JP2013185256A - Surface modification treatment method of stainless steel excellent in resistance against chlorine pitting corrosion and resistance against general corrosion and rust preventive property - Google Patents

Surface modification treatment method of stainless steel excellent in resistance against chlorine pitting corrosion and resistance against general corrosion and rust preventive property Download PDF

Info

Publication number
JP2013185256A
JP2013185256A JP2012074979A JP2012074979A JP2013185256A JP 2013185256 A JP2013185256 A JP 2013185256A JP 2012074979 A JP2012074979 A JP 2012074979A JP 2012074979 A JP2012074979 A JP 2012074979A JP 2013185256 A JP2013185256 A JP 2013185256A
Authority
JP
Japan
Prior art keywords
stainless steel
corrosion
acid
lithium
chlorine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012074979A
Other languages
Japanese (ja)
Other versions
JP6167411B2 (en
Inventor
Masato Yamamoto
正登 山本
Makoto Nakai
誠 中井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamamoto Chemicals Inc
Original Assignee
Yamamoto Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamamoto Chemicals Inc filed Critical Yamamoto Chemicals Inc
Priority to JP2012074979A priority Critical patent/JP6167411B2/en
Publication of JP2013185256A publication Critical patent/JP2013185256A/en
Application granted granted Critical
Publication of JP6167411B2 publication Critical patent/JP6167411B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a surface modification treatment method by which resistance against chlorine pitting corrosion and stress corrosion cracking property intrinsic to austenitic stainless steel and fatal general corrosion and rusting of martensitic stainless steel is prevented by subjecting austenitic stainless steel raw material used for various kinds of chemical plants and piping susceptible to corrosion trouble due to contact with chlorine gas and chlorine ion and kitchen sink or the like in daily personal life and martensitic stainless steel which features hardness as merit, however, is poor in corrosion resistance and is used for cutting knife, surgical instrument or the like to electrolytic treatment.SOLUTION: Surface modification treatment is performed which extremely improving resistance against chlorine pitting corrosion intrinsic to austenitic stainless steel and suppression of general corrosion and rusting which can be said as fate of the martensitic stainless steel by subjecting a stainless steel to electrolytic treatment with an electrolytic solution prepared by mixing a neutral salt containing a lithium compound, thereby, causing lithium or lithium and oxygen to diffuse or permeate in ion state over an inner part from a stainless steel surface layer part.

Description

本発明は、海水や塩素によるトラブルが発生している箇所或いは発生が予想される箇所例えば、化学プラント、水族館、プール、シンク等に使用されているオーステナイト系ステンレス素材や硬度を有する刃物、外科用器具、シャフト等に使用されるマルテンサイト系ステンレス鋼の不動態被膜を強化し、オーステナイト系ステンレスに特有な孔食及びマルテンサイト系ステンレスの宿命である全面腐食及び発錆の抑制を著しく向上させるステンレス鋼の表面改質処理方法に関するものである。  The present invention is a place where troubles due to seawater or chlorine have occurred or are expected to occur, for example, austenitic stainless steel used for chemical plants, aquariums, pools, sinks, etc. Stainless steel that strengthens the passive film of martensitic stainless steel used for instruments, shafts, etc., and significantly improves the suppression of pitting corrosion and rusting, which is the fate of martensitic stainless steel, which is unique to austenitic stainless steel The present invention relates to a method for surface modification treatment of steel.

本出願人は、過去ステンレス鋼の溶接後の溶接焼け取り洗浄作業が極めて危険な劇毒物に該当する硝弗酸に依存している実情に鑑み、研究の結果、安全無害な中性塩を電解液とする電解焼け取り方法を開発し、「合金鋼の脱スケール法」の名称のもとに特許第1543867号を取得し、従来の危険な劇毒物硝弗酸の使用を抑制し、より安全無害な溶接焼け取りを可能とする電解装置を開発した。
この発明の要旨とするところは、燐酸、硫酸、弗酸の中性塩溶液にグリセリンを混合して電解液とし、被処理ステンレス鋼を陽極とする直流電解法である。
この方法によれば、極めて効果的に上記焼け取り作業が実施できるが、電解時に毒性の強い高濃度の六価クロムが溶出する欠点が有ったため、この種の電解液に改良を加え、市販の単純な直流電源器をもって電解処理を施工しても六価クロムを溶出しない画期的で安全な電解液を開発し業界の注目するところとなっている。
In light of the fact that welding burn-off cleaning operations after past stainless steel welding depend on nitrofluoric acid, which is a very dangerous poisonous substance, as a result of research, the applicant has electrolyzed safe and harmless neutral salts. Developed an electrolytic burn-off method that uses a liquid and obtained a patent No. 1544367 under the name of “descaling method of alloy steel” to suppress the use of the conventional dangerous poisonous nitrile hydrofluoric acid, making it safer We have developed an electrolyzer that enables harmless burn-out.
The gist of the present invention is a direct current electrolysis method in which glycerol is mixed with a neutral salt solution of phosphoric acid, sulfuric acid, and hydrofluoric acid to form an electrolytic solution, and the treated stainless steel is used as an anode.
According to this method, the above-mentioned burn-out operation can be carried out very effectively. However, since there is a defect that a highly toxic high concentration hexavalent chromium elutes during electrolysis, this type of electrolytic solution is improved and commercially available. The company has developed an innovative and safe electrolyte that does not elute hexavalent chromium even when electrolytic treatment is performed with a simple DC power supply.

又、従来市販の六価クロムが溶出して危険性のある中性塩電解液を使用しても、六価クロムが完璧に溶出しないように改良した画期的な電解処理用電源器を開発し、「合金鋼の溶接に伴うスケールの除去方法」の名称のもとに特許第1908719号を取得している。この発明の要旨とするところは、無機中性塩の溶液を電解液とし、直流に振幅が直流電圧に等しいか又は若干高い程度の交流を重ね合わせた交直重乗電流をもって電解処理することを特徴とするもので、電解時に溶出した有害な上記六価クロムは直ちに三価クロムに還元され、無害化される卓越した効果を奏するものである。  In addition, the development of a revolutionary power supply for electrolytic treatment that has been improved so that hexavalent chromium does not elute completely even if a neutral salt electrolyte that is dangerous due to the elution of commercially available hexavalent chromium is used. Patent No. 1908719 has been acquired under the name of “method of removing scale accompanying welding of alloy steel”. The gist of the present invention is characterized in that an inorganic neutral salt solution is used as an electrolytic solution, and electrolytic treatment is performed with an AC / DC current obtained by superimposing an alternating current with an amplitude equal to or slightly higher than a direct current amplitude on a direct current. Therefore, the harmful hexavalent chromium eluted at the time of electrolysis is immediately reduced to trivalent chromium and has an excellent effect of detoxification.

