JPH1194671A - Pressure sensor - Google Patents

Pressure sensor

Info

Publication number
JPH1194671A
JPH1194671A JP25065597A JP25065597A JPH1194671A JP H1194671 A JPH1194671 A JP H1194671A JP 25065597 A JP25065597 A JP 25065597A JP 25065597 A JP25065597 A JP 25065597A JP H1194671 A JPH1194671 A JP H1194671A
Authority
JP
Japan
Prior art keywords
pressure
temperature
pressure receiving
sensor
thermal expansion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25065597A
Other languages
Japanese (ja)
Inventor
Nobuaki Kono
信明 河野
Soichiro Saeki
総一郎 佐伯
Masahiro Hasegawa
正弘 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokogawa Electric Corp
Original Assignee
Yokogawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokogawa Electric Corp filed Critical Yokogawa Electric Corp
Priority to JP25065597A priority Critical patent/JPH1194671A/en
Publication of JPH1194671A publication Critical patent/JPH1194671A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measuring Fluid Pressure (AREA)

Abstract

PROBLEM TO BE SOLVED: To make measuring operation stable against temperature change of a fluid to be measured, and to enhance the temperature characteristic, by providing a low thermal expansion coefficient body to offset the expansion portion of an sealed liquid by thermal expansion coefficient difference between the body and a pressure receiving body, and by providing an heat insulation part between the pressure receiving part and a sensor. SOLUTION: When fluid A to be measured in contact with a seal diaphragm 4 is changed to have a high temperature (or a low temperature), a pressure sensor element 7 is protected from temperature change load by an insulation function of an insulation part 12 (for example, a radiation fin). Expansion (or shrinkage) of a sealed liquid 3 generated at the temperature change of the fluid A is offset by thermal expansion difference between a pressure receiving body 2 and a low thermal expansion coefficient body 11 comprising a nickel alloy in its inside to prevent generation of a pressure change of the sealed liquid 3. Since the pressure change due to the temperature change of the measured fluid A is not detected thereby, the pressure of the fluid A is accurately measured without requiring any correction caused by the temperature change.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、測定流体の温度変
化に対して安定に動作でき、温度特性が良好な圧力セン
サに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a pressure sensor which can operate stably with respect to a temperature change of a measurement fluid and has good temperature characteristics.

【0002】[0002]

【従来の技術】図4は、従来より一般に使用されている
従来例の構成説明図である。図において、1は、受圧ボ
ディ2の内部に封入液3が満たされ、シールダイアフラ
ム4を介して測定流体Aに接する受圧部である。
2. Description of the Related Art FIG. 4 is an explanatory view of the configuration of a conventional example generally used in the prior art. In FIG. 1, reference numeral 1 denotes a pressure receiving portion in which a sealed liquid 3 is filled in a pressure receiving body 2 and comes into contact with a measurement fluid A via a seal diaphragm 4.

【0003】5は、受圧部1に一端が接続され、内部を
封入液3が流れる導管である。6は、封入液3の圧力を
検出するセンサ部である。センサ部6内には圧力センサ
素子7が設けられ、圧力センサ素子7のリードを取り出
す機密端子8が設けられている。
[0005] Reference numeral 5 denotes a conduit having one end connected to the pressure receiving section 1 and through which the sealed liquid 3 flows. Reference numeral 6 denotes a sensor unit for detecting the pressure of the liquid 3. A pressure sensor element 7 is provided in the sensor section 6, and a confidential terminal 8 for taking out a lead of the pressure sensor element 7 is provided.

【0004】以上の構成において、受圧部1に測定流体
Aが加わると、シールダイアフラム4を介して封入液3
に測定流体Aの圧力が加わる。この圧力は、導管5を介
して、センサ部6の圧力センサ素子7に加わり、測定流
体Aの圧力が、測定される。
[0004] In the above configuration, when the measurement fluid A is applied to the pressure receiving section 1, the sealed liquid 3 is inserted through the seal diaphragm 4.
The pressure of the measurement fluid A is applied. This pressure is applied to the pressure sensor element 7 of the sensor unit 6 via the conduit 5, and the pressure of the measurement fluid A is measured.

