JP2013185835A - Powder-particle body flow rate measuring apparatus - Google Patents

Powder-particle body flow rate measuring apparatus Download PDF

Info

Publication number
JP2013185835A
JP2013185835A JP2012048795A JP2012048795A JP2013185835A JP 2013185835 A JP2013185835 A JP 2013185835A JP 2012048795 A JP2012048795 A JP 2012048795A JP 2012048795 A JP2012048795 A JP 2012048795A JP 2013185835 A JP2013185835 A JP 2013185835A
Authority
JP
Japan
Prior art keywords
pipe
flow rate
detection
granular material
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012048795A
Other languages
Japanese (ja)
Inventor
Kenji Mori
堅次 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TOKYO SEIFUNKI SEISAKUSHO KK
Original Assignee
TOKYO SEIFUNKI SEISAKUSHO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TOKYO SEIFUNKI SEISAKUSHO KK filed Critical TOKYO SEIFUNKI SEISAKUSHO KK
Priority to JP2012048795A priority Critical patent/JP2013185835A/en
Publication of JP2013185835A publication Critical patent/JP2013185835A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Measuring Volume Flow (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a powder-particle body flow rate measuring apparatus that can prevent powder bodies from accumulating and laminating when measuring the powder bodies and that can accurately measure a flow rate of the powder bodies.SOLUTION: A powder-particle body flow rate measuring apparatus includes: an injection pipe 8 connected to an upstream side pipe 2; an exhaust pipe 9 connected to a downstream side pipe 3; a detection pipe 4 which is provided in an inclined manner between the injection pipe 8 and the exhaust pipe 9 and forms a flow passage of powder-particle bodies with the upstream side pipe 2, the injection pipe 8, the exhaust pipe 9 and the downstream side pipe 3; a load detector 6 for detecting a load W applied to the detection pipe 4 by supporting the detection pipe 4 so as to keep a non-contact state of the detection pipe 4 with the injection pipe 8 and the exhaust pipe 9; and a fixing part 5 for fixing the load detector 6 in a predetermined position and also to the injection pipe 8 and/or exhaust pipe 9. The flow rate of the powder-particle bodies P is measured on the basis of a value detected by the load detector 6.

Description

本発明は、粉粒体流量計測装置に関し、より詳細には、粉体が堆積及び積層することを防止できる粉粒体流量計測装置に関する。   The present invention relates to a granular material flow rate measuring device, and more particularly, to a granular material flow rate measuring device capable of preventing powder from being deposited and stacked.

従来、ホッパー等から投入され、落下する粉粒体を受板等で受け、粉粒体の流量を計測する粉粒体流量計測装置がある(例えば、特許文献1図4を参照)。   2. Description of the Related Art Conventionally, there is a granular material flow rate measuring device that receives a granular material that is input from a hopper or the like and falls with a receiving plate or the like and measures the flow rate of the granular material (see, for example, Patent Document 1 FIG. 4).

特開平8−14962号公報Japanese Patent Laid-Open No. 8-14962

従来の粒体流量計測装置を用いて、粒体よりも細かい粉体を計測しようとすると、粉体の種類によっては受板の上に粉体が堆積及び積層してしまい、これによって、粉体の正確な流量を計測できなくなるという問題があった。   When trying to measure a finer powder than a granule using a conventional granule flow rate measuring device, the powder accumulates and is laminated on the receiving plate depending on the type of the powder. There was a problem that it was impossible to measure the exact flow rate.

この問題を解決するために受板を摩擦係数の小さいポリテトラフルオロエチレン等の材料で被覆することを試みたが、やはり、粉体が受板に堆積及び積層してしまい、粉体の流量を正確には測定できなかった。   In order to solve this problem, an attempt was made to coat the backing plate with a material such as polytetrafluoroethylene having a small friction coefficient. However, the powder was deposited and laminated on the backing plate, and the flow rate of the powder was reduced. It was not possible to measure accurately.

そこで、本発明は、粉体を測定する際に、粉体が堆積及び積層を防止することができ、その流量を正確に測定することが可能な粉粒体流量計測装置を提供することを目的とする。   Therefore, the present invention has an object to provide a granular material flow rate measuring device capable of preventing powder accumulation and stacking and measuring the flow rate accurately when measuring powder. And

本発明は、上流側配管に接続される投入管と、下流側配管に接続される排出管と、該投入管と該排出管との間に傾斜して設けられ、該上流側配管、該投入管、該排出管及び該下流側配管と共に粉粒体の流路を形成する検出管と、該検出管と該投入管及び該排出管との非接触状態を保持するように該検出管を支持し、該検出管に掛かる荷重を検出する荷重検出器と、該荷重検出器を所定位置に固定すると共に該投入管及び/又は該排出管に固定する固定部とを備え、該荷重検出器が検出した値に基づいて該粉粒体の流量を計測することを特徴とする粉粒体流量計測装置である。   The present invention is provided with an input pipe connected to the upstream side pipe, a discharge pipe connected to the downstream side pipe, and an inclination between the input pipe and the discharge pipe, and the upstream side pipe, the input pipe A detection tube that forms a flow path of the granular material together with the tube, the discharge tube, and the downstream pipe; and the detection tube is supported so as to maintain a non-contact state between the detection tube, the input tube, and the discharge tube A load detector for detecting a load applied to the detection pipe, and a fixing portion for fixing the load detector at a predetermined position and fixing the load detector to the input pipe and / or the discharge pipe. The granular material flow rate measuring device is characterized in that the flow rate of the granular material is measured based on the detected value.

