 and is disposed about 10 cm upstream from the electromagnetic valve 35. The detected value Ta of the room temperature and the detected value Tw of the feed water temperature are compared with the lower threshold values T1 and T3 and the upper threshold values T2 and T4 provided for each of the following nine temperature conditions [A] to [I]. It is determined whether it belongs to one of them.
[A] Ta <T1, Tw <T3 (room temperature: low, water supply temperature: low)
[B] Ta <T1, T3 ≦ Tw <T4 (room temperature: low, feed water temperature: medium)
[C] Ta <T1, T4 ≦ Tw (room temperature: low, feed water temperature: high)
[D] T1 ≦ Ta <T2, Tw <T3 (room temperature: medium, water supply temperature: low)
[E] T1 ≦ Ta <T2, T3 ≦ Tw <T4 (room temperature: medium, feed water temperature: medium)
[F] T1 ≦ Ta <T2, T4 ≦ Tw (room temperature: medium, feed water temperature: high)
[G] T2 ≦ Ta, Tw <T3 (room temperature: high, water supply temperature: low)
[H] T2 ≦ Ta, T3 ≦ Tw <T4 (room temperature: high, feed water temperature: medium)
[I] T2 ≦ Ta, T4 ≦ Tw (room temperature: high, water supply temperature: high)
Ta: Detection value of room temperature T1: Lower threshold value of room temperature T2: Upper threshold value of room temperature Tw: Detection value of feed water temperature T3: Lower threshold value of feed water temperature T4: Upper threshold value of feed water temperature In this embodiment, T1 = 10 ° C., T2 = 30 ° C, T3 = 9 ° C, T4 = 16 ° C.

氷形状設定部65では、製氷ケース5のセル19において氷の下面中央に形成される窪みの大きさを、ユーザーが「1」から「7」までの7段階の氷形状設定値で設定することができる。氷形状設定値が大きいほど、氷に形成される窪みも大きくなる。本実施例において、氷形状設定値「1」のときの窪みの上下深さは約2mm、氷形状設定値「4」のときは約7mm、氷形状設定値「7」のときは約15mmに設定されている。なお、セル19の上下寸法は約30mm、前後寸法および左右寸法は約29mmである。   In the ice shape setting unit 65, the user sets the size of the depression formed in the center of the bottom surface of the ice in the cell 19 of the ice making case 5 with the seven ice shape setting values from “1” to “7”. Can do. The larger the ice shape setting value, the larger the depression formed in the ice. In this embodiment, the depth of the depression when the ice shape set value is “1” is about 2 mm, when the ice shape set value is “4”, it is about 7 mm, and when the ice shape set value is “7”, it is about 15 mm. Is set. The vertical dimension of the cell 19 is approximately 30 mm, and the longitudinal dimension and the lateral dimension are approximately 29 mm.

記憶部66に記憶されている製氷完了温度テーブルの一部を図5に示す。例えば、機種検出部61で検出される製氷機1の機種が「F−101」、周波数検出部62で検出される電源周波数が「50Hz」、室温検出部63で検出される室温が「15℃」、給水温検出部64で検出される給水温が「12℃」、氷形状設定部65における設定値が「5」であるとき、温度設定部52は製氷完了温度テーブルを参照して、各部61〜65の検出値・設定値に該当する欄の温度、すなわち「−14℃」を製氷完了温度に設定する。   A part of the ice making completion temperature table stored in the storage unit 66 is shown in FIG. For example, the model of the ice making machine 1 detected by the model detector 61 is “F-101”, the power frequency detected by the frequency detector 62 is “50 Hz”, and the room temperature detected by the room temperature detector 63 is “15 ° C.”. When the feed water temperature detected by the feed water temperature detection unit 64 is “12 ° C.” and the set value in the ice shape setting unit 65 is “5”, the temperature setting unit 52 refers to the ice making completion temperature table to The temperature in the column corresponding to the detected value / set value of 61 to 65, that is, “−14 ° C.” is set as the ice making completion temperature.

次に、製氷完了温度テーブルの作成手順について、機種がF−101、電源周波数が50Hzの場合を例として、図1のフローチャート、および図6の製氷完了温度テーブルに基づき説明する。室温と給水温に関する閾値T1〜T4は先に設定してあるものとする。   Next, the creation procedure of the ice making completion temperature table will be described based on the flowchart of FIG. 1 and the ice making completion temperature table of FIG. 6 by taking as an example the case where the model is F-101 and the power supply frequency is 50 Hz. It is assumed that thresholds T1 to T4 relating to the room temperature and the water supply temperature are set in advance.