【0005】[0005]

【発明が解決しようとする課題】この様な従来の装置に
おいては、装置を小型化するために、受圧部1とセンサ
部6とを接近させたい。しかし、接近させると、測定流
体Aが高温の場合、センサ部6も高温となる。通常、セ
ンサ部6は高温に弱い。
In such a conventional apparatus, it is desired that the pressure receiving section 1 and the sensor section 6 be close to each other in order to reduce the size of the apparatus. However, when approached, if the temperature of the measurement fluid A is high, the temperature of the sensor section 6 also becomes high. Usually, the sensor section 6 is vulnerable to high temperatures.

【0006】そこで、受圧部1とセンサ部6とを接近さ
せると共に、受圧部1とセンサ部6との間に断熱部を設
ける。しかし、この様にすると、センサ部6は受圧部1
での温度情報が得られなくなり、温度補正が出来なくな
る。このため、受圧部1に温度センサを設け、受圧部1
での温度情報を得るようにする。
Therefore, the pressure receiving section 1 and the sensor section 6 are brought close to each other, and a heat insulating section is provided between the pressure receiving section 1 and the sensor section 6. However, in this case, the sensor unit 6 is connected to the pressure receiving unit 1.
Temperature information cannot be obtained, and temperature correction cannot be performed. For this reason, a temperature sensor is provided in the pressure receiving section 1 and the pressure receiving section 1 is provided.
To get temperature information.

【0007】しかしながら、これでは (1)製造コストが高くなる。 (2)温度センサが余分に設けられるので、それだけ信
頼性が低下する。
However, this results in (1) a high manufacturing cost. (2) Since an extra temperature sensor is provided, the reliability is reduced accordingly.

【0008】本発明は、この問題点を解決するものであ
る。本発明の目的は、測定流体の温度変化に対して安定
に動作でき、温度特性が良好な圧力センサを提供するに
ある。
The present invention solves this problem. An object of the present invention is to provide a pressure sensor that can operate stably with respect to a temperature change of a measurement fluid and has good temperature characteristics.

【0009】[0009]

【課題を解決するための手段】この目的を達成するため
に、本発明は、 (1)受圧ボディの内部に封入液が満たされシールダイ
アフラムを介して測定流体に接する受圧部と、前記封入
液の圧力を検出するセンサ部とを具備する圧力センサに
おいて、 前記封入液が満たされた部分に僅かの封入液を残して設
けられ温度変化に対して前記受圧ボディとの熱膨張係数
差によって前記封入液の膨張分が相殺される様に選定さ
れた低熱膨張係数物体と、前記受圧部と前記センサ部と
の間に設けられ前記受圧部から前記センサ部を断熱する
断熱部とを具備したことを特徴とする圧力センサ。 (2)ステンレスからなる受圧ボディと、ニッケル合金
よりなる低熱膨張係数物体とを具備したことを特徴とす
る請求項1記載の圧力センサ。 (3)放熱フィンからなる断熱部を具備したことを特徴
とする請求項1又は請求項2記載の圧力センサ。を構成
したものである。
In order to achieve the above object, the present invention provides: (1) a pressure-receiving portion which is filled with a sealed liquid inside a pressure-receiving body and comes into contact with a measurement fluid via a seal diaphragm; A pressure sensor having a sensor section for detecting the pressure of the liquid, wherein a small amount of the sealing liquid is provided in a portion filled with the sealing liquid, and the sealing is performed by a difference in thermal expansion coefficient with the pressure receiving body with respect to a temperature change. A low thermal expansion coefficient object selected so that the expansion of the liquid is offset, and a heat insulating portion provided between the pressure receiving portion and the sensor portion to insulate the sensor portion from the pressure receiving portion. Features pressure sensor. 2. The pressure sensor according to claim 1, further comprising: a pressure receiving body made of stainless steel; and a low thermal expansion coefficient body made of a nickel alloy. (3) The pressure sensor according to (1) or (2), further comprising a heat insulating portion including a radiation fin. It is what constituted.

