JP2013185916A5 - - Google Patents

Download PDF

Info

Publication number
JP2013185916A5
JP2013185916A5 JP2012050495A JP2012050495A JP2013185916A5 JP 2013185916 A5 JP2013185916 A5 JP 2013185916A5 JP 2012050495 A JP2012050495 A JP 2012050495A JP 2012050495 A JP2012050495 A JP 2012050495A JP 2013185916 A5 JP2013185916 A5 JP 2013185916A5
Authority
JP
Japan
Prior art keywords
thermal expansion
expansion coefficient
liquid
container
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012050495A
Other languages
Japanese (ja)
Other versions
JP2013185916A (en
JP5974256B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2012050495A priority Critical patent/JP5974256B2/en
Priority claimed from JP2012050495A external-priority patent/JP5974256B2/en
Publication of JP2013185916A publication Critical patent/JP2013185916A/en
Publication of JP2013185916A5 publication Critical patent/JP2013185916A5/ja
Application granted granted Critical
Publication of JP5974256B2 publication Critical patent/JP5974256B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

緊迫力測定装置Tension measuring device

本発明は、歪可能な密閉容器の液圧を測定することで、前記密閉容器のにかかる緊迫力を測定する装置に関するThe present invention, by measuring the hydraulic pressure of the strain can be closed container, a device for measuring the tension force applied to the outer peripheral portion of the closed container.

従来、緊迫力を受ける側の加工物を測定機にセットし、緊迫力による起歪を利用し、ひずみゲージ、圧電素子や油圧を用いて緊迫力を測定していた。 Conventionally, a workpiece on the side subjected to a tension force is set on a measuring machine, and strain force due to the tension force is used to measure the tension force using a strain gauge, a piezoelectric element or hydraulic pressure.

従来の緊迫計例えば図1に示すように、上下1対の起歪体11,11の内側に電気抵抗検出手段であるひずみゲージG1,G2,G3,G4が貼り付けられており、図2に示すように、ホイートストンブリッジが形成されている。 Conventional strained gauge, for example, as shown in FIG. 1, and the inside of the upper and lower pair of flexure element 11, 11 strain is an electrical resistance detection means gauges G1, G2, G3, G4 are attached, FIG. As shown in FIG. 2, a Wheatstone bridge is formed.

上下1対の起歪体11,11の中央に上下から圧縮力が働くと各ゲージG1,G2,G3,G4に圧縮と伸びのひずみが発生し、そのひずみ量をホイートストンブリッジからの電気信号として取り出すようにしてある。 When the center of a pair of the upper and lower strain body 11, 11 a compressive force is exerted from the upper and lower gauges G1, G2, G3, G4 strain compression and elongation occur, the electrical signals of the strain amount of its Wheatstone bridge As you take out.

このような構成において、起歪体11,11の外周部に緊迫力がかかると、ゲージG1,G2,G3,G4に垂直な成分の力が起歪体11,11に働き、上下から押される力により梁にひずみが発生する。このひずみ量に応じた電気信号により緊迫力を測定していた。 In such a configuration, the tension force in the outer circumferential portion of the strain body 11, 11 is applied, the gauge G1, G2, G3, force component perpendicular to G4 acts on the strain body 11, 11, pushed from above and below The beam is distorted by the force. The tension force was measured by an electrical signal corresponding to the amount of strain .

しかし、全外周部にかかる緊迫力を上下方向の力のみで代表することで、実際の緊迫力との差異が発生してしまう問題がありまた、起歪体11,11の剛性が低いことによって、大きな緊迫力に対しては、実際の緊迫力との差異が発生してしまう問題があった。このため、液体を起歪可能な筒状容器の中に封入し、外にかかる緊迫力によって起歪することによる液体の圧力を測定することも行われているところが、液体の体積熱膨張率は、起歪体11,11を兼ねる容器の金属体積熱膨張率よりはるかに大きく、僅かな温度変化でも液体の圧力は大きく変動し、外周部にかかる緊迫力を精度良く測ることは不可能であった。 However, to represent a straining force applied to the entire outer peripheral portion only vertical force, there is a real difference occurs problems with straining force, also, the rigidity of the flexure element 11, 11 have a low As a result, there is a problem that a difference from the actual tension force occurs for a large tension force. Therefore, enclosing a liquid into the strain generating possible cylindrical container, it is also conducted to measure the pressure of the liquid due to the strain generating by straining force applied to the outer peripheral portion. However, volumetric thermal expansion coefficient of the liquid is much greater than metal volumetric thermal expansion coefficient of the container serving as a strain generating body 11, 11, the pressure of the liquid varies largely even a slight temperature change, the tension force applied to the outer peripheral portion It was impossible to measure accurately.