(手順1) 室温の基準値である基準室温と、給水温の基準値である基準給水温とを決定し、基準室温および基準給水温が含まれる温度条件を基準温度条件に決定する(S1)。基準室温および基準給水温は、例えば年間平均値とすることができる。本実施例では、基準室温を20℃、基準給水温を15℃とし、これらが含まれる温度条件[E]を基準温度条件とした。 (Procedure 1) A reference room temperature that is a reference value of room temperature and a reference feed water temperature that is a reference value of feed water temperature are determined, and a temperature condition including the reference room temperature and the reference feed water temperature is determined as a reference temperature condition (S1). . The reference room temperature and the reference water supply temperature can be, for example, annual average values. In this example, the reference room temperature was 20 ° C., the reference feed water temperature was 15 ° C., and the temperature condition [E] including these was set as the reference temperature condition.

(手順2) 1つの氷形状設定値を選択し、当該設定値および手順1で選択した基準温度条件における製氷完了温度の暫定値を設定する(S2)。ここでの氷形状設定値は「1」〜「7」の中から任意に選択できるが、本実施例では中間値である「4」を選択した。製氷完了温度の暫定値の設定方法も任意であるが、例えば、基準温度条件の下で実際に製氷工程を行い、窪みが氷形状設定値「4」に相当する大きさ(上下深さ約7mm)になった際のケース温度の実測値を、製氷完了温度の暫定値に設定することができる。本実施例では、温度条件[E]、氷形状設定値「4」における製氷完了温度の暫定値を−15℃に設定した(図6(a))。 (Procedure 2) One ice shape set value is selected, and the provisional value of the ice making completion temperature under the set temperature and the reference temperature condition selected in Procedure 1 is set (S2). The ice shape set value here can be arbitrarily selected from “1” to “7”, but “4” which is an intermediate value is selected in this embodiment. The provisional value of the ice making completion temperature can be set as desired. For example, the ice making process is actually performed under the reference temperature condition, and the size corresponding to the ice shape set value “4” (the vertical depth is about 7 mm). ) Can be set as a provisional value for the ice making completion temperature. In this example, the provisional value of the ice making completion temperature in the temperature condition [E] and the ice shape set value “4” was set to −15 ° C. (FIG. 6A).

(手順3) 手順2で選択しなかった他の氷形状設定値および基準温度条件における製氷完了温度の暫定値を設定する(S3)。この設定は、手順2で設定した製氷完了温度の暫定値を基準として行う。本実施例では、氷形状設定値「4」に対応する製氷完了温度の暫定値−15℃を基準として、氷形状設定値が「4」から1小さくなるに従って1℃ずつ低くなるように、1大きくなるに従って1℃ずつ高くなるように暫定値を設定した(図6(b))。温度条件が同じであれば、製氷完了温度が高いほど、ケース温度が製氷完了温度に達するまでの時間、すなわち製氷時間は短くなり、この製氷時間が短くなるほど氷の窪みは大きくなる。そのため、氷形状設定値(所望の氷の窪み)が大きくなるほど製氷完了温度を高く設定する。 (Procedure 3) Other ice shape setting values not selected in Procedure 2 and provisional values of the ice making completion temperature under the reference temperature condition are set (S3). This setting is performed based on the provisional value of the ice making completion temperature set in the procedure 2. In the present embodiment, with reference to the provisional value −15 ° C. of the ice making completion temperature corresponding to the ice shape setting value “4”, the ice shape setting value decreases by 1 ° C. as the ice shape setting value decreases by 1 from “4”. The provisional value was set so as to increase by 1 ° C. as it increased (FIG. 6B). If the temperature conditions are the same, the higher the ice making completion temperature, the shorter the time until the case temperature reaches the ice making completion temperature, that is, the ice making time. The shorter the ice making time, the larger the ice depression. Therefore, the ice making completion temperature is set higher as the ice shape set value (desired ice depression) becomes larger.

手順2と手順3を行うことにより、基準温度条件[E]における全ての暫定値を設定することができる(図6(b))。基準温度条件[E]における各暫定値のことを、以下では基準暫定値という。例えば、氷形状設定値「2」における基準暫定値は−17℃である。なお、上記の手順3を行うのに代えて、全ての基準暫定値を手順2と同様の実測による方法で設定してもよい。   By performing procedure 2 and procedure 3, all provisional values in the reference temperature condition [E] can be set (FIG. 6B). Each provisional value in the reference temperature condition [E] is hereinafter referred to as a reference provisional value. For example, the reference provisional value for the ice shape setting value “2” is −17 ° C. Instead of performing the above procedure 3, all the reference provisional values may be set by a method by actual measurement similar to the procedure 2.

