JP2013189577A - Thermosetting resin composition, prepreg, and laminated plate - Google Patents

Thermosetting resin composition, prepreg, and laminated plate Download PDF

Info

Publication number
JP2013189577A
JP2013189577A JP2012058008A JP2012058008A JP2013189577A JP 2013189577 A JP2013189577 A JP 2013189577A JP 2012058008 A JP2012058008 A JP 2012058008A JP 2012058008 A JP2012058008 A JP 2012058008A JP 2013189577 A JP2013189577 A JP 2013189577A
Authority
JP
Japan
Prior art keywords
group
thermosetting resin
resin composition
resin
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012058008A
Other languages
Japanese (ja)
Other versions
JP6028349B2 (en
Inventor
Naoki Takahara
直己 高原
Masahisa Ose
昌久 尾瀬
Koji Morita
高示 森田
Akira Murai
曜 村井
Shinji Tsuchikawa
信次 土川
Hiroyuki Izumi
寛之 泉
Kumiko Ishikura
久美子 石倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2012058008A priority Critical patent/JP6028349B2/en
Publication of JP2013189577A publication Critical patent/JP2013189577A/en
Application granted granted Critical
Publication of JP6028349B2 publication Critical patent/JP6028349B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a thermosetting resin composition having excellent low thermal expansion and heat resistance, and a prepreg and a laminated plate using the same.SOLUTION: A thermosetting resin composition contains a compatibilization resin (A) obtained by reacting a siloxane resin (a) having hydroxyl groups on terminals thereof, a compound (b) having at least two cyanate groups in one molecule thereof, and a compound (c) having at least two epoxy groups in one molecule thereof, and a compound (B) which contains an imidazole structure in the molecular structure and whose secondary amine moiety is modified. A prepreg and a laminated plate use the composition are also provided.

Description

本発明は、優れた低熱膨張性と耐熱性を示し、電子部品等の製造に好適に用いられる熱硬化性樹脂組成物、プリプレグ及び積層板に関する。   The present invention relates to a thermosetting resin composition, a prepreg, and a laminate that exhibit excellent low thermal expansibility and heat resistance and are suitably used for manufacturing electronic components and the like.

熱硬化性樹脂組成物は、架橋構造を有し、高い耐熱性や寸法安定性を発現するため、電子部品等の分野において広く使われる。特に銅張積層板や層間絶縁材料においては、近年の高密度化や高信頼性への要求から、高い銅箔接着性や耐熱性、良好な低熱膨張性等の特性を有することが必要とされる。また、近年の環境問題から、鉛フリーはんだによる電子部品の搭載やハロゲンフリーによる難燃化が要求され、そのため従来のものよりも高い耐熱性及び難燃性が必要となっている。   Thermosetting resin compositions have a cross-linked structure and exhibit high heat resistance and dimensional stability, and thus are widely used in the field of electronic components and the like. In particular, copper-clad laminates and interlayer insulation materials are required to have characteristics such as high copper foil adhesion, heat resistance, and good low thermal expansion due to the recent demand for higher density and higher reliability. The Moreover, due to recent environmental problems, mounting of electronic components using lead-free solder and flame resistance using halogen-free materials are required, and therefore higher heat resistance and flame resistance than conventional products are required.

熱硬化性樹脂であるシアネート化合物は、低誘電特性、難燃性に優れる樹脂であるが、エポキシ硬化系の熱硬化性樹脂にそのまま使用した場合、耐熱性や強靭性が充分でなく、また、次世代に対応する熱硬化性樹脂として更に低熱膨張性が望まれている。
このため、シアネート化合物と無機充填剤からなる低熱膨張性を発現させる樹脂組成物が開示されているが(例えば、特許文献1、2および3参照)、これらは低熱膨張性を発現させるため無機充填剤の配合使用量が多く、銅張積層板や層間絶縁材料として使用した場合にドリル加工性や成形性が不足する。
Cyanate compound, which is a thermosetting resin, is a resin with low dielectric properties and excellent flame retardancy, but when used as it is in an epoxy curable thermosetting resin, heat resistance and toughness are not sufficient, Further, low thermal expansion is desired as a thermosetting resin corresponding to the next generation.
For this reason, although the resin composition which expresses the low thermal expansibility which consists of a cyanate compound and an inorganic filler is disclosed (for example, refer patent documents 1, 2, and 3), since these express the low thermal expansibility, they are inorganic filling. The amount of the agent used is large, and when it is used as a copper-clad laminate or an interlayer insulating material, drill workability and formability are insufficient.

また、低熱膨張性を発現させるためにシアネート樹脂とアラルキル変性エポキシ樹脂を必須成分として含有する熱硬化性樹脂が開示されている(例えば、特許文献4および5参照)。しかし、この必須成分であるシアネート樹脂が靭性や硬化反応性に劣る樹脂であるため、硬化反応性や強靭性の改良が依然不足であり、これらを銅張積層板や層間絶縁材料として使用した場合も、耐熱性や信頼性、加工性等が不足である。   In addition, thermosetting resins containing a cyanate resin and an aralkyl-modified epoxy resin as essential components in order to exhibit low thermal expansibility are disclosed (for example, see Patent Documents 4 and 5). However, since the cyanate resin, which is an essential component, is a resin with poor toughness and curing reactivity, improvement in curing reactivity and toughness is still insufficient, and when these are used as copper-clad laminates and interlayer insulation materials However, heat resistance, reliability, workability, etc. are insufficient.

特開2003−268136号公報JP 2003-268136 A 特開2003−73543号公報JP 2003-73543 A 特開2002−285015号公報JP 2002-285015 A 特開2002−309085号公報JP 2002-309085 A 特開2002−348469号公報JP 2002-348469 A

本発明の目的は、こうした現状に鑑み、熱硬化性樹脂であるシアネート化合物を用いる場合の上記問題点を解決し、優れた低熱膨張性と耐熱性を有する熱硬化性樹脂組成物、及びこれを用いたプリプレグ及び積層板を提供することである。   The object of the present invention is to solve the above problems in the case of using a cyanate compound, which is a thermosetting resin, in view of the current situation, and to provide a thermosetting resin composition having excellent low thermal expansion and heat resistance, and It is to provide the used prepreg and laminate.

本発明は、上記の課題を解決するために鋭意研究した結果、末端に水酸基を有するシロキサン樹脂(a)、1分子中に少なくとも2個のシアネート基を有する化合物(b)及び1分子中に少なくとも2個のエポキシ基を有する化合物(c)を有する組成物を、特定溶媒中で反応させて得られる相容化樹脂(A)に、特定のイミダゾール構造を有する化合物(B)を配合することにより、優れた低熱膨張性と耐熱性を有する熱硬化性樹脂組成物が得られること見出し、本発明を完成するに至った。本発明は、かかる知見に基づいて完成したものである。
即ち本発明は、以下の熱硬化性樹脂組成物、プリプレグ及び積層板を提供するものである。
As a result of intensive studies to solve the above-mentioned problems, the present invention has revealed that a siloxane resin (a) having a hydroxyl group at the terminal, a compound (b) having at least two cyanate groups in one molecule, and at least in one molecule By blending a compound (B) having a specific imidazole structure with a compatibilizing resin (A) obtained by reacting a compound (c) having two epoxy groups in a specific solvent. The present inventors have found that a thermosetting resin composition having excellent low thermal expansion and heat resistance can be obtained, and have completed the present invention. The present invention has been completed based on such findings.
That is, the present invention provides the following thermosetting resin composition, prepreg and laminate.

1.下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)、1分子中に少なくとも2個のシアネート基を有する化合物(b)及び1分子中に少なくとも2個のエポキシ基を有する化合物(c)を、(a)〜(c)成分の合計量100質量部当たり、(a)成分10〜50質量部、(b)成分40〜80質量部、(c)成分10〜50質量部として、有機金属塩(d)の存在下、トルエン、キシレン及びメシチレンから選ばれる少なくとも一種の溶媒中で80〜120℃で反応させ、(b)成分の反応率が30〜70モル%である相容化樹脂(A)及び、分子構造中にイミダゾール構造を含有し、2級アミン部分が変性された化合物(B)を含有することを特徴とする熱硬化性樹脂組成物。 1. A siloxane resin having a hydroxyl group at the terminal represented by the following general formula (I) (a), a compound (b) having at least two cyanate groups in one molecule, and a compound having at least two epoxy groups in one molecule (C) per 100 parts by mass of the total amount of components (a) to (c), (a) component 10 to 50 parts by mass, (b) component 40 to 80 parts by mass, (c) component 10 to 50 parts by mass As a phase in which the reaction is carried out at 80 to 120 ° C. in at least one solvent selected from toluene, xylene and mesitylene in the presence of the organometallic salt (d), and the reaction rate of the component (b) is 30 to 70 mol%. A thermosetting resin composition comprising: a resin containing resin (A); and a compound (B) containing a imidazole structure in the molecular structure and having a modified secondary amine moiety.

Figure 2013189577
(式中、R1は各々独立に炭素数1〜5のアルキレン基又はアルキレンオキシ基,Ar1は各々独立に単結合、アリーレン基又は炭素数1〜5のアルキレン基であり、mは5〜100の整数である。)
Figure 2013189577
(In the formula, each R 1 is independently an alkylene group or alkyleneoxy group having 1 to 5 carbon atoms, Ar 1 is each independently a single bond, an arylene group or an alkylene group having 1 to 5 carbon atoms, and m is 5 to 5) It is an integer of 100.)

2.更に無機充填剤(C)を含有する上記1の熱硬化性樹脂組成物。
3.分子構造中にイミダゾール構造を含有し、2級アミン部分が変性された化合物(B)が下記一般式(II)又は一般式(III)で表される化合物である上記1又は2の熱硬化性樹脂組成物。
2. Furthermore, said 1 thermosetting resin composition containing an inorganic filler (C).
3. The thermosetting property of 1 or 2 above, wherein the compound (B) containing an imidazole structure in the molecular structure and having a modified secondary amine moiety is a compound represented by the following general formula (II) or general formula (III): Resin composition.

Figure 2013189577
(式中、R3、R4、R5及びR6は各々独立に、水素原子、炭素数1〜20のアルキル基又はフェニル基であり、Aはアルキレン基又はフェニレン基である。)
Figure 2013189577
(Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a phenyl group, and A is an alkylene group or a phenylene group.)

Figure 2013189577
(式中、R3、R4、R5及びR6は各々独立に、水素原子、炭素数1〜20のアルキル基又はフェニル基であり、Bは単結合、アルキレン基、アルキリデン基、エーテル基又はスルフォニル基である。)
Figure 2013189577
Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a phenyl group, and B is a single bond, an alkylene group, an alkylidene group or an ether group. Or a sulfonyl group.)

4.1分子中に少なくとも2個のエポキシ基を有する化合物(c)が、下記の一般式(IV)、一般式(V)、一般式(VI)のいずれかで表される化合物である上記1〜3のいずれかの熱硬化性樹脂組成物。 4.1 The compound (c) having at least two epoxy groups in one molecule is a compound represented by any one of the following general formula (IV), general formula (V), and general formula (VI) The thermosetting resin composition in any one of 1-3.

Figure 2013189577
(式中、sは1以上の数である。)
Figure 2013189577
(In the formula, s is a number of 1 or more.)

Figure 2013189577
(式中、R2、R3、R4及びR5は各々独立に、水素原子、又はメチル基である。)
Figure 2013189577
(Wherein R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom or a methyl group.)