【0010】[0010]

【作用】以上の構成において、受圧部1測定流体が加わ
ると、シールダイアフラムを介して封入液に測定流体の
圧力が加わる。この圧力は、断熱部を介して、センサ部
の圧力センサ素子に加わり、測定流体の圧力が、測定さ
れる。
In the above construction, when the measurement fluid is applied to the pressure receiving portion 1, the pressure of the measurement fluid is applied to the sealed liquid via the seal diaphragm. This pressure is applied to the pressure sensor element of the sensor unit via the heat insulating unit, and the pressure of the measurement fluid is measured.

【0011】しかして、シールダイアフラムに接する測
定流体が、高い温度(又は低い温度)に変化したとき、
断熱部の断熱機能によって、圧力センサ素子は、温度変
化の負荷から保護される。
Thus, when the measurement fluid in contact with the seal diaphragm changes to a high temperature (or a low temperature),
Due to the heat insulating function of the heat insulating part, the pressure sensor element is protected from a load caused by a temperature change.

【0012】また、温度変化により発生した封入液の膨
張(収縮)は、低熱膨張係数物体と受圧ボディとの熱膨
張係数差により相殺され、封入液の圧力の変化を生じな
い。
Further, the expansion (shrinkage) of the sealed liquid caused by the temperature change is offset by the difference in the thermal expansion coefficient between the low thermal expansion coefficient body and the pressure receiving body, so that the pressure of the sealed liquid does not change.

【0013】このことにより、圧力センサ素子には、測
定流体の温度変化による圧力変化は、検出されず、測定
流体の圧力を正確に測定する事が出来る。要するに、断
熱部を設ける事により、圧力センサ部が、受圧部と温度
的に無関係になるようにした。
Thus, the pressure sensor element does not detect a pressure change due to a temperature change of the measurement fluid, and can accurately measure the pressure of the measurement fluid. In short, by providing the heat insulating part, the pressure sensor part is made temperature-independent from the pressure receiving part.

【0014】そして、圧力センサ部が、受圧部と温度的
に無関係になればなるほど必要になる、測定流体の温度
変化による圧力補正を、低熱膨張係数物体を設けること
により、積極的に不要とした。以下、実施例に基づき詳
細に説明する。
[0014] The pressure correction by the temperature change of the measurement fluid, which becomes more necessary as the pressure sensor section becomes more independent of the temperature from the pressure receiving section, is made unnecessary by providing the low thermal expansion coefficient body. . Hereinafter, a detailed description will be given based on embodiments.

【0015】[0015]

【発明の実施の形態】図1は本発明の一実施例の要部構
成説明図である。図において、図4と同一記号の構成は
同一機能を表わす。以下、図4と相違部分のみ説明す
る。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1 is an explanatory view of a main part of an embodiment of the present invention. In the figure, the configuration of the same symbol as FIG. 4 represents the same function. Hereinafter, only differences from FIG. 4 will be described.

【0016】11は、受圧ボディの内部の封入液3が満
たされた部分に、僅かの封入液3を残して設けられ、温
度変化に対して、受圧ボディ2との熱膨張係数差によっ
て、封入液3の膨張分が、相殺される様に選定された低
熱膨張係数物体である。この場合は、受圧ボディ2はス
テンレスからなり、低熱膨張係数物体はニッケル合金よ
りなる。
Reference numeral 11 denotes a portion provided with a small amount of the filled liquid 3 in a portion filled with the filled liquid 3 inside the pressure receiving body. It is a low thermal expansion coefficient object selected so that the expansion of the liquid 3 is offset. In this case, the pressure receiving body 2 is made of stainless steel, and the low thermal expansion coefficient body is made of a nickel alloy.