又、本発明は、上流側配管と下流側配管との間に傾斜して設けられ、該上流側配管及び該下流側配管と共に粉粒体の流路を形成する検出管と、該検出管と該上流側配管及び該下流側配管との非接触状態を保持するように該検出管を支持し、該検出管に掛かる荷重を検出する荷重検出器と、該荷重検出器を所定位置に固定すると共に該上流側配管及び/又は該下流側配管に固定する固定部とを備え、該荷重検出器が検出した値に基づいて該粉粒体の流量を計測することを特徴とする粉粒体流量計測装置である。   In addition, the present invention is provided with an inclination between the upstream side pipe and the downstream side pipe, and a detection tube that forms a flow path of the granular material together with the upstream side piping and the downstream side piping, and the detection tube, A load detector that supports the detection pipe so as to maintain a non-contact state between the upstream pipe and the downstream pipe, detects a load applied to the detection pipe, and fixes the load detector at a predetermined position. And a fixed part fixed to the upstream pipe and / or the downstream pipe, and the flow rate of the granular material is measured based on the value detected by the load detector. It is a measuring device.

更に、本発明は、前記荷重検出器はロードセルであることを特徴とする粉粒体流量計測装置である。本発明は、前記検出管は、その内壁に荷重方向に分力を発生させる様に粉粒体の流路に対して抵抗となる抵抗突起を有することを特徴とする粉粒体流量計測装置である。本発明は、前記抵抗突起の形状は平面視菱形又は凧形であることを特徴とする粉粒体流量計測装置である。本発明は、前記投入管又は前記排出管は、直管、曲管又は異径管であることを特徴とする粉粒体流量計測装置である。   Furthermore, the present invention is the granular material flow rate measuring device, wherein the load detector is a load cell. The present invention provides the granular material flow rate measuring device, wherein the detection tube has a resistance projection which becomes a resistance against the flow path of the granular material so as to generate a component force in the load direction on the inner wall thereof. is there. The present invention is the particulate flow rate measuring device, wherein the shape of the resistance protrusion is a rhombus or a bowl shape in a plan view. The present invention is the particulate flow rate measuring device, wherein the input pipe or the discharge pipe is a straight pipe, a curved pipe or a different diameter pipe.

本発明は、粉粒体の流路を形成する配管の一部をその前後の配管に対して非接触状態で保持される検出管とし、検出管に掛かる荷重を荷重検出器で検出することによって、粉粒体の流量を計測できるようにしたため、従来の装置のような受板等が必要なく、計測対象が粉体であっても、堆積及び積層すること防止することができ、その流量を正確に計測することができる。   In the present invention, a part of the pipe forming the flow path of the granular material is used as a detection pipe that is held in a non-contact state with respect to the pipes before and after the pipe, and the load applied to the detection pipe is detected by a load detector. Since the flow rate of the granular material can be measured, there is no need for a receiving plate or the like as in the conventional apparatus, and even if the measurement target is powder, it can be prevented from being deposited and stacked, and the flow rate can be reduced. Accurate measurement is possible.

又、本発明は、投入管及び排出管を備えることで、検出管の前後の配管の傾斜角や管径を調整することができるので、様々な配管に検出管を管路して接続することができ、又、検出管に抵抗突起を形成することで検出管に掛かる荷重の検出感度を高めることができる。   In addition, since the present invention can adjust the inclination angle and the pipe diameter of the pipe before and after the detection pipe by providing the input pipe and the discharge pipe, the detection pipe is connected to various pipes by connecting them. Moreover, the detection sensitivity of the load applied to the detection tube can be increased by forming the resistance protrusion on the detection tube.

本発明の粉粒体流量計測装置を上流側配管及び下流側配管に接続した状態を示す側面図である。It is a side view which shows the state which connected the granular material flow volume measuring apparatus of this invention to the upstream piping and downstream piping. 本発明の粉粒体流量計測装置における計測時の様子を示す説明図である。It is explanatory drawing which shows the mode at the time of the measurement in the granular material flow volume measuring apparatus of this invention. 本発明のテスト装置の構成図である。It is a block diagram of the test apparatus of this invention. 本発明の第2実施形態を示す説明図であり、断面図に相当する図である。It is explanatory drawing which shows 2nd Embodiment of this invention, and is a figure equivalent to sectional drawing. 本発明の抵抗突起を示す説明図であり、斜視図に相当する図である。It is explanatory drawing which shows the resistance protrusion of this invention, and is a figure equivalent to a perspective view. 本発明の実施例1における計測結果を示すグラフである。It is a graph which shows the measurement result in Example 1 of this invention. 本発明の実施例2における計測結果を示すグラフである。It is a graph which shows the measurement result in Example 2 of this invention. 本発明の実施例3における計測結果を示すグラフである。It is a graph which shows the measurement result in Example 3 of this invention.

本発明の第1実施形態を図1及び2に基づいて説明する。先ず、粉粒体流量計測装置1の構成について説明する。   A first embodiment of the present invention will be described with reference to FIGS. First, the configuration of the granular material flow rate measuring device 1 will be described.

