JP2013186756A - 発電効率保証値算出装置及び発電効率保証値算出方法並びに発電効率保証値算出装置を備えた発電システム - Google Patents
発電効率保証値算出装置及び発電効率保証値算出方法並びに発電効率保証値算出装置を備えた発電システム Download PDFInfo
- Publication number
- JP2013186756A JP2013186756A JP2012052241A JP2012052241A JP2013186756A JP 2013186756 A JP2013186756 A JP 2013186756A JP 2012052241 A JP2012052241 A JP 2012052241A JP 2012052241 A JP2012052241 A JP 2012052241A JP 2013186756 A JP2013186756 A JP 2013186756A
- Authority
- JP
- Japan
- Prior art keywords
- power generation
- generation efficiency
- predetermined period
- generation system
- value
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000010248 power generation Methods 0.000 title claims abstract description 397
- 238000004364 calculation method Methods 0.000 title claims abstract description 92
- 238000009434 installation Methods 0.000 claims abstract description 13
- 230000006866 deterioration Effects 0.000 claims description 13
- 238000012544 monitoring process Methods 0.000 claims description 12
- 238000012937 correction Methods 0.000 abstract description 23
- 238000004891 communication Methods 0.000 description 22
- 238000005259 measurement Methods 0.000 description 16
- 230000005855 radiation Effects 0.000 description 15
- 238000006243 chemical reaction Methods 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 230000005856 abnormality Effects 0.000 description 7
- 231100000817 safety factor Toxicity 0.000 description 7
- 101150047304 TMOD1 gene Proteins 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 238000009825 accumulation Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000006698 induction Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000003203 everyday effect Effects 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- 238000012806 monitoring device Methods 0.000 description 1
- 230000008520 organization Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000001932 seasonal effect Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/70—Smart grids as climate change mitigation technology in the energy generation sector
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y04—INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
- Y04S—SYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
- Y04S10/00—Systems supporting electrical power generation, transmission or distribution
- Y04S10/50—Systems or methods supporting the power network operation or management, involving a certain degree of interaction with the load-side end user applications
Landscapes
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
【課題】実情を反映して適切な発電効率保証値を算出することができる発電効率保証値算出装置を提供する。
【解決手段】発電効率保証値算出装置は、再生可能エネルギーから電力を生成する発電ユニットを備える発電システムの所定単位での第1回目の所定期間の発電効率保証値を前記発電システムの実稼動前に算出する第1算出部と、前記発電システムの前記所定単位での発電量データ及び前記発電システムの設置場所の気象データを用いて気象補正された発電効率を前記所定期間毎に算出する第2算出部と、第2回目以降の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する第3算出部とを備える。
【選択図】図2
【解決手段】発電効率保証値算出装置は、再生可能エネルギーから電力を生成する発電ユニットを備える発電システムの所定単位での第1回目の所定期間の発電効率保証値を前記発電システムの実稼動前に算出する第1算出部と、前記発電システムの前記所定単位での発電量データ及び前記発電システムの設置場所の気象データを用いて気象補正された発電効率を前記所定期間毎に算出する第2算出部と、第2回目以降の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する第3算出部とを備える。
【選択図】図2
Description