(手順4) 手順2および手順3で設定した基準暫定値に基づき、他の温度条件における製氷完了温度の暫定値を設定する(S4)。詳しくは、基準温度条件に比べて室温あるいは給水温が高く、ケース温度の低下速度が遅くなる温度条件においては、暫定値を基準暫定値よりも高く設定する。逆に、基準温度条件に比べて室温あるいは給水温が低く、ケース温度の低下速度が速くなる温度条件においては、暫定値を基準暫定値よりも低く設定する。本実施例では、各温度条件における暫定値を次のように設定した(図6(c))。
・温度条件[B][C][D]では、基準温度条件[E]と比べてケース温度の低下速度にあまり差が無いため、各氷形状設定値において暫定値を(基準暫定値±0℃)とした。
・温度条件[A]では、基準温度条件[E]と比べてケース温度の低下速度が速くなるため、各氷形状設定値において暫定値を(基準暫定値−1℃)とした。
・温度条件[F][G]では、基準温度条件[E]と比べてケース温度の低下速度が遅くなるため、各氷形状設定値において暫定値を(基準暫定値+1℃)とした。
・温度条件[H]では、温度条件[F][G]と比べてさらにケース温度の低下速度が遅くなるため、各氷形状設定値において暫定値を(基準暫定値+2℃)とした。
・温度条件[I]では、温度条件[H]と比べてさらにケース温度の低下速度が遅くなるため、各氷形状設定値において暫定値を(基準暫定値+3℃)とした。
(Procedure 4) Based on the reference provisional value set in the procedure 2 and the procedure 3, the provisional value of the ice making completion temperature in other temperature conditions is set (S4). Specifically, the provisional value is set higher than the reference provisional value in a temperature condition in which the room temperature or the water supply temperature is higher than the reference temperature condition and the case temperature decreases at a slower rate. On the contrary, the provisional value is set lower than the reference provisional value in the temperature condition where the room temperature or the water supply temperature is lower than the reference temperature condition and the case temperature decreases at a high rate. In this example, provisional values for each temperature condition were set as follows (FIG. 6C).
In the temperature conditions [B] [C] [D], there is not much difference in the rate of decrease in the case temperature compared to the reference temperature condition [E]. Therefore, a provisional value (reference provisional value ± 0) is set for each ice shape setting value. ° C).
In the temperature condition [A], the case temperature decreases at a faster rate than the reference temperature condition [E], so the provisional value was set to (reference provisional value −1 ° C.) for each ice shape setting value.
In the temperature condition [F] [G], the case temperature decrease rate is slower than in the reference temperature condition [E]. Therefore, the provisional value is set to (reference provisional value + 1 ° C.) for each ice shape setting value.
In the temperature condition [H], since the rate of decrease in the case temperature is further slower than in the temperature condition [F] [G], the provisional value was set to (reference provisional value + 2 ° C.) for each ice shape setting value.
In the temperature condition [I], the case temperature decrease rate is further slower than in the temperature condition [H], so the provisional value was set to (reference provisional value + 3 ° C.) for each ice shape setting value.

(手順5) 製氷完了温度の上限温度および下限温度を設定する(S5)。両温度は任意の方法で設定できるが、本実施例では、氷形状設定値「7」(窪み最大)に対応する基準暫定値(最高基準暫定値)すなわち−12℃を上限温度とし、氷形状設定値「1」(窪み最小)に対応する基準暫定値(最低基準暫定値)すなわち−18℃を下限温度とした。 (Procedure 5) The upper limit temperature and lower limit temperature of the ice making completion temperature are set (S5). Both temperatures can be set by an arbitrary method. In this embodiment, the reference provisional value (maximum reference provisional value) corresponding to the ice shape set value “7” (maximum depression), that is, −12 ° C. is set as the upper limit temperature, and the ice shape is set. A reference provisional value (minimum reference provisional value) corresponding to the set value “1” (minimum depression), that is, −18 ° C. was set as the lower limit temperature.

(手順6) 手順4までに設定した各暫定値を、手順5で設定した上限温度および下限温度と比較して、製氷完了温度を決定する(S6)。具体的には、暫定値が上限温度以下かつ下限温度以上である場合(S61およびS62でYes)は暫定値をそのまま製氷完了温度とし(S63)、暫定値が上限温度を上回る場合(S61でNo)は上限温度を製氷完了温度とし(S64)、暫定値が下限温度を下回る場合(S62でNo)は下限温度を製氷完了温度とする(S65)。図6(d)のテーブルにおける網掛け部分では、暫定値が上限温度を上回るか下限温度を下回っているために、上限温度あるいは下限温度を製氷完了温度とした。その他の部分では、暫定値が上限温度以下かつ下限温度以上であるため、暫定値をそのまま製氷完了温度とした。 (Procedure 6) Each provisional value set up to Procedure 4 is compared with the upper limit temperature and the lower limit temperature set in Procedure 5 to determine the ice making completion temperature (S6). Specifically, when the provisional value is lower than the upper limit temperature and higher than the lower limit temperature (Yes in S61 and S62), the provisional value is set as the ice making completion temperature as it is (S63), and when the provisional value exceeds the upper limit temperature (No in S61). ) Sets the upper limit temperature to the ice making completion temperature (S64), and if the provisional value falls below the lower limit temperature (No in S62), sets the lower limit temperature to the ice making completion temperature (S65). In the shaded portion in the table of FIG. 6D, the provisional value exceeds the upper limit temperature or falls below the lower limit temperature, so the upper limit temperature or the lower limit temperature is set as the ice making completion temperature. In other parts, the provisional value is equal to or lower than the upper limit temperature and equal to or higher than the lower limit temperature.