本出願人は、その他電気化学的手法として、従来の技術ではステンレス表面の公知の酸素系不動態化被膜を破戒するため適用不可能とされていた交流電流を用いることをも可能にして、ステンレス鋼表面の優美性を維持したままでその表面に強力な不動態被膜を形成させることにより、ステンレス鋼本来の耐食性を損うことなく、むしろ向上させながらステンレス鋼表面に付着している溶接や熱処理による酸化膜や、さび、油分、汚れ等の各種異物を一工程で除去するステンレス鋼の表面清浄、不動態処理方法を確立し、「ステンレス鋼表面の清浄、不動態化処理方法」の名称のもとに特許第3484525号を取得している。
また、特許第4218000号「含弗素乃至含弗素・酸素系被膜層を形成させたステンレス鋼とその製造方法」では、特許第3484525号で不明であった強力な不動態被膜を形成させるメカニズムをも解明し、電気化学的手法により、ステンレス鋼の表面部乃至はその近傍に対し、弗素もしくは弗素と酸素とをイオン状で拡散、浸透せしめることにより含弗素系乃至含弗素・酸素系の被膜層を形成させ、従来のステンレス鋼表面に形成されている酸素系不動態被膜に比べてより耐食性に優れた新規な被膜の形成によってもたらせる効果により、該ステンレス鋼の鋼種に応じて保有する固有の耐食性をより一層飛躍的に向上させ、特にオーステナイト系ステンレス鋼に特有の塩素による孔食発生から異常腐食さらには応力腐食割れに至る諸問題を大幅に改善したステンレス鋼とその製造方法を発明した。
The present applicant has made it possible to use an alternating current, which has been considered to be inapplicable as an electrochemical technique, because it is not possible to apply a conventional oxygen-based passivation film on the stainless steel surface in a conventional manner. By forming a strong passive film on the surface while maintaining the grace of the steel surface, welding and heat treatment adhered to the surface of the stainless steel while improving rather than impairing the inherent corrosion resistance of the stainless steel. Established a stainless steel surface cleaning and passivation treatment method that removes various foreign substances such as rust, oil, dirt, etc. in one step, and named the “cleaning and passivation treatment method for stainless steel surfaces” Based on the patent No. 3484525.
Patent No. 4218000 “Stainless steel on which fluorine-containing or fluorine-containing / oxygen-based coating layer is formed and its manufacturing method” also has a mechanism for forming a strong passive coating that was unknown in Patent No. 3484525. By elucidating and using electrochemical techniques, fluorine or fluorine and oxygen-based coating layers can be formed by diffusing and infiltrating fluorine or fluorine and oxygen into the surface of stainless steel or its vicinity. Due to the effects that can be obtained by forming a new coating that is superior in corrosion resistance compared to the oxygen-based passivating coating formed on the surface of conventional stainless steel, the inherent properties possessed depending on the type of stainless steel Corrosion resistance is further improved dramatically, especially from the occurrence of pitting corrosion due to chlorine, which is characteristic of austenitic stainless steel, to abnormal corrosion and stress corrosion cracking. Invented significantly improve problems were stainless steel and the manufacturing method.

一般に、原子力プラントに使用される配管や石油精製プラント等化学プラントの反応塔や配管等にはオーステナイト系ステンレス鋼等の各種ステンレス鋼が使用されているが、これら耐食性に優れているステンレス鋼も塩素イオンや水素イオン等の雰囲気下で、外部応力や残留応力が引張り応力としてかかる等の悪条件が重なれば、応力腐食割れ(以下「SCC」という。)が発生し易く、SCCを原因とした様々な腐食事故が起こっている。
特許第4218000号では、電気化学的方法により、ステンレス鋼表面に含弗素、酸素系被膜層を形成させて塩素による耐孔食性をより向上させ、ひいてはSCCを防止するものであるが、SCCに対する効果については、十分に説明されていなかった。本出願人は続いて、特許第4678612号「表面改質ステンレス鋼及び表面改質ステンレス鋼の処理方法」では上記特許第4218000を基本に鋭意研究を重ねた結果、ステンレス鋼表層部に対して、ホウ素又はホウ素とフッ素若しくはこれらと酸素とをイオン状で拡散、浸透させることにより、含ホウ素又は含ホウ素とフッ素若しくはこれらの酸素系被膜を形成させることにより、耐SCC性を飛躍的に向上させた表面改質ステンレス鋼及びその処理方法を確立し、ステンレス鋼の表面改質全般に亘り新規な研究を成し、大きな成果を挙げてきた。
In general, various stainless steels such as austenitic stainless steel are used for piping used in nuclear power plants and reaction towers and piping in chemical plants such as oil refining plants. Stainless steel with excellent corrosion resistance is also chlorine. If adverse conditions such as external stress and residual stress are applied as tensile stress in an atmosphere of ions, hydrogen ions, etc., stress corrosion cracking (hereinafter referred to as “SCC”) is likely to occur, causing SCC. Various corrosion accidents have occurred.
In Japanese Patent No. 4218000, an electrochemical method is used to form a fluorine-containing and oxygen-based coating layer on the surface of stainless steel to further improve the pitting corrosion resistance due to chlorine, thereby preventing SCC. Was not fully explained. As a result of intensive studies based on the above-mentioned Patent No. 4218000 in Patent No. 4678612 “Surface Modification Stainless Steel and Method for Processing Surface Modification Stainless Steel”, the applicant of the present invention, SCC resistance was drastically improved by forming boron-containing or boron-containing and fluorine or their oxygen-based coatings by diffusing and permeating boron or boron and fluorine or these and oxygen in an ionic state. The surface modified stainless steel and its treatment method were established, and new research was conducted over the entire surface modification of stainless steel, and great results were achieved.

特許第1543867号Japanese Patent No. 1543867 特許第1908719号Japanese Patent No. 1908719 特許第3484525号Japanese Patent No. 3484525 特許第4218000号Patent No. 4218000 特許第4678612号Japanese Patent No. 4678612

特許文献4では、特許文献3で不明であった強力な不動態被膜を形成させる機構も解明し、電気化学的手法によりステンレス鋼の表面に含弗素、酸素系被膜層を形成させて耐塩素孔食性を著しく向上させる方法を確立し、さらに特許文献5ではステンレス鋼表層部に含ホウ素又は含ホウ素とフッ素若しくはこれらの酸素系被膜層を形成させ、耐食性特にSCC防止効果の特徴を持つ表面改質ステンレス鋼及び処理方法の発明であった。この様に本出願人は、これまで主に、全面腐食や発錆等の耐食性に優れているSUS304やSUS316等のオーステナイト系ステンレス鋼に特有な塩素イオンによる孔食の発生や応力腐食割れの防止を飛躍的に向上させる表面改質を目的として開発研究を行い、多大な成果を収めてきた。
一方、SUS410やSUS420等のマルテンサイト系ステンレス鋼は硬さを要求される刃物、外科用器具、軸受けやベアリング等に使用されており耐摩耗性には優れているが、耐食性がオーステナイト系ステンレス鋼に比べ劣る事が指摘されている。本出願人は、この耐食性の劣るマルテンサイト系ステンレス鋼に、特許文献3、特許文献4や特許文献5での表面改質処理を行い、その効果を確認したところマルテンサイト系ステンレス鋼では、オーステナイト系やフェライト系ステンレス鋼で確認された様な飛躍的な表面改質効果は認められなかった。
In Patent Document 4, the mechanism for forming a strong passive film that was unknown in Patent Document 3 was also elucidated, and a fluorine-containing and oxygen-based film layer was formed on the surface of stainless steel by an electrochemical method to prevent chlorine-resistant pores. Established a method to remarkably improve the corrosion resistance. Furthermore, in Patent Document 5, boron-containing or boron-containing and fluorine or their oxygen-based coating layer is formed on the stainless steel surface layer portion to improve the corrosion resistance, particularly the SCC prevention effect. It was an invention of stainless steel and processing method. In this way, the present applicant has so far mainly prevented pitting corrosion and stress corrosion cracking due to chlorine ions, which are characteristic of austenitic stainless steels such as SUS304 and SUS316, which have excellent corrosion resistance such as general corrosion and rusting. Research and development has been conducted for the purpose of surface modification that dramatically improves the results.
On the other hand, martensitic stainless steels such as SUS410 and SUS420 are used for cutting tools, surgical instruments, bearings, bearings, and the like that require hardness, and have excellent wear resistance, but corrosion resistance is austenitic stainless steel. It is pointed out that it is inferior to. The present applicant performed the surface modification treatment in Patent Document 3, Patent Document 4 and Patent Document 5 on the martensitic stainless steel having inferior corrosion resistance, and confirmed its effect. In martensitic stainless steel, austenite As a result, no dramatic surface modification effect was observed, as confirmed by the ferritic and ferritic stainless steels.