粉粒体流量計測装置1は新設又は既設の上流側配管2と下流側配管3との間に設けられ、検出管4、投入管8、排出管9、固定部5、荷重検出器としてのロードセル6及び表示器7等を備えている。   The granular material flow rate measuring device 1 is provided between a newly installed or existing upstream pipe 2 and a downstream pipe 3, and includes a detection pipe 4, an input pipe 8, a discharge pipe 9, a fixed portion 5, and a load cell as a load detector. 6 and a display 7 and the like.

投入管8は検出管4を管路として上流側配管2に接続するために上流側配管2の先端2aに接続され、又、排出管9は検出管4を管路として下流側配管3に接続するために下流側配管3の基端3aに接続される。尚、投入管8及び排出管9の形状は上流側配管2、検出管4や下流側配管3の形状に合わせて適宜選択することができるが、例えば、上流側配管2や下流側配管3の管径と検出管4の管径とが相違する場合は異径管としたり、上流側配管2や下流側配管3の設置角が検出管4の傾斜角θと相違する場合は曲管としたりすることができる。   The input pipe 8 is connected to the tip 2a of the upstream pipe 2 in order to connect the detection pipe 4 to the upstream pipe 2 and the discharge pipe 9 is connected to the downstream pipe 3 using the detection pipe 4 as a pipe. In order to do this, it is connected to the base end 3a of the downstream pipe 3. The shapes of the input pipe 8 and the discharge pipe 9 can be appropriately selected according to the shapes of the upstream pipe 2, the detection pipe 4, and the downstream pipe 3, for example, the upstream pipe 2 and the downstream pipe 3 When the tube diameter is different from the tube diameter of the detection tube 4, a different diameter tube is used, and when the installation angle of the upstream pipe 2 or the downstream pipe 3 is different from the inclination angle θ of the detection tube 4, the tube is bent. can do.

検出管4はテーパーが付けられた先細の管体であり、その基端4aの内径IDが投入管8の先端8aの外径EDより大きく且つその先端4bの外径EDが排出管9の基端9aの内径IDよりも小さくなるように形成される(つまり、ID>ED、ED<IDである)。 Sensing tube 4 is a tube body tapered tapering, large and the outer diameter ED 1 is discharge pipe at the tip 4b than the outer diameter ED 2 inner diameter ID 1 of the base end 4a the tip 8a of the feeding pipe 8 9 is formed to be smaller than the inner diameter ID 2 of the base end 9a (that is, ID 1 > ED 2 and ED 1 <ID 2 ).

そして、検出管4は、その基端4aに投入管8の先端8aが挿入され、又、その先端4bが排出管9の基端9aに挿入されることで、上流側配管2、投入管8、排出管9及び下流側配管3と共に粉粒体Pの流路を形成する(以下、検出管4と投入管8との接続箇所を挿入部10と、検出管4と排出管9との接続箇所を挿入部11という)。   The detection tube 4 is inserted into the proximal end 4a of the distal end 8a of the input tube 8, and the distal end 4b of the detection tube 4 is inserted into the proximal end 9a of the discharge tube 9. The flow path of the granular material P is formed together with the discharge pipe 9 and the downstream pipe 3 (hereinafter, the connecting portion between the detection pipe 4 and the input pipe 8 is connected to the insertion portion 10 and the detection pipe 4 and the discharge pipe 9) The location is referred to as the insertion portion 11).

更に、後述するように粉粒体Pによる検出管4に掛かる荷重Wを検出するために(詳細については、段落[0023]を参照)、検出管4は、投入管8及び排出管9と非接触状態で保持され、水平面Hに対して傾斜した状態で投入管8及び排出管9に管路として接続される。尚、検出管4の傾斜角θは、計測対象の粒度やその他性質によって適宜設定することができ、粒体の場合は約35°、粉体の場合は約60°に設定される。   Furthermore, in order to detect the load W applied to the detection tube 4 by the granular material P as described later (refer to paragraph [0023] for details), the detection tube 4 is not connected to the input tube 8 and the discharge tube 9. It is held in contact and is connected to the input pipe 8 and the discharge pipe 9 as a pipe line while being inclined with respect to the horizontal plane H. In addition, the inclination angle θ of the detection tube 4 can be set as appropriate depending on the particle size and other properties of the measurement object, and is set to about 35 ° for a granular material and about 60 ° for a powder.

本実施形態において、検出管4と投入管8又は排出管9との間の間隙(図示せず)から粉粒体Pが漏れることを防止するために挿入部10及び11は接続チューブ12又は13によって覆われており、接続チューブ12及び13はバンド14によって検出管4と投入管8又は排出管9に固定される。つまり、該間隙は接続チューブ12又は13によって外部との間が遮断されていることとなるため粉粒体Pの漏れを防止することができる。   In this embodiment, in order to prevent the granular material P from leaking from a gap (not shown) between the detection tube 4 and the input tube 8 or the discharge tube 9, the insertion portions 10 and 11 are connected to the connection tubes 12 or 13. The connection tubes 12 and 13 are fixed to the detection tube 4 and the input tube 8 or the discharge tube 9 by a band 14. That is, since the gap is cut off from the outside by the connection tube 12 or 13, leakage of the powder P can be prevented.