【0017】12は、受圧部1とセンサ部6との間に設
けられ、受圧部1からセンサ部6を断熱する断熱部であ
る。この場合は、断熱部12は、放熱フィンからなる。
Reference numeral 12 denotes a heat insulating section provided between the pressure receiving section 1 and the sensor section 6 to insulate the sensor section 6 from the pressure receiving section 1. In this case, the heat insulating portion 12 is formed of a radiation fin.

【0018】以上の構成において、受圧部1に測定流体
Aが加わると、シールダイアフラム4を介して封入液3
に測定流体Aの圧力が加わる。この圧力は、断熱部12
を介して、センサ部6の圧力センサ素子7に加わり、測
定流体Aの圧力が、測定される。
In the above configuration, when the measurement fluid A is applied to the pressure receiving section 1, the sealed liquid 3 is inserted through the seal diaphragm 4.
The pressure of the measurement fluid A is applied. This pressure is applied to the insulation 12
Via the pressure sensor element 7 of the sensor section 6, and the pressure of the measurement fluid A is measured.

【0019】しかして、シールダイアフラム4に接する
測定流体Aが、高い温度(又は低い温度)に変化したと
き、断熱部12の断熱機能によって、圧力センサ素子7
は、温度変化の負荷から保護される。
When the temperature of the measurement fluid A in contact with the seal diaphragm 4 changes to a high temperature (or a low temperature), the pressure sensor element 7 is activated by the heat insulating function of the heat insulating portion 12.
Are protected from the load of temperature changes.

【0020】また、温度変化により発生した封入液3の
膨張(収縮)は、低熱膨張係数物体11と受圧ボディ2
との熱膨張係数差により相殺され、封入液3の圧力の変
化を生じない。
The expansion (shrinkage) of the sealed liquid 3 caused by the temperature change is caused by the low thermal expansion coefficient body 11 and the pressure receiving body 2.
And there is no change in the pressure of the sealed liquid 3.

【0021】このことにより、圧力センサ素子7には、
測定流体Aの温度変化による圧力変化は、検出されず、
測定流体Aの圧力を正確に測定する事が出来る。要する
に、断熱部12を設ける事により、圧力センサ部6が、
受圧部1と温度的に無関係になるようにした。
As a result, the pressure sensor element 7
A pressure change due to a temperature change of the measurement fluid A is not detected,
The pressure of the measurement fluid A can be accurately measured. In short, by providing the heat insulating part 12, the pressure sensor part 6
The pressure receiving unit 1 was made unrelated to temperature.

【0022】そして、圧力センサ部6が、受圧部1と温
度的に無関係になればなるほど必要になる、測定流体A
の温度変化による圧力補正を、低熱膨張係数物体11を
設けることにより、積極的に不要とした。
The more the pressure sensor unit 6 becomes more irrelevant in temperature with respect to the pressure receiving unit 1, the more necessary the measurement fluid A
The pressure correction due to the temperature change of the above is made unnecessary by providing the low thermal expansion coefficient body 11.

【0023】この結果、 (1)受圧部1と圧力センサ部6とを熱的にアイソレー
トしたために、圧力センサ部6を、測定流体Aの熱負荷
から保護することができ、圧力センサ素子7は、常に安
定に動作することが出来るので、周囲温度の変化に対し
て安定に動作できる圧力センサが得られる。
As a result, (1) Since the pressure receiving section 1 and the pressure sensor section 6 are thermally isolated, the pressure sensor section 6 can be protected from the thermal load of the measurement fluid A, and the pressure sensor element 7 can be protected. Can always operate stably, so that a pressure sensor that can operate stably with respect to changes in ambient temperature can be obtained.

【0024】(2)圧力センサ部6が、受圧部1と温度
的に無関係になればなるほど必要になる、測定流体Aの
温度変化に対する圧力補正を、低熱膨張係数物体11を
設けることにより、封入液3の膨張収縮を、相殺される
ようにして、積極的に不要とした。
(2) The pressure correction for the temperature change of the measurement fluid A, which is required as the pressure sensor unit 6 becomes more irrelevant in temperature from the pressure receiving unit 1, is sealed by providing the low thermal expansion coefficient object 11. The expansion and contraction of the liquid 3 were canceled out positively so as to cancel each other.