Figure 2013189577
(式中、tは1以上の数である。)
Figure 2013189577
(In the formula, t is a number of 1 or more.)

5.無機充填剤(C)の平均粒径が5μm以下である上記2〜4のいずれかの熱硬化性樹脂組成物。
6.無機充填剤(C)が溶融シリカである上記2〜4のいずれかの熱硬化性樹脂組成物。
7.無機充填剤(C)が官能基を有するシラン化合物で表面処理したものである上記2〜6のいずれかの熱硬化性樹脂組成物。
8.官能基を有するシラン化合物が下記式(VII)で示されるトリメトキシシラン化合物である上記7の熱硬化性樹脂組成物。
5. The thermosetting resin composition according to any one of 2 to 4 above, wherein the inorganic filler (C) has an average particle size of 5 μm or less.
6). The thermosetting resin composition according to any one of 2 to 4 above, wherein the inorganic filler (C) is fused silica.
7). The thermosetting resin composition according to any one of 2 to 6 above, wherein the inorganic filler (C) is surface-treated with a silane compound having a functional group.
8). 8. The thermosetting resin composition according to 7 above, wherein the silane compound having a functional group is a trimethoxysilane compound represented by the following formula (VII).

Figure 2013189577
Figure 2013189577

9.上記1〜8のいずれかに記載の熱硬化性樹脂組成物を基材中に含侵又は塗工した後、Bステージ化したプリプレグ。
10.上記9のプリプレグを用いて形成された積層板。
9. A prepreg that has been B-staged after impregnating or coating the thermosetting resin composition according to any one of 1 to 8 above in a base material.
10. A laminate formed using the prepreg described in 9 above.

本発明の熱硬化性樹脂組成物、プリプレグ及び積層板は、優れた低熱膨張性と耐熱性を有しており、次世代に対応する電子部品等の製造に好適に用いられる。   The thermosetting resin composition, prepreg and laminate of the present invention have excellent low thermal expansion and heat resistance, and are suitably used for the production of electronic components and the like corresponding to the next generation.

以下、本発明について詳細に説明する。
先ず、本発明の熱硬化性樹脂組成物は、下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)、1分子中に少なくとも2個のシアネート基を有する化合物(b)及び1分子中に少なくとも2個のエポキシ基を有する化合物(c)を、(a)〜(c)成分の合計量100質量部当たり、(a)成分10〜50質量部、(b)成分40〜80質量部、(c)成分10〜50質量部として、有機金属塩(d)の存在下、トルエン、キシレン及びメシチレンから選ばれる少なくとも一種の溶媒中で80〜120℃で反応させ、(b)成分の反応率が30〜70モル%である相容化樹脂(A)及び、分子構造中にイミダゾール構造を含有し、2級アミン部分が変性された化合物(B)を含有することを特徴とするものである。
Hereinafter, the present invention will be described in detail.
First, the thermosetting resin composition of the present invention includes a siloxane resin (a) having a hydroxyl group at the terminal represented by the following general formula (I), a compound (b) having at least two cyanate groups in one molecule, and The compound (c) having at least two epoxy groups in one molecule is composed of 10 to 50 parts by weight of component (a) to 100 parts by weight of component (a) to (c), and 40 to 40 parts of component (b). 80 parts by mass, (c) component 10 to 50 parts by mass in the presence of an organometallic salt (d) in at least one solvent selected from toluene, xylene and mesitylene at 80 to 120 ° C., (b) A compatibilizing resin (A) having a component reaction rate of 30 to 70 mol%, and a compound (B) containing an imidazole structure in the molecular structure and having a modified secondary amine moiety. To do.

Figure 2013189577
(式中、R1は各々独立に炭素数1〜5のアルキレン基又はアルキレンオキシ基,Ar1は各々独立に単結合、アリーレン基又は炭素数1〜5のアルキレン基であり、mは5〜100の整数である。)
Figure 2013189577
(In the formula, each R 1 is independently an alkylene group or alkyleneoxy group having 1 to 5 carbon atoms, Ar 1 is each independently a single bond, an arylene group or an alkylene group having 1 to 5 carbon atoms, and m is 5 to 5) It is an integer of 100.)

本発明の相容化樹脂(A)の製造に用いられる(a)成分のシロキサン樹脂は、上記一般式(I)で示される構造の水酸基を含有するシロキサン樹脂であれば特に限定されない。例えば両末端がフェノール性水酸基である信越化学工業(株)製の商品名X−22−1821(水酸基価:35KOHmg/g)、商品名X−22−1822(水酸基価:20KOHmg/g)、東レ・ダウコーニング(株)製の商品名BY16−752A(水酸基価:30KOHmg/g)、及び両末端がアルコール性水酸基である信越化学工業(株)製の商品名X−22−160AS(水酸基価:112KOHmg/g)、商品名KF−6001(水酸基価:62KOHmg/g)、商品名KF−6002(水酸基価:35KOHmg/g)、商品名KF−6003(水酸基価:20KOHmg/g)、商品名X−22−4015(水酸基価:27KOHmg/g)等が挙げられる。これらは信越化学工業(株)や東レ・ダウコーニング(株)等から入手できる。   The siloxane resin of component (a) used for the production of the compatibilizing resin (A) of the present invention is not particularly limited as long as it is a siloxane resin containing a hydroxyl group having a structure represented by the above general formula (I). For example, trade names X-22-1821 (hydroxyl value: 35 KOHmg / g), trade names X-22-1822 (hydroxyl value: 20 KOHmg / g) manufactured by Shin-Etsu Chemical Co., Ltd., which are both phenolic hydroxyl groups, Toray -Trade name BY16-752A (hydroxyl value: 30 KOHmg / g) manufactured by Dow Corning Co., Ltd., and trade name X-22-160AS (hydroxyl value: manufactured by Shin-Etsu Chemical Co., Ltd.) where both ends are alcoholic hydroxyl groups. 112 KOH mg / g), trade name KF-6001 (hydroxyl value: 62 KOH mg / g), trade name KF-6002 (hydroxyl value: 35 KOH mg / g), trade name KF-6003 (hydroxyl value: 20 KOH mg / g), trade name X -22-4015 (hydroxyl value: 27 KOHmg / g). These can be obtained from Shin-Etsu Chemical Co., Ltd. or Toray Dow Corning Co., Ltd.

相容化樹脂(A)の製造に用いられる(b)成分の1分子中に少なくとも2個のシアネート基を有する化合物としては、例えば、ノボラック型シアネート樹脂、ビスフェノールA型シアネート樹脂、ビスフェノールE型シアネート樹脂、ビスフェノールF型シアネート樹脂、テトラメチルビスフェノールF型シアネート樹脂等が挙げられ、1種又は2種以上を混合して使用することができる。これらの中で、誘電特性、耐熱性、難燃性、低熱膨張性、及び安価である点から、ビスフェノールA型シアネート樹脂、下記一般式(VIII)に示すノボラック型シアネート樹脂が特に好ましい。   Examples of the compound having at least two cyanate groups in one molecule of the component (b) used for the production of the compatibilizing resin (A) include novolak type cyanate resin, bisphenol A type cyanate resin, and bisphenol E type cyanate. Resins, bisphenol F-type cyanate resins, tetramethylbisphenol F-type cyanate resins and the like can be mentioned, and one kind or a mixture of two or more kinds can be used. Of these, bisphenol A type cyanate resins and novolak type cyanate resins represented by the following general formula (VIII) are particularly preferred from the viewpoints of dielectric properties, heat resistance, flame retardancy, low thermal expansion, and low cost.

Figure 2013189577
Figure 2013189577

上記の一般式(VIII)のhは、ノボラック型シアネート樹脂の平均繰り返し数であり、特に限定されないが、平均値として0.1〜30が好ましい。これより小さいと結晶化しやすくなり取り扱いが困難となる場合がある。また、これより大きいと硬化物が脆くなる場合がある。   H in the above general formula (VIII) is the average number of repeats of the novolak-type cyanate resin and is not particularly limited, but is preferably 0.1 to 30 as an average value. If it is smaller than this, it may be easy to crystallize and it may be difficult to handle. Moreover, when larger than this, hardened | cured material may become weak.

相容化樹脂(A)の製造に用いられる(c)成分の1分子中に少なくとも2個のエポキシ基を有する化合物としては、例えば、ビスフェノールA系、ビスフェノールF系、ビフェニル系、ノボラック系、多官能フェノール系、ナフタレン系、脂環式系及びアルコール系等のグリシジルエーテル、グリシジルアミン系並びにグリシジルエステル系の化合物(樹脂)などが挙げられ、これらの化合物の2種以上を混合して使用することもできる。
これらの中で、高剛性、誘電特性、耐熱性、難燃性、耐湿性及び低熱膨張性の点からナフタレン型エポキシ樹脂、ナフトールアラルキル型エポキシ樹脂、ジヒドロキシナフタレンアラルキル型エポキシ樹脂、ナフトールアラルキル・クレゾール共重合型エポキシ樹脂等のナフタレン環含有エポキシ樹脂、ビフェニル型エポキシ樹脂、ビフェニルアラルキル型エポキシ樹脂等のビフェニル基含有エポキシ樹脂が好ましく、芳香族系有機溶剤への溶解性の点から、一般式(IV)で示されるナフトールアラルキル・クレゾール共重合型エポキシ樹脂、一般式(V)で示されるビフェニル型エポキシ樹脂、一般式(VI)で示されるビフェニルアラルキル型エポキシ樹脂がより好ましい。
Examples of the compound having at least two epoxy groups in one molecule of the component (c) used for the production of the compatibilizing resin (A) include bisphenol A, bisphenol F, biphenyl, novolac, Examples include functional phenol-based, naphthalene-based, alicyclic and alcohol-based glycidyl ethers, glycidylamine-based and glycidyl ester-based compounds (resins), and use a mixture of two or more of these compounds. You can also.
Among these, naphthalene type epoxy resin, naphthol aralkyl type epoxy resin, dihydroxynaphthalene aralkyl type epoxy resin, naphthol aralkyl cresol and naphthol aralkyl / cresol are used in terms of high rigidity, dielectric properties, heat resistance, flame resistance, moisture resistance and low thermal expansion. Naphthalene ring-containing epoxy resins such as polymerized epoxy resins, biphenyl-type epoxy resins, biphenyl aralkyl-type epoxy resins and the like are preferred, and from the viewpoint of solubility in aromatic organic solvents, general formula (IV) A naphthol aralkyl / cresol copolymer type epoxy resin represented by the formula (II), a biphenyl type epoxy resin represented by the general formula (V), and a biphenyl aralkyl type epoxy resin represented by the general formula (VI) are more preferable.

Figure 2013189577
(式中、sは1以上の数である。)
Figure 2013189577
(In the formula, s is a number of 1 or more.)

Figure 2013189577
(式中、R2、R3、R4及びR5は各々独立に、水素原子、又はメチル基である。)
Figure 2013189577
(Wherein R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom or a methyl group.)

Figure 2013189577
(式中、tは1以上の数である。)
Figure 2013189577
(In the formula, t is a number of 1 or more.)

相容化樹脂(A)の製造に用いられる(d)成分の有機金属塩は反応触媒となるものであり、例えば、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸錫、オクチル酸コバルト等が挙げられる。   The organometallic salt of component (d) used in the production of the compatibilizing resin (A) serves as a reaction catalyst, and examples thereof include zinc naphthenate, cobalt naphthenate, tin octylate, and cobalt octylate. .