本発明は、再生可能エネルギーから電力を生成する発電ユニットを備える発電システム(以下、「再生可能エネルギー発電システム」と称することがある)の所定単位での発電効率保証値を算出する技術に関する。
近年、地球環境保護の重要性の高まりとともに太陽光発電などの再生可能エネルギーへの期待が大きくなっており、種々の再生可能エネルギー発電システムが積極的に導入あるいは計画されている。
再生可能エネルギー発電システムを導入する導入者は、銀行から融資を受けて事業化することが多い。再生可能エネルギー発電システム導入者にとって、事業化には採算性の検討が重要であるが、再生可能エネルギー発電システム販売者から高い発電効率が保証されれば、銀行からの融資を受けやすく、導入者にとってメリットがある。販売者は、個々の再生可能エネルギー発電システムの設置場所での、より正確な発電効率を算出することが求められるが、未知な要素が多いため、低い発電効率保証値を提示している場合が多い。
ところが、発電量保証値や発電効率保証値を算出する具体的な手法について、十分な検討さえなされていのが現状である。なお、特許文献1には発電量保証値に関する記載はあるが、発電量保証値や発電効率保証値を算出する具体的な手法に関する記載はない。
本発明は、上記の状況に鑑み、実情を反映して適切な発電効率保証値を算出することができる発電効率保証値算出装置及び発電効率保証値算出方法を提供することを目的とする。また、当該発電効率保証値算出装置を備えた発電システムを提供することを目的とする。
上記目的を達成するために本発明に係る発電効率保証値算出装置は、再生可能エネルギーから電力を生成する発電ユニットを備える発電システムの所定単位での第1回目の所定期間の発電効率保証値を前記発電システムの実稼動前に算出する第1算出部と、前記発電システムの前記所定単位での発電量データ及び前記発電システムの設置場所の気象データを用いて気象補正された発電効率を前記所定期間毎に算出する第2算出部と、第2回目以降の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する第3算出部とを備える構成(第1の構成)とする。なお、前記第2算出部は、前記所定期間の全期間に渡る発電量データ及び気象データを用いて前記所定期間の前記気象補正された発電効率を算出してもよく、前記所定期間の一部期間のみの発電量データ及び気象データを用いて前記所定期間の前記気象補正された発電効率を算出してもよい。
このような構成によると、第2回目以降の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出するので、第2回目以降の前記所定期間の前記発電効率保証値を、実情を反映して適切な発電効率保証値にすることができる。
また、上記第1の構成の発電効率保証値算出装置において、前記第1算出部は、第2回目以降の前記所定期間の初期発電効率保証値を前記所定期間毎に実稼動前に算出し、前記第3算出部は、第n(nは自然数)回目の前記所定期間の前記気象補正された発電効率が第n回目の前記所定期間の前記初期発電効率保証効率(ただし、nが1の場合には第1回目の前記所定期間の前記発電効率保証値)以下であれば、第n+1回目の前記所定期間の前記発電効率保証値を、第n+1回目の前記所定期間の前記初期発電効率保証値とし、第n回目の前記所定期間の前記気象補正された発電効率が第n回目の前記所定期間の前記初期発電効率保証値(ただし、nが1の場合には第1回目の前記所定期間の前記発電効率保証値)を上回れば、第n+1回目の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する構成(第2の構成)にすることが望ましい。
このような構成によると、第n(nは自然数)回目の前記所定期間の前記気象補正された発電効率が第n回目の前記所定期間の前記初期発電効率保証値以下であれば、第n+1回目の前記所定期間の前記発電効率保証値を、第n+1回目の前記所定期間の前記初期発電効率保証値とするので、第2回目以降の前記所定期間の前記発電効率保証値が前回の前記所定期間の前記気象補正された発電効率に引きずられて前記初期発電効率保証値よりも低くなることを防止することができる。
また、上記第1または第2の構成の発電効率保証値算出装置において、前記第3算出部は、第b+1(bはm以上の自然数、mは2以上の自然数である固定値)回目の前記所定期間の前記発電効率保証値を、第b回目の前記所定期間の前記気象補正された発電効率と、第b−a(aはm−1より小さい自然数である固定値)回目から第b回目までの前記所定期間の前記気象補正された発電効率から求まる劣化率とに基づいて算出する構成(第3の構成)にすることが望ましい。
このような構成によると、劣化率も実情を反映して適切となるので、第b+1回目の前記所定期間の前記発電効率保証値がより一層高くなり得る。
また、上記第1〜第3のいずれかの構成の発電効率保証値算出装置において、前記発電システムの監視状態に応じて前記所定期間の前記発電効率保証値を補正する構成(第4の構成)にすることが望ましい。
このような構成によると、前記発電システムが細かく監視されていれば、それに応じて前記所定期間の前記発電効率保証値がより一層高くなり得る。
また、上記第1〜第4のいずれかの構成の発電効率保証値算出装置において、前記所定期間が1年である構成(第5の構成)にすることが望ましい。
このような構成によると、第2回目以降の前記所定期間の前記発電効率保証値を1年の四季に渡る実情(雨による汚れの浄化等)を反映した発電効率保証値にするので、第2回目以降の前記所定期間の前記発電効率保証値の精度が向上する。
また、上記目的を達成するために本発明に係る発電効率保証値算出方法は、再生可能エネルギーから電力を生成する発電ユニットを備える発電システムの所定単位での第1回目の所定期間の発電効率保証値を前記発電システムの実稼動前に算出する第1算出ステップと、前記発電システムの前記所定単位での発電量データ及び前記発電システムの設置場所の気象データを用いて気象補正された発電効率を前記所定期間毎に算出する第2算出ステップと、第2回目以降の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する第3算出ステップとを備えるようにする。なお、前記第2算出ステップにおいて、前記所定期間の全期間に渡る発電量データ及び気象データを用いて前記所定期間の前記気象補正された発電効率を算出してもよく、前記所定期間の一部期間のみの発電量データ及び気象データを用いて前記所定期間の前記気象補正された発電効率を算出してもよい。
また、上記目的を達成するために本発明に係る発電システムは、再生可能エネルギーから電力を生成する発電ユニットと、前記発電ユニットで生成した電力を変換する電力変換部と、発電効率保証値算出装置とを備える発電システムであって、前記発電効率保証値算出装置が、前記発電システムの所定単位での第1回目の所定期間の発電効率保証値を前記発電システムの実稼動前に算出する第1算出部と、前記発電システムの前記所定単位での発電量データ及び前記発電システムの設置場所の気象データを用いて気象補正された発電効率を前記所定期間毎に算出する第2算出部と、第2回目以降の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する第3算出部とを備える構成とする。なお、前記第2算出部は、前記所定期間の全期間に渡る発電量データ及び気象データを用いて前記所定期間の前記気象補正された発電効率を算出してもよく、前記所定期間の一部期間のみの発電量データ及び気象データを用いて前記所定期間の前記気象補正された発電効率を算出してもよい。