ロードセル6は、その検出部6aを介して、検出管4と投入管8及び排出管9とを非接触状態及び検出管4の傾斜角θを保持するように支持し、その様に支持される検出管4に掛かる荷重Wを検出するためものである。そして、その検出結果を、ロードセル6と接続された表示器7に出力する。又、本実施形態においては、ロードセル6の検出部6aは、検出管4の下面4cの略中心部に取り付けられている。つまり、検出管4はロードセル6の検出部6aによってその下方より支持されていることとなる。   The load cell 6 supports the detection tube 4, the input tube 8, and the discharge tube 9 through the detection unit 6 a so as to maintain a non-contact state and the inclination angle θ of the detection tube 4. This is for detecting the load W applied to the detection tube 4. Then, the detection result is output to the display device 7 connected to the load cell 6. In the present embodiment, the detection portion 6 a of the load cell 6 is attached to the substantially central portion of the lower surface 4 c of the detection tube 4. That is, the detection tube 4 is supported from below by the detection unit 6 a of the load cell 6.

固定部5は、ロードセル6を所定位置に固定すると共に投入管8及び排出管9に固定するために設けられる。本実施形態において固定部5は、略コ字状の固定金具であり、投入管8及び排出管9との間に、検出管6を跨ぐ様に架設され、両端に設けられたクランプによって固定されている。   The fixing portion 5 is provided to fix the load cell 6 at a predetermined position and to the input pipe 8 and the discharge pipe 9. In the present embodiment, the fixing portion 5 is a substantially U-shaped fixing bracket, is laid so as to straddle the detection tube 6 between the input tube 8 and the discharge tube 9, and is fixed by clamps provided at both ends. ing.

尚、上流側配管2や下流側配管3の設置角、管径によっては、検出管4を上流側配管2又は下流側配管3に直接管路として接続することもできる。この場合において、検出管4は、その基端4aの内径IDが上流側配管2の先端2aの外径EDより大きく、且つその先端4bの外径EDが下流側配管3の基端3aの内径IDよりも小さくなるように形成される(つまり、ID>ED、ED<IDである)。又、固定部5は、上流側配管2及び下流側配管3との間に、検出管6を跨ぐ様に架設される。 Depending on the installation angle and the pipe diameter of the upstream pipe 2 and the downstream pipe 3, the detection pipe 4 can be directly connected to the upstream pipe 2 or the downstream pipe 3 as a pipeline. In this case, the inner diameter ID 1 of the base end 4 a of the detection pipe 4 is larger than the outer diameter ED 3 of the front end 2 a of the upstream side pipe 2, and the outer diameter ED 1 of the front end 4 b is the base end of the downstream side pipe 3. It is formed to be smaller than the inner diameter ID 3 of 3a (that is, ID 1 > ED 3 and ED 1 <ID 3 ). Further, the fixed portion 5 is installed between the upstream side pipe 2 and the downstream side pipe 3 so as to straddle the detection pipe 6.

次に、粉粒体流量計測装置1の動作について説明する。粉粒体Pが上流側配管2から投入管8を経て検出管4に投入されると、その投入量に応じて検出管4に掛かる荷重Wが動的に変化する。そして、この荷重Wの変化に応じてロードセル6の検出部6aが変位し、ロードセル6は該変位量に応じた検出値を表示器7に出力する。表示器7は該検出値を基に流量値(単位時間当たりの粉粒体の重量)や積算値(流れた粉粒体の総重量)等を計算すると共にその結果を表示する。   Next, operation | movement of the granular material flow volume measuring apparatus 1 is demonstrated. When the granular material P is introduced into the detection tube 4 from the upstream side pipe 2 through the introduction tube 8, the load W applied to the detection tube 4 dynamically changes in accordance with the amount of introduction. The detection unit 6 a of the load cell 6 is displaced according to the change in the load W, and the load cell 6 outputs a detection value corresponding to the displacement amount to the display unit 7. The display 7 calculates a flow rate value (weight of the granular material per unit time), an integrated value (total weight of the flowed granular material) and the like based on the detected value and displays the result.

又、本実施形態では検出管4の上流に設けられ、粉粒体Pを上流側配管2に排出するスクリューコンベア(例えば、テスト装置15のスクリューコンベア16)等の排出機等と表示器7とを連動させるようにすれば、該計測結果を基に粉粒体Pの排出量を制御し、流量自動制御を行うようにすることも可能である。   In the present embodiment, a discharger such as a screw conveyor (for example, screw conveyor 16 of the test apparatus 15) provided upstream of the detection tube 4 and discharging the powder P to the upstream pipe 2, and the display 7 If it is made to interlock | cooperate, it is also possible to control the discharge | emission amount of the granular material P based on this measurement result, and to perform flow volume automatic control.

本発明の第2実施形態を図4及び5に基づいて説明する。第1実施形態との相違は検出管4に抵抗突起19を設けたことである。尚、他の構成については、第1実施形態と同様であるので説明は割愛する。   A second embodiment of the present invention will be described with reference to FIGS. The difference from the first embodiment is that a resistance protrusion 19 is provided on the detection tube 4. Since other configurations are the same as those in the first embodiment, description thereof is omitted.

抵抗突起19は平面視略菱形又は略凧形の突起であり、検出管4の下面4c側にその一方の対角線を粉粒体Pの流下する方向に沿わせる様に設けられる。つまり、抵抗突起19は粉粒体Pが検出管4に投入され、検出管4内を流下する際に抵抗となるものである。   The resistance protrusion 19 is a substantially rhomboid or substantially hook-shaped protrusion in plan view, and is provided on the lower surface 4c side of the detection tube 4 so that one diagonal line thereof runs along the direction in which the powder P flows down. That is, the resistance protrusion 19 becomes a resistance when the granular material P is put into the detection tube 4 and flows down in the detection tube 4.