上限温度(−12℃)を設定するのは、製氷工程の途中で室温あるいは給水温が下がって、ケース温度の低下速度が速くなった場合に、セル19内に形成される氷が小さくなり過ぎるのを防ぐためである。具体例として、冬季(外気温5℃)に暖房を使用して、製氷機1が設置される建物内の気温が25℃になっている状態で、氷形状設定値を「7」に設定して製氷工程を開始する状況を挙げて説明する。   The upper limit temperature (−12 ° C.) is set because the ice formed in the cell 19 becomes too small when the room temperature or the feed water temperature decreases during the ice making process and the case temperature decreases at a high rate. This is to prevent this. As a specific example, when the temperature in the building where the ice making machine 1 is installed is 25 ° C. using heating in winter (outside temperature 5 ° C.), the ice shape set value is set to “7”. The situation where the ice making process is started will be described.

製氷機1で使用される製氷用水は、建物外と建物内の水道管を順に通って、製氷機1の給水管32内へ供給される。製氷室2内の氷が満量であるなどの理由で製氷が長時間行われなかった場合、建物内の水道管に滞留する水の温度は、建物内の気温(25℃)近くまで上昇する。一方、建物外の水の温度は外気温と同じ5℃近くであるから、建物外と建物内の水温に差が生じる。この状態で製氷工程を開始すると、最初は建物内に滞留していた25℃の水が製氷用水として使用されるが、建物内の水はやがて使い切られ、その後は、製氷工程の開始時に建物外にあった5℃の水が製氷用水として使用される。   The ice making water used in the ice making machine 1 is supplied into the water supply pipe 32 of the ice making machine 1 through the outside and the water pipe in the building in order. When ice making is not performed for a long time because the ice in the ice making chamber 2 is full, the temperature of the water staying in the water pipe in the building rises to near the air temperature (25 ° C.) in the building. . On the other hand, since the temperature of the water outside the building is close to 5 ° C., which is the same as the outside air temperature, there is a difference between the water temperature outside and inside the building. When the ice making process is started in this state, the water at 25 ° C that was initially retained in the building is used as ice making water, but the water in the building will eventually be used up, and after that, when the ice making process starts, Water at 5 ° C. was used as ice making water.

このように、製氷工程の途中で給水温が低下すると、その低下前に比べてケース温度の低下速度が速くなるので、ケース温度が製氷完了温度に達するまでの時間、すなわち製氷時間が短くなる。ここで、氷形状設定値(所望の氷の窪み)が比較的小さく設定されていれば、製氷時間が少し短くなっても、窪みが所望より少し大きくなる程度でさほど問題は無いが、今回の例のように氷形状設定値が「7」に設定されている場合に製氷時間が短くなると、小さ過ぎて使用に適さない氷となる。   As described above, when the water supply temperature decreases during the ice making process, the case temperature decreases at a faster rate than before the decrease, so the time until the case temperature reaches the ice making completion temperature, that is, the ice making time is shortened. Here, if the ice shape setting value (desired ice depression) is set relatively small, even if the ice making time is slightly shortened, there is no problem as long as the depression is slightly larger than desired. If the ice shape setting value is set to “7” as in the example and the ice making time is shortened, the ice is too small to be suitable for use.

上記のような状況を解消するために、製氷完了温度に上限温度(−12℃)を設定している。上記の例において、製氷工程の開始時の給水温は25℃、室温も25℃であるから温度条件は[F]に該当し、また氷形状設定値は「7」である。この場合の手順4における製氷完了温度の暫定値は−11℃(図6(c))であるが、手順6で製氷完了温度は−12℃に下方修正されている(図6(d))。このように、製氷完了温度を下方修正すると、その分だけ製氷時間を長くして氷を成長させることができる。従って、仮に製氷工程の途中で給水温が低下しても、得られる氷が小さくなり過ぎるおそれ、すなわち、氷形状設定値「7」に相当する大きさよりも極端に小さい氷が生成されるのを解消して、使用に適した大きさの氷を確実に得ることができる。   In order to eliminate the above situation, an upper limit temperature (−12 ° C.) is set as the ice making completion temperature. In the above example, since the water supply temperature at the start of the ice making process is 25 ° C. and the room temperature is also 25 ° C., the temperature condition corresponds to [F], and the ice shape set value is “7”. In this case, the provisional value of the ice making completion temperature in step 4 is −11 ° C. (FIG. 6C), but the ice making completion temperature is corrected downward to −12 ° C. in step 6 (FIG. 6D). . In this way, if the ice making completion temperature is corrected downward, ice can be grown by extending the ice making time accordingly. Therefore, even if the water supply temperature decreases during the ice making process, the resulting ice may be too small, that is, ice that is extremely smaller than the size corresponding to the ice shape set value “7” is generated. It can be solved to reliably obtain ice having a size suitable for use.

