JP2013190161A - Spray nozzle, burner, and combustion device - Google Patents

Spray nozzle, burner, and combustion device Download PDF

Info

Publication number
JP2013190161A
JP2013190161A JP2012057089A JP2012057089A JP2013190161A JP 2013190161 A JP2013190161 A JP 2013190161A JP 2012057089 A JP2012057089 A JP 2012057089A JP 2012057089 A JP2012057089 A JP 2012057089A JP 2013190161 A JP2013190161 A JP 2013190161A
Authority
JP
Japan
Prior art keywords
spray
flow path
fluid
spray nozzle
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012057089A
Other languages
Japanese (ja)
Inventor
Hirofumi Okazaki
洋文 岡▲崎▼
Kimiharu Kuramasu
公治 倉増
Hideo Okimoto
英雄 沖本
Akihito Orii
明仁 折井
Kenichi Ochi
健一 越智
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2012057089A priority Critical patent/JP2013190161A/en
Publication of JP2013190161A publication Critical patent/JP2013190161A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nozzles For Spraying Of Liquid Fuel (AREA)
  • Spray-Type Burners (AREA)

Abstract

PROBLEM TO BE SOLVED: To promote ignition by gathering fine particles near a spray nozzle, and to promote mixing of sprayed particles and combustion air by raising momentum of spray.SOLUTION: Mixed fluid passages 18, 19 in which a mixed fluid of a fluid to be sprayed and a spraying medium flows are disposed opposite each other near a jetting hole 2. A spray nozzle sprays from the jetting hole 2 the mixed fluid atomized by making the mixed fluid collide. For instance, openings of passages 14, 15 of the spraying medium connected to passages 10, 11 of the fluid to be sprayed are located at both end sides in the width direction perpendicular to the flow direction of the fluid to be sprayed.

Description

本発明は、噴霧ノズル、バーナ及び燃焼装置に係り、特に、液体燃料などの噴霧流体に空気や蒸気などの噴霧用媒体を供給して噴霧流体を微粒化させる噴霧ノズルとこの噴霧ノズルを備えたバーナ及び燃焼装置に関する。   The present invention relates to a spray nozzle, a burner, and a combustion apparatus, and in particular, includes a spray nozzle that atomizes a spray fluid by supplying a spray medium such as air or steam to a spray fluid such as liquid fuel, and the spray nozzle. The present invention relates to a burner and a combustion apparatus.

発電用のボイラのように高出力,高負荷の燃焼装置では、燃料を水平燃焼させる浮遊燃焼方式が多く採用される。燃料として燃料油のように液体燃料を用いる場合、燃料を噴霧ノズルで微粒化して燃焼装置の火炉内を浮遊させ燃焼させる。このような噴霧ノズルは、液体燃料を主燃料とする燃焼装置の他、微粉炭のように固体燃料を主燃料として使用する燃焼装置において、起動や火炎安定化用の補助燃料(液体燃料)の燃焼用に設置されることが多い。   In a high-output, high-load combustion apparatus such as a power generation boiler, a floating combustion method that horizontally burns fuel is often employed. When a liquid fuel such as fuel oil is used as the fuel, the fuel is atomized by a spray nozzle and floated in the furnace of the combustion apparatus and burned. Such a spray nozzle is used in a combustion apparatus that uses liquid fuel as a main fuel, as well as in a combustion apparatus that uses solid fuel as a main fuel, such as pulverized coal, for auxiliary fuel (liquid fuel) for startup and flame stabilization. Often installed for combustion.

噴霧ノズルの形式として、一般に噴霧流体(液体燃料など)を加圧し、その圧力エネルギーを微粒化に利用する圧力噴霧方式と、噴霧流体の他に、微粒化用の噴霧媒体として空気や蒸気を供給し、噴霧流体と混合することで微粒化する2流体噴霧方式がある。これらの方式は、加圧した噴霧流体の噴出方法や噴霧媒体の混合方法により細分化される。2流体噴霧方式を用いた噴霧ノズルとしては、例えば、特許文献1や2に記載のものがある。   As a form of spray nozzle, in general, a spray fluid (liquid fuel, etc.) is pressurized and the pressure energy is used for atomization. In addition to the spray fluid, air or steam is supplied as a spray medium for atomization. In addition, there is a two-fluid spray method that atomizes by mixing with a spray fluid. These methods are subdivided by a method of ejecting pressurized spray fluid and a method of mixing spray media. Examples of the spray nozzle using the two-fluid spray method include those described in Patent Documents 1 and 2.

特許文献1では、液体燃料と噴霧媒体をY字状の流路で混合し、噴出させる。液体燃料は、噴霧媒体との混合や、噴出時に高速の流れとなることにより微細化される。   In Patent Document 1, liquid fuel and a spray medium are mixed in a Y-shaped channel and ejected. The liquid fuel is refined by mixing with the spray medium or by flowing at high speed during ejection.

特許文献2では、液体流出穴より噴出する液体に対して交差するように気体を衝突させて混合し、噴射口近傍で対向させた気液混合物を衝突させる。液体は、気体との衝突混合や気液混合物として衝突することにより微細化される。気液混合物とすることで衝突力は液体単独の場合よりも強まり、液体はより微細化される。なお、噴射口から扇状に噴霧されるため、ファンスプレイ式とも呼ばれる。   In Patent Document 2, gas is collided and mixed so as to intersect with the liquid ejected from the liquid outflow hole, and the gas-liquid mixture opposed in the vicinity of the ejection port is collided. A liquid is refined | miniaturized by colliding as collision mixing with gas or a gas-liquid mixture. By making the gas-liquid mixture, the collision force becomes stronger than in the case of the liquid alone, and the liquid is further refined. In addition, since it sprays in fan shape from an injection port, it is also called a fan spray type.

特開2010-127518号公報JP 2010-127518 A 特開平9-239299号公報JP-A-9-239299

液体燃料の燃焼では、噴霧粒子径が大きいと燃焼反応が遅れ、燃焼効率の低下や煤塵,一酸化炭素が発生し易くなる。また、噴霧粒子径が小さい場合でも燃焼用空気との混合が悪く、噴霧粒子の周囲の燃焼用空気が不足すると、煤塵や一酸化炭素が発生し易くなる。このため、液体燃料の燃焼では、微粒化と共に噴霧粒子と燃焼用空気との混合に留意する必要がある。   In the combustion of liquid fuel, if the spray particle size is large, the combustion reaction is delayed, so that the combustion efficiency is reduced, soot and carbon monoxide are likely to be generated. Further, even when the spray particle size is small, mixing with the combustion air is poor, and if the combustion air around the spray particles is insufficient, soot and carbon monoxide are likely to be generated. For this reason, in the combustion of liquid fuel, it is necessary to pay attention to atomization and mixing of spray particles and combustion air.

そして、本発明者等の検討によれば、液体燃料を噴霧させて燃焼させる場合、噴霧粒子の粒子径と運動量が、火炎の安定化(噴霧の着火の促進)および燃焼用空気との混合促進(燃焼用空気との混合促進による未燃分の低減,煤塵抑制)に重要である。   According to the study by the present inventors, when the liquid fuel is sprayed and burned, the particle size and momentum of the spray particles stabilize the flame (promote spray ignition) and promote mixing with combustion air. This is important for reducing unburned fuel and reducing dust by promoting mixing with combustion air.

例えば、直径で100μm未満、出来れば50μm以下に微粒化させた粒子(以下、微粒子と記す)は体積に占める表面積が大きく、炉内からの熱放射により昇温し、燃焼し易い。このため、これらの微粒子を噴霧ノズル近傍に滞留させると、噴霧の着火が早まり、火炎の安定化や燃焼反応の促進に寄与する。   For example, particles that have been atomized to a diameter of less than 100 μm, preferably 50 μm or less (hereinafter referred to as “fine particles”) have a large surface area in the volume, and are easily heated by heat radiation from the furnace and burn easily. For this reason, if these fine particles are retained in the vicinity of the spray nozzle, the ignition of the spray is accelerated, contributing to stabilization of the flame and promotion of the combustion reaction.

また、例えば、直径で100μm以上から300μm以下の粒子(以下、大粒子と記す)は粒子径が比較的大きいため、運動量が大きく、噴霧ノズルの周囲の気体の影響を受けにくい。このため、噴霧は通常約1m以上離れた位置まで到達し、噴霧ノズルから離れた位置から供給される燃焼用空気との混合が容易である。このため、燃焼反応が進み、未燃分や煤塵の発生を抑制できる。   Further, for example, particles having a diameter of 100 μm or more and 300 μm or less (hereinafter referred to as large particles) have a relatively large particle size, and therefore have a large momentum and are not easily influenced by the gas around the spray nozzle. For this reason, the spray normally reaches a position separated by about 1 m or more, and mixing with the combustion air supplied from a position away from the spray nozzle is easy. For this reason, combustion reaction advances and generation | occurrence | production of an unburned part and soot can be suppressed.

このようなことから、本発明者等の検討によれば、火炎の安定化と未燃分の低減,煤塵抑制には、一部の噴霧粒子を微粒子として噴霧ノズル近傍に滞留させることで火炎の安定性を維持し、他の噴霧粒子は運動量の大きい大粒子として燃焼用空気との混合を促進させることが望ましい。   For this reason, according to the study by the present inventors, in order to stabilize the flame, reduce the unburned content, and suppress the dust, some of the spray particles are retained in the vicinity of the spray nozzle as fine particles. It is desirable to maintain stability and facilitate the mixing of the other spray particles with combustion air as large particles with large momentum.