本実施形態では、粉粒体Pが上流側配管2から投入管8を経て検出管4に投入され、そして、粉粒体Pが抵抗突起19まで検出管4内を流下すると、抵抗突起19が抵抗となり、粉粒体Pの流路Cが流路C及びCに分割される。その際、粉粒体Pの投入量に応じ垂直下方に働く抵抗力fが生じる。つまり、本実施形態では、粉粒体Pの流量を計測する際に、検出管4に掛かる荷重W及び抵抗力fの総和(W+f)の変化に応じてロードセル6の検出部6aが変位し、ロードセル6は該変位量に応じた検出値を表示器7に出力することとなる。 In the present embodiment, the granular material P is introduced from the upstream side pipe 2 through the introduction tube 8 into the detection tube 4, and when the granular material P flows down to the resistance projection 19 in the detection tube 4, the resistance projection 19 is formed. becomes a resistor, a flow path C of granular material P is divided into the channel C 1 and C 2. At that time, a resistance force f acting vertically downward is generated in accordance with the amount of the powder P. That is, in the present embodiment, when measuring the flow rate of the granular material P, the detection unit 6a of the load cell 6 is displaced according to the change in the sum (W + f) of the load W and the resistance force f applied to the detection tube 4, The load cell 6 outputs a detection value corresponding to the displacement amount to the display unit 7.

従って、本実施形態では第1実施形態よりも抵抗力fが生じる分、より高感度で粉粒体Pの流量を計測することができる。   Therefore, in the present embodiment, the flow rate of the granular material P can be measured with higher sensitivity because the resistance force f is generated than in the first embodiment.

以下に、本実施形態に対応する実施例について説明する。先ず、使用したテスト装置15について図3に基づいて説明する。テスト装置15はインバータ駆動のバケットエレベーター17、ホッパー18、インバータ駆動のスクリューコンベア16、粉粒体流量計測装置1から構成される。テスト装置15において、先ず、粉粒体Pはバケットエレベーター17の下部で、バケットエレベーター17内のバケット(図示せず)に入れられ、バケットエレベーター17の上部に向かって垂直輸送される。そして、粉粒体Pはバケットエレベーター17の上部でバケットからホッパー18へと排出される。   Hereinafter, examples corresponding to the present embodiment will be described. First, the used test apparatus 15 will be described with reference to FIG. The test device 15 includes an inverter-driven bucket elevator 17, a hopper 18, an inverter-driven screw conveyor 16, and a granular material flow rate measuring device 1. In the test apparatus 15, first, the granular material P is placed in a bucket (not shown) in the bucket elevator 17 at the lower part of the bucket elevator 17, and is vertically transported toward the upper part of the bucket elevator 17. And the granular material P is discharged | emitted from the bucket to the hopper 18 by the upper part of the bucket elevator 17. FIG.

バケットエレベーター17から排出された粉粒体Pはホッパー18を介してスクリューコンベア16に供給され、更に、該粉粒体Pはスクリューコンベア16から上流側配管2へと供給され、粉粒体流量計測装置1及び下流側配管3へと流れていくようになっている。尚、テスト装置15は、下流側配管3の先端がバケットエレベーター17の下部に接続されており、粉粒体Pがテスト装置15内を循環できるようになっている。   The granular material P discharged from the bucket elevator 17 is supplied to the screw conveyor 16 via the hopper 18, and further, the granular material P is supplied from the screw conveyor 16 to the upstream pipe 2 to measure the granular material flow rate. It flows to the apparatus 1 and the downstream pipe 3. In the test apparatus 15, the downstream end of the downstream pipe 3 is connected to the lower part of the bucket elevator 17 so that the granular material P can circulate in the test apparatus 15.

尚、各実施例の計測結果のグラフ(図6乃至8)は、粉体Pの供給量(スクリューコンベア42の回転数(Hz))の変化に対する、繰り返し計測した計測時間30sにおける積算値の平均値との関係を表したものである。仮に、粉体が検出管10内に堆積するとするならば、積算値の誤差は粉体の供給量の増加に応じて大きくなる。そのため、該グラフは、粉体の堆積量が少ないほどより直線性を示すこととなる。   In addition, the graph (FIGS. 6 to 8) of the measurement results of each example shows the average of the integrated values in the measurement time 30 s repeatedly measured with respect to the change in the supply amount of the powder P (the rotation speed (Hz) of the screw conveyor 42). It represents the relationship with the value. If the powder accumulates in the detection tube 10, the error of the integrated value becomes larger as the powder supply amount increases. Therefore, the graph shows more linearity as the amount of deposited powder is smaller.