なお、本発明に係る発電効率保証値算出装置、本発明に係る発電効率保証値算出方法、本発明に係る発電システムそれぞれにおいて、前記発電システムとして、例えば太陽光発電システムを挙げることができる。
本発明によると、実情を反映して適切な発電効率保証値を算出することができる。
本発明の実施形態について図面を参照して以下に説明する。
まず、はじめに本発明の前提として考える算出方法について説明する。
ここで、太陽光発電システムを例にとり、発電効率保証値の算出方法について説明する。図11に示すように、太陽光発電システムの実際の出力電力量Dは、ロスが全く無い場合の出力電力量Cを種々の変動因子で補正することで求めることができる。なお、図11で示した変動因子は例示であり、変動因子に関しては設計者によって様々な切り口が存在する(JIS C 8907等参照)。また、太陽光発電システム全体の実際の出力電力量を求めるのではなく、例えば、インバータの入力端に供給される電力量(インバータの入力端単位での出力電力量)を求めるのであれば、インバータロス補正、ACケーブルロス補正、トランスロス補正は変動因子に含まないようにし、インバータの出力端から出力される電力量(インバータの出力端単位での出力電力量)を求めるのであれば、ACケーブルロス補正、トランスロス補正は変動因子に含まないようにすればよい。
太陽光発電システム全体の発電効率SEは、下記(1)式の通り、太陽光発電システム全体の実際の出力電力量D[Wh]を、アレイ面日射量A[Wh/m2]とアレイ公称出力B[W]で除した値である。なお、公称出力は便宜上[W]で表しているが、正確には1[kW/m2]の日射強度時の出力という定義であるため、[m2/1000]という次元である。発電効率は、図11に示すように、変動因子によってどれだけ発電電力が減少したかを示す指標であり、各変動因子の係数が理論的に求められれば、各変動因子の補正係数を掛け合わせることでも求める事ができるが、現実的には困難なため、測定可能または既知であるD、A、Bを使用して計算している。
例えば、公称出力200[W]の太陽電池モジュールを50台備えたアレイ公称出力10[kW](=10[m2])の太陽光発電システムを考える。1年間を基本単位とし、1年
間の出力電力量が12000[kWh]、1年間のアレイ面日射量が1500[kWh/m2]で
あったとする。この場合の発電効率SEは、下記(2)式の通り、0.8となる。
間の出力電力量が12000[kWh]、1年間のアレイ面日射量が1500[kWh/m2]で
あったとする。この場合の発電効率SEは、下記(2)式の通り、0.8となる。
発電効率SEは、太陽電池の発電性能に大きく影響を及ぼす因子の1つである日射量に対して補正をかけているが、太陽電池の発電性能に大きく影響を及ぼすもう1つの因子である温度の影響を補正していない。このため、発電効率SEは、異なる年度毎の比較など、気温条件が異なった場合に、発電が正常であるかどうかの比較値としてふさわしくない。例えば、太陽電池の発電性能が同一であるにもかかわらず、温度が高かった年は発電効率SEが0.75となり、温度が低かった年は発電効率SEが0.85となる事態が生じ得る。そこで、このような不具合を解消するために、補正発電効率が利用される。
太陽光発電システム全体の補正発電効率CEは、下記(3)式の通り、太陽光発電システム全体の実際の出力電力量D[Wh]を、アレイ面日射量A[Wh/m2]とアレイ公称出力B[W]、さらに温度補正係数CTで除した値である。
温度補正係数CTは、1年間の平均温度などから決まるものではなく、できる限り細かな測定単位ごとに補正をかけなければならない性質のものである。また、温度補正係数CTは、下記(4)式で定義される。ただし、αは太陽電池モジュールの温度係数であり、Tmod[℃]は太陽電池モジュールの温度である。太陽電池モジュールの温度係数αの一例であるシリコン結晶系の太陽電池モジュールの温度係数はおおよそ−0.5[%/℃]である。
CT=1+α×(Tmod−25) ・・・(4)
CT=1+α×(Tmod−25) ・・・(4)
上記(4)式では、太陽電池モジュールの温度Tmodを用いて温度補正係数CTを求めているが、さらに正確を期す場合は太陽電池セルの温度Tcellを用いるようにすればよい。この場合、一般的には下記(5)式の相関式を適用する。ただし、E[kW/m2]はアレイ面日射強度であり、βはアレイ面日射強度Eが1[kW/m2]時の太陽電池セルと太陽電
池モジュール裏面との温度差を示す相関係数である。相関係数βはラボで理論的あるいは実験的に求める値である。
Tcell=Tmod+β×E ・・・(5)
池モジュール裏面との温度差を示す相関係数である。相関係数βはラボで理論的あるいは実験的に求める値である。
Tcell=Tmod+β×E ・・・(5)
例えば、上述したアレイ公称出力10[kW]の太陽光発電システムで1分単位の測定(記録)を実施しているとする。1分間の補正発電効率CE1MINは以下の手順で求めることができる。実際に発電サイト(太陽光発電システムの設置場所)で測定を実施している(測定が可能である)のは、出力電力量、アレイ面日射強度、太陽電池モジュール裏面温度である事が多い。1分値での計算であるが、測定がもっと細かく実施されている項目は、その平均値とすることが望ましい。例えば日射強度が6秒単位で測定されている場合は、1分間で10回の測定が実施されているので、その平均値を1分値として代表させることが望ましい。
ここで、一例として、1分間の出力電力量が0.07[kWh]であり、1分間のアレイ面日射強度が0.6[kW/m2]であり、1分間の太陽電池モジュール裏面温度が75[℃
]である場合を考える。まず、1分間のアレイ日射面強度を1分間のアレイ面日射量に変換するために60で除する。この例では、1分間のアレイ面日射量は0.01[kWh/m2]
となり、1分間の補正発電効率CE1MINは下記(6)式に示す通り0.93となる。
]である場合を考える。まず、1分間のアレイ日射面強度を1分間のアレイ面日射量に変換するために60で除する。この例では、1分間のアレイ面日射量は0.01[kWh/m2]
となり、1分間の補正発電効率CE1MINは下記(6)式に示す通り0.93となる。
補正発電効率の算出は、1分単位、10分単位、30分単位、1時間単位など任意であるが、誤差を少なくする観点から細かい時間単位の方が望ましい。測定時間単位での補正発電効率CE(Δt)は下記(7)式で表すことができる。ただし、D(Δt) [Wh]は
測定単位期間での出力電力量であり、A(Δt) [Wh/m2]は測定単位期間でのアレイ面
日射量であり、B[m2/1000]はアレイ公称出力であり、CT(Δt)は測定単位期間で
の温度補正係数である。
測定単位期間での出力電力量であり、A(Δt) [Wh/m2]は測定単位期間でのアレイ面