上述の特許文献1に示されるバーナチップ(噴霧ノズル)では、液体燃料と噴霧媒体の混合体を噴出孔から高速で噴出するので、混合体の運動量が高く、噴霧粒子中の比較的大きな噴霧粒子(大粒子)と微細化された噴霧粒子(微粒子)は同じ方向に噴出される。このため、微粒子が大粒子に同伴され易く、噴霧ノズル近傍に滞留する微粒子が少ない。   In the burner tip (spray nozzle) shown in Patent Document 1 described above, since the mixture of the liquid fuel and the spray medium is ejected at high speed from the ejection hole, the momentum of the mixture is high, and the relatively large spray particles in the spray particles. (Large particles) and atomized fine particles (fine particles) are ejected in the same direction. For this reason, the fine particles are easily accompanied by the large particles, and there are few fine particles staying in the vicinity of the spray nozzle.

また、上述の特許文献2に示される二流体ノズル(噴霧ノズル)では、扇型噴霧の外周側は運動量が低下し、噴霧ノズル近傍に滞留する微粒子が特許文献1に比べて多くなる。噴霧ノズル近傍に滞留する微粒子を多くして火炎の安定化を図るために、気液混合物中の気体量を多くすると、扇形噴霧の外周側の微粒子量は増えるものの、扇形噴霧の中央部は粒子径が小さくなることにより運動量が低下し、燃焼用空気との混合が悪化する可能性がある。一方、気液混合物中の気体量を少なくすると、扇形噴霧の中央部は運動量が高くなるものの、扇形噴霧の外周側の微粒子量が減り、火炎の安定化が損なわれる可能性がある。   Further, in the two-fluid nozzle (spray nozzle) shown in Patent Document 2 described above, the momentum is reduced on the outer peripheral side of the fan-shaped spray, and the fine particles staying in the vicinity of the spray nozzle are larger than those in Patent Document 1. Increasing the amount of gas in the gas-liquid mixture in order to stabilize the flame by increasing the amount of fine particles staying near the spray nozzle increases the amount of fine particles on the outer periphery of the fan spray, but the central part of the fan spray As the diameter decreases, the momentum decreases, and mixing with the combustion air may deteriorate. On the other hand, if the amount of gas in the gas-liquid mixture is reduced, the momentum in the central portion of the fan spray increases, but the amount of fine particles on the outer periphery side of the fan spray decreases and the stabilization of the flame may be impaired.

このように、従来の噴霧ノズルでは、噴霧ノズルの近傍に微粒子を集め着火を促進する(火炎を安定化する)ことと、噴霧の運動量を高め噴霧粒子と燃焼用空気との混合を促進することの両立が難しい。   As described above, in the conventional spray nozzle, fine particles are collected in the vicinity of the spray nozzle to promote ignition (stabilize the flame), and the momentum of the spray is increased to promote mixing of the spray particles and the combustion air. It is difficult to achieve both.

本発明の目的は、噴霧ノズルの近傍に微粒子を集め着火を促進するとともに、噴霧の運動量を高め噴霧粒子と燃焼用空気との混合を促進することが可能な噴霧ノズルとこの噴霧ノズルを備えたバーナ及び燃焼装置を提供することにある。   An object of the present invention is to provide a spray nozzle capable of collecting fine particles in the vicinity of the spray nozzle and promoting ignition, and increasing the momentum of spray to promote mixing of spray particles and combustion air, and the spray nozzle. It is to provide a burner and a combustion device.

上記目的を達成するため、本発明の噴霧ノズル並びに本発明のバーナ及び燃焼装置における噴霧ノズルは、噴霧流体と噴霧用媒体を混合した混合流体を噴出孔の近くで対向させて衝突させ、噴出孔から混合流体を微細化して噴霧するようにした噴霧ノズルであって、噴霧ノズル先端部を噴霧方向から見たときの混合流体の流れの幅方向において、衝突前の混合流体における噴霧用媒体の比率を異ならせて、混合流体を衝突させるようにしたものである。   In order to achieve the above object, the spray nozzle of the present invention and the spray nozzle in the burner and combustion apparatus of the present invention collide a mixed fluid, which is a mixture of the spray fluid and the spray medium, facing each other near the ejection hole, The ratio of the spray medium in the mixed fluid before the collision in the width direction of the flow of the mixed fluid when the tip of the spray nozzle is viewed from the spray direction. The mixed fluids are made to collide with each other.

好ましくは、混合流体の流れの幅方向における両端側の噴霧用媒体の比率を高くして、混合流体を衝突させる。   Preferably, the ratio of the spray medium on both ends in the width direction of the mixed fluid flow is increased to cause the mixed fluid to collide.

本発明によれば、混合流体中の噴霧用媒体の比率が低いところと高いところが作られるので、この混合流体を衝突させて噴霧することにより、噴霧用媒体の比率が高い部分の混合流体で生成される噴霧は微粒化が進み、噴霧用媒体の比率が低い部分の混合流体で生成される噴霧は比較的に粒子径が大きい噴霧となる。このため、火炎安定化に寄与する微粒子を多くすることができるとともに、噴霧ノズルから離れた位置を流れる燃焼用空気まで到達する運動量が高い噴霧も一緒に形成することができる。従って、噴霧ノズルの近傍に微粒子を集め着火を促進するとともに、噴霧の運動量を高め噴霧粒子と燃焼用空気との混合を促進することが可能となる。   According to the present invention, where the ratio of the spraying medium in the mixed fluid is low and high, the mixed fluid is collided and sprayed to generate a mixed fluid having a high ratio of the spraying medium. The spray to be sprayed is atomized, and the spray generated by the mixed fluid in the portion where the ratio of the spray medium is low becomes a spray having a relatively large particle size. For this reason, while being able to increase the fine particles which contribute to flame stabilization, the spray with high momentum which reaches | attains the combustion air which flows through the position away from the spray nozzle can also be formed together. Accordingly, it is possible to collect fine particles in the vicinity of the spray nozzle and promote ignition, and to increase the momentum of spray and promote mixing of spray particles and combustion air.

また、本発明によれば、両端側の噴霧用媒体の比率を高くするようにしているので、噴霧の外周側での微粒子を効果的に増やすことができ、また、噴霧のうち微粒化が必要な部分に噴霧用媒体が用いられることになり、その結果、噴霧用媒体の使用量を低減することができ、燃焼装置のエネルギー効率を高めることができる。   In addition, according to the present invention, since the ratio of the spray medium on both end sides is increased, the fine particles on the outer peripheral side of the spray can be effectively increased, and atomization of the spray is necessary. As a result, the amount of the spray medium used can be reduced, and the energy efficiency of the combustion apparatus can be increased.

本発明の第1の実施例に係る噴霧ノズル先端部の断面図。Sectional drawing of the spray nozzle front-end | tip part which concerns on 1st Example of this invention. 本発明の第1の実施例に係る噴霧ノズル先端部の平面図。The top view of the spray nozzle front-end | tip part which concerns on 1st Example of this invention. 本発明の第1の実施例に係る噴霧ノズル先端部の噴出孔近傍の噴霧流体/噴霧用媒体/混合流体の各流路を示す説明図。Explanatory drawing which shows each flow path of the spray fluid / spraying medium / mixed fluid of the spray nozzle front-end | tip part vicinity of the spray nozzle which concerns on 1st Example of this invention. 本発明の第1の実施例に係る噴霧ノズル先端部の混合流体流路の流路断面を示す説明図。Explanatory drawing which shows the flow-path cross section of the mixed fluid flow path of the spray nozzle front-end | tip part which concerns on 1st Example of this invention. 本発明の第1の実施例の変形例に係る噴霧ノズル先端部の平面図。The top view of the spray nozzle front-end | tip part which concerns on the modification of the 1st Example of this invention. 本発明のバーナの一例を示す説明図。Explanatory drawing which shows an example of the burner of this invention. 本発明の燃焼装置の一例を示す説明図である。It is explanatory drawing which shows an example of the combustion apparatus of this invention. 本発明の第2の実施例に係る噴霧ノズル先端部の断面図。Sectional drawing of the spray nozzle front-end | tip part which concerns on the 2nd Example of this invention. 本発明の第2の実施例に係る噴霧ノズル先端部の噴出孔近傍の噴霧流体/噴霧用媒体/混合流体の各流路を示す説明図。Explanatory drawing which shows each flow path of the spray fluid / spraying medium / mixed fluid of the spray nozzle front-end | tip part vicinity of the spray nozzle concerning 2nd Example of this invention vicinity. 本発明の第2の実施例の変形例に係る噴霧ノズル先端部の噴出孔近傍の噴霧流体/噴霧用媒体/混合流体の各流路を示す説明図。Explanatory drawing which shows each flow path of the spray fluid / spraying medium / mixed fluid in the vicinity of the ejection hole at the tip of the spray nozzle according to a modification of the second embodiment of the present invention.