【0025】従って、測定流体Aの温度変化による測定
誤差を小さく抑えることができ、測定精度が向上された
圧力センサが得られる。
Therefore, a measurement error due to a change in the temperature of the measurement fluid A can be reduced, and a pressure sensor with improved measurement accuracy can be obtained.

【0026】図2は本発明の他の実施例の要部構成説明
図である。21は受圧部1とセンサ部6とを結ぶキャピ
ラリーチューブである。キャピラリーチューブ21が図
1の断熱部12を構成する。22は、センサ部ボディで
ある。
FIG. 2 is an explanatory diagram of a main part configuration of another embodiment of the present invention. Reference numeral 21 denotes a capillary tube connecting the pressure receiving section 1 and the sensor section 6. The capillary tube 21 constitutes the heat insulating part 12 of FIG. 22 is a sensor body.

【0027】図3は本発明の他の実施例の要部構成説明
図である。31は、差圧測定装置である。差圧測定装置
31が図1のセンサ部6を構成する。
FIG. 3 is an explanatory diagram of a main part configuration of another embodiment of the present invention. 31 is a differential pressure measuring device. The differential pressure measuring device 31 constitutes the sensor unit 6 of FIG.

【0028】[0028]

【発明の効果】以上詳細に説明したように、請求項1の
発明によれば、 (1)受圧部と圧力センサ部とを熱的にアイソレートし
た為に、圧力センサ部を、測定流体の熱負荷から保護す
ることができ、圧力センサ素子は、常に安定に動作する
ことが出来るので、周囲温度の変化に対して安定に動作
できる圧力センサが得られる。
As described above in detail, according to the first aspect of the present invention, (1) Since the pressure receiving portion and the pressure sensor portion are thermally isolated, the pressure sensor portion is connected to the measuring fluid. Since the pressure sensor element can be protected from a thermal load and can always operate stably, a pressure sensor that can operate stably with respect to a change in ambient temperature can be obtained.

【0029】(2)圧力センサ部が、受圧部と温度的に
無関係になればなるほど必要になる、測定流体の温度変
化に対する圧力補正を、低熱膨張係数物体を設けること
により、封入液の膨張収縮を相殺されるようにして、積
極的に不要とした。
(2) The more the temperature sensor becomes more independent of the temperature of the pressure receiving part, the more the pressure correction for the temperature change of the measurement fluid is performed. Was made to be offset, and was made unnecessary actively.

【0030】従って、測定流体の温度変化による測定誤
差を小さく抑えることができ、測定精度が向上された圧
力センサが得られる。
Therefore, a measurement error due to a change in the temperature of the measurement fluid can be reduced, and a pressure sensor with improved measurement accuracy can be obtained.

【0031】従って、本発明によれば、測定流体の温度
変化に対して安定に動作でき、温度特性が良好な圧力セ
ンサを実現することが出来る。
Therefore, according to the present invention, it is possible to realize a pressure sensor which can operate stably with respect to a temperature change of the measurement fluid and has good temperature characteristics.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施例の要部構成説明図である。FIG. 1 is an explanatory diagram of a main part configuration of an embodiment of the present invention.

【図2】本発明の他の実施例の要部構成説明図である。FIG. 2 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図3】本発明の他の実施例の要部構成説明図である。FIG. 3 is an explanatory diagram of a main part configuration of another embodiment of the present invention.

【図4】従来より一般に使用されている従来例の構成説
明図である。
FIG. 4 is an explanatory diagram of a configuration of a conventional example generally used in the related art.