日射量であり、B[m2/1000]はアレイ公称出力であり、CT(Δt)は測定単位期間で
の温度補正係数である。
また、インバータロス補正などは簡単のために一定値(カタログ記載のインバータ効率や、第三者機関によって所定の方法で測定されたインバータ効率など)として計算する事が多いが、正確にはその時の発電状態に依存するため、上記(7)式の右辺に影響因子として入れるほうが正確な計算となる。その他、その時の発電状態に依存する変動因子は、上記(7)式の右辺に影響因子として入れるほうが良い。
ある1日の補正発電効率CE(n)は、ある時刻(瞬間)tの補正発電効率CE(t)を1日にわたって積算すればよいが、その際に出力電力量による重み付けが必要となる。したがって、ある1日の補正発電効率CE(n)は、下記(8)式で表すことができる。ただし、D(t) はある時刻での出力電力量であり、D(n) はある1日の総出力電力量である。なお、下記(8)式中のシグマは、実際のデータは断続的であることから、上記(7)式の例で示したように、ある測定間隔ごとに取得、計算したデータを積算していることを表している。
上述した補正発電効率は、日射量と気温(モジュール温度に影響)の影響を取り除いているので、純粋にその他の変動因子が、発電にどのように影響を及ぼしているかの指標となる。
モジュール劣化補正が無いと考えた場合、理想的には補正発電効率CEは図12に示すように一定値になる。また、モジュール劣化補正を考慮した場合、補正発電効率CEは図13に示すように稼働年数の増加に従って減少する。
上記のような発電効率保証値の算出方法では、太陽光発電システムの設置時点すなわち太陽光発電システムの実稼働前において、補正発電効率CEに影響を及ぼす各変動因子を過去の経験や、ある仮定に基づき算出する。例えば、汚れ補正は、雨の少ない地域では0.95、雨の多い地域では0.98にするなどである。そして、各変動因子の算出結果や測定誤差、安全率を用いて、実稼働前の発電データ及び設置場所の気象データに基づいて算出した補正発電効率CEよりも低めに設定される発電効率保証値Eguaを算出する。またこの発電効率保証値Eguaは固定値として複数年にわたって適用されることも多い。なお、図13では、補正発電効率CE及び発電効率保証値Eguaは線形的に減少しているが、線形的に減少するとは限らず、例えば指数関数的に減少する場合もある。
この算出方法では、太陽光発電システムの設置時点すなわち太陽光発電システムの実稼働前においては不明確な変動因子や測定誤差を推測しているに他ならず、保証をする側は、発電効率保証値Eguaを保守的な値(発電効率保証値が低めになる値)にせざるを得ないという課題がある。なお、本明細書において、「実稼働」とは試運転などを除くことを意図しており、異常発生などにより実稼働後に運転を休止することがあった場合、運転休止期間も実稼働期間に含まれる。
また、上述した発電効率保証値の算出方法では、太陽光発電システムの設置時点すなわち太陽光発電システムの実稼働前において実際どの程度経年劣化していくのか不明であるため、劣化率を保守的な値(発電効率保証値が低めになる値)にせざるを得ないという課題がある。
本発明は、上記の前提に鑑み、実情を反映してこれよりも高くなり得る発電効率保証値を算出することができる発電効率保証値算出装置及び発電効率保証値算出方法を提供することを目的とする。また、当該発電効率保証値算出装置を備えた発電システムを提供することを目的とする。
引き続き、本発明の実施形態について説明する。
図1は、本発明の一実施形態に係る発電効率保証値算出装置の概略構成を示す図である。図1に示す本発明の一実施形態に係る発電効率保証値算出装置100(以下、「発電効率保証値算出装置100」という)は、通信インターフェース部101と、制御部102と、メモリ103と、出力部104とを備えており、通信ネットワーク200を介して太陽光発電システム300から各種データを取得する。出力部104としては、例えばモニタ、プリンタ、コンピュータ読み取り可能な記憶媒体にデータを書き込む記憶媒体インターフェースなどを挙げることができる。
通信ネットワーク200は有線通信のみで構築されていてもよく、無線通信のみで構築されていてもよく、有線通信と無線通信との組み合わせで構築されていてもよい。
また、本実施形態とは異なり、本発明に係る発電効率保証値算出装置は発電システムとネットワーク接続されていなくてもよい。発電システムとネットワーク接続されていない場合には例えば本発明に係る発電効率保証値算出装置が発電システムに関する各種データを入力する入力部を備えるようにすればよい。なお、入力部は、例えばキーボードとポインティングデバイスとによって構成される。
また、本実施形態とは異なり、本発明に係る発電効率保証値算出装置は発電システムの内部に設けられてもよい。
次に、発電効率保証値算出装置100の動作について図2のフローチャートを参照して説明する。
まず、太陽光発電システム300の実稼働前に、発電効率保証値算出装置100の制御部102は、太陽光発電システム300の所定単位(例えば、システム全体、インバータ単位、集電箱単位、接続箱単位など)での第1回目の所定期間の発電効率保証値、第2回目以降の所定期間の初期発電効率保証値を、各変動因子の過去の経験やある仮定に基づく算出結果、測定誤差、及び安全率を用いて、算出する(ステップS10)。なお、後述するステップS70やステップS80で1年の四季に渡る実情を反映した発電効率保証値を設定することができるように、本実施形態では所定期間を1年とするが、他の値であっても構わない。「第2回目以降の所定期間の初期発電効率保証値」中の「初期」は後述するステップS70やステップS80で設定する発電効率保証値と区別するためのものであり、各変動因子の過去の経験やある仮定に基づく算出結果、測定誤差、及び安全率を用いて算出することができる。
第1回目の所定期間の発電効率保証値401、第2〜10回目の所定期間の初期発電効率保証値402〜410を図3に示す。図3中の実線L0が上記前提の算出方法に基づく発電効率保証値ラインとなる。
太陽光発電システム300が実稼働を開始すると同時に、発電効率保証値算出装置100は発電効率保証を開始する。第1回目の所定期間の発電効率保証値は上記前提の算出方法に基づく場合と同様であるため、第1回目の所定期間の発電効率保証値401のままである。
発電効率保証値算出装置100は、通信ネットワーク200及び通信インターフェース部101を介して、太陽光発電システム300の所定単位での発電データ及び太陽光発電システム300の設置場所の気象データを太陽光発電システム300から取得し、メモリ103に蓄積する(ステップS20)。制御部102は、メモリ103に蓄積されたデータを用いて、上記(9)式で用いるD(n)・CE(n)の積算値とD(n)の積算値を算出してメモリ103に蓄積する(ステップS30)。
そして、制御部102は、カレンダー機能を有しており、所定期間(本実施形態では1年)が経過したか否かを判定し(ステップS40)、所定期間が経過していなければ上述したステップS20及びS30の処理を継続し、所定期間が経過すればステップS50に移行する。