本発明の実施例における噴霧ノズルは、液体燃料を噴霧流体とし圧力を加えて供給し、別の流体(蒸気や圧縮空気)を噴霧用媒体とし圧力を加えて供給し、噴霧流体と噴霧用媒体の混合流体同士を、噴出孔の近く(内部/上流)で衝突させて噴出させるようにしたノズルにおいて、混合流体の流れの幅方向において、例えば、噴霧流体と噴霧用媒体の接続する部分において、噴霧流体もしくは噴霧用媒体を接続先の流路に対し偏らせて接続することにより、衝突前の混合流体中の噴霧用媒体の比率を局所的に変えるようにしたものである。   The spray nozzle according to the embodiment of the present invention supplies liquid fuel as a spray fluid with pressure applied, and supplies another fluid (steam or compressed air) as a spray medium with pressure applied. The spray fluid and the spray medium In the nozzle in which the mixed fluids are caused to collide with each other near the ejection hole (internal / upstream) and ejected, in the width direction of the flow of the mixed fluid, for example, in the portion where the spray fluid and the spray medium are connected, The ratio of the spray medium in the mixed fluid before the collision is locally changed by connecting the spray fluid or the spray medium so as to be biased with respect to the flow path at the connection destination.

混合流体中の噴霧用媒体の比率を局所的に変えることにより、噴出孔(噴霧ノズル出口)から噴出する混合流体のうち、噴霧用媒体の比率が高い部分は、微粒化が進む。このため微粒子が多くなり、燃焼反応が進むため、火炎を安定に保持し易くなる。一方、噴霧用媒体の比率が低い部分は比較的に粒子径が大きくなる。このため、噴霧の運動量が高く、噴霧ノズルから離れた位置を流れる燃焼用空気まで到達し、燃焼反応が進み、未燃分や煤塵を抑制できる。   By locally changing the ratio of the spray medium in the mixed fluid, the portion of the mixed fluid ejected from the ejection hole (spray nozzle outlet) having a high ratio of the spray medium is atomized. For this reason, the amount of fine particles increases and the combustion reaction proceeds, so that it is easy to stably hold the flame. On the other hand, the particle diameter is relatively large in the portion where the ratio of the spray medium is low. For this reason, the momentum of the spray is high, and it reaches the combustion air flowing at a position away from the spray nozzle, the combustion reaction proceeds, and unburned matter and dust can be suppressed.

以下、図面を用いて本発明の各実施例を詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本実施例は、噴出孔を中心として、外側に噴霧流体流路を対向させて設け、噴霧用媒体流路を噴出孔より上流側の噴霧流体流路に接続するようにしたもので、そして、噴霧流体流路と噴霧用媒体流路の接続を噴霧流体の流れ方向に対して幅方向の両端側としたものである。   In this embodiment, the spray fluid channel is provided on the outer side with the spray hole as the center, the spray medium channel is connected to the spray fluid channel upstream of the spray hole, and The connection between the spray fluid flow path and the spray medium flow path is on both ends in the width direction with respect to the flow direction of the spray fluid.

図1〜4に本実施例の噴霧ノズル(先端部)を示す。図1は上流側が噴霧流体(液体燃料)の供給系統(図示せず)と噴霧用媒体(蒸気または圧縮空気など)の供給系統(図示せず)に接続する噴霧ノズル先端部1の断面図を示す。図2は噴出ノズル先端部1の平面図であり、図3は図1に示す噴霧ノズル先端部1のA-A矢視における噴出孔近傍の流路の状況を示す説明図である(但し、噴霧ノズル先端部の輪郭線の図示は省略している。図9及び10においても同じ。)。図4は図3のB-B矢視における混合流体流路の断面形状を示す説明図である。   1-4 show the spray nozzle (tip portion) of this embodiment. FIG. 1 is a cross-sectional view of a spray nozzle tip 1 connected upstream to a supply system (not shown) of a spray fluid (liquid fuel) and a supply system (not shown) of a spray medium (such as steam or compressed air). Show. 2 is a plan view of the tip 1 of the ejection nozzle, and FIG. 3 is an explanatory view showing the state of the flow path in the vicinity of the ejection hole of the spray nozzle tip 1 shown in FIG. The illustration of the outline of the tip is omitted (the same applies to FIGS. 9 and 10). FIG. 4 is an explanatory diagram showing a cross-sectional shape of the mixed fluid flow path as viewed in the direction of arrows BB in FIG.

図1に示すように、噴霧ノズル先端部1は外側部材1aと内側部材1bとにより構成されている。噴霧流体と噴霧用媒体は独立した流路を通り接続部にて混合し、混合流体流路を流れる。即ち、噴霧ノズル先端部1において噴霧流体は噴霧流体流路10〜13に分かれて流れる。噴霧流体流路10,12は外側部材1aと内側部材1bとの間に形成され、噴霧流体流路11,13は内側部材1b内に形成されている。本実施例では、噴霧流体流路10,12を外側部材1aと内側部材1bとの間に形成しているが、噴霧流体流路11,13と同様に内側部材1b内に形成しても良い。噴霧用媒体は噴霧用媒体流路14〜17に分かれて流れ、噴出孔2,3の上流側でそれぞれ噴霧流体流路10〜13と接続する。噴霧用媒体流路14〜17は内側部材1b内に形成されている。噴霧流体と噴霧用媒体とが混合するように(平行な流れとならないように)、噴霧用媒体流路は噴霧流体流路に対し傾きを持って接続している(但し、本実施例では後述のように噴霧流体流路の幅方向の中央側と両端側では混合度合いが異なる。)。噴霧流体と噴霧用媒体は接続部にて混合し、混合流体流路18〜21を通り噴出孔2,3からそれぞれ噴出する。即ち、混合流体流路18と19,混合流体流路20と21は、それぞれ、噴出孔2,3の内部(上流)側で対向流路を形成している。混合流体流路18〜21は外側部材1aと内側部材1bとの間に形成されている。なお、混合流体流路18〜21は噴霧流体流路11,13と同様に内側部材1b内に形成しても良い。   As shown in FIG. 1, the spray nozzle tip 1 is composed of an outer member 1a and an inner member 1b. The atomizing fluid and the atomizing medium pass through independent channels and are mixed at the connection portion, and flow through the mixed fluid channel. That is, the spray fluid flows in the spray fluid flow paths 10 to 13 at the spray nozzle tip 1. The spray fluid channels 10 and 12 are formed between the outer member 1a and the inner member 1b, and the spray fluid channels 11 and 13 are formed in the inner member 1b. In this embodiment, the spray fluid channels 10 and 12 are formed between the outer member 1a and the inner member 1b, but may be formed in the inner member 1b in the same manner as the spray fluid channels 11 and 13. . The spray medium flows divided into spray medium flow paths 14 to 17 and is connected to the spray fluid flow paths 10 to 13 on the upstream side of the ejection holes 2 and 3, respectively. The spray medium flow paths 14 to 17 are formed in the inner member 1b. The spray medium flow path is connected with an inclination to the spray fluid flow path so that the spray fluid and the spray medium are mixed (so as not to be in parallel flow). Thus, the degree of mixing is different between the center side and the both end sides in the width direction of the spray fluid flow path. The atomizing fluid and the atomizing medium are mixed at the connecting portion, and are ejected from the ejection holes 2 and 3 through the mixed fluid flow paths 18 to 21, respectively. That is, the mixed fluid channels 18 and 19 and the mixed fluid channels 20 and 21 form opposing channels on the inside (upstream) side of the ejection holes 2 and 3, respectively. The mixed fluid flow paths 18 to 21 are formed between the outer member 1a and the inner member 1b. The mixed fluid channels 18 to 21 may be formed in the inner member 1b in the same manner as the spray fluid channels 11 and 13.

噴出孔2,3から噴出する混合流体は混合流体流路18,19と混合流体流路20,21の流れ方向(混合流体流路が延びる/存在する方向)に対し直角方向に扇型の噴霧を形成する。噴出ノズル先端部1には、扇型噴霧の形成方向と同じ方向の凹部4が形成され、凹部4の底面に噴出孔2,3の開口部が形成されている。噴霧流体は噴霧用媒体との流路内での混合により微細化する他、噴出孔2,3出口では衝突力により薄い液膜を形成し、噴出後に周囲の気体とのせん断力により分裂し、微粒化する。このように流体の衝突力により微粒化する噴霧方式を一般にファンスプレイ式噴霧という。   The mixed fluid ejected from the ejection holes 2 and 3 is fan-shaped spray in a direction perpendicular to the flow direction of the mixed fluid channels 18 and 19 and the mixed fluid channels 20 and 21 (the direction in which the mixed fluid channel extends / exists). Form. The ejection nozzle tip 1 is formed with a recess 4 in the same direction as the fan-shaped spray formation, and the openings of the ejection holes 2 and 3 are formed on the bottom surface of the recess 4. The atomizing fluid is refined by mixing with the atomizing medium in the flow path, and a thin liquid film is formed by the collision force at the outlets of the ejection holes 2 and 3, and is divided by the shearing force with the surrounding gas after the ejection, Atomize. Such a spraying method for atomizing by the impact force of fluid is generally referred to as fan spray spraying.