本発明は上記のような課題を解決するためになされたもので、本出願人が先に提案した特許文献3、特許文献4、特許文献5に示された様な電気化学的方法による表面改質処理方法を基本にし、鋭意研究を重ねた結果、ステンレス鋼の表面に特定の元素を含む電解液を用いて、イオン状で電解拡散、浸透させたステンレス鋼の改質処理を行うことにより、オーステナイト系ステンレス鋼に特の塩素による孔食発生及びマルテンサイト系ステンレス鋼に特の全面腐食や発錆防止に対し飛躍的に向上させた表面改質処理方法を提供することを目的とするもので、従来公知の酸素の効用による不動態化とは全く異なるもので、本発明者らはこれらをウルトラ不動態と呼称している。  The present invention has been made in order to solve the above-described problems. Surface modification by an electrochemical method as shown in Patent Document 3, Patent Document 4, and Patent Document 5 previously proposed by the present applicant is proposed. As a result of earnest research based on the quality treatment method, by using an electrolyte containing a specific element on the surface of stainless steel, by reforming stainless steel that has been ionically electrolytically diffused and penetrated, The purpose is to provide a surface modification treatment method that has drastically improved pitting corrosion due to chlorine, which is special to austenitic stainless steel, and prevention of general corrosion and rusting, which is special to martensitic stainless steel. This is completely different from the conventionally known passivation by the use of oxygen, and the present inventors refer to these as ultrapassivation.

上記の目的を達成するため、請求項1記載の発明は、0.05Wt%以上乃至飽和濃度以下の硫酸、リン酸、クエン酸、酒石酸、シュウ酸、リンゴ酸、乳酸、酢酸、グルコン酸、グリコール酸、コハク酸などステンレス鋼に対して非酸化性に作用する酸の各ナトリウム、カリウム、アンモニウム塩の一種若しくは二種以上を基材としこれにさらに0.01Wt%以上乃至飽和濃度以下のリチウムの有機酸若しくは無機酸塩かまたは水素化リチウム、水酸化リチウム、酸化リチウムの何れか一種若しくは二種以上のリチウム化合物を配合した水溶液を電解液とし、ステンレス鋼を直流の陽極又は交流の一極に、若しくは直流に交流を重ね合せた交直重乗電流の陽極側に接続して電解処理をすることにより、ステンレス鋼の表面からリチウムを拡散せしめることで、オーステナイト系ステンレス鋼特有の欠点とされている耐塩素孔食性やマルテンサイト系ステンレス鋼の宿命である全面腐食や発錆に対しそれを防止する優れた防食皮膜を形成させるステンレス鋼の表面改質処理方法にある。  In order to achieve the above object, the invention described in claim 1 is characterized in that 0.05 Wt% or more to saturation concentration of sulfuric acid, phosphoric acid, citric acid, tartaric acid, oxalic acid, malic acid, lactic acid, acetic acid, gluconic acid, glycol The base material is one or more of sodium, potassium and ammonium salts of acid, succinic acid, etc. that act non-oxidatively on stainless steel. An organic acid or inorganic acid salt, or an aqueous solution containing one or more lithium compounds of lithium hydride, lithium hydroxide, and lithium oxide is used as the electrolyte, and stainless steel is used as a direct current anode or alternating current. Alternatively, the lithium can be expanded from the surface of the stainless steel by electrolysis treatment by connecting to the anode side of the AC / DC current with the alternating current superimposed on the direct current. By damaging the stainless steel, it is possible to form a superior anticorrosive film that prevents chlorine pitting corrosion resistance and martensitic stainless steel's fate of general corrosion and rusting, which are the disadvantages inherent to austenitic stainless steel. There is a surface modification treatment method.

請求項1の記載の発明によれば、本発明は、海水や塩素によるトラブルが発生している箇所或いは発生が予想される箇所例えば、化学プラント、水族館、プール、シンク等に使用されているオーステナイト系ステンレス素材や硬度を有する刃物、外科用器具、シャフト等に使用されるマルテンサイト系ステンレス鋼の表面に対し、有機酸及び無機酸とのリチウム塩または水素化リチウム、水酸化リチウム、酸化リチウムの一種若しくは二種以上のリチウム化合物を配合した水溶液を電解液とし、電解処理という極めて簡単な手法を行うことでリチウムを拡散浸透せしめることにより、各鋼種の防食被膜を強化し、オーステナイト系ステンレス鋼に特有の孔食及びマルテンサイト系ステンレスの宿命である全面腐食及び発錆の抑制を著しく向上させる不動態化皮膜を形成させることができる。  According to the first aspect of the present invention, the present invention relates to austenite used in places where troubles due to seawater or chlorine have occurred or places where such troubles are expected to occur, such as chemical plants, aquariums, pools, sinks, etc. Of martensitic stainless steel used for stainless steel materials, hardened blades, surgical instruments, shafts, etc., lithium salts with organic and inorganic acids or lithium hydride, lithium hydroxide, lithium oxide An aqueous solution containing one or more lithium compounds is used as the electrolytic solution, and lithium is diffused and infiltrated by performing an extremely simple technique called electrolytic treatment, thereby strengthening the anticorrosion coating of each steel type and providing austenitic stainless steel. Significantly improves pitting corrosion and the suppression of general corrosion and rusting, which are the fate of martensitic stainless steel Passivation film that can be formed.

ステンレス鋼の定義は、クロムを10.5%以上含む鉄合金とされており、クロム含有量が高くなるにつれて優れた耐食性を示す。一般的にSUS304に代表されるオーステナイト系ステンレス鋼はクロムを18%以上含有しているが、SUS410やSUS420等のマルテンサイト系ステンレス鋼はクロムが13%しか含まれていない。その金属特性で、マルテンサイト系ステンレス鋼はオーステナイト系ステンレス鋼に比べ硬度、耐摩耗性には優れているが、耐食性が劣っていることが問題であった。
ここで、本出願人が特許文献3、特許文献4、特許文献5で発明したフッ酸の中性塩やホウ酸又はホウ酸及びフッ酸の中性塩を配合した電解液でマルテンサイト系ステンレス鋼を電解処理した時に耐食性の向上が発現されずに、なぜ、本出願発明でのリチウム化合物を含む中性塩を配合した電解液で電解処理するとマルテンサイト系ステンレス鋼の全面腐食や発錆に対する防止効果の向上が認められるのか、メカニズムは必ずしも明らかではないが、おそらくフッ素やホウ素イオンとリチウムイオンのステンレス鋼への浸透、拡散の違いによる異なった不動態被膜の形成によるものと推察される。
The definition of stainless steel is an iron alloy containing 10.5% or more of chromium, and exhibits excellent corrosion resistance as the chromium content increases. Generally, austenitic stainless steel represented by SUS304 contains 18% or more of chromium, but martensitic stainless steels such as SUS410 and SUS420 contain only 13% of chromium. Martensitic stainless steel is superior in hardness and wear resistance to austenitic stainless steel due to its metal characteristics, but it has been a problem that it has poor corrosion resistance.
Here, the martensitic stainless steel is an electrolyte containing the neutral salt of hydrofluoric acid and boric acid or boric acid and neutral salt of hydrofluoric acid invented by the present applicants in Patent Document 3, Patent Document 4, and Patent Document 5. When the steel is electrolytically treated, the improvement in corrosion resistance is not manifested. Why is the electrolytic treatment with the electrolyte containing the neutral salt containing the lithium compound in the invention of this application against the corrosion and rusting of the martensitic stainless steel? Whether the improvement of the prevention effect is recognized is not clear, but the mechanism is probably due to the formation of different passive films due to the penetration and diffusion of fluorine, boron ions and lithium ions into stainless steel.