下限温度(−18℃)を設定するのは、製氷完了温度の途中で室温あるいは給水温が上がって、ケース温度の低下速度が遅くなった場合に、氷が成長し過ぎてセル19からはみ出るのを防ぐためである。具体例として、室温と給水温がともに5℃の条件で、氷形状設定値を「1」に設定して製氷工程を開始してから、暖房の使用により室温が大きく上昇した状況を挙げて説明する。   The lower limit temperature (−18 ° C.) is set when the room temperature or the feed water temperature rises in the middle of the ice making completion temperature, and the ice temperature grows too much and protrudes from the cell 19 when the case temperature decreases. Is to prevent. As a specific example, an explanation will be given of a situation in which the room temperature has greatly increased due to the use of heating after the ice making process is started with the ice shape setting value set to “1” under the condition that the room temperature and the water supply temperature are both 5 ° C. To do.

製氷工程の途中で室温が上昇すると、その上昇前に比べて凝縮器9における放熱効率が低下し、冷凍装置4の冷却能力が低下して、ケース温度の低下速度が遅くなるので、製氷時間が長くなる。ここで、氷形状設定値(所望の氷の窪み)が比較的大きく設定されていれば、製氷時間が少し長くなっても、窪みが所望より少し小さくなる程度でさほど問題は無いが、この例のように氷形状設定値が「1」に設定されている場合に製氷時間が長くなると、氷が成長し過ぎてセル19からはみ出て、給水部6の水皿23に貼り付くなどの不都合が生じるおそれがある。また、氷形状設定値「1」に相当する大きさの氷が形成された後、すなわち氷がセル19いっぱいに成長した後も製氷工程を続けると、電力を無駄に消費してしまう。   If the room temperature rises in the middle of the ice making process, the heat dissipation efficiency in the condenser 9 will be lower than before the rise, the cooling capacity of the refrigeration device 4 will be lowered, and the case temperature will be reduced at a slower rate. become longer. Here, if the ice shape set value (desired ice depression) is set to be relatively large, even if the ice making time is a little longer, there is no problem as long as the depression is slightly smaller than desired. When the ice shape setting value is set to “1” as described above, if the ice making time becomes long, the ice grows too much and protrudes from the cell 19 and sticks to the water tray 23 of the water supply unit 6. May occur. Further, if the ice making process is continued even after ice having a size corresponding to the ice shape set value “1” is formed, that is, after the ice has grown to the full cell 19, power is wasted.

上記のような状況を解消するために、製氷完了温度に下限温度(−18℃)を設定している。上記の例において、製氷工程の開始時の室温と給水温はともに5℃であるから温度条件は[A]に該当し、また氷形状設定値は「1」である。この場合の手順4における製氷完了温度の暫定値は−19℃(図6(c))であるが、手順6で製氷完了温度は−18℃に上方修正されている(図6(d))。このように、製氷完了温度を上方修正すると、その分だけ製氷時間を短くすることができる。従って、仮に製氷工程の途中で室温が上昇しても、氷が成長し過ぎてセル19からはみ出るおそれを解消して、氷が水皿23に貼り付くなどの不都合を確実に防止することができる。また、氷が成長し過ぎる前に製氷工程を終えることにより、電力の無駄な消費を解消できる。   In order to eliminate the above situation, a lower limit temperature (−18 ° C.) is set as the ice making completion temperature. In the above example, since the room temperature and the feed water temperature at the start of the ice making process are both 5 ° C., the temperature condition corresponds to [A], and the ice shape set value is “1”. In this case, the provisional value of the ice making completion temperature in step 4 is −19 ° C. (FIG. 6C), but the ice making completion temperature is corrected upward to −18 ° C. in step 6 (FIG. 6D). . Thus, if the ice making completion temperature is corrected upward, the ice making time can be shortened accordingly. Therefore, even if the room temperature rises in the middle of the ice making process, it is possible to eliminate the risk that the ice grows too much and protrudes from the cell 19, and it is possible to reliably prevent inconvenience such as the ice sticking to the water dish 23. . Also, by ending the ice making process before the ice grows too much, wasteful power consumption can be eliminated.