ファンスプレイ式噴霧では、噴出孔2,3において混合流体が衝突し,直角方向に拡がることで、噴霧の運動量は低下する。特に、噴霧の外周部分では噴霧の運動量は低く、微粒子(直径100μm未満)が多くなる。運動量が低いため微粒子は噴霧ノズル近傍に留まりやすくなる。直径で100μm未満、出来れば50μm以下に微粒化させた粒子(以下、微粒子と記す)は体積に占める表面積が大きく、炉内からの熱放射により昇温して燃焼し易い。このため、これらの微粒子を噴霧ノズル近傍に滞留させることで、噴霧の着火が早まり、火炎の安定化や燃焼反応の促進に寄与する。なお、微粒化の程度は、混合流体の圧力や噴霧用媒体量(噴霧流体に対する噴霧用媒体の割合)により調整することができる。   In the fan spray type spray, the mixed fluid collides in the ejection holes 2 and 3 and spreads in a right angle direction, so that the momentum of the spray decreases. In particular, the momentum of the spray is low in the outer peripheral portion of the spray, and the amount of fine particles (diameter less than 100 μm) increases. Due to the low momentum, the fine particles tend to stay near the spray nozzle. Particles that are atomized to a diameter of less than 100 μm, preferably 50 μm or less (hereinafter referred to as “fine particles”) have a large surface area in the volume, and are easily combusted by increasing the temperature by heat radiation from the furnace. For this reason, by making these fine particles stay in the vicinity of the spray nozzle, the ignition of the spray is accelerated, contributing to stabilization of the flame and promotion of the combustion reaction. The degree of atomization can be adjusted by the pressure of the mixed fluid and the amount of spraying medium (ratio of the spraying medium to the spraying fluid).

また、ファンスプレイ式噴霧では、噴霧の中央部分は外周部分に対して噴霧量が多く、運動量が高い。さらに大粒子(直径100〜300μm)が多い。運動量が高く、粒子径が比較的大きいため、噴霧は噴霧ノズル周囲の気体の影響を微粒子よりも受けにくい。このため、噴霧は通常1m以上離れた位置まで到達し、噴霧ノズルから離れた位置から供給される燃焼用空気との混合が容易である。燃焼用空気と混合することで、燃焼反応が進み、未燃分や煤塵の発生を抑制できる。   In the fan spray type spray, the central portion of the spray has a larger spray amount and a higher momentum than the outer peripheral portion. Furthermore, there are many large particles (diameter 100-300 micrometers). Because of its high momentum and relatively large particle size, spraying is less susceptible to the effects of gas around the spray nozzle than fine particles. For this reason, the spray normally reaches a position separated by 1 m or more, and mixing with the combustion air supplied from a position away from the spray nozzle is easy. By mixing with combustion air, the combustion reaction proceeds and the generation of unburned matter and soot can be suppressed.

また、本実施例では、噴霧ノズル先端部に噴出孔を複数個設け、各々の噴出孔から異なった方向に噴霧を形成することで、火炎を複数個に分割するようにしている。分割火炎を形成すると、火炎の表面積は大きくなり、火炎からの放射冷却の効果が高まる。このため、高温で生成しやすい窒素酸化物(NOx)を低減することができる。また、分割火炎により燃焼用空気が火炎の周囲から混合しやすくなるため、未燃分や煤塵の発生を低減できる。本実施例では、図2に示すように4個の噴出孔を設けているが、2つでも3つでも良い。また、5個以上設けても良い。多数の噴出孔を備えることで分割火炎の効果が高まるほか、液体燃料の噴出量を増やし燃焼量を増やすことができる。但し、本発明は、分割火炎を必須とするものではなく、分割火炎の効果は得られないが、噴出孔が一つの場合でも良い。   Further, in this embodiment, a plurality of ejection holes are provided at the tip of the spray nozzle, and the flame is divided into a plurality of parts by forming sprays in different directions from the respective ejection holes. When a divided flame is formed, the surface area of the flame is increased, and the effect of radiation cooling from the flame is enhanced. For this reason, nitrogen oxide (NOx) which is easy to produce | generate at high temperature can be reduced. In addition, since the combustion air is easily mixed from around the flame by the divided flame, generation of unburned matter and soot can be reduced. In this embodiment, four ejection holes are provided as shown in FIG. 2, but two or three may be used. Five or more may be provided. By providing a large number of ejection holes, the effect of the divided flame is enhanced, and the amount of liquid fuel ejected can be increased to increase the amount of combustion. However, the present invention does not necessarily require a divided flame, and the effect of the divided flame cannot be obtained, but a single ejection hole may be used.

火炎の安定性と未燃分や煤塵、窒素酸化物の低減には、上述のように噴霧の一部を微粒子として噴霧ノズル近傍に滞留させ、他の粒子は運動量の大きい大粒子として、燃焼用空気との混合を促進させることが望ましい。ファンスプレイ式では、噴霧の一部を微粒子として噴霧ノズル近傍に滞留させ、また、他の粒子は運動量の大きい大粒子として、燃焼用空気との混合を促進させることがある程度可能であるが、火炎の安定化と未燃分や煤塵の発生を抑制の効果をより確実なもとのするためには、噴霧ノズル近傍に滞留する微粒子を多くするとともに、噴霧の運動量を高め噴霧粒子と燃焼用空気との混合を促進すること必要である。   To reduce the stability of the flame and the unburned matter, soot and nitrogen oxides, as described above, a part of the spray is retained as fine particles near the spray nozzle, and the other particles are used as large particles with large momentum for combustion. It is desirable to promote mixing with air. In the fan spray type, it is possible to make some of the spray stay in the vicinity of the spray nozzle as fine particles and other particles as large particles with large momentum to promote mixing with the combustion air to some extent. In order to achieve a more reliable effect of stabilizing and suppressing the generation of unburned matter and dust, the amount of fine particles staying in the vicinity of the spray nozzle is increased, the spray momentum is increased, and the spray particles and combustion air are increased. It is necessary to promote mixing with.

本実施例では、図3に示すように、噴霧流体流路10,11への噴霧用媒体流路14,15の接続を、噴霧用媒体流路14,15の開口部が噴霧流体の流れ方向に対し幅方向の両端側に位置するように行い、噴霧ノズル近傍に滞留する微粒子を多くするとともに、噴霧の運動量を高め噴霧粒子と燃焼用空気との混合を促進している。なお、図3において、噴出孔2と凹部4については、流路との位置関係を示すために破線で図示している(図9及び10においても同様である。)。   In the present embodiment, as shown in FIG. 3, the connection of the spraying medium flow paths 14 and 15 to the spraying fluid flow paths 10 and 11 is performed, and the openings of the spraying medium flow paths 14 and 15 are in the flow direction of the spraying fluid. On the other hand, the fine particles staying in the vicinity of the spray nozzle are increased, and the momentum of the spray is increased to promote the mixing of the spray particles and the combustion air. In FIG. 3, the ejection holes 2 and the recesses 4 are indicated by broken lines in order to show the positional relationship with the flow path (the same applies to FIGS. 9 and 10).

このように、噴霧用媒体流路を噴霧流体流路に接続すれば、混合流体に占める噴霧用媒体の割合は、幅方向の中央部分が低く、両端側で高くなる。混合流体流路18〜21の下流側の噴出孔2,3から扇状に形成される混合流体は、中央部分の噴霧用媒体の割合が低く、外周部分で高くなる。   In this way, if the spray medium flow path is connected to the spray fluid flow path, the ratio of the spray medium to the mixed fluid is low in the central portion in the width direction and high on both ends. In the mixed fluid formed in a fan shape from the ejection holes 2 and 3 on the downstream side of the mixed fluid flow paths 18 to 21, the ratio of the spray medium in the central portion is low and is high in the outer peripheral portion.

噴霧の中央部分は噴霧用媒体の割合が低いため、従来の噴霧用媒体と噴霧流体が均一に混合する場合に比べて、粒子径が比較的大きく、運動量の高い噴霧となる。この大粒子は噴霧ノズル周囲の気体の影響を微粒子よりも受けにくく、噴霧は通常1m以上離れた位置まで到達し、噴霧ノズルから離れた位置から供給される燃焼用空気との混合が容易である。燃焼用空気と混合することで、燃焼反応が進み、未燃分や煤塵の発生を抑制できる。   Since the ratio of the spray medium is low in the central portion of the spray, the spray has a relatively large particle size and a high momentum compared to the case where the conventional spray medium and the spray fluid are uniformly mixed. The large particles are less susceptible to the gas around the spray nozzle than the fine particles, and the spray usually reaches a position 1 m or more away and is easy to mix with the combustion air supplied from a position away from the spray nozzle. . By mixing with combustion air, the combustion reaction proceeds and the generation of unburned matter and soot can be suppressed.

一方、噴霧の外周部分は噴霧用媒体の割合が高いため、従来の噴霧用媒体と噴霧流体が均一に混合する場合に比べて、粒子径が比較的小さく、運動量の低い噴霧となる。この微粒子は噴霧ノズル周囲の気体の影響を大粒子よりも受けやすく、噴霧ノズル近傍に留まり、速やかに反応することで火炎の安定性に寄与する。   On the other hand, since the ratio of the spray medium is high in the outer peripheral portion of the spray, the spray has a relatively small particle diameter and a low momentum compared to the case where the conventional spray medium and the spray fluid are uniformly mixed. These fine particles are more easily affected by the gas around the spray nozzle than large particles, stay in the vicinity of the spray nozzle, and react quickly to contribute to flame stability.

