JP2008261017A - Blackened corrosion resistant film, machine device provided with the corrosion resistant film, and method for forming corrosion resistant film - Google Patents

Blackened corrosion resistant film, machine device provided with the corrosion resistant film, and method for forming corrosion resistant film Download PDF

Info

Publication number
JP2008261017A
JP2008261017A JP2007105156A JP2007105156A JP2008261017A JP 2008261017 A JP2008261017 A JP 2008261017A JP 2007105156 A JP2007105156 A JP 2007105156A JP 2007105156 A JP2007105156 A JP 2007105156A JP 2008261017 A JP2008261017 A JP 2008261017A
Authority
JP
Japan
Prior art keywords
corrosion
resistant film
corrosion resistant
rust
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007105156A
Other languages
Japanese (ja)
Inventor
Masaru Konno
大 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2007105156A priority Critical patent/JP2008261017A/en
Publication of JP2008261017A publication Critical patent/JP2008261017A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Chemical Treatment Of Metals (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for forming a corrosion resistant film capable of delaying the ionization of the surface in steel in the presence of moisture and oxygen and preventing rust (pitting corrosion) caused by pinholes formed on the surface of the steel for a long time. <P>SOLUTION: Disclosed is a corrosion resistant film Fe<SB>3</SB>O<SB>4</SB>(magnetite) formed on the surface of steel, and having a structure where a metallic component(s) having a corrosion potential lower than that of iron is precipitated therein. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、金属表面のさび防止技術に係り、より詳細には、本発明は、金属表面のさび防止技術に適用される黒染め耐食性被膜に関する。   The present invention relates to a technique for preventing rust on a metal surface, and more particularly, the present invention relates to a black dyeing corrosion-resistant coating applied to a technique for preventing rust on a metal surface.

従来から、苛性ソーダやシアン化物の強アルカリを主剤とする薬剤中に、鋼部材を浸漬した後、浸漬処理された前記鋼部材を洗浄し、防錆油を含浸させ、その後乾燥する工程を経て、一般に耐食性被膜Fe34(四三酸化鉄)と呼ばれる被膜層が形成された鋼表面を製造できることが知られている。 Conventionally, after immersing a steel member in a chemical mainly composed of caustic soda and cyanide strong alkali, the steel member subjected to the immersion treatment is washed, impregnated with a rust preventive oil, and then dried. It is known that a steel surface on which a coating layer called a corrosion-resistant coating Fe 3 O 4 (triiron tetroxide) is generally formed can be produced.

特許文献1には、前述の浸漬処理後、鋼部材を洗浄し、防錆油を含浸させ、その後乾燥することにより、耐食性被膜中に微細な孔(ピンホール)を形成することができる。この鋼部材表面に形成されたピンホールに防錆油を浸透させて耐食性を付与した鋼部材を製造する製造法が開示されている。 In Patent Document 1, fine holes (pinholes) can be formed in the corrosion-resistant coating by washing the steel member, impregnating with a rust-preventing oil, and then drying after the immersion treatment. A manufacturing method for manufacturing a steel member in which corrosion resistance is imparted by impregnating rust preventive oil into a pinhole formed on the surface of the steel member is disclosed.

ところで、一般に、大気中に暴露された鋼表面においては、次のように錆が形成され進行する。図1は、大気中に暴露された鋼表面において、錆の発生を模式的に説明するための説明図である。水分(H2O)と酸素(O2)その他不純物の存在下で、活性な鋼表面(Fe)は、電子を放出してイオン化(Fe2+)する。そこに存在する水と酸素は、電子を受け入れ水酸化物イオン(OH-)となり、イオン化された鉄と結合して水酸化第1鉄(Fe(OH)2)になり、鋼表面に析出する。この水酸化第1鉄は、さらに酸素と結合して水酸化第2鉄(Fe(OH)3)になり、赤錆(FeOOH)となって鋼表面に析出し、錆が進行する。
特開2003−21058号公報
By the way, generally, on the steel surface exposed to the atmosphere, rust is formed and proceeds as follows. FIG. 1 is an explanatory diagram for schematically explaining the generation of rust on the steel surface exposed to the atmosphere. In the presence of moisture (H 2 O), oxygen (O 2 ) and other impurities, the active steel surface (Fe) emits electrons and ionizes (Fe 2+ ). The water and oxygen present there accept electrons and become hydroxide ions (OH ), combine with ionized iron to form ferrous hydroxide (Fe (OH) 2 ), and precipitate on the steel surface. . This ferrous hydroxide is further combined with oxygen to become ferric hydroxide (Fe (OH) 3 ), which becomes red rust (FeOOH) and precipitates on the steel surface, and rust progresses.
Japanese Patent Laid-Open No. 2003-21058