・粉体:上新粉(粒度≒300 μm)
・検出管4の傾斜角:θ=57°
・スクリューコンベア16の回転数:28 Hz(排出量≒0.75 kg/s)、24 Hz(排出量≒0.60 kg/s)、18 Hz(排出量≒0.49 kg/s)、12 Hz(排出量≒0.33 kg/s)
・ Powder: New powder (particle size ≒ 300 μm)
・ Inclination angle of detection tube 4: θ = 57 °
・ Rotation speed of screw conveyor 16: 28 Hz (discharge amount ≒ 0.75 kg / s), 24 Hz (discharge amount ≒ 0.60 kg / s), 18 Hz (discharge amount ≒ 0.49 kg / s), 12 Hz (discharge amount ≒ 0.33 kg / s)

本発明の実施例1について図6に基づき説明する。本実施例は上新粉(粒度≒300 μm)を流し、積算値を計測した場合の例である。平均積算値は粉体の供給量に対して直線性を示した。この結果は、検出管4内を上新粉が堆積することなく流れ、上新粉の流量に応じた積算値が得られていることを示している。   A first embodiment of the present invention will be described with reference to FIG. This example is an example in the case where a super fresh powder (particle size≈300 μm) is passed and the integrated value is measured. The average integrated value showed linearity with respect to the amount of powder supplied. This result shows that the upper fresh powder flows in the detection tube 4 without accumulating, and an integrated value corresponding to the flow rate of the upper fresh powder is obtained.

・粉体:小麦粉(薄力2等粉)
・検出管4の傾斜角:θ=60°
・スクリューコンベア16の回転数:24 Hz(排出量≒0.44 kg/s)、18 Hz(排出量≒0.34 kg/s)、12 Hz(排出量≒0.23 kg/s)、6 Hz(排出量≒0.14 kg/s)
・ Powder: Wheat flour (thin 2nd flour)
・ Inclination angle of detector tube 4: θ = 60 °
・ Rotation speed of screw conveyor 16: 24 Hz (discharge amount ≈ 0.44 kg / s), 18 Hz (discharge amount ≈ 0.34 kg / s), 12 Hz (discharge amount ≈ 0.23 kg / s), 6 Hz (discharge amount ≒ 0.14 kg / s)

本発明の実施例2について図7に基づき説明する。第1実施例との相違は粉体として上新粉よりも細かい小麦粉(薄力2等粉)を用いたことである。この場合においても、上新粉の場合と同様にグラフは直線性を示し、小麦粉であっても検出管4内に堆積することなく、その流量に応じた積算値が得られた。   A second embodiment of the present invention will be described with reference to FIG. The difference from the first embodiment is that wheat flour (thin flour second grade) finer than upper fresh flour was used as the powder. Also in this case, the graph showed linearity as in the case of the upper fresh flour, and even if it was wheat flour, an integrated value corresponding to the flow rate was obtained without accumulating in the detection tube 4.

・粉体:小麦粉(薄力2等粉)
・検出管4の傾斜角:θ=60°
・スクリューコンベア16の回転数:24 Hz(排出量≒0.44 kg/s)、18 Hz(排出量≒0.34 kg/s)、12 Hz(排出量≒0.23 kg/s)、6 Hz(排出量≒0.14 kg/s)
・ Powder: Wheat flour (thin 2nd flour)
・ Inclination angle of detector tube 4: θ = 60 °
・ Rotation speed of screw conveyor 16: 24 Hz (discharge amount ≈ 0.44 kg / s), 18 Hz (discharge amount ≈ 0.34 kg / s), 12 Hz (discharge amount ≈ 0.23 kg / s), 6 Hz (discharge amount ≒ 0.14 kg / s)

本発明の実施例3について図8に基づき説明する。実施例2との相違は平面視略菱形の抵抗突起19を検出管4に設けたことである。この場合においても、実施例2と同様に平均積算値は粉体の供給量に対して直線性を示した。そして、実施例3の各平均積算値は対応する実施例2の平均積算値の約2倍であった。この結果は、検出管4に抵抗突起19を設けたとしても小麦粉(薄力2等粉)が堆積することなく流れ、抵抗突起19を設けたことによって、その感度を約2倍にすることができることを示している。   A third embodiment of the present invention will be described with reference to FIG. The difference from the second embodiment is that a resistance projection 19 having a substantially rhombic shape in plan view is provided on the detection tube 4. In this case as well, as in Example 2, the average integrated value showed linearity with respect to the amount of powder supplied. Each average integrated value in Example 3 was about twice the corresponding average integrated value in Example 2. As a result, even if the resistance projection 19 is provided on the detection tube 4, the flour (thin powder, etc.) flows without accumulating, and by providing the resistance projection 19, the sensitivity can be doubled. It shows what you can do.

以上説明したように、本発明は投入管8及び排出管9又は上流側配管2及び下流側配管3との間に傾斜させつつ、それらとは非接触状態で保持された検出管4を設け、そのような状態の検出管4に掛かる荷重を動的にロードセル6で検出することによって、粉体を流しても、粉体の堆積等を防止することができ、その流量を正確に計測することが可能である。そして、当然に、粉体よりも粒度の粗く、元々堆積し難い粒体の流量についても正確に計測することができる。   As described above, the present invention is provided with the detection pipe 4 held in a non-contact state while being inclined between the input pipe 8 and the discharge pipe 9 or the upstream side pipe 2 and the downstream side pipe 3. By dynamically detecting the load applied to the detection tube 4 in such a state with the load cell 6, even if the powder is flowed, it is possible to prevent the accumulation of the powder, and to accurately measure the flow rate. Is possible. And naturally, it is possible to accurately measure the flow rate of particles that are coarser than the powder and are difficult to deposit.