相容化樹脂(A)の製造において、原料組成を(a)〜(c)成分の合計量100質量部当たり、(a)成分の使用量は10〜50質量部とし、好ましくは10〜40質量部、更に好ましくは10〜30質量部とする。(b)成分の使用量は40〜80質量部、好ましくは45〜80質量部、更に好ましくは50〜80質量部とする。(c)成分の使用量は10〜50質量部、好ましくは10〜40質量部、更に好ましくは10〜30質量部とする。これらを予めトルエン、キシレン及びメシチレンから選ばれる溶媒中で均一に溶解し、80〜120℃の反応温度でイミノカーボネ−ト化反応、及びトリアジン環化反応させ、(b)成分のシアネート基を有する化合物の反応率(消失率)を30〜70モル%となるようにプレ反応を行う。   In the production of the compatibilizing resin (A), the amount of the component (a) used is 10 to 50 parts by mass, preferably 10 to 40 per 100 parts by mass of the total amount of the components (a) to (c). Part by mass, more preferably 10 to 30 parts by mass. The amount of component (b) used is 40 to 80 parts by mass, preferably 45 to 80 parts by mass, and more preferably 50 to 80 parts by mass. The amount of component (c) used is 10 to 50 parts by mass, preferably 10 to 40 parts by mass, and more preferably 10 to 30 parts by mass. A compound having a cyanate group as the component (b), which is previously uniformly dissolved in a solvent selected from toluene, xylene and mesitylene, and subjected to iminocarbonate reaction and triazine cyclization reaction at a reaction temperature of 80 to 120 ° C. The pre-reaction is carried out so that the reaction rate (disappearance rate) is 30 to 70 mol%.

この相容化樹脂(A)の製造において、反応溶媒にはトルエン、キシレン、メシチレンから選ばれる芳香族系溶媒を用いる。必要により少量の他の溶剤を用いてもよいが、所望反応の進行が遅くなり、耐熱性等が低下するおそれがある。また、ベンゼンは毒性が強く、メシチレンよりも分子量の大きい芳香族系溶媒はプリプレグの製造塗工時に残溶剤となりやすいので好ましくない。
プレ反応による(b)成分の反応率が30モル%未満であると、得られる樹脂が相容化されておらず、樹脂が分離、白濁しBステージの塗工布が製造できない。また、反応率が70モル%を超えると、得られる熱硬化性樹脂が溶剤に不溶化し、Aステージのワニス(熱硬化性樹脂組成物)が製造できなくなったり、プリプレグのゲルタイムが短くなり過ぎ、プレスの際に成形性が低下する場合がある。
In the production of the compatibilizing resin (A), an aromatic solvent selected from toluene, xylene and mesitylene is used as the reaction solvent. A small amount of other solvent may be used if necessary, but the progress of the desired reaction may be delayed, and heat resistance and the like may be reduced. In addition, benzene is highly toxic, and an aromatic solvent having a molecular weight larger than that of mesitylene is not preferable because it tends to be a residual solvent during prepreg production coating.
When the reaction rate of the component (b) by the pre-reaction is less than 30 mol%, the resulting resin is not compatibilized, the resin is separated and clouded, and a B-stage coated fabric cannot be produced. When the reaction rate exceeds 70 mol%, the resulting thermosetting resin is insolubilized in the solvent, and the A-stage varnish (thermosetting resin composition) cannot be produced, or the gel time of the prepreg becomes too short. Formability may be reduced during pressing.

なお、イミノカーボネ−ト化反応は、水酸基とシアネート基の付加反応によりイミノカーボネ−ト結合(−O−(C=2級アミン)−O−)が生成される反応であり、トリアジン環化反応は、シアネート基が3量化しトリアジン環を形成する反応である。また、このシアネート基が3量化しトリアジン環を形成する反応により3次元網目構造化が進行するが、この時(c)成分である1分子中に少なくとも2個のエポキシ基を有する化合物が3次元網目構造中に均一に分散され、これによって(a)成分と(b)成分と(c)成分が均一に分散された相容化樹脂が製造される。   The iminocarbonation reaction is a reaction in which an iminocarbonate bond (-O- (C = secondary amine) -O-) is generated by the addition reaction of a hydroxyl group and a cyanate group, and the triazine cyclization reaction is This is a reaction in which a cyanate group is trimerized to form a triazine ring. In addition, a three-dimensional network structure is formed by a reaction in which this cyanate group is trimerized to form a triazine ring. At this time, a compound having at least two epoxy groups in one molecule as component (c) is three-dimensional. A compatibilized resin in which the components (a), (b), and (c) are uniformly dispersed is produced by uniformly dispersing in the network structure.

このプレ反応において、(a)〜(c)成分の合計量100質量部当たりの、(a)成分の使用量が10質量部未満であると、得られる基材の面方向の低熱膨張性が低下する場合があり、また(a)成分の使用量が50質量部を超えると、耐熱性や耐薬品性が低下する場合がある。(b)成分の使用量が40質量部未満であると得られる樹脂の相容性が低下する場合があり、また(b)成分の使用量が80質量部を超えると、得られる基材の面方向の低熱膨張性が低下する場合がある。(c)成分の使用量が10質量部未満であると、耐湿耐熱性が低下する場合があり、また(c)成分の使用量が50質量部を超えると、銅箔接着性や誘電特性が低下する場合がある。   In this pre-reaction, when the amount of the component (a) used per 100 parts by mass of the total amount of the components (a) to (c) is less than 10 parts by mass, the low thermal expansion in the surface direction of the obtained substrate is obtained. When the amount of component (a) used exceeds 50 parts by mass, heat resistance and chemical resistance may be reduced. When the amount of the component (b) used is less than 40 parts by mass, the compatibility of the obtained resin may be reduced, and when the amount of the component (b) used exceeds 80 parts by mass, The low thermal expansion property in the surface direction may decrease. When the amount of the component (c) used is less than 10 parts by mass, the moisture resistance and heat resistance may be reduced. When the amount of the component (c) used exceeds 50 parts by mass, the copper foil adhesion and dielectric properties are reduced. May decrease.

反応触媒の(d)成分の使用量は、(a)〜(c)成分の合計量100質量部に対して、0.0001〜0.004質量部が好ましい。0.0001質量部以上とすることにより、反応に長時間を要することなく所望の反応率に達することができる。また、0.004質量部以下とすることにより、反応速度が速すぎて終点管理が難しくなることがない。ここで、(b)成分のシアネート基を有する化合物の反応率は、GPC測定により反応開始時の(b)成分のシアネート基を有する化合物のピーク面積と、所定時間反応後のピーク面積を比較し、ピーク面積の消失率から求められる。   The amount of component (d) used in the reaction catalyst is preferably 0.0001 to 0.004 parts by mass with respect to 100 parts by mass of the total amount of components (a) to (c). By setting it to 0.0001 parts by mass or more, a desired reaction rate can be achieved without requiring a long time for the reaction. Moreover, by setting it as 0.004 mass part or less, reaction rate is not too fast and end point management becomes difficult. Here, the reaction rate of the compound having the cyanate group of the component (b) is compared with the peak area of the compound having the cyanate group of the component (b) at the start of the reaction by the GPC measurement and the peak area after the reaction for a predetermined time. The peak area disappearance rate is obtained.

次に、分子構造中にイミダゾール構造を含有し、2級アミン部分が変性された化合物(B)〔以下、イミダゾール化合物(B)とも云う〕は、2級アミン部分が変性されたイミダゾール化合物であれば制限されず、1−ベンジル−2−メチルイミダゾール、1−ベンジル−2−フェニルイミダゾール、1,2−ジメチルイミダゾール、1−シアノエチル−2−メチルイミダゾール、1−シアノエチル−2−エチル−4−メチルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾール、1−シアノエチル−2−フェニルイミダゾール、1−シアノエチル−2−ウンデシルイミダゾリウムトリメリテイト、1−シアノエチル−2−フェニルイミダゾリウムトリメリテイト、2,4−ジアミノ−6−〔2‘−メチルイミダゾリル−(1’)〕−エチル−s−トリアジン、2,4−ジアミノ−6−〔2‘−ウンデシルイミダゾリル−(1’)〕−エチル−s−トリアジン、2,4−ジアミノ−6−〔2‘−エチル−4’−メチルイミダゾリル−(1’)〕−エチル−s−トリアジンなどのイミダゾール化合物などを挙げることができるが、特に下記一般式(II)又は一般式(III)で表される化合物が保存安定性、低熱膨張率の観点から好ましい。   Next, the compound (B) in which the molecular structure contains an imidazole structure and the secondary amine moiety is modified [hereinafter also referred to as imidazole compound (B)] is an imidazole compound in which the secondary amine moiety is modified. Without limitation, 1-benzyl-2-methylimidazole, 1-benzyl-2-phenylimidazole, 1,2-dimethylimidazole, 1-cyanoethyl-2-methylimidazole, 1-cyanoethyl-2-ethyl-4-methyl Imidazole, 1-cyanoethyl-2-undecylimidazole, 1-cyanoethyl-2-phenylimidazole, 1-cyanoethyl-2-undecylimidazolium trimellitate, 1-cyanoethyl-2-phenylimidazolium trimellitate, 2, 4-Diamino-6- [2'-methylimidazolyl- (1 ') -Ethyl-s-triazine, 2,4-diamino-6- [2'-undecylimidazolyl- (1 ')]-ethyl-s-triazine, 2,4-diamino-6- [2'-ethyl-4 Examples include imidazole compounds such as '-methylimidazolyl- (1')]-ethyl-s-triazine, and particularly compounds represented by the following general formula (II) or general formula (III) are storage stable. From the viewpoint of low coefficient of thermal expansion.

Figure 2013189577
(式中、R3、R4、R5及びR6は各々独立に、水素原子、炭素数1〜20のアルキル基又はフェニル基であり、Aはアルキレン基又はフェニレン基である。)
Figure 2013189577
(Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a phenyl group, and A is an alkylene group or a phenylene group.)

Figure 2013189577
(式中、R3、R4、R5及びR6は各々独立に、水素原子、炭素数1〜20のアルキル基又はフェニル基であり、Bは単結合、アルキレン基、アルキリデン基、エーテル基又はスルフォニル基である。)
Figure 2013189577
Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a phenyl group, and B is a single bond, an alkylene group, an alkylidene group or an ether group. Or a sulfonyl group.)

イミダゾール化合物(B)の使用量は、相容化樹脂(A)100質量部に対し、0.05〜3質量部が好ましく、0.07〜2質量部がさらに好ましく、0.1〜1.5質量部が特に好ましい。0.05質量部以上とすることにより熱膨張率低減効果が得られ、3質量部以下とすることにより保存安定性が低下することがない。   0.05-3 mass parts is preferable with respect to 100 mass parts of compatibilizing resin (A), and, as for the usage-amount of an imidazole compound (B), 0.07-2 mass parts is more preferable, 0.1-1. 5 parts by mass is particularly preferred. The effect of reducing the coefficient of thermal expansion is obtained by setting it to 0.05 parts by mass or more, and the storage stability is not lowered by setting it to 3 parts by mass or less.