【符号の説明】[Explanation of symbols]

1 受圧部 2 受圧ボディ 3 封入液 4 シールダイアフラム 6 センサ部 7 圧力センサ素子 8 機密端子 11 断熱部 12 低熱膨張係数物体 21 キャピラリーチューブ 22 センサ部ボディ 31 差圧測定装置 A 測定流体 DESCRIPTION OF SYMBOLS 1 Pressure receiving part 2 Pressure receiving body 3 Filling liquid 4 Seal diaphragm 6 Sensor part 7 Pressure sensor element 8 Security terminal 11 Heat insulation part 12 Low thermal expansion coefficient object 21 Capillary tube 22 Sensor part body 31 Differential pressure measuring device A Measurement fluid

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】受圧ボディの内部に封入液が満たされシー
ルダイアフラムを介して測定流体に接する受圧部と、 前記封入液の圧力を検出するセンサ部とを具備する圧力
センサにおいて、 前記封入液が満たされた部分に僅かの封入液を残して設
けられ温度変化に対して前記受圧ボディとの熱膨張係数
差によって前記封入液の膨張分が相殺される様に選定さ
れた低熱膨張係数物体と、 前記受圧部と前記センサ部との間に設けられ前記受圧部
から前記センサ部を断熱する断熱部とを具備したことを
特徴とする圧力センサ。
1. A pressure sensor, comprising: a pressure receiving portion that is filled with a sealed liquid inside a pressure receiving body and comes into contact with a measurement fluid via a seal diaphragm; and a sensor portion that detects a pressure of the sealed liquid. A low-thermal-expansion-coefficient body that is provided so as to leave a small amount of the filled liquid in the filled portion and is selected so that the expansion amount of the filled liquid is offset by a difference in thermal expansion coefficient from the pressure-receiving body with respect to a temperature change; A pressure sensor, comprising: a heat insulating portion provided between the pressure receiving portion and the sensor portion to insulate the sensor portion from the pressure receiving portion.
【請求項2】ステンレスからなる受圧ボディと、 ニッケル合金よりなる低熱膨張係数物体とを具備したこ
とを特徴とする請求項1記載の圧力センサ。
2. The pressure sensor according to claim 1, further comprising a pressure receiving body made of stainless steel and a low thermal expansion coefficient body made of a nickel alloy.
【請求項3】放熱フィンからなる断熱部を具備したこと
を特徴とする請求項1又は請求項2記載の圧力センサ。
3. The pressure sensor according to claim 1, further comprising a heat insulating portion comprising a radiation fin.
JP25065597A 1997-09-16 1997-09-16 Pressure sensor Pending JPH1194671A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25065597A JPH1194671A (en) 1997-09-16 1997-09-16 Pressure sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25065597A JPH1194671A (en) 1997-09-16 1997-09-16 Pressure sensor

Publications (1)

Publication Number Publication Date
JPH1194671A true JPH1194671A (en) 1999-04-09

Family

ID=17211091

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25065597A Pending JPH1194671A (en) 1997-09-16 1997-09-16 Pressure sensor

Country Status (1)

Country Link
JP (1) JPH1194671A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012016A1 (en) 2004-06-25 2006-02-02 Rosemount Inc. High temperature pressure transmitter assembly
US7258021B2 (en) 2004-06-25 2007-08-21 Rosemount Inc. Process transmitter isolation assembly
US7373831B2 (en) 2004-06-25 2008-05-20 Rosemount Inc. High temperature pressure transmitter assembly
US7497123B1 (en) 2007-12-18 2009-03-03 Rosemount Inc. Direct mount for pressure transmitter with thermal management
JP2009257096A (en) * 2008-04-11 2009-11-05 Mitsubishi Heavy Ind Ltd Installation structure of flame detector
JP2010523975A (en) * 2007-04-06 2010-07-15 ローズマウント インコーポレイテッド Expansion chamber for pressure transmitter
JP2011524015A (en) * 2008-06-12 2011-08-25 ローズマウント インコーポレイテッド Improved isolation system for process pressure measurement
JP2013185916A (en) * 2012-03-07 2013-09-19 Unipulse Corp Strained force measurement device
CN103335778A (en) * 2013-06-27 2013-10-02 苏州中崟传感股份有限公司 Diesel engine urea solution pressure sensor
CN103344380A (en) * 2013-06-13 2013-10-09 安徽艾可蓝节能环保科技有限公司 Anti-freezing ceramic pressure sensor packaging piece
KR20180067314A (en) * 2016-12-12 2018-06-20 주식회사 미래엔지니어링 Diaphragm assembly and pressure tranmitter system comprising the same
JP2019109216A (en) * 2017-12-15 2019-07-04 東泰高科装備科技有限公司Dongtai Hi−Tech Equipment Technology Co., Ltd Vacuum measurement device
US11313747B2 (en) 2014-09-30 2022-04-26 Rosemount Inc. Fill fluid thermal management