このように、混合流体中の噴霧流体と噴霧用媒体の比率を噴出孔の上流側流路において幅方向に変えることで、燃焼反応の促進と火炎の安定性の寄与を両立させる噴霧を形成することができる(言い換えれば、2種類の噴霧を一緒に形成することができる。)。さらに、噴霧のうち、微粒化が必要な部分のみ噴霧用媒体を用いることで、噴霧用媒体の使用量を多くすることなく、噴霧ノズル近傍の微粒子を多くすることができ、その結果、噴霧用媒体の使用量を低減することができる。このため、噴霧用媒体の圧力増加に必要な動力を削減し、また、噴霧用媒体に蒸気を使用する場合に燃焼装置内への蒸気の供給量が減り、燃焼排ガス中の水蒸気の顕熱損失を低減出来る等、燃焼装置のエネルギー効率を高める(ボイラ効率の低下等のエネルギー損失を抑える)ことができる。   In this way, by changing the ratio of the spray fluid to the spray medium in the mixed fluid in the width direction in the upstream flow path of the ejection hole, a spray that promotes both the combustion reaction and contributes to the stability of the flame is formed. (In other words, two types of sprays can be formed together). Furthermore, by using the spraying medium only for the portion of the spray that needs to be atomized, the amount of fine particles in the vicinity of the spray nozzle can be increased without increasing the amount of the spraying medium used. The amount of medium used can be reduced. For this reason, the power required to increase the pressure of the spraying medium is reduced, and when steam is used as the spraying medium, the amount of steam supplied to the combustion device is reduced, and the sensible heat loss of steam in the combustion exhaust gas is reduced. The energy efficiency of the combustion device can be increased (energy loss such as a decrease in boiler efficiency can be suppressed).

本実施例の噴霧ノズルにおいては、混合流体流路18〜21の流路断面は矩形や半円形を基本とするが、図4に示すように、混合流体流路18の流路断面を、噴霧流体流路10と噴霧用流体流路14の混合部の下流で区分けすると、噴出孔の上流側流路においても混合流体中の噴霧流体と噴霧用媒体の比率を幅方向に変えたまま噴出孔2から噴出させやすくなる。流路断面における区分けは、図4に示すように流路深さを変える他、仕切りなどを用いて行うことができる。   In the spray nozzle of the present embodiment, the flow channel cross sections of the mixed fluid flow channels 18 to 21 are basically rectangular or semicircular, but the flow channel cross section of the mixed fluid flow channel 18 is sprayed as shown in FIG. When the fluid flow path 10 and the spray fluid flow path 14 are separated downstream of the mixing portion, the spray holes are also changed in the width direction in the ratio of the spray fluid to the spray medium in the mixed fluid in the upstream flow path of the spray holes. It becomes easy to eject from 2. Separation in the cross section of the flow path can be performed using a partition or the like in addition to changing the flow path depth as shown in FIG.

上述の実施例では、扇型噴霧の形成方向を噴霧ノズル先端部1の半径方向と直角な方向に形成されるように構成しているが、図5に示すように、扇型噴霧の形成方向を噴霧ノズル先端部1の半径方向と同じ方向に形成するようにしても良い。この場合、混合流体流路18と19,混合流体流路20と21は、噴霧ノズル先端部1の半径方向と直角な方向に延びるように形成されている。   In the above-described embodiment, the fan spray is formed in a direction perpendicular to the radial direction of the spray nozzle tip 1, but as shown in FIG. 5, the fan spray is formed. May be formed in the same direction as the radial direction of the spray nozzle tip 1. In this case, the mixed fluid channels 18 and 19 and the mixed fluid channels 20 and 21 are formed to extend in a direction perpendicular to the radial direction of the spray nozzle tip 1.

図6に上述の噴霧ノズル(噴霧ノズル先端部1)を用いたバーナの一例を、図7にバーナを備えた燃焼装置の一例を示す。   FIG. 6 shows an example of a burner using the above-described spray nozzle (spray nozzle tip 1), and FIG. 7 shows an example of a combustion apparatus equipped with the burner.

図6に示すように、バーナは、中心軸に噴霧ノズルを有する。噴霧ノズルは、中心軸に位置する噴霧ノズル先端部1及び噴霧流体と噴霧用媒体が流れる同軸流路構成部材30と、噴霧ノズル先端部1の近くに設けられた火炎安定用の障害物31及びイグナイタ48から構成されている。障害物31としては旋回流発生器やスリットを有する邪魔板などが一般的に用いられる。   As shown in FIG. 6, the burner has a spray nozzle on the central axis. The spray nozzle includes a spray nozzle tip 1 located on the central axis, a coaxial flow path component 30 through which a spray fluid and a spray medium flow, a flame stabilizing obstacle 31 provided near the spray nozzle tip 1 and The igniter 48 is used. As the obstacle 31, a swirl flow generator or a baffle plate having a slit is generally used.

噴霧ノズル先端部1からは扇型の噴霧が火炉42内に形成される。扇形の噴霧は中央部分33と外周部分34a、34bとに分かれる。噴霧の中央部分33は外周部分34a、34bに対して噴霧量が多く、運動量が高く、大粒子(直径100〜300μm)が多い。運動量が高く、粒子径が比較的大きいため、噴霧は通常1m以上離れた位置まで到達する。噴霧の外周部分34a、34bでは噴霧の運動量は低く、微粒子(直径100μm以下)が多い。運動量が低いため微粒子は噴霧ノズル近傍に留まりやすくなる。   A fan-shaped spray is formed in the furnace 42 from the spray nozzle tip 1. The fan-shaped spray is divided into a central portion 33 and outer peripheral portions 34a and 34b. The central portion 33 of the spray has a larger spray amount, a higher momentum, and a larger amount of large particles (diameter 100 to 300 μm) than the outer peripheral portions 34a and 34b. Since the momentum is high and the particle size is relatively large, the spray usually reaches a position separated by 1 m or more. In the outer peripheral portions 34a and 34b of the spray, the momentum of the spray is low and there are many fine particles (diameter of 100 μm or less). Due to the low momentum, the fine particles tend to stay near the spray nozzle.

なお、図6や図7では、噴霧の中央部分33と外周部分34a、34bを対比して示すために、それらを区分した記載としているが、実際には両者は連続的に変化する。   6 and 7, in order to show the central portion 33 and the outer peripheral portions 34a and 34b of the spray for comparison, they are described as being divided, but in actuality, both change continuously.

燃焼用空気はウインドボックス35から3つの流路に分かれて供給される。中心の噴霧ノズル先端部1に近い方から、1次流路36、2次流路37、3次流路38である。それぞれ1次空気39、2次空気40、3次空気41として火炉42内に噴出する。3次流路38はその外周が火炉壁43に接続する。また、火炉壁43には伝熱管44を設けている。また、旋回流発生器45、46やガイド板47により燃焼用空気の噴出方向を変えて、煤塵やNOxの発生を抑制する。なお、1次流路36から3次流路38はそれぞれダンパ(図示せず)にてその流量を制御する。これらは従来のバーナと同様な構造であり詳細な説明を省略する。   Combustion air is supplied from the window box 35 in three flow paths. The primary flow path 36, the secondary flow path 37, and the tertiary flow path 38 are located closer to the central spray nozzle tip 1. The primary air 39, the secondary air 40, and the tertiary air 41 are ejected into the furnace 42, respectively. The outer periphery of the tertiary flow path 38 is connected to the furnace wall 43. A heat transfer tube 44 is provided on the furnace wall 43. Further, the swirling flow generators 45 and 46 and the guide plate 47 are used to change the direction in which the combustion air is ejected to suppress the generation of soot and NOx. The flow rates of the primary flow path 36 to the tertiary flow path 38 are controlled by dampers (not shown). These have the same structure as that of the conventional burner and will not be described in detail.

噴霧ノズル先端部1の近くに設置されたイグナイタ48を、上述の噴霧ノズル先端部1の噴出孔2,3から噴出される噴霧に近づけることで、イグナイタ48の先端近傍には微粒子が滞留する。さらに障害物31の下流に1次流路36から噴出する1次空気39の流速の遅い部分が形成するため、微粒子の滞留が増える。   Fine particles stay in the vicinity of the tip of the igniter 48 by bringing the igniter 48 installed near the spray nozzle tip 1 close to the spray ejected from the ejection holes 2 and 3 of the spray nozzle tip 1 described above. Further, since a portion of the primary air 39 ejected from the primary flow path 36 with a slow flow rate is formed downstream of the obstacle 31, the retention of fine particles increases.

また、本実施例のバーナの噴霧ノズル(先端部)では、噴霧流体流路への噴霧用媒体流路の接続を、図3に示すように噴霧用媒体流路の開口部が噴霧流体の流れ方向に対し幅方向の両端側に位置するように行っている。   Further, in the spray nozzle (tip portion) of the burner of this embodiment, the connection of the spray medium flow path to the spray fluid flow path is as shown in FIG. 3, and the opening of the spray medium flow path is the flow of the spray fluid. It is performed so as to be positioned at both ends in the width direction with respect to the direction.

本実施例の燃焼装置は、燃料を燃焼させる火炉(燃焼炉)と、火炉に液体燃料を供給する液体燃料供給系統と、火炉に酸化剤を含む燃焼用気体を供給する燃焼用気体供給系統と、燃料供給系統と燃焼用気体供給系統が接続し火炉の炉壁に設けられた燃料を燃焼させるバーナと、火炉で発生した燃焼ガスを火炉の外部へ供給する煙道とを有する。   The combustion apparatus of the present embodiment includes a furnace (combustion furnace) for burning fuel, a liquid fuel supply system for supplying liquid fuel to the furnace, and a combustion gas supply system for supplying combustion gas containing an oxidant to the furnace. The fuel supply system and the combustion gas supply system are connected to each other to burn the fuel provided on the furnace wall of the furnace, and the flue for supplying the combustion gas generated in the furnace to the outside of the furnace.