本発明の熱硬化性樹脂組成物には、更に無機充填剤(C)を配合することが好ましい。無機充填剤(C)としては、例えば、溶融シリカ、破砕シリカ、マイカ、タルク、ガラス短繊維又は微粉末及び中空ガラス、炭酸カルシウム、石英粉末、金属水和物等が挙げられ、これらの中で、低熱膨張率や高弾性の観点から溶融シリカが特に好ましい。
また、無機充填剤(C)として、耐熱性、難燃性の点から、水酸化アルミニウム、水酸化マグネシウム等の金属水和物が好ましく、さらに金属水和物の中でも、高い耐熱性と難燃性が両立する点から熱分解温度が300℃以上である金属水和物、例えばベーマイト型水酸化アルミニウム(AlOOH)、あるいはギブサイト型水酸化アルミニウム(Al(OH)3)を熱処理によりその熱分解温度を300℃以上に調整した化合物、水酸化マグネシウム等がより好ましく、特に、安価であり、350℃以上の特に高い熱分解温度と、高い耐薬品性を有するベーマイト型水酸化アルミニウム(AlOOH)が特に好ましい。
It is preferable that an inorganic filler (C) is further added to the thermosetting resin composition of the present invention. Examples of the inorganic filler (C) include fused silica, crushed silica, mica, talc, short glass fiber or fine powder and hollow glass, calcium carbonate, quartz powder, metal hydrate, and the like. From the viewpoints of low thermal expansion coefficient and high elasticity, fused silica is particularly preferable.
Further, as the inorganic filler (C), metal hydrates such as aluminum hydroxide and magnesium hydroxide are preferable from the viewpoint of heat resistance and flame retardancy, and among the metal hydrates, high heat resistance and flame retardancy are preferred. The thermal decomposition temperature of a metal hydrate having a thermal decomposition temperature of 300 ° C. or higher, such as boehmite type aluminum hydroxide (AlOOH) or gibbsite type aluminum hydroxide (Al (OH) 3 ), is obtained by heat treatment. Is more preferably a compound adjusted to 300 ° C. or higher, magnesium hydroxide, etc., especially boehmite type aluminum hydroxide (AlOOH) which is inexpensive and has a particularly high thermal decomposition temperature of 350 ° C. or higher and high chemical resistance. preferable.

無機充填剤(C)の使用量は、相容化樹脂(A)及びイミダゾール化合物(B)の合計量の固形分換算100質量部に対し、10〜300質量部とすることが好ましく、100〜250質量部とすることがより好ましく、150〜250質量部とすることが特に好ましい。10質量部以上とすることにより、基材の剛性や、耐湿耐熱性、難燃性が得られ、300質量部以下とすることにより、成形性や耐めっき液性等の耐薬品性が低下することがない。
無機充填剤(C)の平均粒径は、絶縁信頼性の確保の点から、5μm以下が好ましく、2μm以下がさらに好ましく、1μm以下が特に好ましい。
It is preferable that the usage-amount of an inorganic filler (C) shall be 10-300 mass parts with respect to 100 mass parts of solid content conversion of the total amount of compatibilizing resin (A) and imidazole compound (B), and 100- It is more preferable to set it as 250 mass parts, and it is especially preferable to set it as 150-250 mass parts. By setting it to 10 parts by mass or more, the rigidity of the base material, moisture heat resistance, and flame retardancy can be obtained, and by setting it to 300 parts by mass or less, chemical resistance such as moldability and plating solution resistance decreases. There is nothing.
The average particle size of the inorganic filler (C) is preferably 5 μm or less, more preferably 2 μm or less, and particularly preferably 1 μm or less, from the viewpoint of ensuring insulation reliability.

本発明で用いる無機充填剤(C)は、官能基を有するシラン化合物で表面処理したものであることが好ましい。
無機充填剤(C)に用いる官能基を有するシラン化合物には、官能基とアルコキシル基を有するシラン化合物であれば特に制限されないが、ビニルトリエトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、N−2−(アミノエチル)−3−アミノプロピルメチルジメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリメトキシシラン、N−2−(アミノエチル)−3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、3−アミノプロピルトリエトキシシラン、N−フェニル−3−アミノプロピルトリメトキシシランなどが上げられる。この中でも特に、一般式(VII)で示されるN−フェニル−3−アミノプロピルトリメトキシシランが特に好ましい。
The inorganic filler (C) used in the present invention is preferably one that has been surface-treated with a silane compound having a functional group.
The silane compound having a functional group used for the inorganic filler (C) is not particularly limited as long as it is a silane compound having a functional group and an alkoxyl group, but vinyltriethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3 -Glycidoxypropylmethyldiethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3-methacryloxypropyltriethoxysilane, N- 2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (aminoethyl) -3-aminopropyltriethoxysilane, 3 -Aminopropyltrimethoxysilane 3-aminopropyltriethoxysilane, etc. N- phenyl-3-aminopropyltrimethoxysilane, and the like. Among these, N-phenyl-3-aminopropyltrimethoxysilane represented by the general formula (VII) is particularly preferable.

Figure 2013189577
Figure 2013189577

無機充填剤(C)への表面処理方法の例としては、メチルエチルケトン、メチルイソブチルケトン、シクロヘキサノン等のケトン系有機溶剤やエチレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテル等のアルコール系有機溶剤に、無機充填剤を添加して混合した後、上記のトリメトキシシラン化合物を添加して60〜120℃で、0.5〜5時間程度攪拌しながら反応(表面処理)させることが挙げられる。また、表面処理はアドマテックス社等から商業的にも入手でき、例えば、アドマテックス社製の商品名SC-2050KNKや、SC-2050HNKなどがある。   Examples of surface treatment methods for the inorganic filler (C) include inorganic organic fillers such as ketone organic solvents such as methyl ethyl ketone, methyl isobutyl ketone and cyclohexanone, and alcohol organic solvents such as ethylene glycol monomethyl ether and propylene glycol monomethyl ether. After adding and mixing, the above-mentioned trimethoxysilane compound is added and reacted (surface treatment) at 60 to 120 ° C. with stirring for about 0.5 to 5 hours. The surface treatment can also be obtained commercially from Admatechs, for example, trade names SC-2050KNK and SC-2050HNK manufactured by Admatechs.

本発明の熱硬化性樹脂組成物には、耐熱性や難燃性、銅箔接着性等の向上化のため硬化促進剤を配合することが望ましく、硬化促進剤の例としては、ナフテン酸亜鉛、ナフテン酸コバルト、オクチル酸錫、オクチル酸コバルト等の有機金属塩、イミダゾール類及びその誘導体、第三級アミン類及び第四級アンモニウム塩等が挙げられる。これらの硬化促進剤を配合することにより、耐熱性や難燃性、銅箔接着性等を向上ことができる。   The thermosetting resin composition of the present invention preferably contains a curing accelerator for improving heat resistance, flame retardancy, copper foil adhesion, etc., and examples of the curing accelerator include zinc naphthenate. And organic metal salts such as cobalt naphthenate, tin octylate and cobalt octylate, imidazoles and derivatives thereof, tertiary amines and quaternary ammonium salts. By blending these curing accelerators, heat resistance, flame retardancy, copper foil adhesion, and the like can be improved.

本発明の熱硬化性樹脂組成物には、任意に他の難燃剤や難燃助剤を併用することができる。しかし、臭素や塩素を含有する含ハロゲン系難燃剤や熱分解温度が300℃未満である金属水酸化物等は本発明の目的にそぐわないものである。
難燃剤や難燃助剤としては、例えばトリフェニルホスフェート、トリクレジルホスフェート、トリスジクロロプロピルホスフェート、リン酸エステル系化合物、ホスファゼン、赤リン等のリン系難燃剤、また、三酸化アンチモン、モリブデン酸亜鉛等の無機難燃助剤等が挙げられる。
特に、モリブデン酸亜鉛をタルク等の無機充填剤に担持した無機難燃助剤は、難燃性のみならずドリル加工性をも著しく向上化させるので、特に好ましい無機難燃助剤である。
モリブデン酸亜鉛の使用量は相容化樹脂(A)100質量部に対し、5〜20質量部とすることが好ましい。5質量部以上とすることにより、難燃性やドリル加工性が向上し、また20質量部以下とすることにより、ワニスのゲルタイムが短くなり過ぎてプレスにより積層板を成形する際に成形性が低下することがない。
In the thermosetting resin composition of the present invention, other flame retardants and flame retardant aids can be optionally used in combination. However, halogen-containing flame retardants containing bromine and chlorine and metal hydroxides having a thermal decomposition temperature of less than 300 ° C. are not suitable for the purpose of the present invention.
Examples of flame retardants and flame retardant aids include phosphoric flame retardants such as triphenyl phosphate, tricresyl phosphate, trisdichloropropyl phosphate, phosphate ester compounds, phosphazenes, red phosphorus, antimony trioxide, and molybdic acid. Examples include inorganic flame retardant aids such as zinc.
In particular, an inorganic flame retardant aid in which zinc molybdate is supported on an inorganic filler such as talc is a particularly preferred inorganic flame retardant aid because it significantly improves not only the flame retardancy but also the drill workability.
The amount of zinc molybdate used is preferably 5 to 20 parts by mass with respect to 100 parts by mass of the compatibilizing resin (A). By setting it to 5 parts by mass or more, flame retardancy and drilling workability are improved, and by setting it to 20 parts by mass or less, the gel time of the varnish becomes too short and the moldability is improved when a laminate is formed by pressing. There is no decline.

本発明の熱硬化性樹脂組成物には、任意に公知の熱可塑性樹脂、エラストマー、有機充填剤を含有させることができる。
熱可塑性樹脂としては、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、ポリフェニレンエーテル樹脂、フェノキシ樹脂、ポリカーボネート樹脂、ポリエステル樹脂、ポリアミド樹脂、ポリイミド樹脂、キシレン樹脂、石油樹脂及びシリコーン樹脂等が挙げられる。
エラストマーとしては、ポリブタジエン、ABS樹脂、エポキシ変性ポリブタジエン、無水マレイン酸変性ポリブタジエン、フェノール変性ポリブタジエン及びカルボキシ変性アクリロニトリル等が挙げられる。
有機充填剤としては、シリコーンパウダー、ポリテトラフルオロエチレン、ポリエチレン、ポリプロピレン、ポリスチレン、並びにポリフェニレンエーテル等の有機物粉末等が挙げられる。
The thermosetting resin composition of the present invention can optionally contain a known thermoplastic resin, elastomer, and organic filler.
Examples of the thermoplastic resin include polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, polyphenylene ether resin, phenoxy resin, polycarbonate resin, polyester resin, polyamide resin, polyimide resin, xylene resin, petroleum resin, and silicone resin.
Examples of the elastomer include polybutadiene, ABS resin, epoxy-modified polybutadiene, maleic anhydride-modified polybutadiene, phenol-modified polybutadiene, and carboxy-modified acrylonitrile.
Examples of organic fillers include organic powders such as silicone powder, polytetrafluoroethylene, polyethylene, polypropylene, polystyrene, and polyphenylene ether.