本発明は、リチウム化合物を含む中性塩を配合した電解液で電解処理を施すと、これまで本出願人が明らかにしてきたオーステナイト系ステンレス鋼に特有な耐塩素孔食性の向上はもちろんのこと、それに加え新たにマルテンサイト系ステンレス鋼の全面腐食や発錆に対しそれを防止する表面改質処理方法を見出したものである。  In the present invention, when electrolytic treatment is performed with an electrolytic solution containing a neutral salt containing a lithium compound, not only the improvement of chlorine pitting resistance unique to austenitic stainless steel, which has been clarified so far by the present applicant, In addition to that, the inventors have found a surface modification method for preventing martensitic stainless steel from being totally corroded and rusted.

オーステナイト系ステンレス鋼への耐塩素孔食性については、オーステナイト系ステンレス鋼の中で代表的なSUS304の2B材を用いJISに規定されている塩化第2鉄溶液を用いる孔食試験に準じて行った。
上記ステンレス鋼SUS304の試験片に、0.05Wt%以上乃至飽和濃度以下の硫酸、リン酸、クエン酸、酒石酸、シュウ酸、リンゴ酸、乳酸、酢酸、グルコン酸、グリコール酸、コハク酸などステンレス鋼に対して非酸化性に作用する酸の各ナトリウム、カリウム、アンモニウム塩の一種若しくは二種以上を基材としこれにさらに有機酸及び無機酸とのリチウム塩または水素化リチウム、水酸化リチウム、酸化リチウムの何れか一種若しくは二種以上のリチウム化合物を配合した水溶液を電解液とし、処理すべきステンレス鋼を直流の陽極に又は交流の一極に、若しくは直流に交流を重ね合せた交直重乗電流の陽極側に接続した状態で、上記電解液中に浸漬し、ステンレス鋼か黒鉛あるいはタングステン、モリブデン材などの難溶性電極を対極として通電する浸漬電解法を行うか又は他の一方法として、処理すべきステンレス鋼を電源の一極に接続すると共に同ステンレス鋼の表面上において対極との間に、天然又は合成、人造繊維の織布もしくは不織布の含水性物質(以下「モップ」という。)を介在させ、同モップに上記の電解液を含浸させた状態で、対極を用いてステンレス鋼の表面上で摺動しながら移動し電解処理を行うか、更に他の方法としては、直流の陽極又は直流に交流を重ね合わせた交直重乗電流の陽極側かもしくは交流電源の一極側に接続した処理すべきステンレス鋼の上面に上記電解液を浸した状態のモップを被せ、その上に対極を載置し電解処理を行うことにより、ステンレス鋼表層部にリチウム又はリチウムと酸素とをイオン状で拡散、浸透させオーステナイト系ステンレス鋼の耐塩素孔食性に優れた表面改質を形成するものである。
About the pitting corrosion resistance to austenitic stainless steel, it was performed according to the pitting corrosion test using the ferric chloride solution prescribed | regulated to JIS using 2B material of SUS304 typical in austenitic stainless steel. .
Stainless steel such as sulfuric acid, phosphoric acid, citric acid, tartaric acid, oxalic acid, malic acid, lactic acid, acetic acid, gluconic acid, glycolic acid, succinic acid of 0.05 Wt% or more and saturated concentration or less on the test piece of stainless steel SUS304 It is based on one or more of sodium, potassium and ammonium salts of acids that act non-oxidatively on the base, and in addition to these, lithium salts with organic and inorganic acids or lithium hydride, lithium hydroxide, oxidation An AC / DC current with an aqueous solution containing one or more lithium compounds of lithium as the electrolyte and the stainless steel to be treated as a direct current anode or alternating current pole, or direct current and alternating current superimposed In the state where it is connected to the anode side of the electrode, it is immersed in the above-mentioned electrolyte solution and is made of a poorly soluble electrode such as stainless steel, graphite, tungsten, or molybdenum. As an alternative method, the stainless steel to be treated is connected to one pole of the power source, and between the counter electrode on the surface of the stainless steel, natural or synthetic, artificial While sliding on the surface of stainless steel using a counter electrode in a state where the hydrated fabric or non-woven fabric hydrous material (hereinafter referred to as “mop”) is interposed and the mop is impregnated with the above electrolyte. In another method, the stainless steel to be treated is connected to the anode side of a DC anode or AC / DC current obtained by superimposing an alternating current on the direct current or one pole side of an AC power source. Cover the top surface with a mop soaked with the electrolyte, place a counter electrode on top of it, and perform electrolytic treatment to diffuse and permeate lithium or lithium and oxygen into the stainless steel surface layer in an ionic state. And it forms an excellent surface modification salt Motoana corrosion resistance of austenitic stainless steel.

上記電解液において、リチウム化合物の水溶液は、0.01Wt%以上乃至飽和濃度まで効果があるが、実用的には0.05から2.0Wt%程度が良いことが確認された。  In the above electrolytic solution, an aqueous solution of a lithium compound is effective from 0.01 Wt% or more to a saturated concentration, but it has been confirmed that a practical value of 0.05 to 2.0 Wt% is good.

オーステナイト系ステンレス鋼への耐塩素孔食試験として、SUS304の試験片の表面を上記の通り電解処理しその表面を改質処理したものと全く電解処理を行わない未処理の試験片を、10%塩化第2鉄溶液の中に2時間浸漬させ水洗しその表面の状況を確認したところ、末処理品では多数の孔食発生が確認されたが、本発明処理によって処理された試験片では孔食は全く認められなかった。  As a chlorine pitting resistance test for austenitic stainless steel, 10% of the surface of a SUS304 test piece was subjected to electrolytic treatment as described above and the surface was modified, and the untreated test piece was not subjected to any electrolytic treatment. After immersing in a ferric chloride solution for 2 hours and rinsing with water, the surface condition was confirmed. In the end-treated product, a large number of pitting corrosion was confirmed, but in the test piece treated by the present invention, pitting corrosion was observed. Was not recognized at all.

次に、マルテンサイト系ステンレス鋼の耐全面腐食性と耐防錆性については、マルテンサイト系ステンレス鋼の中でも代表的な鋼種のSUS410の2B材を用い、上記したオーステナイト系ステンレス鋼の耐塩素孔食試験で行ったのと同用な電解処理を実施した。
最初に、全面腐食防止の評価試験としては、SUS410のステンレス鋼表面を、上記の通り電解処理しその表面を改質処理したものと全く電解処理を行わない未処理の試験片を、0.5Wt%硫酸溶液の中に常温で60分間浸漬させ水洗し、その表面の状況の観察と浸漬前後での重量減を測定し腐食量の確認を行った。更には、市販の電解液や特許文献3、特許文献4、特許文献5で発明された電解液を用いて電解処理し表面改質を行ったステンレス鋼との比較も行った。
Next, with respect to the general corrosion resistance and rust resistance of martensitic stainless steel, SUS410 2B material, which is a typical steel type among martensitic stainless steels, is used, and the chlorine resistant holes of the austenitic stainless steel described above are used. The same electrolytic treatment as in the food test was performed.
First, as an evaluation test for preventing overall corrosion, a stainless steel surface of SUS410 was subjected to electrolytic treatment as described above and the surface was subjected to modification treatment, and an untreated test piece that was not subjected to electrolytic treatment at all was 0.5 Wt. It was immersed in a sulfuric acid solution at room temperature for 60 minutes and washed with water, and the surface condition was observed and the weight loss before and after immersion was measured to confirm the amount of corrosion. Furthermore, comparison was made with commercially available electrolytic solutions and stainless steel subjected to surface modification by electrolytic treatment using the electrolytic solutions invented in Patent Document 3, Patent Document 4, and Patent Document 5.