図1に例示するように、水分や酸素の存在下において、鋼表面のイオン化を遅延させること、及び鋼表面に形成されたピンホールが起点となる錆(孔食)を長時間防ぐことが耐食性向上に関する大きな課題である。
本発明の目的は、従来技術の問題点である錆を防止する技術を提供することである。
As illustrated in FIG. 1, in the presence of moisture and oxygen, the corrosion resistance is to delay the ionization of the steel surface and prevent rust (pitting corrosion) starting from pinholes formed on the steel surface for a long time. This is a major issue for improvement.
The objective of this invention is providing the technique which prevents the rust which is a problem of a prior art.

本発明者は、上記課題に対し鋭意検討を重ねた結果、鋼表面に形成されたFe34(四三酸化鉄)の被膜中に、鉄よりも腐食電位の低い亜鉛又はアルミニウムの成分を共析させることで、上記課題が解決できる知見を見出し、本発明を完成するに至った。 As a result of intensive studies on the above problems, the present inventor has found that a zinc or aluminum component having a lower corrosion potential than iron is contained in the coating of Fe 3 O 4 (iron tetroxide) formed on the steel surface. By eutectizing, the knowledge which can solve the said subject was discovered, and it came to complete this invention.

すなわち、本発明に係る耐食性被膜は、鋼表面に形成されたFe34(四三酸化鉄)の被膜中に、自己犠牲方防錆作用を示す、鉄よりも腐食電位の低い亜鉛又はアルミニウムの金属成分を共析することにより、錆発生を抑制できることを特徴とする。 That is, the corrosion-resistant coating film according to the present invention is zinc or aluminum having a corrosion potential lower than that of iron and exhibiting a self-sacrificial rust preventive action in a coating of Fe 3 O 4 (iron trioxide) formed on a steel surface. Rust generation can be suppressed by eutectoid deposition of the metal component.

また、本発明に係る耐食性被膜形成方法は、苛性ソーダ水溶液又はシアン化合物の強アルカリを主剤とする溶液中、鉄よりも腐食電位の低い亜鉛又はアルミニウムの金属イオンを100ppm以上50,000ppm未満含有し、該溶液を120〜140℃に加熱して処理する工程を含む。   In addition, the method for forming a corrosion-resistant film according to the present invention contains a metal ion of zinc or aluminum having a corrosion potential lower than iron in a solution mainly composed of a caustic soda aqueous solution or a strong alkali of a cyanide compound, and less than 50,000 ppm. Heating the solution to 120-140 ° C. for treatment.

加えて、本発明は、防錆処理が施された本発明に係る耐食性被膜を備える機械装置を提供する。   In addition, this invention provides a mechanical apparatus provided with the corrosion-resistant film which concerns on this invention in which the antirust process was performed.

本発明によれば、Fe34(四三酸化鉄)被膜に自己犠牲型防錆作用を有する金属製分を共析することにより、安価で、錆の発生画抑制できる防さび処理を、種々の機械部品に施すことができる。 According to the present invention, by co-depositing a metal part having a self-sacrificial rust preventive action on a Fe 3 O 4 (iron tetroxide) coating, a rust prevention treatment that can suppress the generation of rust at low cost is achieved. It can be applied to various machine parts.