本発明において、任意に前記の樹脂組成物に対して、紫外線吸収剤、酸化防止剤、光重合開始剤、蛍光増白剤及び密着性向上剤等の添加も可能であり、特に限定されない。これらの例としては、ベンゾトリアゾール系等の紫外線吸収剤、ヒンダードフェノール系やスチレン化フェノール等の酸化防止剤、ベンゾフェノン類、ベンジルケタール類、チオキサントン系等の光重合開始剤、スチルベン誘導体等の蛍光増白剤、尿素シラン等の尿素化合物やシランカップリング剤等の密着性向上剤等が挙げられる。   In the present invention, an ultraviolet absorber, an antioxidant, a photopolymerization initiator, a fluorescent whitening agent, an adhesion improver, and the like can be arbitrarily added to the resin composition, and there is no particular limitation. Examples of these include UV absorbers such as benzotriazoles, antioxidants such as hindered phenols and styrenated phenols, photopolymerization initiators such as benzophenones, benzyl ketals, and thioxanthones, and fluorescence such as stilbene derivatives. Examples include brighteners, urea compounds such as urea silane, and adhesion improvers such as silane coupling agents.

本発明のプリプレグは、前記した本発明の熱硬化性樹脂組成物を基材に含侵又は塗工した後、Bステージ化したものである。以下、本発明のプリプレグについて詳述する。
本発明のプリプレグは、本発明の熱硬化性樹脂組成物を、基材に含浸又は塗工し、加熱等により半硬化(Bステージ化)して本発明のプリプレグを製造することができる。
The prepreg of the present invention is obtained by impregnating or coating the above-described thermosetting resin composition of the present invention on a base material and then forming a B-stage. Hereinafter, the prepreg of the present invention will be described in detail.
The prepreg of the present invention can be produced by impregnating or coating the base material with the thermosetting resin composition of the present invention and semi-curing (B-stage) by heating or the like.

プリプレグに用いられる基材には、各種の電気絶縁材料用積層板に用いられている周知のものが使用できる。その材質の例としては、Eガラス、Dガラス、Sガラス及びQガラス等の無機物繊維、ポリイミド、ポリエステル及びテトラフルオロエチレン等の有機繊維、並びにそれらの混合物等が挙げられる。これらの基材は、例えば、織布、不織布、ロービンク、チョップドストランドマット及びサーフェシングマット等の形状を有するが、材質及び形状は、目的とする成形物の用途や性能により選択され、必要により、単独又は2種類以上の材質及び形状を組み合わせることができる。   As the base material used for the prepreg, known materials used for various types of laminates for electrical insulating materials can be used. Examples of the material include inorganic fibers such as E glass, D glass, S glass, and Q glass, organic fibers such as polyimide, polyester, and tetrafluoroethylene, and mixtures thereof. These base materials have, for example, shapes such as woven fabric, non-woven fabric, robink, chopped strand mat, and surfacing mat, but the material and shape are selected depending on the intended use and performance of the molded product, and if necessary, A single material or two or more materials and shapes can be combined.

基材の厚さは、特に制限されず、例えば、約0.03〜0.5mmのものを使用することができ、シランカップリング剤等で表面処理したもの又は機械的に開繊処理を施したものが、耐熱性や耐湿性、加工性の面から好適である。
本発明のプリプレグは、該基材に対する熱硬化性樹脂組成物の付着量が、乾燥後のプリプレグの樹脂含有率で20〜90質量%となるように基材に含浸又は塗工した後、通常、100〜200℃の温度で1〜30分加熱乾燥し、半硬化(Bステージ化)させて得ることができる。
The thickness of the substrate is not particularly limited. For example, a substrate having a thickness of about 0.03 to 0.5 mm can be used, and the substrate is surface-treated with a silane coupling agent or the like, or mechanically opened. Is suitable from the viewpoints of heat resistance, moisture resistance and processability.
After the prepreg of the present invention is impregnated or coated on the base material so that the amount of the thermosetting resin composition attached to the base material is 20 to 90% by mass in terms of the resin content of the prepreg after drying, It can be obtained by heating and drying at a temperature of 100 to 200 ° C. for 1 to 30 minutes and semi-curing (B-stage).

本発明の積層板は本発明のプリプレグを用いて形成されたものであり、前述のプリプレグを用いて、積層成形して、形成することができる。
即ち、本発明の積層板は前述のプリプレグを、例えば1〜20枚重ね、その片面又は両面に銅及びアルミニウム等の金属箔を配置した構成で積層成形することにより製造することができる。金属箔は、電気絶縁材料用途で用いるものであれば特に制限されない。
また、成形条件は、例えば、電気絶縁材料用積層板及び多層板の手法が適用でき、例えば多段プレス、多段真空プレス、連続成形、オートクレーブ成形機等を使用し、温度100〜250℃、圧力2〜100kg/cm2(0.2〜10MPa)、加熱時間0.1〜5時間の範囲で成形することができる。また、本発明のプリプレグと内層用配線板とを組合せ、積層成形して、多層板を製造することもできる。
The laminate of the present invention is formed using the prepreg of the present invention, and can be formed by laminate molding using the prepreg described above.
That is, the laminated board of this invention can be manufactured by laminating | molding the above-mentioned prepreg, for example by the structure which laminated | stacked 1-20 sheets, and arrange | positioned metal foil, such as copper and aluminum, on the single side | surface or both surfaces. The metal foil is not particularly limited as long as it is used for electrical insulating material applications.
In addition, as the molding conditions, for example, a method of a laminated plate for an electrical insulating material and a multilayer plate can be applied. For example, a multistage press, a multistage vacuum press, continuous molding, an autoclave molding machine, etc. are used, and a temperature of 100 to 250 ° C. and a pressure of 2 It can be molded in a range of ˜100 kg / cm 2 (0.2 to 10 MPa) and heating time of 0.1 to 5 hours. Further, the prepreg of the present invention and the inner layer wiring board can be combined and laminated to produce a multilayer board.

次に、下記の実施例により本発明を更に詳しく説明するが、これらの実施例は本発明をいかなる意味においても制限するものではない。
なお、以下の実施例および比較例において得られた銅張積層板を以下の方法により測定し、評価を行った。
Next, the present invention will be described in more detail with reference to the following examples, but these examples do not limit the present invention in any way.
In addition, the copper clad laminated board obtained in the following examples and comparative examples was measured by the following method and evaluated.

(1)ガラス転移温度(Tg)
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の面方向の熱膨張特性を観察することにより評価した。
(1) Glass transition temperature (Tg)
A 5 mm square evaluation board from which the copper foil was removed by immersing the copper clad laminate in a copper etching solution was prepared, and the thermal expansion characteristics in the surface direction of the evaluation board were measured using a TMA test apparatus (manufactured by DuPont, TMA2940). Evaluation was made by observation.

(2)線熱膨張係数
銅張積層板を銅エッチング液に浸漬することにより銅箔を取り除いた5mm角の評価基板を作製し、TMA試験装置(デュポン社製、TMA2940)を用い、評価基板の面方向の30℃〜100℃の線熱膨張率を測定した。
(2) Linear thermal expansion coefficient A 5-mm square evaluation board | substrate which removed the copper foil by immersing a copper clad laminated board in a copper etching liquid was produced, and the evaluation board | substrate of the evaluation board | substrate was used using the TMA test apparatus (the Du Pont company make, TMA2940). The linear thermal expansion coefficient of 30 to 100 ° C. in the plane direction was measured.

製造例1:相容化樹脂(A−1)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0g、下記式(IX)に示す末端に水酸基を有するシロキサン樹脂(信越化学社製;商品名X-22−1821、水酸基当量;1,600):200.0g、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX-4000、エポキシ当量;186):200.0g及びトルエン:1000.0gを投入した。
次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(A−1)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔即ち、(b)成分の反応率〕が68%であった。また、約10.9分付近、及び8.0〜10.0分付近に出現する熱硬化性樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合質量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT-IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(A−1)が製造されていることを確認した。
Production Example 1: Production of compatibilizing resin (A-1) A bisphenol A-type cyanate resin (manufactured by Lonza Japan Co., Ltd.) was added to a reaction vessel having a volume of 3 liters that can be heated and cooled with a thermometer, a stirrer, and a reflux condenser. Trade name: Primaset BADCy): 600.0 g, a siloxane resin having a hydroxyl group at the end represented by the following formula (IX) (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name: X-22-1821, hydroxyl equivalent: 1,600): 200.0 g Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin; trade name YX-4000, epoxy equivalent; 186): 200.0 g and toluene: 1000.0 g were charged.
Next, the temperature was raised to 120 ° C. with stirring, and after confirming that the resin solids had dissolved and became a uniform solution, 0.01 g of an 8% by mass mineral spirit solution of zinc naphthenate was added, and about 110 The reaction was carried out at 4 ° C. for 4 hours. Then, it cooled to room temperature and obtained the solution of compatibilizing resin (A-1).
A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran). As a result, the peak area of the bisphenol A type cyanate resin, which is a synthetic raw material and the elution time appears around 12.4 minutes, is the start of the reaction. Compared with the peak area of the bisphenol A-type cyanate resin at the time, the disappearance rate of the peak area [that is, the reaction rate of the component (b)] was 68%. Moreover, the peak of the product of the thermosetting resin which appears in the vicinity of about 10.9 minutes and 8.0-10.0 minutes was confirmed. Furthermore, when the reaction solution taken out in a small amount was dropped into a mixed solvent of methanol and benzene (mixing mass ratio 1: 1) and reprecipitated, the purified solid was taken out and subjected to FT-IR measurement. A peak around 1700 cm −1 due to the imino carbonate group, a strong peak near 1560 cm −1 due to the triazine ring, and a strong peak near 1380 cm −1 can be confirmed, and the compatibilizing resin (A-1) is produced. I confirmed.

Figure 2013189577
(式中のpは平均して35〜40である。)
Figure 2013189577
(P in the formula is 35-40 on average.)

製造例2:相容化樹脂(A−2)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ノボラック型シアネート樹脂(ロンザジャパン社製;商品名Primaset PT-15,質量平均分子量500〜1,000):800.0g、下記式(X)に示す末端に水酸基を有するシロキサン樹脂(信越化学社製;商品名KF−6003、水酸基当量;2800):100.0g、ナフトールアラルキル・クレゾール共重合型エポキシ樹脂(日本化薬社製;商品名NC-7000L、エポキシ当量;230):100.0g及びトルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(A−2)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.1分付近に出現する合成原料のノボラック型シアネート樹脂のピーク面積が、反応開始時のノボラック型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が43%であった。また、約10.9分付近、及び8.0〜10.0分付近に出現する熱硬化性樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合質量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(A−2)が製造されていることを確認した。
Production Example 2: Production of compatibilizing resin (A-2) A novolak-type cyanate resin (manufactured by Lonza Japan Co., Ltd.) was placed in a reaction vessel having a volume of 3 liters that can be heated and cooled with a thermometer, a stirrer, and a reflux condenser. Product name Primaset PT-15, mass average molecular weight 500 to 1,000): 800.0 g, a siloxane resin having a hydroxyl group at the end represented by the following formula (X) (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name KF-6003, hydroxyl group equivalent); 2800): 100.0 g, naphthol aralkyl-cresol copolymerization type epoxy resin (manufactured by Nippon Kayaku Co., Ltd .; trade name NC-7000L, epoxy equivalent: 230): 100.0 g and toluene: 1000.0 g were charged. Next, the temperature was raised to 120 ° C. with stirring, and after confirming that the resin solids had dissolved and became a uniform solution, 0.01 g of an 8% by mass mineral spirit solution of zinc naphthenate was added, and about 110 The reaction was carried out at 4 ° C. for 4 hours. Then, it cooled to room temperature and obtained the solution of compatibilizing resin (A-2).
A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran). As a result, the peak area of the novolac-type cyanate resin, which is a synthetic raw material with an elution time of about 12.1 minutes, As compared with the peak area of the novolak-type cyanate resin, the disappearance rate of the peak area [reaction rate of the component (b)] was 43%. Moreover, the peak of the product of the thermosetting resin which appears in the vicinity of about 10.9 minutes and 8.0-10.0 minutes was confirmed. Furthermore, when the reaction solution taken out in a small amount was dropped into a mixed solvent of methanol and benzene (mixing mass ratio 1: 1) and reprecipitated, the purified solid content was taken out and subjected to FT-IR measurement. A peak around 1700 cm −1 due to the imino carbonate group, a strong peak near 1560 cm −1 due to the triazine ring, and a strong peak near 1380 cm −1 can be confirmed, and the compatibilizing resin (A-2) is produced. I confirmed.