ステップS50において、制御部102は、今回の所定期間の気象補正された補正発電効率が今回の所定期間の初期発電効率保証値(ただし、今回が第1回目である場合には第1回目の所定期間の発電効率保証値)を上回っているか否かを判定する。
今回の所定期間の気象補正された補正発電効率が今回の所定期間の初期発電効率保証値(ただし、今回が第1回目である場合には第1回目の所定期間の発電効率保証値)を上回っていなければ(ステップS50のNO)、制御部102は、次回の所定期間の発電効率保証値を、次回の所定期間の初期発電効率保証値とし、ステップS20に戻り次回の所定期間のデータ蓄積を開始する。このような処理により、次回の所定期間の発電効率保証値が今回の所定期間の気象補正された補正発電効率に引きずられて初期発電効率保証値よりも低くなることを防止することができる。
一方、今回の所定期間の気象補正された補正発電効率が今回の所定期間の初期発電効率保証値(ただし、今回が第1回目である場合には第1回目の所定期間の発電効率保証値)を上回っていれば(ステップS50のYES)、制御部102は、太陽光発電システムの実稼働期間(=発電効率保証開始からの経過期間)が所定値(本実施形態では5年)以上であるか否かを判定する(ステップS60)。
太陽光発電システムの実稼働期間が所定値以上でなければ(ステップS60のNO)、制御部102は、第1の設定で次回の所定期間の発電効率保証値を算出し、ステップS20に戻り次回の所定期間のデータ蓄積を開始する。第1の設定では、次回の所定期間の発電効率保証値を、今回の所定期間の気象補正された補正発電効率に基づいて算出する。例えば、次回の所定期間の発電効率保証値を、今回の所定期間の気象補正された補正発電効率CE(y)に安全率Sfと劣化率C[deg]とをかけたものとする。安全率Sfは固定値ではなく、例えば初回は0.95とし、複数回後はデータが蓄積されそのデータ精度の信頼性がわかってくることから、信頼性が高ければ0.97としたり、信頼性が低ければ0.93とすることもある。
第1回目の所定期間の発電効率保証値401、第2〜10回目の所定期間の初期発電効率保証値402〜410、第1回目の所定期間の気象補正された発電効率501を図4に示す。図4中の実線L0が上記前提の算出方法に基づく発電効率保証値ラインとなり、点線L1が第1の設定での発電効率保証値ラインとなる。第1の設定により、次回の所定期間の発電効率保証値を、今回の所定期間の気象補正された発電効率に基づいて算出することになるので、第2回目以降の所定期間の発電効率保証値を、実情を反映して上記前提の算出方法よりも高くなり得る適切な発電効率保証値にすることができる。
太陽光発電システムの実稼働期間が所定値以上であれば(ステップS60のYES)、制御部102は、第2の設定で次回の所定期間の発電効率保証値を算出し、ステップS20に戻り次回の所定期間のデータ蓄積を開始する。第2の設定では、次回の所定期間の発電効率保証値を、今回の所定期間の気象補正された補正発電効率と、今回を含む過去所定回数分(本実施形態では5回分)の所定期間の気象補正された補正発電効率から求まる劣化率とに基づいて算出する。例えば、次回の所定期間の発電効率保証値を、今回の所定期間の気象補正された補正発電効率CE(y)に安全率Sfと過去所定回数分の所定期間の気象補正された補正発電効率から求まる劣化率とをかけたものとする。劣化率は、例えば、過去所定回数分の所定期間の気象補正された補正発電効率を用いて最小2乗法などで求めた傾きを採用することができる。
第1回目の所定期間の発電効率保証値401、第2〜10回目の所定期間の初期発電効率保証値402〜410、第1〜6回目の所定期間の気象補正された発電効率501〜506を図5に示す。図5中の実線L0が上記前提の算出方法に基づく発電効率保証値ラインとなり、点線L1が第1の設定での発電効率保証値ラインとなり、実線L2が第2の設定での発電効率保証値ラインとなる。第2の設定により、太陽光発電システムの実稼働期間が所定値以上である場合に、劣化率も実情を反映して上記前提の算出方法よりも高くなり得るので、所定期間の前記発電効率保証値がより一層高くなり得る。
なお、図2に示すフローチャートの動作では、太陽光発電システム300の監視状態に応じて所定期間の発電効率保証値を補正する処理を行っていないが、太陽光発電システム300の監視状態に応じて所定期間の発電効率保証値を補正する処理を行うようにしてもよい。例えば、太陽光発電システム300が細かく監視されているほど、安全率Sfを小さくするようにすればよい。これにより、太陽光発電システム300が細かく監視されていれば、所定期間の発電効率保証値がより一層高くなり得る。
太陽光発電システム300が細かく監視する手法として、監視する単位に属する太陽電池モジュールの数を少なくする手法(例えば、インバータ毎に異常を監視するより集電箱毎に異常を監視する方が細かな監視になり、集電箱毎に異常を監視するより接続箱毎に異常を監視する方が細かな監視になる)や監視する時間間隔を短くする手法などが挙げられる。
<太陽光発電システム>
ここで、太陽光発電システム300の一例として、太陽電池ストリング毎に異常を監視することができる太陽光発電システムについて説明する。太陽電池ストリング毎に異常を監視することができる太陽光発電システムの概略構成例を図6に示す。
ここで、太陽光発電システム300の一例として、太陽電池ストリング毎に異常を監視することができる太陽光発電システムについて説明する。太陽電池ストリング毎に異常を監視することができる太陽光発電システムの概略構成例を図6に示す。
図6に示す太陽光発電システムは、500kW級の太陽光発電システムであって、160個の太陽電池ストリング1_#1〜1_#160と、20台の接続箱2_#1〜2_#20と、4台の集電箱3_#1〜3_#4と、2台の電力変換装置4_#1〜4_#2と、変電設備5と、日照計群6A及び6Bと、気温計群7A及び7Bと、2台の通信機器8_#1〜8_#2とを備えている。なお、以下の説明では、太陽電池ストリング1_#1〜1_#160について、個々の区分けが不要な場合は太陽電池ストリング1と称することがある。同様に以下の説明では、接続箱2、集電箱3、電力変換装置4、通信機器8と称することがある。また、図6に示す太陽光発電システムの概略配置例は図7の通りである。
太陽電池ストリング1_#1〜1_#160はそれぞれ最大出力240Wの多結晶太陽電池モジュールM1を13個直列に接続した構成である。
接続箱2_#1〜2_#20はそれぞれ8回路入力の接続箱である。接続箱2_#iは、8個の太陽電池ストリング1_#(8i−7)〜1_#8iから供給される電力を一つにまとめて出力する(iは20以下の自然数)。