尚、本発明は上述の実施形態に限定されるものではない。ロードセル6の検出部6aを検出管4の上面4d側に取り付け、検出管4を検出部6aで吊り下げる様にロードセル6で支持しても良く、ロードセル6の取り付け位置に応じて固定部5の位置も適宜変更することができる。更に、固定部5はロードセル6を所定位置に保持できればよく、その一端のみを上流用配管2又は下流用配管3の一方に固定するようにしてもよいし、又、その形状は適宜変更可能である。   In addition, this invention is not limited to the above-mentioned embodiment. The detection portion 6a of the load cell 6 may be attached to the upper surface 4d side of the detection tube 4, and the detection tube 4 may be supported by the load cell 6 so as to be suspended by the detection portion 6a. The position can also be changed as appropriate. Further, the fixing portion 5 only needs to hold the load cell 6 in a predetermined position, and only one end thereof may be fixed to one of the upstream pipe 2 or the downstream pipe 3, and the shape thereof can be changed as appropriate. is there.

1 粉粒体流量計測装置 2 上流側配管
2a 先端 3 下流側配管
3a 基端 4 検出管
4a 基端 4b 先端
4c 下面 4d 上面
5 固定部 6 ロードセル
6a 検出部 7 表示器
8 投入管 8a 先端
9 排出管 9a 基端
10 挿入部 11 挿入部
12 接続チューブ 13 接続チューブ
14 バンド 15 テスト装置
16 スクリューコンベア 17 バケットエレベーター
18 ホッパー 19 抵抗突起
θ 傾斜角 H 水平面
ID 内径 ED 外径
C 粉粒体流路 P 粉粒体
f 抵抗力 W 荷重
DESCRIPTION OF SYMBOLS 1 Powder flow rate measuring apparatus 2 Upstream side pipe 2a Tip 3 Downstream side pipe 3a Base end 4 Detection pipe 4a Base end 4b Tip 4c Bottom face 4d Top face 5 Fixed part 6 Load cell 6a Detection part 7 Display 8 Input pipe 8a Tip 9 Discharge Tube 9a Base end 10 Insertion section 11 Insertion section 12 Connection tube 13 Connection tube 14 Band 15 Test device 16 Screw conveyor 17 Bucket elevator 18 Hopper 19 Resistance projection θ Inclination angle H Horizontal plane ID Inner diameter ED Outer diameter C Powder channel P Powder Granule f Resistance W Load

Claims (6)

上流側配管に接続される投入管と、
下流側配管に接続される排出管と、
該投入管と該排出管との間に傾斜して設けられ、該上流側配管、該投入管、該排出管及び該下流側配管と共に粉粒体の流路を形成する検出管と、
該検出管と該投入管及び該排出管との非接触状態を保持するように該検出管を支持し、該検出管に掛かる荷重を検出する荷重検出器と、
該荷重検出器を所定位置に固定すると共に該投入管及び/又は該排出管に固定する固定部とを備え、
該荷重検出器が検出した値に基づいて該粉粒体の流量を計測することを特徴とする粉粒体流量計測装置。
An input pipe connected to the upstream pipe;
A discharge pipe connected to the downstream pipe;
A detection tube that is provided between the input pipe and the discharge pipe and is inclined to form a flow path of the granular material together with the upstream pipe, the input pipe, the discharge pipe, and the downstream pipe;
A load detector for supporting the detection tube so as to maintain a non-contact state between the detection tube and the input tube and the discharge tube, and detecting a load applied to the detection tube;
A fixing portion for fixing the load detector at a predetermined position and fixing the load detector to the input pipe and / or the discharge pipe;
A granular material flow rate measuring apparatus that measures the flow rate of the granular material based on a value detected by the load detector.
上流側配管と下流側配管との間に傾斜して設けられ、該上流側配管及び該下流側配管と共に粉粒体の流路を形成する検出管と、
該検出管と該上流側配管及び該下流側配管との非接触状態を保持するように該検出管を支持し、該検出管に掛かる荷重を検出する荷重検出器と、
該荷重検出器を所定位置に固定すると共に該上流側配管及び/又は該下流側配管に固定する固定部とを備え、
該荷重検出器が検出した値に基づいて該粉粒体の流量を計測することを特徴とする粉粒体流量計測装置。
A detection pipe that is provided between the upstream pipe and the downstream pipe, and that forms a flow path of the granular material together with the upstream pipe and the downstream pipe;
A load detector for supporting the detection pipe so as to maintain a non-contact state between the detection pipe and the upstream pipe and the downstream pipe, and detecting a load applied to the detection pipe;
A fixing portion for fixing the load detector at a predetermined position and fixing the load detector to the upstream pipe and / or the downstream pipe;
A granular material flow rate measuring apparatus that measures the flow rate of the granular material based on a value detected by the load detector.
前記荷重検出器はロードセルであることを特徴とする請求項1又は2に記載の粉粒体流量計測装置。   The granular material flow rate measuring apparatus according to claim 1 or 2, wherein the load detector is a load cell. 前記検出管は、その内壁に荷重方向に分力を発生させる様に粉粒体の流路に対して抵抗となる抵抗突起を有することを特徴とする請求項1、2又は3に記載の粉粒体流量計測装置。   4. The powder according to claim 1, wherein the detection tube has a resistance projection that becomes a resistance to the flow path of the granular material so as to generate a component force in the load direction on the inner wall thereof. Granule flow rate measuring device. 前記抵抗突起の形状は平面視菱形又は凧形であることを特徴とする請求項4に記載の粉粒体流量計測装置。   5. The granular material flow rate measuring apparatus according to claim 4, wherein the shape of the resistance protrusion is a rhombus or a bowl shape in a plan view. 前記投入管又は前記排出管は、直管、曲管又は異径管であることを特徴とする請求項1、3、4又は5に記載の粉粒体流量計測装置。   6. The granular material flow rate measuring apparatus according to claim 1, wherein the input pipe or the discharge pipe is a straight pipe, a curved pipe or a different diameter pipe.
JP2012048795A 2012-03-06 2012-03-06 Powder-particle body flow rate measuring apparatus Pending JP2013185835A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012048795A JP2013185835A (en) 2012-03-06 2012-03-06 Powder-particle body flow rate measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048795A JP2013185835A (en) 2012-03-06 2012-03-06 Powder-particle body flow rate measuring apparatus