未処理品のステンレス鋼では、全面が腐食し黒色に変色していたが、本発明のリチウム化合物を含む電解液で表面改質処理した試験片では、変色はほとんど認められず腐食量も末処理品の1%程度と非常に小さかった。また、市販の電解液を用い電解処理を施したステンレス鋼も黒変が確認され、腐食量も未処理の場合と大差がなかった。さらに、本出願人が過去に発明したフッ素、ホウ素又はホウ素及びフッ素を含有する電解液で表面改質処理を行ったステンレス鋼では、灰黒色への変色が認められ、腐食量も未処理品と比べ70%程度と若干の防止効果は認められるものの本発明処理によって処理されたものほどの効果は認められなかった。  In the untreated stainless steel, the entire surface was corroded and turned black, but in the test piece surface-modified with the electrolyte containing the lithium compound of the present invention, almost no discoloration was observed and the amount of corrosion was also processed. It was very small, about 1% of the product. Moreover, blackening was confirmed also in the stainless steel which performed the electrolytic treatment using the commercially available electrolyte solution, and the corrosion amount was not large different from the case of untreated. Further, in stainless steel that has been surface-modified with fluorine, boron, or an electrolyte containing boron and fluorine invented in the past by the present applicant, discoloration to grayish black was observed, and the corrosion amount was also untreated. Although a slight prevention effect of about 70% was recognized, the effect as much as that treated by the treatment of the present invention was not recognized.

続いて、マルテンサイト系ステンレス鋼への発錆防止の評価試験としては、台所や洗面所に使用されるジクロロイソシアヌル酸塩の3%溶液50ccを100CCのポリ容器に入れ、そのポリ容器をSUS410の各処理した試験片の入った密閉可能な10リットル容量のポリ容器の中に設置し、常温で3日間10リットルポリ容器の中で次亜塩素酸を揮散させた状態で各処理試験片の発錆状態を観察した。設置した各処理試験片は、上記の通り本発明のリチウム化合物を含む電解液で表面改質処理したものと全く電解処理を行わない未処理品、更に市販の電解液や特許文献3、特許文献4、特許文献5で発明された電解液を用いて電解処理し表面改質を行ったステンレス鋼を用いた。  Subsequently, as an evaluation test for preventing rusting on martensitic stainless steel, 50 cc of a 3% solution of dichloroisocyanurate used in a kitchen or a washroom is placed in a 100 CC plastic container, and the poly container is made of SUS410. Each treated test piece is placed in a 10-liter capacity plastic container containing each treated test piece and hypochlorous acid is volatilized in a 10-liter poly container at room temperature for 3 days. The rust state was observed. As shown above, each of the treated test pieces was subjected to surface modification treatment with the electrolytic solution containing the lithium compound of the present invention, an untreated product that was not subjected to electrolytic treatment at all, a commercially available electrolytic solution, and Patent Literature 3, Patent Literature 4. Stainless steel subjected to surface treatment by electrolytic treatment using the electrolytic solution invented in Patent Document 5 was used.

3日間、次亜塩素酸雰囲気中に各処理試験片を暴露した結果、市販の電解液で処理した試験片では未処理のものより、多くの発錆が確認された。一方、本発明の電解液で表面改質処理した試験片では市販品の電解液で処理したものや未処理品と比べ明らかに錆の発錆が少なく、顕著な防錆効果が確認された。また、本出願人が先に発明した特許文献3、特許文献4、特許文献5で示された電解液で表面改質処理したものは未処理品よりかは若干発錆は少なかったが、本発明処理によって処理されたものほどの効果は認められなかった。  As a result of exposing each treated test piece in a hypochlorous acid atmosphere for 3 days, more rusting was confirmed in the test piece treated with a commercially available electrolyte than the untreated one. On the other hand, in the test piece surface-treated with the electrolytic solution of the present invention, rusting was significantly less than that of a commercial product or an untreated product, and a remarkable rust prevention effect was confirmed. In addition, the surface modification treatment with the electrolytic solution disclosed in Patent Document 3, Patent Document 4, and Patent Document 5 previously invented by the present applicant was slightly less rusting than the untreated product. The effects as much as those processed by the inventive process were not recognized.

オーステナイト系ステンレス鋼への耐塩素孔食性については、オーステナイト系ステンレス鋼の中で代表的なSUS304の2B材を用いJISに規定されている塩化第2鉄溶液を用いる孔食試験に準じて行った。  About the pitting corrosion resistance to austenitic stainless steel, it was performed according to the pitting corrosion test using the ferric chloride solution prescribed | regulated to JIS using 2B material of SUS304 typical in austenitic stainless steel. .

0.01Wt%から5.0Wt%濃度に調整したリチウム化合物水溶液からなる電解液を使用して、交流電源に接続し、上述のモップを被せた電極により、試験片全面を数秒から数十秒間摺動し表面改質処理を施した。  Using an electrolyte composed of an aqueous lithium compound solution adjusted to a concentration of 0.01 Wt% to 5.0 Wt%, the entire surface of the test piece was slid for several seconds to several tens of seconds with an electrode connected to an AC power source and covered with the above-mentioned mop. The surface modification treatment was applied.

次に、試験片の表面を上記の通り電解処理したものと全く電解処理を行わない未処理の試験片を、10%塩化第2鉄溶液の中に2時間浸漬させ水洗しその表面の状況を確認した。未処理の試験片では多数の孔食発生が確認され、腐食量も6.82(mg/cm)であった。
図1に、未処理の試験片について、孔食試験後の孔食の状況を撮影した写真を示す。
Next, the surface of the test piece was subjected to electrolytic treatment as described above and the untreated test piece that was not subjected to electrolytic treatment at all was immersed in a 10% ferric chloride solution for 2 hours and washed with water to determine the surface condition. confirmed. A large number of pitting corrosion was confirmed in the untreated test piece, and the corrosion amount was 6.82 (mg / cm 2 ).
In FIG. 1, the photograph which image | photographed the condition of the pitting corrosion after a pitting corrosion test about an untreated test piece is shown.

これに対し、図2に示した様にリチウム化合物を含む電解液で処理した試験片は、その表面にほとんど孔食は認められず、腐食量も0.39(mg/cm)であり、未処理の腐食量の約6%程度と非常に小さかった。
また、このリチウム化合物からなる水溶液の電解液の濃度を変えて種々試験を行ったところ、電解液の濃度は実際的には、0.03Wt%から2.5Wt%程度がオーステナイト系ステンレス鋼の耐塩素孔食性に効果が大きいことが分かった。
On the other hand, as shown in FIG. 2, the test piece treated with the electrolytic solution containing the lithium compound has almost no pitting corrosion on its surface, and the corrosion amount is 0.39 (mg / cm 2 ). It was very small, about 6% of the amount of untreated corrosion.
In addition, when various tests were performed by changing the concentration of the electrolytic solution in the aqueous solution composed of the lithium compound, the concentration of the electrolytic solution was actually about 0.03 Wt% to 2.5 Wt%. It was found that the effect on chlorine pitting resistance was great.

実施例2(比較例)Example 2 (comparative example)

更に、比較の為に、市販の焼け取り用中性電解液Aを用いて、実施例1と同様な試験を行ったが、市販の焼け取り用中性電解液Aで処理した試験片では未処理品よりも多くの孔食発生が認められ、腐食量も8.11(mg/cm)と未処理品より高かった。
図3に、市販の焼け取り用中性電解液Aで処理した試験片の孔食試験後の状況を撮影した写真を示す。
For comparison, the same test as in Example 1 was performed using a commercially available neutral electrolyte A for scoring. However, the test piece treated with a commercially available neutral electrolyte A for scoring was not used. More pitting corrosion was observed than the treated product, and the amount of corrosion was 8.11 (mg / cm 2 ), which was higher than that of the untreated product.
In FIG. 3, the photograph which image | photographed the condition after the pitting corrosion test of the test piece processed with the commercially available neutral electrolyte solution A for scoring is shown.