具体的には、図7に示すように、本実施例の燃焼装置は、ボイラを構成する火炉42の火炉壁43に、燃料と燃焼用空気とを供給する複数個のバーナ22を設置している。バーナ22には燃焼用空気供給系統51と液体燃料供給系統52,噴霧用媒体供給系統53が接続する。本実施例では燃焼用空気供給系統はバーナに接続する配管55とその下流側の空気供給口54に接続する配管56に分岐する。各々の配管には流量調節弁(図示せず)が設けられている。また、液体燃料供給系統52と噴霧用媒体供給系統53はそれぞれの上流側に圧力や流量を調整する供給器(図示せず)が接続し、下流端に噴霧ノズル先端部1が設置される。   Specifically, as shown in FIG. 7, the combustion apparatus of the present embodiment is provided with a plurality of burners 22 for supplying fuel and combustion air to a furnace wall 43 of a furnace 42 constituting a boiler. Yes. A combustion air supply system 51, a liquid fuel supply system 52, and a spray medium supply system 53 are connected to the burner 22. In this embodiment, the combustion air supply system branches into a pipe 55 connected to the burner and a pipe 56 connected to the air supply port 54 on the downstream side. Each pipe is provided with a flow control valve (not shown). Further, the liquid fuel supply system 52 and the spray medium supply system 53 are connected to a feeder (not shown) for adjusting pressure and flow rate on the upstream side, and the spray nozzle tip 1 is installed at the downstream end.

本実施例では燃焼用空気は配管55と配管56に分岐され、それぞれバーナ22と空気供給口54から火炉42内に噴出する。燃焼用空気を分けて供給することで、バーナ22で形成される火炎の温度を低減する。さらに、バーナ22近傍にて空気不足で燃焼することで燃料中に含まれる窒素分の一部が還元剤として生成し、燃焼で発生するNOxを窒素に還元する反応が生じる。このため、火炉出口でのNOx濃度はバーナ22から全ての燃焼用空気を供給する場合に比べて低減する。また、空気供給口54から残りの燃焼用空気を供給し、燃料を完全燃焼させることで未燃焼分を低減する。空気供給口54からの燃焼用空気と混合した燃焼ガス57は、火炉の上部の熱交換器58で熱回収され、煙道59を通り、煙突60から大気に放出される。   In the present embodiment, the combustion air is branched into a pipe 55 and a pipe 56 and is jetted into the furnace 42 from the burner 22 and the air supply port 54, respectively. By separately supplying the combustion air, the temperature of the flame formed by the burner 22 is reduced. Further, by burning in the vicinity of the burner 22 due to air shortage, a part of the nitrogen contained in the fuel is generated as a reducing agent, and a reaction occurs in which NOx generated by the combustion is reduced to nitrogen. For this reason, the NOx concentration at the furnace outlet is reduced as compared with the case where all the combustion air is supplied from the burner 22. Further, the remaining combustion air is supplied from the air supply port 54 to completely burn the fuel, thereby reducing the unburned amount. The combustion gas 57 mixed with the combustion air from the air supply port 54 is recovered by the heat exchanger 58 at the upper part of the furnace, passes through the flue 59, and is discharged from the chimney 60 to the atmosphere.

本実施例のバーナ及び燃焼装置における噴霧ノズル(先端部)では、噴霧の中央部分33は噴霧用媒体の割合が低いため、従来の噴霧用媒体と噴霧流体が均一に混合する場合に比べて、粒子径が比較的大きくなる。この大粒子は噴霧ノズル周囲の気体の影響を微粒子よりも受けにくい。このため、噴霧の中央部分33はバーナの外周側を流れる2次空気40、3次空気41の流れとの混合が容易である。燃焼用空気と混合することで、燃焼反応が進み、未燃分や煤塵の発生を抑制できる。   In the spray nozzle (tip portion) in the burner and the combustion apparatus of the present embodiment, since the ratio of the spray medium is low in the central portion 33 of the spray, compared to the case where the conventional spray medium and the spray fluid are uniformly mixed, The particle size becomes relatively large. These large particles are less susceptible to the gas around the spray nozzle than the fine particles. Therefore, the central portion 33 of the spray is easily mixed with the flow of the secondary air 40 and the tertiary air 41 flowing on the outer peripheral side of the burner. By mixing with combustion air, the combustion reaction proceeds and the generation of unburned matter and soot can be suppressed.

一方、噴霧の外周部分34a、34bは噴霧用媒体の割合が高いため、従来の噴霧用媒体と噴霧流体が均一に混合する場合に比べて、粒子径が比較的小さくなる。この微粒子は噴霧ノズル周囲の気体の影響を大粒子よりも受けやすく、噴霧ノズル近傍に留まる。噴霧ノズル先端部1の近くにイグナイタ48が設置されており、イグナイタ48の先端近傍には微粒子が滞留する。さらに障害物31の下流に1次流路36から噴出する1次空気39の流速の遅い部分が形成するため、微粒子の滞留が増える。微粒子を滞留させることで、大粒子よりも少ないエネルギーの電気火花で微粒子を蒸発,燃焼させることができる。さらに微粒子の滞留を増やすことで、火炎が拡がりやすくなる。このため、本実施例のバーナ及び燃焼装置では、小容量のイグナイタにて確実に着火し易くなる。   On the other hand, since the ratio of the spray medium is high in the outer peripheral portions 34a and 34b of the spray, the particle diameter is relatively small as compared with the case where the conventional spray medium and the spray fluid are uniformly mixed. The fine particles are more easily affected by the gas around the spray nozzle than the large particles, and remain in the vicinity of the spray nozzle. An igniter 48 is installed near the spray nozzle tip 1, and fine particles stay near the tip of the igniter 48. Further, since a portion of the primary air 39 ejected from the primary flow path 36 with a low flow velocity is formed downstream of the obstacle 31, the retention of fine particles increases. By retaining the fine particles, the fine particles can be evaporated and burned with an electric spark with less energy than the large particles. Further, increasing the retention of fine particles makes it easier for the flame to spread. For this reason, in the burner and combustion apparatus of a present Example, it becomes easy to reliably ignite with a small capacity igniter.

また、本実施例の燃焼装置では、液体燃料を使用する場合を示したが、主燃料として微粉炭等の固体燃料を使用し、補助燃料として液体燃料を使用する場合も適用可能である。この場合、噴霧ノズル先端部1から液体燃料を火炉42内に噴霧する場合に上記の効果が得られる。   Moreover, although the case where liquid fuel was used was shown in the combustion apparatus of a present Example, it is applicable also when using solid fuel, such as pulverized coal, as main fuel, and using liquid fuel as auxiliary fuel. In this case, the above-described effect can be obtained when the liquid fuel is sprayed into the furnace 42 from the spray nozzle tip 1.

また、図7に示す燃焼装置の例では、燃焼用空気を配管55及び56に分岐した例を示すが、燃焼用空気をバーナ22からのみ供給する場合も本発明の噴霧ノズルを適用することができる。   In the example of the combustion apparatus shown in FIG. 7, an example in which the combustion air is branched into the pipes 55 and 56 is shown, but the spray nozzle of the present invention can also be applied when supplying combustion air only from the burner 22. it can.

また、図7に示す燃焼装置の例では、バーナ22を火炉の1つの壁面に上下に設けた場合を示すが、複数の壁面に設ける場合や、壁面の角部に設ける場合にも本発明の噴霧ノズルを適用できる。   Further, in the example of the combustion apparatus shown in FIG. 7, the burner 22 is provided up and down on one wall surface of the furnace. A spray nozzle can be applied.

本実施例は、噴出孔を中心として、外側に噴霧用媒体流路を対向させて設け、噴霧用媒体が噴出孔に向かう流路の途中に噴霧流体流路を接続するようにしたもので、そして、接続部の上流側の噴霧用媒体流路に噴霧用媒体の流れを流路の幅方向の両端部分に誘導する障害物(誘導部材)を設けたものである。   In this example, the spraying medium flow path is provided on the outer side with the spray hole as the center, and the spraying fluid flow path is connected in the middle of the flow path toward the spray hole. And the obstruction (guide member) which guides the flow of the spraying medium to the both ends of the width direction of the flow path is provided in the spraying medium flow path upstream of the connecting portion.

図8と図9に本実施例に係る噴霧ノズル先端部1を示す。図8は上流側が液体燃料(噴霧流体)の供給系統(図示せず)と噴霧用媒体の供給系統(図示せず)に接続する噴霧ノズル先端部1を示す。図9は図8に示す噴霧ノズル先端部1のA-A矢視における噴出孔近傍の流路の状況を示す説明図である。   8 and 9 show the spray nozzle tip 1 according to the present embodiment. FIG. 8 shows a spray nozzle tip 1 which is connected to a supply system (not shown) for liquid fuel (atomization fluid) and a supply system (not shown) for a spray medium on the upstream side. FIG. 9 is an explanatory diagram showing the state of the flow path in the vicinity of the ejection hole when the spray nozzle tip 1 shown in FIG.