図8に示す構成例では、接続箱2は、太陽電池ストリング11側に電流が逆流することを防止する逆流防止用ダイオードD1〜D8と、電流センサS1〜S8と、落雷時のサージ電圧を抑える避雷器21と、過電流が流れると電路を開放するブレーカー22と、電流センサS1〜S8の出力信号(アナログ信号)をデジタル信号に変換して出力するA/D変換器23と、電源部24とを備えている。接続箱2_#1の電流センサS1は太陽電池ストリング1_#1の出力電流値を取得し、その取得結果を出力する。また、接続箱2_#1の電流センサS2は太陽電池ストリング1_#2の出力電流値を取得し、その取得結果を出力する。接続箱2_#1の電流センサS3〜S8も同様である。また、接続箱2_#2〜2_#20も各電流センサに対応する太陽電池ストリングの番号が変わるだけであり、基本的に接続箱2_#1と同様である。電源部24は、外部から供給される商用交流電圧(例えば、AC100V電圧、AC200V電圧など)を、電流センサS1〜S8及びA/D変換器23の駆動電圧となる所定のDC電圧(例えば、DC12V電圧、DC24V電圧など)に変換して、電流センサS1〜S8及びA/D変換器23に供給する。なお、20台の接続箱2それぞれにA/D変換器23及び電源部24を設けてもよいが、複数台の接続箱2で1つのA/D変換器23を共用してもよく、同様に複数台の接続箱2で1つの電源部24を共用してもよい。
集電箱3_#1〜3_#4はそれぞれ5回路入力の集電箱である。集電箱3_#jは、5台の接続箱2_#(5j−4)〜2_#5jから供給される電力を一つにまとめて出力する(jは4以下の自然数)。
集電箱3の一構成例を図9に示す。図9に示す構成例では、集電箱3は、落雷時のサージ電圧を抑える避雷器31と、過電流が流れると電路を開放するブレーカー32とを備えている。
電力変換装置4_#1〜4_#2はそれぞれ最大出力が240kWであって2回路入力の電力変換装置である。電力変換装置4_#kは、集電箱3_#(2k−1)から供給される電力と集電箱3_#2kから供給される電力との合計電力であるDC電力をAC電力に変換して出力する(kは2以下の自然数)。
電力変換装置4の一構成例を図10に示す。図10に示す構成例では、電力変換装置4は、2台の集電箱3から受け取ったDC電力をAC電力に変換して出力するDC/ACインバータ41と、電力変換装置4に入力されるDC電力値を取得し、その取得結果を出力する電力センサPS1と、電力変換装置4から出力されるAC電力値を取得し、その取得結果を出力する電力センサPS2と、日照計群6A及び気温計群7Aの出力信号(アナログ信号)又は日照計群6B及び気温計群7Bの出力信号(アナログ信号)、電力センサPS1の出力信号(アナログ信号)、及び電力センサPS2の出力信号(アナログ信号)をデジタル信号に変換して出力するA/D変換器42と、A/D変換器23及び42の出力信号を中継して通信機器8に伝送する中継器43と、電源部44とを備えている。電源部44は、外部から供給される商用交流電圧(例えば、AC100V電圧、AC200V電圧など)を、A/D変換器42及び中継器43の駆動電圧となる所定のDC電圧(例えば、DC12V電圧、DC24V電圧など)に変換して、A/D変換器42及び中継器43に供給する。なお、2台の電力変換装置4それぞれにA/D変換器42、中継器43、及び電源部44を設けてもよいが、2台の電力変換装置4で1つのA/D変換器42を共用してもよく、同様に2台の電力変換装置4で1つの中継器43を共用してもよく、2台の電力変換装置4で1つの電源部44を共用してもよい。
い。
い。
変電設備5は2回路入力の変電設備である。変電設備5は、電力変換装置4_#1から供給されるAC電力と電力変換装置4_#2から供給されるAC電力との合計電力を高圧(例えば6600V)や特別高圧(7000V以上)昇圧して電力系統(不図示)に出力する。
日照計群6Aは10個の日照計を有し、日照計群6Aの各日照計は接続箱2_#1〜2_#10それぞれに1個ずつ割り当てられて設置される。気温計群7Aは10個の気温計を有し、気温群7Aの各気温計は接続箱2_#1〜2_#10それぞれに1個ずつ割り当てられて設置される。
同様に、日照計群6Bは10個の日照計を有し、日照計群6Bの各日照計は接続箱2_#11〜2_#20それぞれに1個ずつ割り当てられて設置される。気温計群7Bは10個の気温計を有し、気温群7Bの各気温計は接続箱2_#11〜2_#20それぞれに1個ずつ割り当てられて設置される。
尚、日照計群6A及び6Bの配置については太陽電池ストリング1それぞれの代表する日射量を測定できれば良く、日射計の個数については、少なくとも日照計群6Aと6Bを合わせて複数以上あれば好ましい。この際に日射計を相互に比較できる位置に設置すれば、日射計の適切な校正時期の管理が行え保守が精度よく行える。また、太陽電池ストリング1の配置によっては日照計群6Aもしくは6Bの片方で構成されても構わない。
同様に、気温計群7A及び7Bの配置については太陽電池ストリング1それぞれの代表する気温を測定できれば良く、気温計の個数については、少なくとも気温計群7Aと7Bを合わせて複数以上あれば好ましい。この際に温度計を相互に比較できる位置に設置すれば、温度計の適切な校正時期の管理が行え保守が精度よく行える。また、太陽電池ストリング1の配置によっては気温計群7Aもしくは7Bの片方で構成されても構わない。
また、気温計群7Aもしくは7Bは任意の太陽電池モジュールM1の温度を計測するのが好ましく、例えば発電を妨げない太陽電池モジュールの裏面に熱電対素子などを貼り付けて、太陽電池モジュール裏面温度を計測しても構わない。
通信機器8_#1は電力変換装置4_#1の中継器43から伝送されてきたデジタル信号を所定の通信プロトコルに従って通信ネットワーク200を経由して発電効率保証値算出装置100に送信する。同様に、通信機器8_#2は電力変換装置4_#2の中継器43から伝送されてきたデジタル信号を所定の通信プロトコルに従ってネットワークを経由して発電効率保証値算出装置100に送信する。発電効率保証値算出装置100は太陽光発電システムの監視装置としても機能するようにしてもよい。
<その他>
また、図6に示す太陽光発電システムでは、接続箱と集電箱とが別体であるが、接続箱と集電箱とが一体構造になっていても構わない。
また、図6に示す太陽光発電システムでは、接続箱と集電箱とが別体であるが、接続箱と集電箱とが一体構造になっていても構わない。
また、図6に示す太陽光発電システムでは、電力変換装置がDC/ACインバータを備える構成であったが、太陽光発電システムがDC電力系統に電力を供給する場合には、電力変換装置を、或る電圧値のDC電力を異なる電圧値のDC電力に変換するDC/DCコンバータを備える構成にし、変電設備を、DC電圧を昇圧する設備にするとよい。
また、発電効率保証値算出装置100が算出した発電効率保証値は、例えば出力部104が出力してもよく、通信インターフェース部101及び通信ネットワーク200を介して太陽光発電システム300に伝達してもよい。
また、図2のフローチャートからステップS50を取り除いたフロー動作にしても構わない。この場合、ステップS10において第1回目の所定期間の発電効率保証値のみを算出し、第2回目以降の所定期間の初期発電効率保証値は算出しないようにすればよい。
また、図2のフローチャートでは、ステップS20〜S40において、所定期間の全期間に渡る発電量データ及び気象データを用いて所定期間の気象補正された発電効率を算出しているが、所定期間の一部期間のみの発電量データ及び気象データを用いて所定期間の気象補正された発電効率を算出してもよい。例えば、所定期間を1年とし、各月の最初の5日間のみの発電量データ及び気象データを用いる、あるいは、季節変動が少ない場合には最初の1ヶ月間のみの発電量データ及び気象データを用いるようにしてもよい。これにより、測定器を常設しなくてもよくなり、一時的に測定器を持ち込んで短期間測定を行うことが可能となり、測定器に関するコストを低減することができる。