次に、1.0%Wt%から20.0Wt%のリン酸及びグリコール酸のナトリウム塩を基材とし、それに、0.03Wt%から2.5Wt%のリチウム化合物からなる水溶液の電解液を使用して交直重乗電源に接続し、数秒から数十秒間、浸漬電解処理を施したものについて孔食試験を行ったところ、モップを使用した摺動方式の電解処理と同様に孔食はほとんど発生せず、腐食量も未処理の約4%程度と非常に高い効果があった。  Next, an aqueous electrolyte containing 0.03 Wt% to 2.5 Wt% lithium compound is used, based on 1.0% Wt% to 20.0 Wt% sodium phosphate and glycolic acid. When connected to an AC / DC power supply and subjected to immersion electrolytic treatment for several seconds to several tens of seconds, a pitting corrosion test was conducted. As with the sliding electrolytic treatment using a mop, almost no pitting corrosion occurred. The amount of corrosion was about 4% of untreated, and the effect was very high.

続いて、マルテンサイト系ステンレス鋼の耐全面腐食性と耐防錆性については、代表的な鋼種のSUS410の2B材を用い、上記したオーステナイト系ステンレス鋼の耐塩素孔食試験で行ったモップを用いた摺動方式での電解処理を行った。  Subsequently, with respect to the general corrosion resistance and rust resistance of martensitic stainless steel, the SUS410 2B material, which is a typical steel type, was used, and the mop performed in the above-described austenitic stainless steel chlorine pitting corrosion test was used. The electrolytic treatment was performed using the sliding method used.

最初に、全面腐食防止の評価試験としては、SUS410のステンレス鋼表面を、10.0%Wt%から25.0Wtのリン酸と酢酸のカリウム塩水溶液に0.03Wt%から2.5Wt%のリチウム化合物からなる水溶液の電解液を使用して交直重乗電源に接続し、数秒から数十秒間上記の通り電解処理しその表面を改質処理したものと全く電解処理を行わない未処理の試験片を、0.5Wt%硫酸溶液の中に常温で60分間浸漬させ水洗し、その表面の状況の観察と浸漬前後での重量減を測定し腐食量の確認を行った。  First, as an evaluation test for preventing general corrosion, a stainless steel surface of SUS410 was added to a 0.03 Wt% to 2.5 Wt% lithium salt solution in a phosphoric acid and acetic acid potassium salt aqueous solution of 10.0% Wt% to 25.0 Wt. Connected to an AC / DC power source using an electrolyte solution of an aqueous solution composed of a compound, and the surface treated with the electrolytic treatment as described above for several seconds to several tens of seconds and the untreated test piece without any electrolytic treatment Was immersed in a 0.5 Wt% sulfuric acid solution at room temperature for 60 minutes, washed with water, the surface condition was observed, and the weight loss before and after immersion was measured to confirm the amount of corrosion.

未処理の試験片では、全面が腐食し黒色に変色しており全面腐食が進行しているのが認められ、腐食量も1.01(mg/cm)であった。
図4に、未処理品の硫酸溶液浸漬後の状況を撮影した写真を示す。
In the untreated test piece, it was observed that the entire surface was corroded and turned black, and the entire surface corrosion was progressing, and the corrosion amount was 1.01 (mg / cm 2 ).
In FIG. 4, the photograph which image | photographed the condition after the sulfuric acid solution immersion of an untreated product is shown.

一方、本発明のリチウム化合物を含む電解液で表面改質処理した試験片では、変色はほとんど認められず、腐食は確認されなかった。また、腐食量も0.01(mg/cm)と未処理品の1%程度と非常に小さく、マルテンサイト系ステンレス鋼への全面腐食への強い抑制効果がある事がわかった。
図5に、本発明処理試験片の硫酸溶液浸漬後の状況を撮影した写真を示した。
On the other hand, in the test piece surface-treated with the electrolytic solution containing the lithium compound of the present invention, almost no discoloration was observed and no corrosion was confirmed. Further, the corrosion amount was 0.01 (mg / cm 2 ), which is very small, about 1% of the untreated product, and it was found that there was a strong inhibitory effect on the overall corrosion of martensitic stainless steel.
In FIG. 5, the photograph which image | photographed the condition after the sulfuric acid solution immersion of the test piece of this invention was shown.

実施例5(比較例)Example 5 (comparative example)

市販されている一般的な電解液や本出願人が先に発明したフッ素、ホウ素又はホウ素及びフッ素を含有する電解液で表面改質処理したものとの比較を見るために、市販焼け取り用中性電解液Bを用いて、更には有機酸の水溶性塩類にホウ酸とフッ化ナトリウムを配合した電解液を用いて、実施例4と同様にモップ方式での電解処理を行った。  In order to see a comparison with a commercially available general electrolyte solution or a surface-modified treatment with fluorine, boron or an electrolyte containing boron and fluorine previously invented by the present applicant, In the same manner as in Example 4, the electrolytic treatment was carried out by the mop method using the electrolytic electrolyte B, and further using an electrolytic solution in which boric acid and sodium fluoride were blended with water-soluble salts of organic acids.

図6に市販焼け取り用中性電解液Bで処理した試験片での硫酸溶液浸漬後の状況を撮影した写真を示した。
図6に示した様に、市販の電解液を用い電解処理を施した試験片も黒変が確認され、腐食量も1.12(mg/cm)と未処理の場合と大差がなかった。
The photograph which image | photographed the condition after the sulfuric acid solution immersion in the test piece processed with the neutral electrolyte solution B for commercial scoring was shown in FIG.
As shown in FIG. 6, blackening was confirmed in the test piece subjected to electrolytic treatment using a commercially available electrolytic solution, and the corrosion amount was 1.12 (mg / cm 2 ), which was not significantly different from the untreated case. .

更に、本出願人が先に発明したホウ素及びフッ素を含有する電解液で表面改質処理を行った場合では、灰黒色への変色が認められ、腐食量も0.69(mg/cm)と未処理品と比べ70%程度と若干の防止効果は認められるものの本発明処理によって処理されたものほどの効果は無かった。
図7にホウ素及びフッ素を含有する電解液で処理した試験片の硫酸溶液浸漬後の状況を撮影した写真を示した。
Further, when the surface modification treatment was performed with the electrolytic solution containing boron and fluorine previously invented by the present applicant, discoloration to grayish black was observed and the corrosion amount was 0.69 (mg / cm 2 ). Although a little prevention effect was recognized, about 70% compared with the untreated product, there was no effect as much as that treated by the treatment of the present invention.
The photograph which image | photographed the condition after the sulfuric acid solution immersion of the test piece processed with the electrolyte solution containing a boron and a fluorine in FIG. 7 was shown.

続いて、マルテンサイト系ステンレス鋼への発錆防止の評価試験として、台所や洗面所に使用されるジクロロイソシアヌル酸塩の3%溶液50ccを100CCのポリ容器に入れ、そのポリ容器を実施例4と同じ電解液を用いて処理した試験片と全く処理を行わなかった未処理の試験片が設置された密閉可能な10リットル容量のポリ容器の中に入れ、常温で3日間10リットルポリ容器の中で次亜塩素酸を揮散させた状態で各処理試験片の発錆状態を観察した。  Subsequently, as an evaluation test for preventing rust on martensitic stainless steel, 50 cc of a 3% solution of dichloroisocyanurate used in a kitchen or a washroom is placed in a 100 CC plastic container, and the poly container is used in Example 4. Place the test piece treated with the same electrolyte and untreated test piece that was not treated at all in a sealable 10 liter capacity plastic container and place it in a 10 liter plastic container at room temperature for 3 days. In the state where hypochlorous acid was volatilized, the rusting state of each treated specimen was observed.

図8に未処理品、図9に本発明電解処理試験片の3日間、次亜塩素酸雰囲気中に暴露後の状況を撮影した写真を示す。
3日間、次亜塩素酸雰囲気中に試験片を暴露した結果、未処理品では試験片表面全体に著しい錆の発生が認められた。
FIG. 8 shows an untreated product, and FIG. 9 shows a photograph of the situation after exposure in a hypochlorous acid atmosphere for 3 days for the electrolytic treatment test piece of the present invention.
As a result of exposing the test piece in a hypochlorous acid atmosphere for 3 days, significant rust was observed on the entire test piece surface in the untreated product.