以下の実施形態は、本発明を説明するための例示であり、本発明をこの実施形態にのみ限定する趣旨ではない。本発明は、その要旨を逸脱しない限り、さまざまな形態で実施することができる。   The following embodiment is an example for explaining the present invention, and is not intended to limit the present invention only to this embodiment. The present invention can be implemented in various forms without departing from the gist thereof.

本発明に係る耐食性被膜による防錆処理は、鋼鉄表面を酸化させて、緻密な黒錆を作らせた鋼本体を腐食から保護する防錆処理であり、鋼本体の耐食性は著しく向上するとともに、美しい黒光りをする表面肌とすることができる。本発明に係る耐食性被膜は、被処理鋼製品を、耐食性被膜液として、苛性ソーダ水溶液が主剤(苛性ソーダ濃度40%程度)の強アルカリ性溶液に浸漬し、その表面にFe34(四三酸化鉄)の黒色被膜(厚さ3μm程度)を生成させることにより行なわれる。ここで使用する耐食性被膜液は、120〜140℃に熱した溶液として使用すると一層の防錆効果を発揮できる。120℃以下では均一なFe34(四三酸化鉄)が形成されにくく、140℃以上では茶褐色のむらになりやすいため、前述の温度範囲が好ましい。より好ましい温度範囲は、125〜135℃であり、さらに好ましくは125〜130℃である。 The rust prevention treatment by the corrosion-resistant coating according to the present invention is a rust prevention treatment that protects the steel body from corrosion by oxidizing the steel surface and creating a dense black rust, and the corrosion resistance of the steel body is significantly improved, The skin can be beautifully shining. The corrosion-resistant coating according to the present invention is obtained by immersing a steel product to be treated as a corrosion-resistant coating solution in a strong alkaline solution containing a caustic soda aqueous solution (caustic soda concentration of about 40%), and Fe 3 O 4 (iron trioxide) on the surface. ) To produce a black coating (thickness of about 3 μm). The corrosion-resistant coating solution used here can exhibit a further antirust effect when used as a solution heated to 120 to 140 ° C. Above 120 ° C., uniform Fe 3 O 4 (triiron tetroxide) is difficult to be formed, and above 140 ° C., it tends to be brownish brown, so the above temperature range is preferable. A more preferable temperature range is 125 to 135 ° C, and more preferably 125 to 130 ° C.

本発明に係る耐食性被膜形成方法では、所定の濃度の鉄よりも腐食電位の低い金属成分を、強アルカリ性処理液に溶解させた耐食性被膜液で処理する。具体的には、本発明では、100〜50,000ppmの濃度の亜鉛又はアルミニウムが溶解した水溶液によって被膜処理を行い、表面に亜鉛又はアルミニウム酸化物が共析した四三酸化鉄(Fe34)の黒色被膜(厚さ3μm程度)を形成させることで、好適な優れた防錆効果を奏する鋼表面を提供することができる。腐食電位の低い金属成分(亜鉛及びアルミニム等)の濃度は、200〜40,000ppmが好ましくは、300〜30,000ppmがより好ましい。 In the corrosion-resistant film forming method according to the present invention, a metal component having a lower corrosion potential than iron having a predetermined concentration is treated with a corrosion-resistant film solution dissolved in a strong alkaline treatment solution. Specifically, in the present invention, coating treatment is performed with an aqueous solution in which zinc or aluminum having a concentration of 100 to 50,000 ppm is dissolved, and iron or iron tetroxide (Fe 3 O 4) in which zinc or aluminum oxide is co-deposited on the surface. ) Black film (thickness of about 3 μm) can be formed to provide a steel surface with a suitable and excellent antirust effect. The concentration of a metal component (such as zinc and aluminum) having a low corrosion potential is preferably 200 to 40,000 ppm, and more preferably 300 to 30,000 ppm.