Figure 2013189577
(式中のqは平均して70〜75である。)
Figure 2013189577
(Q in the formula is 70 to 75 on average.)

製造例3:相容化樹脂(A−3)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ジシクロペンタジエン型シアネート樹脂(ロンザジャパン社製;商品名Primaset DT-4000、質量平均分子量500〜1,000):400.0g、下記一般式(XI)に示す末端に水酸基を有するシロキサン樹脂(信越化学社製;商品名X−22−160AS、水酸基当量;500):100.0g、ビフェニルアラルキル型エポキシ樹脂(日本化薬社製;商品名NC-3000H、エポキシ当量;280):500.0g、メシチレン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.30g添加し、約110℃で4時間反応を行った。その後、室温に冷却し、相容化樹脂(A−3)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.0分付近に出現する合成原料のノボラック型シアネート樹脂のピーク面積が、反応開始時のノボラック型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が43%であった。また、約10.9分付近、及び8.0〜10.0分付近に出現する熱硬化性樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合質量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT−IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(A−3)が製造されていることを確認した。
Production Example 3: Production of compatibilizing resin (A-3) Dicyclopentadiene-type cyanate resin (Lonza Japan Co., Ltd.) was added to a reaction vessel with a volume of 3 liters that can be heated and cooled with a thermometer, a stirrer, and a reflux condenser. Product name: Primaset DT-4000, weight average molecular weight: 500 to 1,000): 400.0 g, siloxane resin having a hydroxyl group at the end represented by the following general formula (XI) (manufactured by Shin-Etsu Chemical Co., Ltd .; product name X-22 160AS, hydroxyl equivalent: 500): 100.0 g, biphenyl aralkyl type epoxy resin (manufactured by Nippon Kayaku Co., Ltd .; trade name NC-3000H, epoxy equivalent: 280): 500.0 g, mesitylene: 1000.0 g were charged. Next, the temperature was raised to 120 ° C. while stirring, and after confirming that the resin solids had dissolved and became a uniform solution, 0.30 g of an 8% by mass mineral spirit solution of zinc naphthenate was added, and about 110 The reaction was carried out at 4 ° C. for 4 hours. Then, it cooled to room temperature and obtained the solution of compatibilizing resin (A-3).
A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran). As a result, the peak area of the novolak-type cyanate resin, which is a synthetic raw material that appears in the vicinity of about 12.0 minutes, is shown at the start of the reaction. As compared with the peak area of the novolak-type cyanate resin, the disappearance rate of the peak area [reaction rate of the component (b)] was 43%. Moreover, the peak of the product of the thermosetting resin which appears in the vicinity of about 10.9 minutes and 8.0-10.0 minutes was confirmed. Furthermore, when the reaction solution taken out in a small amount was dropped into a mixed solvent of methanol and benzene (mixing mass ratio 1: 1) and reprecipitated, the purified solid content was taken out and subjected to FT-IR measurement. imino carbonates due to group 1700 cm -1 vicinity of the peak also, around 1560 cm -1 due to the triazine ring, and confirmed strong peak at around 1380 cm -1, compatibilizing resin (a-3) is prepared I confirmed.

Figure 2013189577
(式中のrは平均して10〜15である。)
Figure 2013189577
(In the formula, r is 10 to 15 on average.)

製造例4:相容化樹脂(A−4)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):400.0g、上記一般式(IX)に示す末端に水酸基を有するシロキサン樹脂(信越化学社製;商品名X-22−1821、水酸基当量;1,600):500.0g、ナフタレン型エポキシ樹脂(大日本インキ化学社製;商品名エピクロンHP-4032、エポキシ当量;150):100.0g及びトルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し相容化樹脂(A−4)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が55%であった。また、約10.9分付近、及び8.0〜10.0分付近に出現する熱硬化性樹脂の生成物のピークが確認された。さらに、少量取り出した反応溶液を、メタノールとベンゼンの混合溶媒(混合重量比1:1)に滴下して再沈殿させることにより、精製された固形分を取り出し、FT-IR測定を行ったところ、イミノカーボネート基に起因する1700cm-1付近のピーク、また、トリアジン環に起因する1560cm-1付近、及び1380cm-1付近の強いピークが確認でき、相容化樹脂(A−4)が製造されていることを確認した。
Production Example 4: Production of compatibilizing resin (A-4) A bisphenol A-type cyanate resin (manufactured by Lonza Japan Co., Ltd.) was placed in a reaction vessel with a thermometer, a stirrer, a reflux condenser and a heat-coolable volume of 3 liters. Trade name Primaset BADCy): 400.0 g, a siloxane resin having a hydroxyl group at the end shown in the above general formula (IX) (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name X-22-1821, hydroxyl equivalent: 1,600): 500. 0 g, naphthalene type epoxy resin (Dainippon Ink Chemical Co., Ltd .; trade name: Epiklon HP-4032, epoxy equivalent: 150): 100.0 g and toluene: 1000.0 g were added. Next, the temperature was raised to 120 ° C. with stirring, and after confirming that the resin solids had dissolved and became a uniform solution, 0.01 g of an 8% by mass mineral spirit solution of zinc naphthenate was added, and about 110 The reaction was carried out at 4 ° C. for 4 hours. Then, it cooled to room temperature and obtained the solution of compatibilizing resin (A-4).
A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran). As a result, the peak area of the bisphenol A type cyanate resin, which is a synthetic raw material and the elution time appears around 12.4 minutes, is the start of the reaction. Compared with the peak area of the bisphenol A type cyanate resin at the time, the disappearance rate of the peak area [reaction rate of component (b)] was 55%. Moreover, the peak of the product of the thermosetting resin which appears in the vicinity of about 10.9 minutes and 8.0-10.0 minutes was confirmed. Further, the reaction solution taken out in a small amount was dropped into a mixed solvent of methanol and benzene (mixing weight ratio of 1: 1) to cause reprecipitation, whereby the purified solid content was taken out and subjected to FT-IR measurement. A peak around 1700 cm −1 due to the imino carbonate group, a strong peak near 1560 cm −1 due to the triazine ring, and a strong peak near 1380 cm −1 can be confirmed, and the compatibilizing resin (A-4) is produced. I confirmed.

製造例5:官能基を有するシラン化合物により表面処理(湿式処理)された溶融シリカ(C−1)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、溶融シリカ(アドマテックス社製;商品名SO−25R):700.0gとプロピレングリコールモノメチルエーテル:1000.0gを配合し、攪拌しながらN−フェニル−3−アミノプロピルトリメトキシシラン(信越化学社製;商品名KBM−573):7.0gを添加した。次いで80℃に昇温し、80℃で1時間反応を行い溶融シリカの表面処理(湿式処理)を行った後、室温に冷却し、N−フェニル−3−アミノプロピルトリメトキシシランにより表面処理(湿式処理)された溶融シリカ(C−1)の溶液を得た。
Production Example 5: Production of fused silica (C-1) surface-treated (wet treatment) with a silane compound having a functional group Reaction with a volume of 3 liters capable of being heated and cooled with a thermometer, a stirrer and a reflux condenser In a container, fused silica (manufactured by Admatechs; trade name SO-25R): 700.0 g and propylene glycol monomethyl ether: 1000.0 g are blended and stirred with N-phenyl-3-aminopropyltrimethoxysilane (Shin-Etsu). Chemical company make; brand name KBM-573): 7.0 g was added. Next, the temperature was raised to 80 ° C., reacted at 80 ° C. for 1 hour to perform surface treatment of the fused silica (wet treatment), then cooled to room temperature, and surface treatment with N-phenyl-3-aminopropyltrimethoxysilane ( A solution of fused silica (C-1) that was wet-treated was obtained.

比較製造例1:樹脂(R−1:(b)成分の反応率18%)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、上記一般式(IX)に示す末端に水酸基を有するシロキサン樹脂(信越化学社製;商品名X-22−1821、水酸基当量;1,600):200.0g、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX-4000、エポキシ当量;186):200.0g及びトルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で1時間反応を行った。その後、室温に冷却し、樹脂(R−1)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が18%であった。また、この溶液は翌日結晶化により沈殿物が生じた。
Comparative Production Example 1: Production of Resin (R-1: Reaction Rate of Component (b) 18%) Bisphenol A was added to a reaction vessel with a thermometer, a stirrer, a reflux condenser and a heat-coolable volume of 3 liters. Type cyanate resin (manufactured by Lonza Japan Co., Ltd .; trade name Primaset BADCy): 600.0 g and a siloxane resin having a hydroxyl group at the end shown in the above general formula (IX) (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name X-22-1821, hydroxyl group) Equivalent; 1,600): 200.0 g, Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin; trade name YX-4000, epoxy equivalent; 186): 200.0 g and toluene: 1000.0 g were charged. Next, the temperature was raised to 120 ° C. with stirring, and after confirming that the resin solids had dissolved and became a uniform solution, 0.01 g of an 8% by mass mineral spirit solution of zinc naphthenate was added, and about 110 The reaction was carried out at 1 ° C. for 1 hour. Then, it cooled to room temperature and obtained the solution of resin (R-1).
A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran). As a result, the peak area of the bisphenol A type cyanate resin, which is a synthetic raw material and the elution time appears around 12.4 minutes, is the start of the reaction. Compared with the peak area of the bisphenol A type cyanate resin at the time, the disappearance rate of the peak area [reaction rate of component (b)] was 18%. In addition, a precipitate was formed in the solution by crystallization the next day.

比較製造例2:樹脂(R−2:(b)成分の反応率76%)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積3リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、上記一般式(IX)に示す末端に水酸基を有するシロキサン樹脂(信越化学社製;商品名X-22−1821、水酸基当量;1,600):200.0g、ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX-4000、エポキシ当量186)200g及びトルエン:1000.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約120℃で6時間反応を行った。その後、室温に冷却し樹脂(R−2)の溶液を得た。
この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が76%であった。
Comparative Production Example 2: Production of Resin (R-2: Reaction Rate of Component (b) 76%) Bisphenol A was added to a 3 liter reaction vessel equipped with a thermometer, a stirrer, a reflux condenser and capable of heating and cooling. Type cyanate resin (manufactured by Lonza Japan Co., Ltd .; trade name Primaset BADCy): 600.0 g and a siloxane resin having a hydroxyl group at the end shown in the above general formula (IX) (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name X-22-1821, hydroxyl group) Equivalent; 1,600): 200.0 g, Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin Co., Ltd .; trade name YX-4000, epoxy equivalent 186) 200 g and toluene: 1000.0 g were added. Next, the temperature was raised to 120 ° C. while stirring, and after confirming that the resin solids had dissolved and became a uniform solution, 0.01 g of an 8% by mass mineral spirit solution of zinc naphthenate was added, and about 120 The reaction was carried out at 6 ° C. for 6 hours. Then, it cooled to room temperature and obtained the solution of resin (R-2).
A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran). As a result, the peak area of the bisphenol A type cyanate resin, which is a synthetic raw material and the elution time appears around 12.4 minutes, is the start of the reaction. Compared with the peak area of the bisphenol A type cyanate resin at the time, the disappearance rate of the peak area [reaction rate of the component (b)] was 76%.