特許公開平7−308808 回転数及び把持力測定器   Patent Publication No. Hei 7-308808 Rotational speed and gripping force measuring instrument

上記問題を解決するために、本発明は、封入された液体を含む容器内部の体積熱膨張率を起歪部である前記容器の体積熱膨張率に合わせることにより、温度による圧力変化を小さくするものであるIn order to solve the above problems, the present invention is, by matching the volumetric thermal expansion coefficient of the inner container containing encapsulated liquid, the body volume thermal expansion coefficient of the container is a strain generating section, a pressure change due to temperature It is to make it smaller.

容器に封入された体積熱膨張率の大きな液体に、体積熱膨張率の小さな物を混入すれば、の平均体積熱膨張率を調整することが可能である。 Large liquid encapsulated volumetric thermal expansion coefficient in the container, if mixed small objects of volumetric thermal expansion coefficient, it is possible to adjust the average volumetric thermal expansion coefficient of it.

以下、本発明の実施例を添付図面の図3に基づいて説明する。起歪部を兼ねる容器1に液体2とこの液体2より体積熱膨張率が小さい物体である平均体積膨張率調整部品3が入っており、圧力計6を、パッキン4−1を介して取り付けて、前記容器1は密閉構造になっている。5はプラグであり、前記圧力計6に設けた液体給排口8を、パッキン4−2を介して液密に閉塞するものである。 Hereinafter, an embodiment of the present invention will be described with reference to FIG. 3 of the accompanying drawings . A container 1 that also serves as a strain generating portion contains a liquid 2 and an average volume thermal expansion coefficient adjusting component 3 that is an object having a smaller volume thermal expansion coefficient than the liquid 2 , and a pressure gauge 6 is connected via a packing 4-1. Attached , the container 1 has a sealed structure. Reference numeral 5 denotes a plug, which liquid-tightly closes the liquid supply / discharge port 8 provided in the pressure gauge 6 via a packing 4-2.

ここで、起歪部を兼ねる容器1の外緊迫力を受けると、前記容器1は起歪し、容器1内部の圧力は圧力計のダイヤフラムを押し、圧力の上昇として起歪量、つまり外周部にかかる緊迫力を測定することが出来る構造になっている。 Here, when receiving the radial load on the outer peripheral portion of the container 1 serving also as a strain generating section, the vessel 1 is strain generating container 1 the pressure pushes the diaphragm 7 of the pressure gauge 6, the strain-generating as an increase in pressure The amount, that is , the tension applied to the outer peripheral portion can be measured.

本実施例では、上記問題を解決するために、封入された液体を含む容器1内部の体積熱膨張率を、液体2に平均体積熱膨張率調整部品3を入れることによって、起歪部である容器の金属の体積熱膨張率に合わせ、温度による圧力変化を小さくする。 In this embodiment, in order to solve the above problem, the volumetric thermal expansion coefficient inside the container 1 containing the encapsulated liquid 2 can be changed by adding the average volumetric thermal expansion coefficient adjusting component 3 to the liquid 2. to match the volumetric thermal expansion coefficient of a certain container 1 metal, to reduce the pressure change due to temperature.

例えば、前記の構造で、起歪部を兼ねる容器1に体積熱膨張率33ppm/℃のステンレスを使用し、液体2に体積熱膨張率500ppm/℃のグリセリンを使用し、平均体積膨張率調整部品3に体積熱膨張率ppm/℃のインバーを使用した場合、ステンレス容器1の体積熱膨張率に容器1内部の体積熱膨張率を合わせるためのグリセリンとインバーの体積割合は、インバーの体積割合をxとし、グリセリンの体積割合をyとすれば、次の計算式で求めることが出来る。
33=6x+500y
x+y=1
以上から、
x=467÷494=0.9453・・・≒0.945
y≒0.055
したがって、平均体積熱膨張率調整部品3であるインバーの体積割合は、約0.945であり、液体2であるグリセリンの体積割合は約0.05である。
また、容器1内に封入する液体2においては、真空脱泡や加熱脱泡を行い気体の混入を防、気体による影響を排除することが可能である。さらに、液体2と平均体積熱膨張率調整部品3との混合による体積熱膨張率の調に関しては、パッキン4−1の厚さを加減することによって、液体2の量を調整することでも可能である。
For example, in the above structure, using a body volume thermal expansion coefficient 33 ppm / ° C. in stainless steel vessel 1 which also serves as a strain generating part, using glycerol in the body volume thermal expansion coefficient 500 ppm / ° C. in the liquid 2, the average volumetric thermal expansion when using Invar rate adjustment component 3 to the body volume thermal expansion coefficient 6 ppm / ° C., glycerin and the volume ratio of Invar for matching the container 1 inside the volumetric thermal expansion coefficient volumetric thermal expansion coefficient of the stainless steel container 1, If the volume ratio of Invar is x and the volume ratio of glycerin is y, it can be obtained by the following calculation formula.
33 = 6x + 500y
x + y = 1
From the above
x = 467/494 = 0.9453 ... ≈0.945
y ≒ 0.055
Therefore, the volume ratio of the average is a volumetric thermal expansion coefficient adjusting part 3 Invar is about 0.945, the volume ratio of glycerol is liquid 2 is about 0.05 5.
In the liquid 2 to be enclosed in the container 1, explosion technique contamination of the gas subjected to vacuum defoaming and heating degassing, it is possible to eliminate the influence of gas. Further, with respect to adjustment of the by that volumetric thermal expansion coefficient for mixing with the liquid 2 and the average volumetric thermal expansion coefficient adjusting member 3, by adjusting the thickness of the packing 4-1, adjusting the amount of liquid 2 it is also possible.