上記の手順1〜6では、電源周波数が50Hzの場合について説明したが、電源周波数が60Hzの場合も、同じ手順で製氷完了温度テーブルを作成することができる。あるいは、50Hzの製氷完了温度テーブルの各製氷完了温度を1〜2℃程度低くしたものを、60Hzの製氷完了温度テーブルとすることができる。本実施例では、50Hzの製氷完了温度テーブルの各製氷完了温度を2℃低くしたものを、60Hzの製氷完了温度テーブルとした(図5参照)。   In steps 1 to 6 described above, the case where the power supply frequency is 50 Hz has been described. However, even when the power supply frequency is 60 Hz, the ice making completion temperature table can be created by the same procedure. Alternatively, an ice making completion temperature table of 60 Hz can be obtained by reducing each ice making completion temperature of the ice making completion temperature table of 50 Hz by about 1 to 2 ° C. In the present example, the ice making completion temperature table of 50 Hz was obtained by lowering each ice making completion temperature by 2 ° C. in the 50 Hz ice making completion temperature table (see FIG. 5).

電源周波数が60Hzの場合は、電源周波数が50Hzの場合に比べて、圧縮機8の駆動源であるモータの回転速度が速くなって、冷凍装置4による冷却能力が高くなるので、ケース温度の低下速度が速くなる。そのため、50Hzと60Hzとで製氷完了温度を等しく設定していると、60Hzの場合の方が製氷時間が短くなって、得られる氷が小さくなる。そこで本実施例では、60Hzの場合の製氷完了温度を、50Hzの場合に比べて2℃低く設定した。これにより、得られる氷の形状(窪みの大きさ)を、両周波数でほぼ同一にすることができる。なお、本実施例では、両周波数における製氷完了温度の差を2℃としたが、この温度差は、冷凍装置4の冷却能力やセル19の大きさなどを考慮して任意に決定することができる。   When the power supply frequency is 60 Hz, the rotation speed of the motor that is the drive source of the compressor 8 is faster and the cooling capacity of the refrigeration apparatus 4 is higher than when the power supply frequency is 50 Hz. Increases speed. Therefore, if the ice making completion temperatures are set equal at 50 Hz and 60 Hz, the ice making time is shorter in the case of 60 Hz, and the obtained ice becomes smaller. Therefore, in this example, the ice making completion temperature at 60 Hz was set 2 ° C. lower than that at 50 Hz. Thereby, the shape (size of a hollow) of the obtained ice can be made substantially the same at both frequencies. In this embodiment, the difference in the ice making completion temperature at both frequencies is 2 ° C., but this temperature difference can be arbitrarily determined in consideration of the cooling capacity of the refrigeration apparatus 4 and the size of the cell 19. it can.

上記の手順5では、窪みを最大とする氷形状設定値「7」に対応する基準暫定値、すなわち最高基準暫定値(−12℃)を上限温度とし、窪みを最小とする氷形状設定値「1」に対応する基準暫定値、すなわち最低基準暫定値(−18℃)を下限温度としたが、本発明はこれに限られない。例えば、中間的な氷形状設定値「4」に対応する基準暫定値(−15℃)を基準とし、これより数℃高い温度を上限温度に、数℃低い温度を下限温度に設定することができる。   In the above procedure 5, the reference provisional value corresponding to the ice shape setting value “7” that maximizes the depression, that is, the maximum reference provisional value (−12 ° C.) is set as the upper limit temperature, and the ice shape setting value “ Although the reference provisional value corresponding to “1”, that is, the lowest reference provisional value (−18 ° C.) is set as the lower limit temperature, the present invention is not limited to this. For example, a reference provisional value (−15 ° C.) corresponding to the intermediate ice shape setting value “4” is set as a reference, a temperature higher by several degrees C. is set as the upper limit temperature, and a temperature lower by several degrees C. is set as the lower limit temperature. it can.

また、上記の実施例では、室温と給水温の検出値を9種類の温度条件に分類し、各温度条件ごとに製氷完了温度を設定したが、本発明はこれに限られない。例えば、室温と給水温と氷形状設定値とを変数とする特性式に従って、製氷完了温度の暫定値を算出することができる。その後は、先の手順5および手順6と同様に、上限温度および下限温度を設定し、これらと暫定値を比較して製氷完了温度を決定すればよい。   In the above embodiment, the detected values of the room temperature and the water supply temperature are classified into nine temperature conditions, and the ice making completion temperature is set for each temperature condition. However, the present invention is not limited to this. For example, a provisional value of the ice making completion temperature can be calculated according to a characteristic equation having variables of room temperature, water supply temperature, and ice shape setting value. Thereafter, similarly to the previous procedure 5 and procedure 6, the upper limit temperature and the lower limit temperature are set, and the provisional value is compared with these to determine the ice making completion temperature.