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012016A1 (en) 2004-06-25 2006-02-02 Rosemount Inc. High temperature pressure transmitter assembly
US7258021B2 (en) 2004-06-25 2007-08-21 Rosemount Inc. Process transmitter isolation assembly
JP2008504524A (en) * 2004-06-25 2008-02-14 ローズマウント インコーポレイテッド High temperature pressure transmitter assembly
US7373831B2 (en) 2004-06-25 2008-05-20 Rosemount Inc. High temperature pressure transmitter assembly
JP2010523975A (en) * 2007-04-06 2010-07-15 ローズマウント インコーポレイテッド Expansion chamber for pressure transmitter
US7497123B1 (en) 2007-12-18 2009-03-03 Rosemount Inc. Direct mount for pressure transmitter with thermal management
JP2009257096A (en) * 2008-04-11 2009-11-05 Mitsubishi Heavy Ind Ltd Installation structure of flame detector
JP2011524015A (en) * 2008-06-12 2011-08-25 ローズマウント インコーポレイテッド Improved isolation system for process pressure measurement
JP2013185916A (en) * 2012-03-07 2013-09-19 Unipulse Corp Strained force measurement device
CN103344380A (en) * 2013-06-13 2013-10-09 安徽艾可蓝节能环保科技有限公司 Anti-freezing ceramic pressure sensor packaging piece
CN103335778A (en) * 2013-06-27 2013-10-02 苏州中崟传感股份有限公司 Diesel engine urea solution pressure sensor
US11313747B2 (en) 2014-09-30 2022-04-26 Rosemount Inc. Fill fluid thermal management
KR20180067314A (en) * 2016-12-12 2018-06-20 주식회사 미래엔지니어링 Diaphragm assembly and pressure tranmitter system comprising the same
JP2019109216A (en) * 2017-12-15 2019-07-04 東泰高科装備科技有限公司Dongtai Hi−Tech Equipment Technology Co., Ltd Vacuum measurement device

Similar Documents

Publication Publication Date Title
RU2668354C1 (en) Filling liquid thermal regulation
EP0354479B1 (en) Semiconductor pressure sensor
JPH1194671A (en) Pressure sensor
US8166813B2 (en) Temperature sensor and method for its manufacture
CA1321902C (en) Transducer and sensor apparatus and method
US7441461B2 (en) Pressure pickup with temperature compensation
US4971452A (en) RTD assembly
JPH0354431A (en) Pressure sensor usable in oil well
JP2010523975A (en) Expansion chamber for pressure transmitter
CN107192498B (en) Fluid-filled elongate pressure sensor
CN112689748A (en) Hydraulic diaphragm seal and pressure transducer having a hydraulic diaphragm seal
CN112304474A (en) Pressure sensor
CN111487006B (en) Micro differential pressure sensor based on stress isolation structure
CN214010595U (en) Pressure sensor
US5816708A (en) Mechanical-electrical combination thermometer
GB2159631A (en) Fluid flow measurement
JPH02206738A (en) Semiconductor pressure detecting device
JPH02138776A (en) Semiconductor pressure sensor
JPH08146026A (en) Thermistor flow velocity sensor and flow rate sensor for liquid
JPS62226031A (en) Pressure sensor unit
EP0327252A2 (en) RTD assembly
JPH03107737A (en) Diaphragm seal type differential pressure measuring instrument
CN217980587U (en) Optical fiber grating surface temperature sensor
KR102599340B1 (en) Measurement error compensation type elastic temperature measuring instrument
KR102621637B1 (en) Bourdon tubular elastic thermometer