Publications (1)

Publication Number Publication Date
JP2013185835A true JP2013185835A (en) 2013-09-19

Family

ID=49387401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048795A Pending JP2013185835A (en) 2012-03-06 2012-03-06 Powder-particle body flow rate measuring apparatus

Country Status (1)

Country Link
JP (1) JP2013185835A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113405615A (en) * 2021-07-19 2021-09-17 山西新华防化装备研究院有限公司 Gas mask is airflow detection device for air supply unit

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122430A (en) * 1982-01-16 1983-07-21 Sumitomo Metal Ind Ltd Measuring method of flow rate of powder and granule
JPS58130222U (en) * 1982-02-26 1983-09-02 住友金属工業株式会社 Powder flow meter
JPS5940825U (en) * 1982-09-08 1984-03-15 林 仁之助 Grain flow measurement device
JPH02126120A (en) * 1988-11-04 1990-05-15 Nisshin Flour Milling Co Ltd Flow measuring instrument for granular particles
JPH039219A (en) * 1989-06-05 1991-01-17 Sinto Brator Co Ltd Measuring method for flow rate of steel shot material
WO2001025732A1 (en) * 1999-10-01 2001-04-12 Dynatechnik Messsysteme Gmbh Method and device for measuring streams of bulk materials
JP2004251700A (en) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd Fluid measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58122430A (en) * 1982-01-16 1983-07-21 Sumitomo Metal Ind Ltd Measuring method of flow rate of powder and granule
JPS58130222U (en) * 1982-02-26 1983-09-02 住友金属工業株式会社 Powder flow meter
JPS5940825U (en) * 1982-09-08 1984-03-15 林 仁之助 Grain flow measurement device
JPH02126120A (en) * 1988-11-04 1990-05-15 Nisshin Flour Milling Co Ltd Flow measuring instrument for granular particles
JPH039219A (en) * 1989-06-05 1991-01-17 Sinto Brator Co Ltd Measuring method for flow rate of steel shot material
WO2001025732A1 (en) * 1999-10-01 2001-04-12 Dynatechnik Messsysteme Gmbh Method and device for measuring streams of bulk materials
JP2004251700A (en) * 2003-02-19 2004-09-09 Matsushita Electric Ind Co Ltd Fluid measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113405615A (en) * 2021-07-19 2021-09-17 山西新华防化装备研究院有限公司 Gas mask is airflow detection device for air supply unit

Similar Documents

Publication Publication Date Title
WO2008140559A3 (en) Measuring momentum for charged particle tomography
JP2011185635A (en) Pressure sensor, pressure-differential flow rate meter, and flow rate controller
Coombes et al. Experimental investigations into the flow characteristics of pneumatically conveyed biomass particles using an electrostatic sensor array
CN108732379A (en) Measuring device for the flow velocity for measuring fluid
Rinoshika et al. Experimental study on particle fluctuation velocity of a horizontal pneumatic conveying near the minimum conveying velocity
JP2013185835A (en) Powder-particle body flow rate measuring apparatus
WO2008020762A1 (en) Method for real time measurement of mass flow rate of bulk solids
Kalman et al. Particle velocity reduction in horizontal-horizontal bends of dilute phase pneumatic conveying
Guangbin et al. Experimental investigation of gas–solid two-phase flow in Y-shaped pipeline
Radice et al. Double-average characteristics of sediment motion in one-dimensional bed load
US4241606A (en) Particulate level measuring method and apparatus
US6865495B2 (en) Flow metering
TW201910731A (en) Flow meter
CN205483098U (en) Matrix differential pressure flow meter
CN204329991U (en) A kind of constructional device being applied to gravity flow fluid ultrasonic measurement
CN211785607U (en) Measuring device for measuring flow velocity of fluid in pipeline
CN216524230U (en) Bed height measuring device of fluidized bed
JP2018030707A (en) Dispersion method for granular powder
JP5929629B2 (en) Method for detecting blockage of powder pipe transportation device
Schulze Storage of powders and bulk solids in silos
JP2020118508A (en) Flowmeter
CN104964721B (en) The gas flow structure of mass air flow sensor
CN106289418A (en) One yeast inoculation tail chute type bulk material flow meter
CN210875769U (en) Rectangle ore deposit device
JPS601522A (en) Method for measuring flow rate of powder fluid

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20140904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140930

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150204

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20151207

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160524