比較製造例3:樹脂(R−3:(b)成分の反応率53%、(c)成分無)の製造
温度計、攪拌装置、還流冷却管の付いた加熱及び冷却可能な容積2リットルの反応容器に、ビスフェノールA型シアネート樹脂(ロンザジャパン社製;商品名Primaset BADCy):600.0gと、上記一般式(IX)に示す末端に水酸基を有するシロキサン樹脂(信越化学社製;商品名X-22−1821、水酸基当量;1,600):200.0gと、トルエン:800.0gを投入した。次いで、攪拌しながら120℃に昇温し、樹脂固形分が溶解し均一な溶液になっていることを確認した後、ナフテン酸亜鉛の8質量%ミネラルスピリット溶液を0.01g添加し、約110℃で4時間反応を行った。その後、室温に冷却し、エポキシ樹脂未含有の樹脂(R−3)の溶液を得た。この反応溶液を少量取り出し、GPC測定(ポリスチレン換算、溶離液:テトラヒドロフラン)を行ったところ、溶出時間が約12.4分付近に出現する合成原料のビスフェノールA型シアネート樹脂のピーク面積が、反応開始時のビスフェノールA型シアネート樹脂のピーク面積と比較し、ピーク面積の消失率〔(b)成分の反応率〕が53%であった。
Comparative Production Example 3: Production of Resin (R-3: Reaction Rate of Component (b) 53%, (c) No Component) Thermometer, Stirrer, Heating and Cooling Volume with Reflux Cooling Tube In a reaction vessel, bisphenol A type cyanate resin (manufactured by Lonza Japan; trade name Primaset BADCy): 600.0 g and a siloxane resin having a hydroxyl group at the end shown in the general formula (IX) (manufactured by Shin-Etsu Chemical Co., Ltd .; trade name X -22-1821, hydroxyl equivalent: 1,600): 200.0 g and toluene: 800.0 g. Next, the temperature was raised to 120 ° C. with stirring, and after confirming that the resin solids had dissolved and became a uniform solution, 0.01 g of an 8% by mass mineral spirit solution of zinc naphthenate was added, and about 110 The reaction was carried out at 4 ° C. for 4 hours. Then, it cooled to room temperature and obtained the solution of resin (R-3) which does not contain an epoxy resin. A small amount of this reaction solution was taken out and subjected to GPC measurement (polystyrene conversion, eluent: tetrahydrofuran). As a result, the peak area of the bisphenol A type cyanate resin, which is a synthetic raw material and the elution time appears around 12.4 minutes, is the start of the reaction. Compared with the peak area of the bisphenol A type cyanate resin at the time, the disappearance rate of the peak area [reaction rate of the component (b)] was 53%.

実施例1〜6、比較例1〜4
製造例1〜4により得られた(A)成分の相容化樹脂、又は比較製造例1〜3で得られた樹脂、商業的に入手した(B)成分のイミダゾール化合物、製造例5又は商業的に入手した(C)成分の無機充填剤、及び硬化促進剤に、希釈溶剤としてメチルエチルケトンを使用して、第1表及び第2表に示した配合割合(質量部)で混合して樹脂分60質量%の均一なワニスを得た。
次に、得られたワニスを厚さ0.2mmのSガラスクロスに含浸塗工し、160℃で10分加熱乾燥して樹脂含有量55質量%のプリプレグを得た。
このプリプレグを4枚重ね、18μmの電解銅箔を上下に配置し、圧力25kg/cm2(2.5MPa)、温度185℃で90分間プレスを行って、銅張積層板を得た。
このようにして得られた銅張積層板を用いて、ガラス転移温度及び熱膨張係数について前記の方法で測定・評価した。評価結果を第1表及び第2表に示す。
Examples 1-6, Comparative Examples 1-4
Component (A) compatibilized resin obtained in Production Examples 1 to 4, or resin obtained in Comparative Production Examples 1 to 3, commercially available (B) component imidazole compound, Production Example 5 or Commercial Ingredients (C) inorganic filler and curing accelerator were mixed with methyl ethyl ketone as a diluting solvent and mixed at the blending ratios (parts by mass) shown in Tables 1 and 2 to obtain a resin component. A 60% by weight uniform varnish was obtained.
Next, the obtained varnish was impregnated and applied to an S glass cloth having a thickness of 0.2 mm and dried by heating at 160 ° C. for 10 minutes to obtain a prepreg having a resin content of 55 mass%.
Four prepregs were stacked, 18 μm electrolytic copper foils were placed one above the other, and pressed at a pressure of 25 kg / cm 2 (2.5 MPa) and a temperature of 185 ° C. for 90 minutes to obtain a copper clad laminate.
Using the copper-clad laminate thus obtained, the glass transition temperature and the thermal expansion coefficient were measured and evaluated by the above methods. The evaluation results are shown in Tables 1 and 2.

Figure 2013189577
Figure 2013189577

Figure 2013189577
Figure 2013189577

第1表及び第2表において、(B)成分、(C)成分、硬化促進剤および比較例3で用いたエポキシ樹脂は次の通りである。   In Tables 1 and 2, the (B) component, the (C) component, the curing accelerator, and the epoxy resin used in Comparative Example 3 are as follows.

(B)成分:イミダゾール化合物
(B−1)エポキシマスクイミダゾール:三菱化学株式会社製商品名:P−200Z50、一般式(III)で示される2級アミンを変性したイミダゾール化合物)
(B−2)1−シアノエチル−2−フェニルイミダゾール(四国化成工業株式会社製商品名:2PZ−CN)、
(B−3)2−エチル−4−メチルイミダゾール(四国化成工業株式会社製商品名:2E4MZ、アミン官能基の変性なし)、
(C)成分:無機充填剤
(C−1):製造例5による官能基を有するシラン化合物により表面処理(湿式処理)された溶融シリカ、
(C−2):溶融シリカに対し1.0質量%のN−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(アドマテック社製;商品名SC−2050KNK,希釈溶剤;メチルイソブチルケトン)
(C−3):溶融シリカに対し1.0質量%のN−フェニル−3−アミノプロピルトリメトキシシランにより表面処理された溶融シリカ(アドマテック社製;商品名SC−2050HNK,希釈溶剤;シクロヘキサノン)
(C−4):ベーマイト型水酸化アルミニウム(AlOOH、河合石灰社製;商品名BMT−3L、熱分解温度:400℃)
硬化促進剤:ナフテン酸亜鉛の8質量%ミネラルスピリット溶液
比較例3で用いたエポキシ樹脂:ビフェニル型エポキシ樹脂(ジャパンエポキシレジン社製;商品名YX−4000、エポキシ当量;186)
(B) Component: Imidazole compound (B-1) Epoxy mask imidazole: Mitsubishi Chemical Corporation product name: P-200Z50, imidazole compound modified with secondary amine represented by formula (III))
(B-2) 1-cyanoethyl-2-phenylimidazole (trade name: 2PZ-CN, manufactured by Shikoku Chemicals Co., Ltd.)
(B-3) 2-ethyl-4-methylimidazole (trade name: 2E4MZ, manufactured by Shikoku Kasei Kogyo Co., Ltd., without modification of amine functional group),
(C) component: inorganic filler (C-1): fused silica surface-treated (wet treatment) with a silane compound having a functional group according to Production Example 5,
(C-2): Fused silica surface-treated with 1.0% by mass of N-phenyl-3-aminopropyltrimethoxysilane based on fused silica (manufactured by Admatech; trade name SC-2050KNK, diluent solvent; methyl isobutyl) Ketone)
(C-3): Fused silica surface-treated with 1.0% by mass of N-phenyl-3-aminopropyltrimethoxysilane based on fused silica (manufactured by Admatech; trade name SC-2050HNK, diluent solvent: cyclohexanone)
(C-4): Boehmite type aluminum hydroxide (AlOOH, manufactured by Kawai Lime; trade name BMT-3L, thermal decomposition temperature: 400 ° C.)
Curing accelerator: 8% by mass mineral spirit solution of zinc naphthenate Epoxy resin used in Comparative Example 3: Biphenyl type epoxy resin (manufactured by Japan Epoxy Resin; trade name YX-4000, epoxy equivalent; 186)

第2表において比較例1〜3は下記の理由により積層板の性能が評価できなかった。
比較例1:熱硬化性樹脂が析出しワニスを製造できなかった。
比較例2:成形性が不良であり積層板を作製できなかった。
比較例3:ワニスからプリプレグとする際に樹脂が分離し、プリプレグ及び積層板を作製できなかった。
In Table 2, Comparative Examples 1 to 3 could not evaluate the performance of the laminate for the following reasons.
Comparative Example 1: A thermosetting resin precipitated and a varnish could not be produced.
Comparative Example 2: The moldability was poor and a laminate could not be produced.
Comparative Example 3: When the prepreg was formed from the varnish, the resin was separated, and the prepreg and the laminate could not be produced.

第1表から明らかなように、本発明の実施例は、優れたガラス転移温度(Tg)及び低熱膨張率が達成している。一方、第2表から明らかなように、比較例4ではガラス転移温度(Tg)は実施例1と同等であるが、熱膨張率は実施例1に対して1.5ppm/℃大きく、官能基を有する2級アミンを変性したイミダゾールを用いることが熱膨張率を低減するために必須であることが分かる。   As is apparent from Table 1, the examples of the present invention achieve an excellent glass transition temperature (Tg) and a low coefficient of thermal expansion. On the other hand, as is clear from Table 2, the glass transition temperature (Tg) in Comparative Example 4 is the same as that in Example 1, but the coefficient of thermal expansion is 1.5 ppm / ° C. higher than that in Example 1, and the functional group It can be seen that it is essential to use an imidazole modified with a secondary amine having the above in order to reduce the coefficient of thermal expansion.

本発明の熱硬化性樹脂組成物を基材に含浸、又は塗工して得たプリプレグ、及び該プリプレグを積層成形することにより製造した積層板は、ガラス転移温度(Tg)が高く、低熱膨張率を発現する電子機器用プリント配線板として有用である。   A prepreg obtained by impregnating or coating a base material with the thermosetting resin composition of the present invention and a laminate produced by laminating the prepreg have a high glass transition temperature (Tg) and low thermal expansion. It is useful as a printed wiring board for electronic equipment that exhibits a high rate.