なお、本発明で用いる用語「腐食電位」とは、腐食しつつある金属の電極電位であって、水溶液中の腐食金属の電極電位は、金属アノード溶解反応の分極曲線と環境酸化剤のカソード換言反応の分極曲線との交点で示される電位である。   The term “corrosion potential” used in the present invention is the electrode potential of a corroding metal, and the electrode potential of a corroding metal in an aqueous solution is the cathode curve of the environmental oxidant and the polarization curve of the metal anodic dissolution reaction. This is the potential indicated by the intersection with the polarization curve of the reaction.

具体的には、本発明の耐食性被膜液に溶解させる亜鉛又はアルミニウムの金属イオンは、亜鉛粉やアルミニウム粉から供給される。亜鉛粉やアルミニウム粉は、99%以上の純度のものを使用することが好ましい。かかる化合物を、本発明に係る耐食性被膜処理液に適宜溶解させて、所望の濃度に調整することができる。本発明に係る耐食性被膜処理液による処理時間は特に限定されないが、1〜30分が好ましく、2〜25分がより好ましくは、5〜20分がさらに好ましい。   Specifically, zinc or aluminum metal ions dissolved in the corrosion-resistant coating solution of the present invention are supplied from zinc powder or aluminum powder. It is preferable to use zinc powder or aluminum powder having a purity of 99% or more. Such a compound can be appropriately dissolved in the corrosion-resistant coating solution according to the present invention and adjusted to a desired concentration. Although the processing time by the corrosion-resistant film processing liquid which concerns on this invention is not specifically limited, 1-30 minutes are preferable, 2-25 minutes are more preferable, 5-20 minutes are still more preferable.

本発明に係る耐食性被膜形成方法において、強アルカリ性処理液中に鋼表面を浸漬すると、ピンホールがある1〜3μmの鱗片上の四三酸化鉄(Fe34)が形成される。この四三酸化鉄(Fe34)被膜自体の防錆力は弱いが、被膜中に鉄よりも腐食電位の小さい亜鉛又はアルミニウムが介在することによって、ピンホールを解して腐食しやすい下地の鉄を防錆している。さらに、亜鉛又はアルミニウムの一部が酸化物になっているため、四三酸化鉄の被膜自体が不動態かしやすい孔食を誘発する拡散電流を過小にすることが可能となる。 In the corrosion-resistant film forming method according to the present invention, when the steel surface is immersed in a strong alkaline treatment solution, iron trioxide (Fe 3 O 4 ) on a 1 to 3 μm scale having pinholes is formed. This triiron tetroxide (Fe 3 O 4 ) coating itself is weak in rust prevention, but zinc or aluminum, which has a lower corrosion potential than iron, is present in the coating. The iron is rust-proof. Furthermore, since a part of zinc or aluminum is an oxide, it is possible to make the diffusion current that induces pitting corrosion easily caused by the coating of triiron tetroxide itself.

図1は、前述のとおり、鋼に施した耐食性被膜の概念図を示すが、亜鉛やアルミニウムという鉄よりも腐食電位の低い金属成分を含有しないため鋼表面の断面図を示す。一方、図2は、鋼に施した耐食性被膜の概念図であって、鉄よりも腐食電位の低い金属成分を共析させた鋼表面の断面図を示す。なお、図2において、○で表示されるものが、亜鉛又はアルミニウムの酸化物を示す。かかる酸化物の存在により、鉄イオンの溶出が抑止され、錆の発生が抑制されるものと推測される。   FIG. 1 shows a conceptual view of a corrosion-resistant coating applied to steel as described above, but shows a cross-sectional view of the steel surface because it does not contain a metal component having a lower corrosion potential than iron such as zinc or aluminum. On the other hand, FIG. 2 is a conceptual diagram of a corrosion-resistant coating applied to steel, and shows a cross-sectional view of the steel surface on which a metal component having a lower corrosion potential than iron is co-deposited. In FIG. 2, what is indicated by ◯ is an oxide of zinc or aluminum. Presumably, the presence of such oxide suppresses elution of iron ions and suppresses the generation of rust.

以下、本発明を実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.