来例の説明図である。Is an explanatory diagram of the slave come example. 来例の内部結線の説明図である。Is an explanatory view of the internal connection of the slave come example. 本発明の実施例を示す部分断面説明図である。It is a fragmentary sectional view showing the example of the present invention.

容器
2 液体
3 平均体積熱膨張率調整部品
4 パッキン
5 プラグ
6 圧力計
ダイヤフラム
液体給排口
11 起歪体
G1〜G4 ひずみゲージ
1 container 2 liquid 3 average volume coefficient of thermal expansion adjustment part 4 packing 5 plug 6 pressure gauge
7 diaphragm
8 liquid inlet / outlet
11 strain body
G1-G4 strain gauge

Claims (1)

にかかる緊迫力で起歪可能な密閉容器中の液体圧力を測定し前記緊迫力を測定する装置であって、前記閉容器中の液体中に体積熱膨張率が前記液体よりも小さな物体を入れることにより、前記密閉容器内部の平均体積熱膨張率を前記容器の体積熱膨張率に合わせることを特徴とする緊迫力測定装置。 The liquid pressure in the strain generating possible closed container in straining force applied to the outer peripheral portion is measured, an apparatus for measuring the tension force, the tight closed container in a liquid body in the volumetric thermal expansion coefficient the by than the liquid put small objects, straining force measuring device characterized by matching the average volumetric thermal expansion coefficient of the inside of the sealed container to the volumetric thermal expansion coefficient of the container.
JP2012050495A 2012-03-07 2012-03-07 Tension measuring device Active JP5974256B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012050495A JP5974256B2 (en) 2012-03-07 2012-03-07 Tension measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012050495A JP5974256B2 (en) 2012-03-07 2012-03-07 Tension measuring device

Publications (3)

Publication Number Publication Date
JP2013185916A JP2013185916A (en) 2013-09-19
JP2013185916A5 true JP2013185916A5 (en) 2015-04-09
JP5974256B2 JP5974256B2 (en) 2016-08-23

Family

ID=49387473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012050495A Active JP5974256B2 (en) 2012-03-07 2012-03-07 Tension measuring device

Country Status (1)

Country Link
JP (1) JP5974256B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6156931B2 (en) * 2013-12-20 2017-07-05 ユニパルス株式会社 Method of assembling the tension measuring device
JP6251902B2 (en) * 2014-03-12 2017-12-27 ユニパルス株式会社 Load transducer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6166938A (en) * 1984-09-10 1986-04-05 Bridgestone Corp Measuring method of pressing force
JP2678344B2 (en) * 1994-05-16 1997-11-17 松本機械工業株式会社 Rotation speed and gripping force measuring device
JPH1194671A (en) * 1997-09-16 1999-04-09 Yokogawa Electric Corp Pressure sensor

Similar Documents

Publication Publication Date Title
US9927321B2 (en) Film chamber and method for leak detection on a non-rigid specimen
CN106802176A (en) A kind of water level detecting system
JP2010520127A5 (en)
JP5974256B2 (en) Tension measuring device
EP1384977A3 (en) Level switch with verification capability
JP2013185916A5 (en)
RU2537517C1 (en) Semiconductor pressure transducer
US7082826B2 (en) Gas flow meter and method for measuring gas flow rate
NO20160503A1 (en) Inline multiphase densitometer
RU2545085C1 (en) Design of biplanar capacitance sensor of pressure difference
JP7169260B2 (en) Physical quantity measuring device
RU2267096C2 (en) Measuring converter of pressure difference
NO317390B1 (en) Method and apparatus for flow painting
RU2606255C9 (en) Excessive and absolute pressure sensor with protection against high overload pressure
JP6156931B2 (en) Method of assembling the tension measuring device
JP7012359B2 (en) Pressure gauge with built-in Bourdon tube
RU153629U1 (en) HYDROSTATIC PRESSURE MEASUREMENT DEVICE IN A RESERVOIR
CN105571536A (en) Equipment for measuring volume deformation amount
CN201122145Y (en) Integral fluid density measuring instrument
JP6418936B2 (en) Flowmeter
RU206662U1 (en) Metallic pycnometer for the standard of the unit of density
RU2020119404A (en) DEVICE FOR DETERMINING THE PRESSURE OF FLOWING VAPORS AND THE CORRECT METHOD
RU205581U1 (en) Metallic pycnometer for the standard of the unit of density
JP2000088843A (en) Fresh concrete air meter and air quantity measuring method
US20230221202A1 (en) Pressure sensor formed by strain gauge on a deformable membrane of a fluid device