上記実施例ではセル型の製氷機1について説明したが、本発明に係る製氷機1はセル型に限られず、例えば略平板状の製氷ケースを有し、水を製氷ケース上で凍結させて板状の氷を形成する製氷機に本発明を適用することができる。また、氷形状設定部65における氷形状設定値は窪みの大きさを設定するものに限られず、例えば板状の氷を形成する製氷機において氷の厚みを設定するものであってもよい。   In the above embodiment, the cell type ice making machine 1 has been described. However, the ice making machine 1 according to the present invention is not limited to the cell type. For example, the ice making machine 1 has a substantially flat ice making case, and water is frozen on the ice making case. The present invention can be applied to an ice making machine that forms ice. In addition, the ice shape setting value in the ice shape setting unit 65 is not limited to the one that sets the size of the depression, but may be one that sets the thickness of the ice in an ice making machine that forms plate-like ice, for example.

4 冷凍装置
5 製氷ケース
6 給水部
32 給水管
51 運転制御部
52 温度設定部
53 ケース温度検出部
63 室温検出部
64 給水温検出部
65 氷形状設定部
4 Refrigeration apparatus 5 Ice making case 6 Water supply part 32 Water supply pipe 51 Operation control part 52 Temperature setting part 53 Case temperature detection part 63 Room temperature detection part 64 Water supply temperature detection part 65 Ice shape setting part

Claims (2)

冷凍装置(4)および製氷構造と、これら両者の運転状態を制御する運転制御部(51)と、運転制御部(51)に制御データを渡す温度設定部(52)およびケース温度検出部(53)とを備えており、
温度設定部(52)は、製氷機が設置される室内の気温を検出する室温検出部(63)の検出値と、給水管(32)内の製氷用水の温度を検出する給水温検出部(64)の検出値と、氷形状設定部(65)で設定された氷形状設定値とに基づいて、製氷完了温度の暫定値を設定するように構成されており、
温度設定部(52)で設定した製氷完了温度の暫定値が、予め設定された上限温度と下限温度の範囲内にある条件下では、前記暫定値をそのまま製氷完了温度として製氷を行い、
前記暫定値が上限温度を上回る条件下では、上限温度を製氷完了温度として製氷を行い、
前記暫定値が下限温度を下回る条件下では、下限温度を製氷完了温度として製氷を行うことを特徴とする製氷機。
The refrigeration apparatus (4) and the ice making structure, an operation control unit (51) for controlling the operation state of both, a temperature setting unit (52) for passing control data to the operation control unit (51), and a case temperature detection unit (53 ) And
The temperature setting unit (52) includes a detection value of a room temperature detection unit (63) that detects the temperature of the room in which the ice making machine is installed, and a water supply temperature detection unit that detects the temperature of ice-making water in the water supply pipe (32) ( 64) and a provisional value of the ice making completion temperature based on the detected value of the ice shape and the ice shape setting value set by the ice shape setting unit (65).
Under the condition that the provisional value of the ice making completion temperature set by the temperature setting unit (52) is in the range between the preset upper limit temperature and lower limit temperature, ice making is performed with the provisional value as the ice making completion temperature as it is,
Under the condition that the provisional value exceeds the upper limit temperature, ice making is performed with the upper limit temperature being the ice making completion temperature,
An ice making machine characterized in that ice making is performed with the lower limit temperature as the ice making completion temperature under the condition that the provisional value is lower than the lower limit temperature.
室温検出部(63)および給水温検出部(64)で検出される室温および給水温について、それぞれ基準値が設定されており、
室温検出部(63)および給水温検出部(64)の検出値がそれぞれの基準値と等しくかつ氷形状設定部(65)において氷形状が最小に設定されている場合に温度設定部(52)で設定される製氷完了温度の暫定値が、製氷完了温度の上限温度として設定されており、
室温検出部(63)および給水温検出部(64)の検出値がそれぞれの基準値と等しくかつ氷形状設定部(65)において氷形状が最大に設定されている場合に温度設定部(52)で設定される製氷完了温度の暫定値が、製氷完了温度の下限温度として設定されている請求項1に記載の製氷機。
Reference values are set for the room temperature and the feed water temperature detected by the room temperature detector (63) and the feed water temperature detector (64),
The temperature setting unit (52) when the detected values of the room temperature detection unit (63) and the feed water temperature detection unit (64) are equal to the respective reference values and the ice shape setting unit (65) is set to the minimum. The provisional value of the ice making completion temperature set in is set as the upper limit temperature of the ice making completion temperature,
When the detected values of the room temperature detector (63) and the feed water temperature detector (64) are equal to the respective reference values and the ice shape is set to the maximum in the ice shape setting unit (65), the temperature setting unit (52) The ice making machine according to claim 1, wherein the provisional value of the ice making completion temperature set in is set as a lower limit temperature of the ice making completion temperature.
JP2012057605A 2012-03-14 2012-03-14 Ice machine Active JP5695592B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057605A JP5695592B2 (en) 2012-03-14 2012-03-14 Ice machine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057605A JP5695592B2 (en) 2012-03-14 2012-03-14 Ice machine