本発明の実施例は、0.3mmのSPCC鋼板を供試体として、耐食性被膜液の調製は、以下の手法で行なった。
(1)濃苛性ソーダ水溶液(40%程度)中に硝酸ソーダ水溶液を添加して混合した。
(2)前記(1)の耐食性被膜液を加熱槽中に入れ、110℃に保持する。
(3)前記(2)の耐食性被膜液中に、所定の濃度となるように亜鉛粉及びアルミニウム粉を添加した。
(4)前記(3)の耐食性被膜液を130度に加熱して、処理物であるSPCC鋼板を浸漬した。このときの処理時間は10分であって。
In Examples of the present invention, a 0.3 mm SPCC steel plate was used as a specimen, and a corrosion-resistant coating solution was prepared by the following method.
(1) A sodium nitrate aqueous solution was added to and mixed with a concentrated caustic soda aqueous solution (about 40%).
(2) The corrosion-resistant coating solution of (1) is placed in a heating tank and maintained at 110 ° C.
(3) Zinc powder and aluminum powder were added to the corrosion-resistant coating solution of (2) so as to have a predetermined concentration.
(4) The corrosion-resistant coating solution of (3) was heated to 130 degrees to immerse the SPCC steel sheet as the treated product. The processing time at this time is 10 minutes.

[錆試験条件]
JIS Z 2371に準拠する錆試験条件と、錆発生水準を表1に示す。ただし、このときの塩素濃度は500ppmに調整した。
[Rust test conditions]
Table 1 shows the rust test conditions based on JIS Z 2371 and rust generation levels. However, the chlorine concentration at this time was adjusted to 500 ppm.

Figure 2008261017
Figure 2008261017

図3は、本発明における錆試験の結果を示す図である。比較例1は、未処理の例であり、下地の鋼の酸化速度が速く、面積比で50%の赤錆が発生するまでの時間が2時間未満と防錆力が弱いことが分かる。また、比較例2は、通常の黒染め処理(亜鉛やアルミニウム等の鉄よりも腐食電位が低い金属成分を含有しない耐食性被膜液)の例であり、被膜中のピンホールを介して下地の鋼から赤錆が発生しやすく、やはり面積比で50%の赤錆が発生するまでの時間が24時間未満と防錆力が弱いことが分かる。   FIG. 3 is a diagram showing the results of a rust test in the present invention. Comparative Example 1 is an untreated example, and it can be seen that the base steel has a high oxidation rate, and the time until 50% red rust is generated in the area ratio is less than 2 hours, and the rust prevention power is weak. Comparative Example 2 is an example of a normal black dyeing treatment (corrosion-resistant coating solution containing no metal component having a lower corrosion potential than iron such as zinc or aluminum), and the underlying steel through pinholes in the coating. From the above, it can be seen that red rust is easily generated, and the time until 50% red rust is generated is less than 24 hours.

一方、本発明による実施例1は、耐食性被膜液中の亜鉛濃度を2wt%、アルミニウム濃度を0wt%(無添加)で処理したものであり、実施例2は亜鉛濃度を1.5wt%、アルミニウム濃度を0.5wt%で処理したものである。これにより、亜鉛とアルミニウムが所定の比率で、四三酸化鉄(Fe34)中に共析した表面処理が施されており、長時間にわたり亜鉛とアルミニウムの犠牲防食効果が発揮されていることが分かる。実施例1では、赤錆発生までの時間が96時間であり、実施例2においては114時間で赤錆が確認された。特に、アルミニウムを多く含有する実施例2では、一部がアルミニウムの水酸化物になっているため、下地の鋼の酸化を防止する作用が強いものと推測される。 On the other hand, in Example 1 according to the present invention, the zinc concentration in the corrosion-resistant coating solution was treated at 2 wt% and the aluminum concentration was 0 wt% (no addition). In Example 2, the zinc concentration was 1.5 wt%, aluminum The concentration is processed at 0.5 wt%. As a result, a surface treatment in which zinc and aluminum are co-deposited in triiron tetroxide (Fe 3 O 4 ) at a predetermined ratio is performed, and the sacrificial anticorrosive effect of zinc and aluminum is exhibited for a long time. I understand that. In Example 1, the time until occurrence of red rust was 96 hours, and in Example 2, red rust was confirmed in 114 hours. In particular, in Example 2 containing a large amount of aluminum, a part of the aluminum hydroxide is presumed to have a strong effect of preventing oxidation of the underlying steel.