本実施例と第1の実施例との違いは、噴出孔2,3の上流側の流路構造である。このため、流路構造に関る部分を中心に説明する。   The difference between the present embodiment and the first embodiment is the flow path structure on the upstream side of the ejection holes 2 and 3. For this reason, it demonstrates centering on the part regarding a flow-path structure.

本実施例の噴霧ノズル先端部1においては、噴霧流体流路10〜13を、噴出孔2,3の上流側で噴霧用媒体流路14〜17にそれぞれ接続するようにしている。即ち、図8に示すように、噴出孔2,3から遠い側に噴霧用媒体流路14〜17を配置し、その内側(噴出孔2,3に近い側)に噴霧流体流路10〜13を配置している。噴霧流体流路は噴霧用媒体流路に対し傾きを持って接続している。噴霧流体と噴霧用媒体は接続部にて混合し、混合流体流路18〜21を通り噴出孔2,3からそれぞれ噴出する。噴出孔2,3から噴出する混合流体は衝突し、混合流体流路18,19と混合流体流路20,21の流れ方向に対し直角方向に扇型の噴霧を形成する。   In the spray nozzle tip 1 of the present embodiment, the spray fluid channels 10 to 13 are connected to the spray medium channels 14 to 17 on the upstream side of the ejection holes 2 and 3, respectively. That is, as shown in FIG. 8, the spray medium flow paths 14 to 17 are disposed on the side far from the ejection holes 2 and 3, and the spray fluid flow paths 10 to 13 are disposed on the inner side (side closer to the ejection holes 2 and 3). Is arranged. The atomizing fluid channel is connected to the atomizing medium channel with an inclination. The atomizing fluid and the atomizing medium are mixed at the connecting portion, and are ejected from the ejection holes 2 and 3 through the mixed fluid flow paths 18 to 21, respectively. The mixed fluid ejected from the ejection holes 2 and 3 collides, and forms a fan-shaped spray in a direction perpendicular to the flow direction of the mixed fluid channels 18 and 19 and the mixed fluid channels 20 and 21.

また、図8及び図9に示すように、噴霧流体流路10〜13の噴霧用媒体流路14〜17への接続部分の上流側に噴霧用媒体の流れに対する障害物61を設けている。障害物61は、噴霧用媒体の流れがスムーズになるように、上流側の幅が狭くなっている。   Further, as shown in FIGS. 8 and 9, an obstacle 61 for the flow of the spraying medium is provided on the upstream side of the connection portion of the spraying fluid flow paths 10 to 13 to the spraying medium flow paths 14 to 17. The obstacle 61 has a narrow width on the upstream side so that the spray medium can flow smoothly.

噴霧用媒体は接続部分において、障害物61により両端側に分かれて流れる。一方、噴霧流体は接続部分の下流側において、障害物61により中央部を流れやすくなる。このため、混合流体に占める噴霧用媒体の割合は、実施例1の場合と同様に、幅方向の中央部分が低く、両端側で高くなる。混合流体流路18〜21の下流側の噴出孔2,3から扇状に形成される噴霧は、中央部分の噴霧用媒体の割合が低く、外周部分で高くなる。従って、本実施例においても、実施例1と同様の効果を奏することができる。   The spray medium flows separately at both ends by the obstacle 61 at the connection portion. On the other hand, the atomized fluid is likely to flow through the central portion due to the obstacle 61 on the downstream side of the connecting portion. For this reason, the ratio of the spraying medium to the mixed fluid is low in the central portion in the width direction and is high at both ends as in the case of the first embodiment. The spray formed in a fan shape from the ejection holes 2 and 3 on the downstream side of the mixed fluid flow paths 18 to 21 has a low ratio of the spray medium in the central portion and is high in the outer peripheral portion. Therefore, also in the present embodiment, the same effect as that of the first embodiment can be obtained.

また、図9に示す流路構造では、噴霧用媒体流路14,15への噴霧流体流路10,11の接続開口部の幅を噴霧用媒体流路14,15の流路幅と同じとしているが、噴霧用媒体流路と噴霧流体流路の接続を噴霧用媒体の流れ方向に対して幅方向の中央部分のみとするようにしても良い。即ち、図10に示す流路構造のように、噴霧流体流路10,11の幅を障害物61の下流側と同じ程度として、噴霧用媒体流路14,15の流れ方向に対し幅方向の中央部分に噴霧流体流路10,11の接続開口部を設けるようにしても良い。この場合、混合流体に占める噴霧用媒体の割合は、図9に示す流路構造よりも、幅方向の中央部分を低く、両端側を高くしやすい。また、図10に示す流路構造よりも効果は小さくなるが、図10に示す流路構造において、障害物61を省略することでも、混合流体に占める噴霧用媒体の割合を、幅方向の中央部分を低く、両端側を高くすることができる。   In the flow channel structure shown in FIG. 9, the width of the connection opening of the spray fluid flow channels 10 and 11 to the spray medium flow channels 14 and 15 is the same as the flow channel width of the spray medium flow channels 14 and 15. However, the spray medium flow path and the spray fluid flow path may be connected only to the central portion in the width direction with respect to the flow direction of the spray medium. That is, as in the flow path structure shown in FIG. 10, the width of the spray fluid flow paths 10 and 11 is set to the same level as the downstream side of the obstacle 61, and the width direction of the spray medium flow paths 14 and 15 is You may make it provide the connection opening part of the spray fluid flow paths 10 and 11 in the center part. In this case, the ratio of the spray medium to the mixed fluid is lower in the central portion in the width direction and higher in both ends than in the flow channel structure shown in FIG. Although the effect is smaller than that of the flow path structure shown in FIG. 10, the ratio of the spraying medium to the mixed fluid in the flow path structure shown in FIG. A part can be made low and both ends can be made high.

また、本実施例においても、第1の実施例の変形例が同様に適用でき、そして、本実施例の噴霧ノズルを用いて上述したバーナ及び燃焼装置を構成することができる。   Also in this embodiment, the modification of the first embodiment can be applied in the same manner, and the above-described burner and combustion apparatus can be configured using the spray nozzle of this embodiment.

1:噴霧ノズル先端部
1a:外側部材
1b:内側部材
2,3:噴出孔
4:凹部
10〜13:噴霧流体流路
14〜17:噴霧用媒体流路
18〜21:混合流体流路
22:バーナ
30:同軸流路構成部材
31:障害物
33:噴霧の中央部分
34a,34b:噴霧の外周部分
35:ウインドボックス
36:1次流路
37:2次流路
38:3次流路
39:1次空気の流れ
40:2次空気の流れ
41:3次空気の流れ
42:火炉
43:火炉壁
44:伝熱管
45,46:旋回流発生器
47:ガイド板
48:イグナイタ
51:燃焼用空気供給系統
52:液体燃料供給系統
53:噴霧用媒体供給系統
54:空気供給口
55,56:配管
57:燃焼ガスの流れ
58:熱交換器
59:煙道
60:煙突
61:障害物
1: Spray nozzle tip
1a: Outer member
1b: Inside member
2, 3: Ejection hole
4: Recess
10-13: Spray fluid flow path
14-17: Spray medium flow path
18-21: Mixed fluid flow path
22: Burner
30: Coaxial flow path component
31: Obstacle
33: Central part of spray
34a, 34b: Outer periphery of spray
35: Windbox
36: Primary flow path
37: Secondary flow path
38: Tertiary flow path
39: Flow of primary air
40: Flow of secondary air
41: Flow of tertiary air
42: Furnace
43: Furnace wall
44: Heat transfer tube
45, 46: Swirl generator
47: Guide plate
48: Igniter
51: Combustion air supply system
52: Liquid fuel supply system
53: Spraying medium supply system
54: Air supply port
55, 56: Piping
57: Flow of combustion gas
58: Heat exchanger
59: Flue
60: Chimney
61: Obstacle

Claims (11)