Claims (10)

下記一般式(I)で示される末端に水酸基を有するシロキサン樹脂(a)、1分子中に少なくとも2個のシアネート基を有する化合物(b)及び1分子中に少なくとも2個のエポキシ基を有する化合物(c)を、(a)〜(c)成分の合計量100質量部当たり、(a)成分10〜50質量部、(b)成分40〜80質量部、(c)成分10〜50質量部として、有機金属塩(d)の存在下、トルエン、キシレン及びメシチレンから選ばれる少なくとも一種の溶媒中で80〜120℃で反応させ、(b)成分の反応率が30〜70モル%である相容化樹脂(A)及び、分子構造中にイミダゾール構造を含有し、2級アミン部分が変性された化合物(B)を含有することを特徴とする熱硬化性樹脂組成物。
Figure 2013189577
(式中、R1は各々独立に炭素数1〜5のアルキレン基又はアルキレンオキシ基,Ar1は各々独立に単結合、アリーレン基又は炭素数1〜5のアルキレン基であり、mは5〜100の整数である。)
A siloxane resin having a hydroxyl group at the terminal represented by the following general formula (I) (a), a compound (b) having at least two cyanate groups in one molecule, and a compound having at least two epoxy groups in one molecule (C) per 100 parts by mass of the total amount of components (a) to (c), (a) component 10 to 50 parts by mass, (b) component 40 to 80 parts by mass, (c) component 10 to 50 parts by mass As a phase in which the reaction is carried out at 80 to 120 ° C. in at least one solvent selected from toluene, xylene and mesitylene in the presence of the organometallic salt (d), and the reaction rate of the component (b) is 30 to 70 mol%. A thermosetting resin composition comprising: a resin containing resin (A); and a compound (B) containing a imidazole structure in the molecular structure and having a modified secondary amine moiety.
Figure 2013189577
(In the formula, each R 1 is independently an alkylene group or alkyleneoxy group having 1 to 5 carbon atoms, Ar 1 is each independently a single bond, an arylene group or an alkylene group having 1 to 5 carbon atoms, and m is 5 to 5) It is an integer of 100.)
更に無機充填剤(C)を含有する請求項1に記載の熱硬化性樹脂組成物。   Furthermore, the thermosetting resin composition of Claim 1 containing an inorganic filler (C). 分子構造中にイミダゾール構造を含有し、2級アミン部分が変性された化合物(B)が下記一般式(II)又は一般式(III)で表される化合物である請求項1又は2に記載の熱硬化性樹脂組成物。
Figure 2013189577
(式中、R3、R4、R5及びR6は各々独立に、水素原子、炭素数1〜20のアルキル基又はフェニル基であり、Aはアルキレン基又はフェニレン基である。)
Figure 2013189577
(式中、R3、R4、R5及びR6は各々独立に、水素原子、炭素数1〜20のアルキル基又はフェニル基であり、Bは単結合、アルキレン基、アルキリデン基、エーテル基又はスルフォニル基である。)
The compound (B) containing a imidazole structure in the molecular structure and having a modified secondary amine moiety is a compound represented by the following general formula (II) or general formula (III): Thermosetting resin composition.
Figure 2013189577
(Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a phenyl group, and A is an alkylene group or a phenylene group.)
Figure 2013189577
Wherein R 3 , R 4 , R 5 and R 6 are each independently a hydrogen atom, an alkyl group having 1 to 20 carbon atoms or a phenyl group, and B is a single bond, an alkylene group, an alkylidene group or an ether group. Or a sulfonyl group.)
1分子中に少なくとも2個のエポキシ基を有する化合物(c)が、下記の一般式(IV)、一般式(V)、一般式(VI)のいずれかで表される化合物である請求項1〜3のいずれかに記載の熱硬化性樹脂組成物。
Figure 2013189577
(式中、sは1以上の数である。)
Figure 2013189577
(式中、R2、R3、R4及びR5は各々独立に、水素原子、又はメチル基である。)
Figure 2013189577
(式中、tは1以上の数である。)
The compound (c) having at least two epoxy groups in one molecule is a compound represented by any one of the following general formula (IV), general formula (V), and general formula (VI): The thermosetting resin composition in any one of -3.
Figure 2013189577
(In the formula, s is a number of 1 or more.)
Figure 2013189577
(Wherein R 2 , R 3 , R 4 and R 5 are each independently a hydrogen atom or a methyl group.)
Figure 2013189577
(In the formula, t is a number of 1 or more.)
無機充填剤(C)の平均粒径が5μm以下である請求項2〜4のいずれかに記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 2 to 4, wherein the inorganic filler (C) has an average particle size of 5 µm or less. 無機充填剤(C)が溶融シリカである請求項2〜5のいずれかに記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 2 to 5, wherein the inorganic filler (C) is fused silica. 無機充填剤(C)が官能基を有するシラン化合物で表面処理したものである請求項2〜6のいずれかに記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 2 to 6, wherein the inorganic filler (C) is surface-treated with a silane compound having a functional group. 官能基を有するシラン化合物が下記式(VII)で示されるトリメトキシシラン化合物である請求項7に記載の熱硬化性樹脂組成物。
Figure 2013189577
The thermosetting resin composition according to claim 7, wherein the silane compound having a functional group is a trimethoxysilane compound represented by the following formula (VII).
Figure 2013189577
請求項1〜8のいずれかに記載の熱硬化性樹脂組成物を基材に含侵又は塗工した後、Bステージ化したプリプレグ。   A prepreg that is B-staged after impregnating or coating the base material with the thermosetting resin composition according to claim 1. 請求項9記載のプリプレグを用いて形成された積層板。   A laminate formed using the prepreg according to claim 9.
JP2012058008A 2012-03-14 2012-03-14 Thermosetting resin composition, prepreg and laminate Active JP6028349B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012058008A JP6028349B2 (en) 2012-03-14 2012-03-14 Thermosetting resin composition, prepreg and laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012058008A JP6028349B2 (en) 2012-03-14 2012-03-14 Thermosetting resin composition, prepreg and laminate

Publications (2)

Publication Number Publication Date
JP2013189577A true JP2013189577A (en) 2013-09-26
JP6028349B2 JP6028349B2 (en) 2016-11-16

Family

ID=49390172

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012058008A Active JP6028349B2 (en) 2012-03-14 2012-03-14 Thermosetting resin composition, prepreg and laminate

Country Status (1)

Country Link
JP (1) JP6028349B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624184B1 (en) * 2013-06-28 2014-11-12 太陽インキ製造株式会社 Dry film and printed wiring board
WO2017006893A1 (en) * 2015-07-06 2017-01-12 三菱瓦斯化学株式会社 Printed wiring board production method and resin composition
JP2018053092A (en) * 2016-09-28 2018-04-05 味の素株式会社 Resin composition
WO2021199450A1 (en) * 2020-03-31 2021-10-07 ナミックス株式会社 Curing catalyst, resin composition, sealing material, adhesive and cured product

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090236A (en) * 2008-10-07 2010-04-22 Ajinomoto Co Inc Resin composition
JP2010248473A (en) * 2009-03-27 2010-11-04 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and multi-layered printed wiring board using same
WO2012018126A1 (en) * 2010-08-06 2012-02-09 日立化成工業株式会社 Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010090236A (en) * 2008-10-07 2010-04-22 Ajinomoto Co Inc Resin composition
JP2010248473A (en) * 2009-03-27 2010-11-04 Hitachi Chem Co Ltd Thermosetting resin composition, and prepreg, laminate and multi-layered printed wiring board using same
WO2012018126A1 (en) * 2010-08-06 2012-02-09 日立化成工業株式会社 Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5624184B1 (en) * 2013-06-28 2014-11-12 太陽インキ製造株式会社 Dry film and printed wiring board
JP2015010179A (en) * 2013-06-28 2015-01-19 太陽インキ製造株式会社 Dry film and printed wiring board
KR101618025B1 (en) 2013-06-28 2016-05-03 다이요 잉키 세이조 가부시키가이샤 Dry film and printed wiring board
US9822226B2 (en) 2013-06-28 2017-11-21 Taiyo Ink Mfg. Co., Ltd. Dry film and printed wiring board
WO2017006893A1 (en) * 2015-07-06 2017-01-12 三菱瓦斯化学株式会社 Printed wiring board production method and resin composition
JPWO2017006893A1 (en) * 2015-07-06 2018-04-19 三菱瓦斯化学株式会社 Method for producing printed wiring board and resin composition
JP2018053092A (en) * 2016-09-28 2018-04-05 味の素株式会社 Resin composition
TWI745425B (en) * 2016-09-28 2021-11-11 日商味之素股份有限公司 Resin composition
JP7102093B2 (en) 2016-09-28 2022-07-19 味の素株式会社 Resin composition, resin sheet, circuit board and semiconductor chip package
WO2021199450A1 (en) * 2020-03-31 2021-10-07 ナミックス株式会社 Curing catalyst, resin composition, sealing material, adhesive and cured product
JPWO2021199450A1 (en) * 2020-03-31 2021-10-07
JP7316009B2 (en) 2020-03-31 2023-07-27 ナミックス株式会社 Curing catalysts, resin compositions, encapsulants, adhesives, and cured products

Also Published As

Publication number Publication date
JP6028349B2 (en) 2016-11-16

Similar Documents

Publication Publication Date Title
JP2013216884A (en) Thermosetting resin composition, prepreg and laminated plate
EP2602277B1 (en) Process for producing compatibilized resin, thermosetting resin composition, prepreg, and laminate
WO2012121224A1 (en) Resin composition, and prepreg and laminated sheet containing same
JP5589470B2 (en) Bismaleimide derivative and method for producing the same, thermosetting resin composition, prepreg and laminate
JP6028349B2 (en) Thermosetting resin composition, prepreg and laminate
JP5105657B2 (en) Prepreg and laminate
JP2014122339A (en) Thermosetting resin composition, prepreg, laminate, print circuit board, mounting substrate, and method for producing thermosetting resin composition
TW201940589A (en) Resin composition, prepreg, laminate, metal foil-clad laminate, and printed circuit board having excellent dielectric properties, high flame retardancy, good heat resistance, low water absorption, low coefficient of thermal expansion, and high adhesion to a conductor after curing
JP5691833B2 (en) Thermosetting resin composition, prepreg and laminate
JP2004315705A (en) Modified polyimide resin composition and prepreg and laminate using the same
JP6163804B2 (en) Compatibilized resin production method, thermosetting resin composition, prepreg and laminate
JP6106931B2 (en) Compatibilizing resin, and thermosetting resin composition, prepreg, and laminate using the same
JP5909916B2 (en) Resin production method, thermosetting resin composition, prepreg and laminate
JP6221203B2 (en) Resin composition, prepreg and laminate using the same
JP6194603B2 (en) Thermosetting resin composition, prepreg and laminate
JP6353633B2 (en) Compatibilizing resin, thermosetting resin composition, prepreg and laminate
JP2012021098A (en) Thermosetting resin composition, prepreg using the same, and laminate using the prepreg
JP2013108067A (en) Method for producing compatibilized resin, compatibilized resin, thermosetting resin composition, prepreg and laminated plate
JP5447268B2 (en) Thermosetting resin composition, prepreg and laminate
JP6408752B2 (en) Compatibilized resin, and prepreg and laminate using the same
JP2015063608A (en) Thermosetting resin composition, prepreg using the same, and laminate using the same
JP2013189579A (en) Thermosetting resin composition, and prepreg and laminated plate using the same
JP6183081B2 (en) Compatibilizing resin production method, thermosetting resin composition, prepreg, laminate, and printed wiring board
JP6425873B2 (en) Thermosetting resin composition, prepreg and laminate
JP2015063605A (en) Prepreg using organic fiber base material and laminate plate using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160920

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161003

R151 Written notification of patent or utility model registration

Ref document number: 6028349

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350