それに対し、本発明の電解液で表面改質処理した試験片では未処理品と比べ明らかに錆の発錆が少なく、顕著な防錆効果が確認された。  On the other hand, the test piece surface-modified with the electrolytic solution of the present invention clearly has less rusting compared to the untreated product, and a remarkable antirust effect was confirmed.

実施例7(比較例)Example 7 (comparative example)

また、比較の為市販の焼け取り用中性電解液Cや本出願人が先に発明したフッ素を含有する電解液を使用して電解処理をした試験片を用い実施例6と同様な試験を行ったが、市販の焼け取り用中性電解液Cで処理した試験片では、未処理品とほぼ同等な錆の発錆が確認された。
一方、フッ素を含有する電解液で表面改質処理したものは、未処理品や市販の焼け取り用中性電解液Cで処理した試験片よりかは若干発錆は少なかったが、本発明処理によって処理されたものほどの効果は認められなかった。
市販の焼け取り用中性電解液Cで処理した試験片の結果を図10に、フッ素を含有する電解液で処理した試験片の結果を図11に示した。
For comparison, the same test as in Example 6 was conducted using a commercially available neutral electrolytic solution C for scoring and a test piece that had been subjected to electrolytic treatment using an electrolytic solution containing fluorine previously invented by the present applicant. Although it went, in the test piece processed with the commercially available neutral electrolytic solution C for scoring, the rust generation of rust almost equal to that of the untreated product was confirmed.
On the other hand, the surface modification treatment with the electrolyte containing fluorine was slightly less rusting than the untreated product or the test piece treated with the commercially available neutral electrolyte C for scoring, but the treatment according to the present invention. Not as effective as those processed by.
The result of the test piece processed with the commercially available neutral electrolytic solution C for scoring is shown in FIG. 10, and the result of the test piece processed with the electrolytic solution containing fluorine is shown in FIG.

本発明の実施例1に係る未処理の試験片について、孔食試験後の孔食の状況を撮影した写真である。It is the photograph which image | photographed the situation of the pitting corrosion after a pitting corrosion test about the untreated test piece which concerns on Example 1 of this invention. 本発明の実施例1に係る電解処理後の試験片について、孔食試験後の孔食の状況を撮影した写真である。It is the photograph which image | photographed the situation of the pitting corrosion after a pitting corrosion test about the test piece after the electrolytic treatment which concerns on Example 1 of this invention. 本発明の実施例2(比較例)に係る市販の焼け取り用中性電解液Aで処理した試験片について、孔食試験後の孔食の状況を撮影した写真である。It is the photograph which image | photographed the situation of the pitting corrosion after a pitting corrosion test about the test piece processed with the commercially available neutral electrolyte solution A for scoring according to Example 2 (comparative example) of this invention. 本発明の実施例4に係る未処理の試験片について、硫酸溶液浸漬後の状況を撮影した写真である。It is the photograph which image | photographed the condition after a sulfuric acid solution immersion about the untreated test piece which concerns on Example 4 of this invention. 本発明の実施例4に係る電解処理後の試験片について、硫酸溶液浸漬後の状況を撮影した写真である。It is the photograph which image | photographed the condition after sulfuric acid solution immersion about the test piece after the electrolytic treatment which concerns on Example 4 of this invention. 本発明の実施例5(比較例)に係る市販の焼け取り用中性電解液Bで処理した試験片について、硫酸溶液浸漬後の状況を撮影した写真である。It is the photograph which image | photographed the condition after immersion in a sulfuric acid solution about the test piece processed with the commercially available neutral electrolyte solution B for scoring which concerns on Example 5 (comparative example) of this invention. 本発明の実施例5(比較例)に係るホウ素及びフッ素を含有する電解液で処理した試験片について、硫酸溶液浸漬後の状況を撮影した写真である。It is the photograph which image | photographed the condition after sulfuric acid solution immersion about the test piece processed with the electrolyte solution containing the boron and fluorine which concerns on Example 5 (comparative example) of this invention. 本発明の実施例6に係る未処理の試験片について、3日間次亜塩素酸雰囲気中に暴露後の状況を撮影した写真である。It is the photograph which image | photographed the condition after exposure in a hypochlorous acid atmosphere for 3 days about the untreated test piece which concerns on Example 6 of this invention. 本発明の実施例6に係る電解処理後の試験片について、3日間次亜塩素酸雰囲気中に暴露後の状況を撮影した写真である。It is the photograph which image | photographed the condition after exposure in the hypochlorous acid atmosphere for 3 days about the test piece after the electrolytic treatment which concerns on Example 6 of this invention. 本発明の実施例7(比較例)に係る市販の焼け取り用中性電解液Cで処理した試験片について、3日間次亜塩素酸雰囲気中に暴露後の状況を撮影した写真である。It is the photograph which image | photographed the condition after exposure in a hypochlorous acid atmosphere for 3 days about the test piece processed with the commercially available neutral electrolyte solution C for scoring which concerns on Example 7 (comparative example) of this invention. 本発明の実施例7(比較例)に係るフッ素を含有する電解液で処理した試験片について、3日間次亜塩素酸雰囲気中に暴露後の状況を撮影した写真である。It is the photograph which image | photographed the condition after exposure in a hypochlorous acid atmosphere for 3 days about the test piece processed with the electrolyte solution containing the fluorine which concerns on Example 7 (comparative example) of this invention.

上述の通り本発明は、オーステナイト系ステンレス鋼を表面改質することによって、耐塩素孔食性が向上するもので、海水や塩素イオンによるトラブルの発生が予想される各種化学プラントや配管類、更には家庭用シンク等に適用して絶大な効果が得られる。
また、マルテンサイト系ステンレス鋼を表面改質することによって、全面腐食や発錆を防止することができるので、刃物、シャフトや外科用器具等への適用効果が大きく、産業上の貢献度は極めて高い。
As described above, the present invention improves the resistance to chlorine pitting corrosion by surface-modifying austenitic stainless steel, and various chemical plants and piping that are expected to cause trouble due to seawater and chlorine ions. It can be applied to household sinks and the like to achieve great effects.
In addition, surface modification of martensitic stainless steel can prevent overall corrosion and rusting, so it can be applied to blades, shafts, surgical instruments, etc., and its industrial contribution is extremely high. high.

Claims (1)

0.05Wt%以上乃至飽和濃度以下の硫酸、リン酸、クエン酸、酒石酸、シュウ酸、リンゴ酸、乳酸、酢酸、グルコン酸、グリコール酸、コハク酸などステンレス鋼に対して非酸化性に作用する酸の各ナトリウム、カリウム、アンモニウム塩の一種若しくは二種以上を基材とし、これにさらに0.01Wt%以上乃至飽和濃度以下のリチウムの有機酸若しくは無機酸塩かまたは水素化リチウム、水酸化リチウム、酸化リチウムの何れか一種若しくは二種以上のリチウム化合物を配合した水溶液を電解液とし、ステンレス鋼を直流の陽極又は交流の一極に、若しくは直流に交流を重ね合せた交直重乗電流の陽極側に接続して電解処理をすることにより、オーステナイト系ステンレス鋼特有の欠点とされている耐塩素孔食性やマルテンサイト系ステンレス鋼の宿命である全面腐食や発錆に対しそれを防止する優れた防食皮膜を形成させるステンレス鋼の表面処理方法。  Acts non-oxidatively on stainless steel such as sulfuric acid, phosphoric acid, citric acid, tartaric acid, oxalic acid, malic acid, lactic acid, acetic acid, gluconic acid, glycolic acid, succinic acid, etc. An organic acid or inorganic acid salt of lithium having a concentration of not less than 0.01 Wt% to not more than a saturated concentration, lithium hydride, lithium hydroxide, based on one or more of each of sodium, potassium and ammonium salts of acids An aqueous solution containing one or more lithium compounds of lithium oxide is used as an electrolyte, and stainless steel is used as a DC anode or AC pole, or an AC / DC current anode where DC is superimposed on AC By connecting to the side and performing electrolytic treatment, chlorine pitting resistance and martensite resistance, which are considered to be defects inherent to austenitic stainless steel The surface treatment method of the stainless steel to corrosion and rusting is fate of stainless steel to form an excellent anticorrosive film to prevent it.
JP2012074979A 2012-03-08 2012-03-08 Surface modification treatment method of stainless steel with excellent resistance to chlorine pitting corrosion, overall corrosion resistance and rust prevention Active JP6167411B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012074979A JP6167411B2 (en) 2012-03-08 2012-03-08 Surface modification treatment method of stainless steel with excellent resistance to chlorine pitting corrosion, overall corrosion resistance and rust prevention