再生可能エネルギーから電力を生成する発電ユニットを備える発電システムとして、太陽光発電システムを例に実施例を説明したが、風力発電システムの場合は風車の回転運動から電力を生成する誘導発電機を上記発電ユニットとして、電力系統に高圧連系するために必要な高圧変電設備や特別高圧変電設備を電力変換部としても構わない。もしくは風車および増速機を上記発電ユニットとして、回転運動から電力を生成する誘導発電機を電力変換部としても構わない。
再生可能エネルギーとしては潮力発電、地熱発電、太陽熱発電などが挙げられ、タービンの回転運動から電力を生成する発電機を再生可能エネルギーから電力を生成する発電ユニットとしても構わない。もしくはタービン自体を再生可能エネルギーから電力を生成する発電ユニットとしてタービンの回転運動から電力を生成する発電機を電力変換部としても構わない。
再生可能エネルギーは自然エネルギーを利用するため、発電電力量が日毎に不規則になりがちであり、発電効率保証値を実情を反映して設定することが重要になる。
1_#1〜1_#160 太陽電池ストリング
2_#1〜2_#20 接続箱
3_#1〜3_#4 集電箱
4_#1〜4_#2 電力変換装置
5 変電設備
6A、6B 日照計群
7A、7B 気温計群
8_#1〜8_#2 通信機器
21、31 避雷器
22、32 ブレーカー
23、42 A/D変換器
24、44 電源部
41 DC/ACインバータ
43 中継器
100 発電効率保証値算出装置
101 通信インターフェース部
102 制御部
103 メモリ
104 出力部
200 通信ネットワーク
300 太陽光発電システム
401 第1回目の所定期間の発電効率保証値
402〜410 第2〜10回目の所定期間の初期発電効率保証値
501〜506 第1〜6回目の所定期間の気象補正された発電効率
D1〜D8 逆流防止用ダイオード
L0 前提の発電効率保証値ライン
L1 第1の設定での発電効率保証値ライン
L2 第1の設定での発電効率保証値ライン
PS1、PS2 電力センサ
S1〜S8 電流センサ
2_#1〜2_#20 接続箱
3_#1〜3_#4 集電箱
4_#1〜4_#2 電力変換装置
5 変電設備
6A、6B 日照計群
7A、7B 気温計群
8_#1〜8_#2 通信機器
21、31 避雷器
22、32 ブレーカー
23、42 A/D変換器
24、44 電源部
41 DC/ACインバータ
43 中継器
100 発電効率保証値算出装置
101 通信インターフェース部
102 制御部
103 メモリ
104 出力部
200 通信ネットワーク
300 太陽光発電システム
401 第1回目の所定期間の発電効率保証値
402〜410 第2〜10回目の所定期間の初期発電効率保証値
501〜506 第1〜6回目の所定期間の気象補正された発電効率
D1〜D8 逆流防止用ダイオード
L0 前提の発電効率保証値ライン
L1 第1の設定での発電効率保証値ライン
L2 第1の設定での発電効率保証値ライン
PS1、PS2 電力センサ
S1〜S8 電流センサ
Claims (10)
- 再生可能エネルギーから電力を生成する発電ユニットを備える発電システムの所定単位での第1回目の所定期間の発電効率保証値を前記発電システムの実稼動前に算出する第1算出部と、
前記発電システムの前記所定単位での発電量データ及び前記発電システムの設置場所の気象データを用いて気象補正された発電効率を前記所定期間毎に算出する第2算出部と、
第2回目以降の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する第3算出部とを備えることを特徴とする発電効率保証値算出装置。 - 前記第1算出部は、
第2回目以降の前記所定期間の初期発電効率保証値を前記所定期間毎に実稼動前に算出し、
前記第3算出部は、
第n(nは自然数)回目の前記所定期間の前記気象補正された発電量が第n回目の前記所定期間の前記初期発電効率保証値(ただし、nが1の場合には第1回目の前記所定期間の前記発電効率保証値)以下であれば、第n+1回目の前記所定期間の前記発電効率保証値を、第n+1回目の前記所定期間の前記初期発電効率保証値とし、
第n回目の前記所定期間の前記気象補正された発電効率が第n回目の前記所定期間の前記初期発電効率保証値(ただし、nが1の場合には第1回目の前記所定期間の前記発電効率保証値)を上回れば、第n+1回目の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する請求項1に記載の発電効率保証値算出装置。 - 前記第3算出部は、
第b+1(bはm以上の自然数、mは2以上の自然数である固定値)回目の前記所定期間の前記発電効率保証値を、第b回目の前記所定期間の前記気象補正された発電効率と、第b−a(aはm−1より小さい自然数である固定値)回目から第b回目までの前記所定期間の前記気象補正された発電効率から求まる劣化率とに基づいて算出する請求項1または請求項2に記載の発電効率保証値算出装置。 - 前記発電システムの監視状態に応じて前記所定期間の前記発電効率保証値を補正する請求項1〜3のいずれか1項に記載の発電効率保証値算出装置。
- 前記所定期間が1年である請求項1〜4のいずれか1項に記載の発電効率保証値算出装置。
- 前記発電システムが太陽光発電システムである請求項1〜5のいずれか1項に記載の発電効率保証値算出装置。
- 再生可能エネルギーから電力を生成する発電ユニットを備える発電システムの所定単位での第1回目の所定期間の発電効率保証値を前記発電システムの実稼動前に算出する第1算出ステップと、
前記発電システムの前記所定単位での発電量データ及び前記発電システムの設置場所の気象データを用いて気象補正された発電効率を前記所定期間毎に算出する第2算出ステップと、
第2回目以降の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する第3算出ステップとを備えることを特徴とする発電効率保証値算出方法。 - 前記発電システムが太陽光発電システムである請求項7に記載の発電効率保証値算出方法。
- 再生可能エネルギーから電力を生成する発電ユニットと、
前記発電ユニットで生成した電力を変換する電力変換部と、
発電効率保証値算出装置とを備える発電システムであって、
前記発電効率保証値算出装置が、
前記発電システムの所定単位での第1回目の所定期間の発電効率保証値を前記発電システムの実稼動前に算出する第1算出部と、
前記発電システムの前記所定単位での発電量データ及び前記発電システムの設置場所の気象データを用いて気象補正された発電効率を前記所定期間毎に算出する第2算出部と、