噴霧流体と噴霧用媒体を混合した混合流体を噴霧する噴出孔が設けられた噴霧ノズル先端部を有する噴霧ノズルであって、
前記噴霧ノズル先端部は、前記噴出孔の内側で前記混合流体が衝突するように対向して配置された複数の混合流体流路を有し、
前記噴霧ノズル先端部を噴霧方向から見たときの前記混合流体の流れの幅方向において、衝突前の前記混合流体における前記噴霧用媒体の比率を異ならせて、前記混合流体を衝突させるようにしたことを特徴とする噴霧ノズル。
A spray nozzle having a spray nozzle tip provided with an ejection hole for spraying a mixed fluid obtained by mixing a spray fluid and a spray medium,
The spray nozzle tip has a plurality of mixed fluid flow paths arranged to face each other so that the mixed fluid collides inside the ejection hole,
In the width direction of the flow of the mixed fluid when the tip of the spray nozzle is viewed from the spray direction, the ratio of the spray medium in the mixed fluid before the collision is made different to cause the mixed fluid to collide. A spray nozzle characterized by that.
請求項1において、
前記衝突前の前記混合流体における前記噴霧用媒体の比率は、前記混合流体の流れの幅方向の両端側で高くしたことを特徴とする噴霧ノズル
In claim 1,
The ratio of the spray medium in the mixed fluid before the collision is increased at both ends in the width direction of the flow of the mixed fluid.
噴霧流体と噴霧用媒体を混合した混合流体を噴霧する噴出孔が設けられた噴霧ノズル先端部を有する噴霧ノズルであって、
前記噴霧ノズル先端部は、
前記噴霧流体が流れる複数の噴霧流体流路と、
前記噴霧用媒体が流れる複数の噴霧用媒体流路と、
前記噴霧流体流路と前記噴霧用媒体流路の接続箇所の下流に形成された混合流体流路であって、前記噴出孔の内側で前記混合流体が衝突するように対向して配置された複数の混合流体流路とを有し、
前記噴霧流体流路又は前記噴霧用媒体流路に対する前記噴霧用媒体流路又は前記噴霧流体流路の接続を、接続先の前記噴霧流体流路又は前記噴霧用媒体流路に対し偏らせて接続したことを特徴とする噴霧ノズル。
A spray nozzle having a spray nozzle tip provided with an ejection hole for spraying a mixed fluid obtained by mixing a spray fluid and a spray medium,
The spray nozzle tip is
A plurality of spray fluid flow paths through which the spray fluid flows;
A plurality of spray medium flow paths through which the spray medium flows;
A plurality of mixed fluid channels formed downstream of a connection portion between the spray fluid channel and the spray medium channel, the plurality of fluid channels being arranged to face each other so that the mixed fluid collides inside the ejection hole. And a mixed fluid flow path,
Connection of the spray medium flow path or the spray fluid flow path to the spray fluid flow path or the spray medium flow path is biased and connected to the spray fluid flow path or the spray medium flow path to be connected. A spray nozzle characterized by that.
請求項3において、
前記噴霧用媒体流路は、前記噴霧流体流路に対して傾きをもって接続され、かつ、前記噴霧流体流路の流れの幅方向における両端側に接続されていることを特徴とする噴霧ノズル。
In claim 3,
The spray nozzle, wherein the spray medium flow path is connected to the spray fluid flow path with an inclination, and is connected to both ends in the width direction of the flow of the spray fluid flow path.
請求項3において、
前記噴霧流体流路は、前記噴霧用媒体流路に対して傾きをもって接続され、かつ、前記噴霧用媒体流路の流れの幅方向における中央側に接続されていることを特徴とする噴霧ノズル。
In claim 3,
The spray nozzle, wherein the spray fluid flow path is connected to the spray medium flow path with an inclination, and is connected to a central side in the width direction of the flow of the spray medium flow path.
請求項5において、
前記噴霧用媒体流路は、流れの幅方向における中央側かつ前記噴霧流体流路の接続部の上流に、流れに対する障害物が設けられていることを特徴とする噴霧ノズル。
In claim 5,
The spray nozzle, wherein the spray medium flow path is provided with an obstacle to the flow at a center side in a flow width direction and upstream of a connection portion of the spray fluid flow path.
請求項3において、
前記噴霧流体流路は、前記噴霧用媒体流路に対して傾きをもって接続され、前記噴霧用媒体流路は、流れの幅方向における中央側かつ前記噴霧流体流路の接続部の上流に、流れに対する障害物が設けられていることを特徴とする噴霧ノズル。
In claim 3,
The spray fluid flow path is connected to the spray medium flow path with an inclination, and the spray medium flow path flows at a center side in a flow width direction and upstream of a connection portion of the spray fluid flow path. A spray nozzle, characterized in that an obstacle is provided for.
請求項1〜7の何れかにおいて、
前記混合流体流路は、流れ方向に流路を区分けする仕切りもしくは流路深さが変わる段差が設けられていることを特徴とする噴霧ノズル。
In any one of Claims 1-7,
The mixed fluid flow path is provided with a partition for dividing the flow path in the flow direction or a step where the flow path depth is changed.
液体燃料を燃料として利用するバーナであって、
請求項1〜8の何れかに記載の噴霧ノズルを用い、前記液体燃料を前記噴霧流体として前記噴霧ノズル先端部に供給し、蒸気または圧縮空気を前記噴霧用媒体として前記噴霧ノズル先端部に供給することを特徴とするバーナ。
A burner that uses liquid fuel as fuel,
9. The spray nozzle according to claim 1, wherein the liquid fuel is supplied as the spray fluid to the spray nozzle tip, and steam or compressed air is supplied as the spray medium to the spray nozzle tip. A burner characterized by
化石燃料を燃焼させる燃焼装置であって、
化石燃料を燃焼させる燃焼炉と、前記燃焼炉に化石燃料を供給する燃料供給系統と、前記燃焼炉に燃焼用気体を供給する燃焼用気体供給系統と、前記燃料供給系統と前記燃焼用気体供給系統が接続し前記燃焼炉の炉壁に設けられた化石燃料を燃焼させるバーナと、前記燃焼炉で発生した燃焼排ガスから熱回収する熱交換器と、前記熱回収された燃焼排ガスを前記燃焼炉の外部へ供給する煙道とを有し、
前記バーナとして、化石燃料として液体燃料を用いた請求項9記載のバーナを用いたことを特徴とする燃焼装置。
A combustion device for burning fossil fuel,
A combustion furnace for burning fossil fuel, a fuel supply system for supplying fossil fuel to the combustion furnace, a combustion gas supply system for supplying combustion gas to the combustion furnace, the fuel supply system, and the combustion gas supply A burner that is connected to the system and burns fossil fuel provided on the furnace wall of the combustion furnace, a heat exchanger that recovers heat from the combustion exhaust gas generated in the combustion furnace, and the combustion exhaust gas that is recovered from the heat A flue that supplies to the outside of the
The combustion apparatus using the burner of Claim 9 which used the liquid fuel as a fossil fuel as the said burner.
化石燃料を燃焼させる燃焼装置であって、
化石燃料を燃焼させる燃焼炉と、前記燃焼炉に化石燃料を供給する燃料供給系統と、前記燃焼炉に燃焼用気体を供給する燃焼用気体供給系統と、前記燃料供給系統と前記燃焼用気体供給系統が接続し前記燃焼炉の炉壁に設けられた化石燃料を燃焼させる複数のバーナと、前記燃焼炉で発生した燃焼排ガスから熱回収する熱交換器と、前記熱回収された燃焼排ガスを前記燃焼炉の外部へ供給する煙道とを有し、
前記バーナの一つは、主化石燃料として微粉炭を用いたバーナであり、前記バーナの他の一つは、補助化石燃料として液体燃料を用いた請求項9記載のバーナであることを特徴とする燃焼装置。
A combustion device for burning fossil fuel,
A combustion furnace for burning fossil fuel, a fuel supply system for supplying fossil fuel to the combustion furnace, a combustion gas supply system for supplying combustion gas to the combustion furnace, the fuel supply system, and the combustion gas supply A plurality of burners that are connected to the system and burn fossil fuel provided on the furnace wall of the combustion furnace, a heat exchanger that recovers heat from the combustion exhaust gas generated in the combustion furnace, and the heat recovery combustion exhaust gas that A flue for supplying to the outside of the combustion furnace,
The burner according to claim 9, wherein one of the burners is a burner using pulverized coal as a main fossil fuel, and the other one of the burners is a liquid fuel as an auxiliary fossil fuel. Combustion device.
JP2012057089A 2012-03-14 2012-03-14 Spray nozzle, burner, and combustion device Pending JP2013190161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012057089A JP2013190161A (en) 2012-03-14 2012-03-14 Spray nozzle, burner, and combustion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012057089A JP2013190161A (en) 2012-03-14 2012-03-14 Spray nozzle, burner, and combustion device

Publications (1)

Publication Number Publication Date
JP2013190161A true JP2013190161A (en) 2013-09-26

Family

ID=49390610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012057089A Pending JP2013190161A (en) 2012-03-14 2012-03-14 Spray nozzle, burner, and combustion device

Country Status (1)

Country Link
JP (1) JP2013190161A (en)

Similar Documents

Publication Publication Date Title
JP6029375B2 (en) Spray nozzle, burner equipped with the same, and combustion apparatus
JP5730024B2 (en) Spray nozzle and combustion apparatus having spray nozzle
CA2664769C (en) Burner, and combustion equipment and boiler comprising burner
JP6491898B2 (en) Spray nozzle, combustion apparatus using spray nozzle, and gas turbine plant
JP5417258B2 (en) Combustion device with spray nozzle
JP6173868B2 (en) Spray nozzle and combustion apparatus equipped with spray nozzle
EP2677238B1 (en) Solid fuel burner
WO2013118665A1 (en) Spray nozzle and combustion device provided with spray nozzle
JP2013190161A (en) Spray nozzle, burner, and combustion device
WO2014142305A1 (en) Spray nozzle, burner equipped with spray nozzle, and combustion device equipped with burner having spray nozzle
JP2013185776A (en) Spray nozzle, burner and combustion device
JP4386279B2 (en) Burner operation
WO2014097812A1 (en) Spray nozzle, burner with spray nozzle, and combustion device with burner
JP6053815B2 (en) Spray nozzle, burner with spray nozzle and combustion apparatus with burner
JP2014031988A (en) Spray nozzle, and burner and combustion device equipped with the same
JP6168914B2 (en) Spray nozzle and combustion device
JP2020112283A (en) Combustion device
JPH0245615Y2 (en)
JPH0233506A (en) Nox and dust reducing burner
JPH0586524B2 (en)
JP2007057184A (en) Boiler