このように、本発明による耐食性被膜を機械装置、例えば、軸受け装置等に適用した場合、防錆力のある機械装置が提供される。   As described above, when the corrosion-resistant coating according to the present invention is applied to a mechanical device such as a bearing device, a mechanical device having a rust preventive power is provided.

本発明によれば、四三酸化鉄(Fe34)被膜中に、自己犠牲型防錆作用を有する金属成分を共析させることにより、安価で錆の発生を抑制できる防錆処理を機械部品に施すことができる。 According to the present invention, a metal component having a self-sacrificial rust-preventing action is co-deposited in a triiron tetroxide (Fe 3 O 4 ) coating, thereby reducing the rust-prevention treatment that can suppress the generation of rust at low cost. Can be applied to parts.

図1は、大気中に暴露された鋼表面において、錆の発生を模式的に説明するための説明図である。FIG. 1 is an explanatory diagram for schematically explaining the generation of rust on the steel surface exposed to the atmosphere. 図2は、鋼に施した耐食被膜の概念図であって、鉄よりも腐食電位の低い金属成分を共析させた鋼表面の断面図を示す。FIG. 2 is a conceptual diagram of a corrosion-resistant coating applied to steel, and shows a cross-sectional view of the steel surface on which a metal component having a lower corrosion potential than iron is co-deposited. 図3は、本発明における錆試験の結果を示す図である。FIG. 3 is a diagram showing the results of a rust test in the present invention.

Claims (6)

鋼表面に形成された耐食性被膜Fe34(四三酸化鉄)を含む耐食性被膜であって、
鉄よりも腐食電位の低い金属成分を共析された、耐食性被膜。
A corrosion-resistant film comprising a corrosion-resistant film Fe 3 O 4 (triiron tetroxide) formed on a steel surface,
A corrosion-resistant coating that has been co-deposited with a metal component that has a lower corrosion potential than iron.
前記金属成分が、亜鉛又はアルミニウムである、請求項1に記載の耐食性被膜。   The corrosion-resistant film according to claim 1, wherein the metal component is zinc or aluminum. 請求項1又は2に記載の耐食性被膜を備える機械装置。 A machine apparatus provided with the corrosion-resistant film according to claim 1. 鋼表面に耐食性被膜を形成する方法であって、
苛性ソーダ水溶液又はシアン化物の強アルカリを主剤とする溶液中に、鉄よりも腐食電位の低い金属イオンを100ppm以上50,000ppm未満含有している溶液中で処理する工程を含む、耐食性被膜の形成方法。
A method of forming a corrosion resistant coating on a steel surface,
A method for forming a corrosion-resistant coating, comprising a step of treating in a solution containing a metal ion having a lower corrosion potential than iron in a solution containing a strong alkali of sodium hydroxide or a strong alkali of cyanide in an amount of 100 ppm or more and less than 50,000 ppm. .
前記金属イオンが、亜鉛イオン又はアルミニウムイオンである、請求項4に記載の形成方法。   The formation method according to claim 4, wherein the metal ions are zinc ions or aluminum ions. 前記溶液を、120〜140℃に加熱して処理する、請求項4又は5に記載の形成方法。   The forming method according to claim 4, wherein the solution is treated by heating to 120 to 140 ° C.
JP2007105156A 2007-04-12 2007-04-12 Blackened corrosion resistant film, machine device provided with the corrosion resistant film, and method for forming corrosion resistant film Pending JP2008261017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007105156A JP2008261017A (en) 2007-04-12 2007-04-12 Blackened corrosion resistant film, machine device provided with the corrosion resistant film, and method for forming corrosion resistant film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007105156A JP2008261017A (en) 2007-04-12 2007-04-12 Blackened corrosion resistant film, machine device provided with the corrosion resistant film, and method for forming corrosion resistant film