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012074979A JP6167411B2 (en) 2012-03-08 2012-03-08 Surface modification treatment method of stainless steel with excellent resistance to chlorine pitting corrosion, overall corrosion resistance and rust prevention

Publications (2)

Publication Number Publication Date
JP2013185256A true JP2013185256A (en) 2013-09-19
JP6167411B2 JP6167411B2 (en) 2017-07-26

Family

ID=49386943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012074979A Active JP6167411B2 (en) 2012-03-08 2012-03-08 Surface modification treatment method of stainless steel with excellent resistance to chlorine pitting corrosion, overall corrosion resistance and rust prevention

Country Status (1)

Country Link
JP (1) JP6167411B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104746123A (en) * 2015-04-11 2015-07-01 常州大学 Technical method for electrochemical modification on surface of 316L stainless steel
CN106757217A (en) * 2016-12-16 2017-05-31 安徽宝恒新材料科技有限公司 A kind of method for treating stainless steel surfaces for electronic component
CN106757300A (en) * 2016-12-16 2017-05-31 安徽宝恒新材料科技有限公司 A kind of stainless steel surfaces chemical pigmenting method
CN106835241A (en) * 2016-12-26 2017-06-13 安徽宝恒新材料科技有限公司 A kind of preparation method of wear-resisting type stainless steel
US10435795B2 (en) 2017-01-30 2019-10-08 Shinmaywa Industries, Ltd. Method of manufacturing edged tool
CN110552044A (en) * 2019-10-14 2019-12-10 四川轻化工大学 Steel anodic oxidation electrolyte and anodic oxidation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027296A (en) * 2001-07-06 2003-01-29 Chemical Yamamoto:Kk Method for cleaning and passivating treatment for stainless steel surface
JP2003082495A (en) * 2001-09-12 2003-03-19 Chemical Yamamoto:Kk Stainless steel with fluorine or fluorine and oxygen- containing film layer formed thereon, and production method therefor
JP2006307339A (en) * 2005-03-31 2006-11-09 Nippon Parkerizing Co Ltd Corrosion protecting method of metallic material, highly corrosion-resistant metallic material, and its manufacturing method
JP2008277145A (en) * 2007-04-27 2008-11-13 Nippon Kinzoku Co Ltd Stainless steel-made conductive member and its manufacturing method
JP2008277146A (en) * 2007-04-27 2008-11-13 Nippon Kinzoku Co Ltd Stainless steel-made conductive member and its manufacturing method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003027296A (en) * 2001-07-06 2003-01-29 Chemical Yamamoto:Kk Method for cleaning and passivating treatment for stainless steel surface
JP2003082495A (en) * 2001-09-12 2003-03-19 Chemical Yamamoto:Kk Stainless steel with fluorine or fluorine and oxygen- containing film layer formed thereon, and production method therefor
JP2006307339A (en) * 2005-03-31 2006-11-09 Nippon Parkerizing Co Ltd Corrosion protecting method of metallic material, highly corrosion-resistant metallic material, and its manufacturing method
JP2008277145A (en) * 2007-04-27 2008-11-13 Nippon Kinzoku Co Ltd Stainless steel-made conductive member and its manufacturing method
JP2008277146A (en) * 2007-04-27 2008-11-13 Nippon Kinzoku Co Ltd Stainless steel-made conductive member and its manufacturing method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104746123A (en) * 2015-04-11 2015-07-01 常州大学 Technical method for electrochemical modification on surface of 316L stainless steel
CN106757217A (en) * 2016-12-16 2017-05-31 安徽宝恒新材料科技有限公司 A kind of method for treating stainless steel surfaces for electronic component
CN106757300A (en) * 2016-12-16 2017-05-31 安徽宝恒新材料科技有限公司 A kind of stainless steel surfaces chemical pigmenting method
CN106835241A (en) * 2016-12-26 2017-06-13 安徽宝恒新材料科技有限公司 A kind of preparation method of wear-resisting type stainless steel
US10435795B2 (en) 2017-01-30 2019-10-08 Shinmaywa Industries, Ltd. Method of manufacturing edged tool
CN110552044A (en) * 2019-10-14 2019-12-10 四川轻化工大学 Steel anodic oxidation electrolyte and anodic oxidation method thereof

Also Published As

Publication number Publication date
JP6167411B2 (en) 2017-07-26

Similar Documents

Publication Publication Date Title
JP6167411B2 (en) Surface modification treatment method of stainless steel with excellent resistance to chlorine pitting corrosion, overall corrosion resistance and rust prevention
JP5527860B2 (en) How to passivate stainless steel
JP6505498B2 (en) Method of passivating stainless steel
JPWO2014103703A1 (en) Methods for passivating stainless steel
US20170167040A1 (en) Continuous trivalent chromium plating method
Somers et al. Recent developments in environment-friendly corrosion inhibitors for mild steel
Li et al. Pitting corrosion of 304 stainless steel in secondary water supply system
JP5586614B2 (en) Stainless steel surface treatment method
JP2003027296A (en) Method for cleaning and passivating treatment for stainless steel surface
JP2007332416A (en) Electrolytic solution for use in electropolishing process for stainless steel
Rocha et al. Investigation on the relationship between the surface chemistry and the corrosion resistance of Electrochemically Nitrided AISI 304 stainless steel
JP4218000B2 (en) Stainless steel having fluorine-containing or fluorine-containing / oxygen-based coating layer formed thereon and method for producing the same
JP4678612B2 (en) Surface-modified stainless steel and processing method for surface-modified stainless steel
Neville et al. Initiation and propagation of localised corrosion on stainless steels in seawater containing high biocide concentrations
JP4320023B2 (en) Metal surface treatment aqueous solution and metal surface treatment method using the aqueous solution
KR20090067863A (en) Method and apparatus for simultaneous measurement of surface morphology and whiteness for wire products
JP5755508B2 (en) Electropolishing liquid for stainless steel and stainless steel
JP4403227B2 (en) Metal oxide film or rust removal water, Metal oxide film or rust removal method using the oxide film or rust removal water
JP5747268B2 (en) Stress corrosion cracking preventive maintenance or life extension processing method for stainless steel plant, equipment, etc.
JP2008261017A (en) Blackened corrosion resistant film, machine device provided with the corrosion resistant film, and method for forming corrosion resistant film
CN109234074A (en) A kind of anode production line hanger cleaning agent and preparation method thereof and cleaning method
Pierozynski et al. The influence of hypochlorite-based disinfectants on the pitting corrosion of welded joints of 316L stainless steel dairy reactor
KR20140017323A (en) High speed pickling process for improving corrosion resistance of austenitic stainless cold strip
JP2005105401A (en) Method for electropolishing stainless steel in order to improve corrosion resistance
JP2023175315A (en) Passivation treatment liquid and passivation treatment method for stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131216

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140624

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141027

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150507

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150604

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20150626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160711

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170607

R150 Certificate of patent or registration of utility model

Ref document number: 6167411

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250