Publications (2)

Publication Number Publication Date
JP2013190174A true JP2013190174A (en) 2013-09-26
JP5695592B2 JP5695592B2 (en) 2015-04-08

Family

ID=49390623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057605A Active JP5695592B2 (en) 2012-03-14 2012-03-14 Ice machine

Country Status (1)

Country Link
JP (1) JP5695592B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526570A (en) * 2022-02-14 2022-05-24 海信(山东)冰箱有限公司 Refrigerator and ice making control method of refrigerator
KR102412126B1 (en) * 2021-10-21 2022-07-01 주식회사 스키피오 Ice machine and operation method thereof

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210470A (en) * 1982-06-02 1983-12-07 星崎電機株式会社 Method of controlling ice machine
JPS58210471A (en) * 1982-06-02 1983-12-07 星崎電機株式会社 Method of controlling ice machine
US4602489A (en) * 1984-12-18 1986-07-29 Hoshizaki Electric Co., Ltd. Automatic ice making machine
JPH02287072A (en) * 1989-04-26 1990-11-27 Daiwa Reiki Kogyo Kk Ice-making control method for ice-making machine
JPH0735939B2 (en) * 1988-07-05 1995-04-19 ホシザキ電機 株式会社 Ice making completion control device for ice making machine
JP2003021438A (en) * 2001-07-05 2003-01-24 Sanyo Electric Co Ltd Cell type ice making machine

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58210470A (en) * 1982-06-02 1983-12-07 星崎電機株式会社 Method of controlling ice machine
JPS58210471A (en) * 1982-06-02 1983-12-07 星崎電機株式会社 Method of controlling ice machine
US4602489A (en) * 1984-12-18 1986-07-29 Hoshizaki Electric Co., Ltd. Automatic ice making machine
JPH0735939B2 (en) * 1988-07-05 1995-04-19 ホシザキ電機 株式会社 Ice making completion control device for ice making machine
JPH02287072A (en) * 1989-04-26 1990-11-27 Daiwa Reiki Kogyo Kk Ice-making control method for ice-making machine
JP2003021438A (en) * 2001-07-05 2003-01-24 Sanyo Electric Co Ltd Cell type ice making machine

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102412126B1 (en) * 2021-10-21 2022-07-01 주식회사 스키피오 Ice machine and operation method thereof
CN114526570A (en) * 2022-02-14 2022-05-24 海信(山东)冰箱有限公司 Refrigerator and ice making control method of refrigerator

Also Published As

Publication number Publication date
JP5695592B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
CN101619916B (en) Ice refrigerator
US4366679A (en) Evaporator plate for ice cube making apparatus
CN204787393U (en) Refrigeration plant sprays
JP5622758B2 (en) refrigerator
JP2007113902A (en) Cold/hot water purifying system and apparatus for simultaneously making ice and cold water using one evaporator
CN103851851A (en) Air-cooling refrigerator with humidifying function and control method thereof
CN106403442A (en) Refrigerator and defrosting method thereof
KR101287306B1 (en) Ice maker
CN104197627A (en) Control method and device of air cooling refrigerator and air cooling refrigerator
JP2003279210A (en) Ice making apparatus and refrigerator having the same
US5207761A (en) Refrigerator/water purifier with common evaporator
JP5695592B2 (en) Ice machine
JP2003042621A (en) Ice making machine
JP6370272B2 (en) Cell ice machine
KR20120105662A (en) Ice and cold water maker and making method
US20170306593A1 (en) Water Maker Device
KR101707636B1 (en) Vertical ice machine for fast ice making
JP4502897B2 (en) refrigerator
JP3579525B2 (en) Ice making method and ice making device
JP4846547B2 (en) How to operate an automatic ice machine
JP3243724U (en) Fluffy shaved ice production equipment
JP2549208B2 (en) Ice heat storage device
JP2004233009A (en) Operation control method of ice storage type water cooler
JP3813575B2 (en) Open cooling tower and method for preventing freezing of open cooling tower
JP3071659B2 (en) Constant temperature and humidity control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140521

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140611

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140806

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150206

R150 Certificate of patent or registration of utility model

Ref document number: 5695592

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250