Publications (1)

Publication Number Publication Date
JP2008261017A true JP2008261017A (en) 2008-10-30

Family

ID=39983712

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007105156A Pending JP2008261017A (en) 2007-04-12 2007-04-12 Blackened corrosion resistant film, machine device provided with the corrosion resistant film, and method for forming corrosion resistant film

Country Status (1)

Country Link
JP (1) JP2008261017A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101717578B1 (en) * 2016-04-26 2017-03-17 정연소 Cord tire cord or bobbin shell belt
JP2019206741A (en) * 2018-05-30 2019-12-05 株式会社デンソー Surface coated member and manufacturing method thereof
JPWO2021059345A1 (en) * 2019-09-24 2021-04-01

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101717578B1 (en) * 2016-04-26 2017-03-17 정연소 Cord tire cord or bobbin shell belt
JP2019206741A (en) * 2018-05-30 2019-12-05 株式会社デンソー Surface coated member and manufacturing method thereof
JP7059810B2 (en) 2018-05-30 2022-04-26 株式会社デンソー Surface covering member and its manufacturing method
JPWO2021059345A1 (en) * 2019-09-24 2021-04-01

Similar Documents

Publication Publication Date Title
Mu et al. Composition analysis and corrosion performance of a Mo–Ce conversion coating on AZ91 magnesium alloy
JP6115912B2 (en) High corrosion resistance magnesium-based material, method for producing the same, and surface treatment method for magnesium-based material
Wang et al. Cerium chemical conversion coating for aluminum alloy 2024-T3 and its corrosion resistance
RU2583500C2 (en) Etching of stainless steel in oxidative electrolytic bath with acid
ES2883716T3 (en) Method of electroplating a steel strip not coated with a layer of metallization
Arthanari et al. Electrochemical corrosion behavior of acid treated strip cast AM50 and AZX310 magnesium alloys in 3.5 wt.% NaCl solution
JP2008045205A (en) Stainless steel anode for alkaline water electrolysis, and manufacturing method for the same
JPH10506959A (en) Method for enhancing the corrosion resistance of metals and alloys by treatment with rare earth elements
JP2008261017A (en) Blackened corrosion resistant film, machine device provided with the corrosion resistant film, and method for forming corrosion resistant film
US20080210342A1 (en) Anodic oxidation coating remover composition and method of removing anodic oxidation coatings
JP2013185256A (en) Surface modification treatment method of stainless steel excellent in resistance against chlorine pitting corrosion and resistance against general corrosion and rust preventive property
Hamdy et al. Corrosion protection of AA6061 T6-10% Al 2 O 3 composite by molybdate conversion coatings
JP2010209456A (en) Immersion treatment liquid for rust prevention of plated chromium film, and rust-preventing treatment method
Breslin et al. Influence of impurity elements on electrochemical activity of aluminum activated by indium
JP4080381B2 (en) Surface treatment composition of aluminum and aluminum alloy
WO2010082247A1 (en) Surface-treated steel sheet provided with antirust coating film and method for producing same
JP5799037B2 (en) Film formation method by plasma electrolytic oxidation
Zhu et al. Copper coating electrodeposited directly onto AZ31 magnesium alloy
US2154469A (en) Bright dip
Loperena et al. Cerium oxides for corrosion protection of AZ91D Mg alloy
JP2016138333A (en) Electromagnetic steel sheet
JP4436885B1 (en) Chemical conversion treatment liquid and chemical film forming method
JP5101332B2 (en) Carbon steel surface treatment method and surface treated carbon steel
Singh et al. The electrochemical behaviour of nitrogen-containing austenitic stainless steel in methanolic solution
JP2002047578A (en) Conversion treatment solution for galvanized product