第2回目以降の前記所定期間の前記発電効率保証値を、前回の前記所定期間の前記気象補正された発電効率に基づいて算出する第3算出部とを備えることを特徴とする発電システム。 - 前記発電システムが太陽光発電システムである請求項9に記載の発電システム。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012052241A JP2013186756A (ja) | 2012-03-08 | 2012-03-08 | 発電効率保証値算出装置及び発電効率保証値算出方法並びに発電効率保証値算出装置を備えた発電システム |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012052241A JP2013186756A (ja) | 2012-03-08 | 2012-03-08 | 発電効率保証値算出装置及び発電効率保証値算出方法並びに発電効率保証値算出装置を備えた発電システム |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2013186756A true JP2013186756A (ja) | 2013-09-19 |
Family
ID=49388107
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012052241A Pending JP2013186756A (ja) | 2012-03-08 | 2012-03-08 | 発電効率保証値算出装置及び発電効率保証値算出方法並びに発電効率保証値算出装置を備えた発電システム |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2013186756A (ja) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014063372A (ja) * | 2012-09-21 | 2014-04-10 | Toshiba Corp | 発電量予測装置およびその方法 |
CN104166942A (zh) * | 2014-07-02 | 2014-11-26 | 国家电网公司 | 基于cim模型的跨区域供电范围搜索方法及其系统 |
CN106503864A (zh) * | 2016-11-10 | 2017-03-15 | 国网山东省电力公司济南供电公司 | 一种支撑配网故障主动抢修的分级预测与预警方法 |
-
2012
- 2012-03-08 JP JP2012052241A patent/JP2013186756A/ja active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014063372A (ja) * | 2012-09-21 | 2014-04-10 | Toshiba Corp | 発電量予測装置およびその方法 |
CN104166942A (zh) * | 2014-07-02 | 2014-11-26 | 国家电网公司 | 基于cim模型的跨区域供电范围搜索方法及其系统 |
CN104166942B (zh) * | 2014-07-02 | 2017-12-19 | 国家电网公司 | 基于cim模型的跨区域供电范围搜索方法及其系统 |
CN106503864A (zh) * | 2016-11-10 | 2017-03-15 | 国网山东省电力公司济南供电公司 | 一种支撑配网故障主动抢修的分级预测与预警方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Ventura et al. | Utility scale photovoltaic plant indices and models for on-line monitoring and fault detection purposes | |
JP5856294B2 (ja) | 太陽光発電監視方法及びその方法に用いられる太陽光発電監視システム | |
Kymakis et al. | Performance analysis of a grid connected photovoltaic park on the island of Crete | |
JP5886407B1 (ja) | 予測装置 | |
JP6093465B1 (ja) | 太陽光発電システムの発電診断方法、及び発電診断装置 | |
US20140188410A1 (en) | Methods for Photovoltaic Performance Disaggregation | |
US9535135B2 (en) | Method for calculating solar radiation amount and method for determining power to be supplied | |
US10985694B2 (en) | Method and apparatus for determining key performance photovoltaic characteristics using sensors from module-level power electronics | |
JP2011216811A (ja) | 太陽電池異常診断システム、太陽電池異常診断装置および太陽電池異常診断方法 | |
JP5989754B2 (ja) | 予測装置 | |
JP6758273B2 (ja) | 太陽電池診断装置および太陽電池診断方法 | |
JPWO2016166991A1 (ja) | 太陽光発電設備の診断システムおよびプログラム | |
WO2014203388A1 (ja) | 再生可能エネルギー発電設備の制御システム及びその制御方法並びに再生可能エネルギー発電システム | |
KR20120129910A (ko) | 최대 전력점 추적기의 작동 방법 | |
KR20190005514A (ko) | 태양전지모듈 열화율 예측방법 | |
JP6313498B1 (ja) | 発電システム、発電制御装置、発電制御方法、および発電システムの連系発電電力の拡大方法 | |
JP2013186756A (ja) | 発電効率保証値算出装置及び発電効率保証値算出方法並びに発電効率保証値算出装置を備えた発電システム | |
Bracco et al. | Smart microgrid monitoring: Evaluation of key performance indicators for a PV plant connected to a LV microgrid | |
JP5957741B2 (ja) | 太陽電池劣化診断装置 | |
Singh et al. | A comparative performance analysis of C-Si and A-Si PV based rooftop grid tied solar photovoltaic systems in Jodhpur | |
JP2020028192A (ja) | 太陽光発電装置、診断装置および太陽電池ストリングの診断方法 | |
JP6833303B1 (ja) | 発電量予測装置 | |
JP2015114739A (ja) | 太陽電池のi−vカーブ計測装置、i−vカーブ計測方法、太陽電池のパワーコンディショナ及び、太陽光発電システム | |
JP2014033545A (ja) | 発電効率保証装置及び発電効率保証方法並びに発電効率保証装置を備えた発電システム | |
TW201727559A (zh) | 再生能源電廠的管理方法與系統 |