JP2013183431A - Phased array seeker and method for transmitting/receiving high frequency signal of phased array seeker - Google Patents

Phased array seeker and method for transmitting/receiving high frequency signal of phased array seeker Download PDF

Info

Publication number
JP2013183431A
JP2013183431A JP2012048140A JP2012048140A JP2013183431A JP 2013183431 A JP2013183431 A JP 2013183431A JP 2012048140 A JP2012048140 A JP 2012048140A JP 2012048140 A JP2012048140 A JP 2012048140A JP 2013183431 A JP2013183431 A JP 2013183431A
Authority
JP
Japan
Prior art keywords
phased array
array seeker
phase shifter
frequency signal
antenna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012048140A
Other languages
Japanese (ja)
Other versions
JP5674694B2 (en
Inventor
Haruo Kojima
治夫 小島
Hiroyuki Hachisu
裕之 蜂須
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2012048140A priority Critical patent/JP5674694B2/en
Publication of JP2013183431A publication Critical patent/JP2013183431A/en
Application granted granted Critical
Publication of JP5674694B2 publication Critical patent/JP5674694B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a phased array seeker capable of reducing insertion loss of a phase shifter of an integrated antenna, and a method for transmitting/receiving high frequency signal of the phased array seeker.SOLUTION: A phased array seeker comprises: a phase shifter having a plurality of micro strip lines with a conductor formed of a super conducting material and connected in series, a PIN diode in which an anode is connected to an end of a downstream side in an input high frequency signal transmitting direction of the micro strip lines for each micro strip line and a cathode is connected to ground, and a ground part connected to other end of the microstrip lines connected in series; and a plurality of integrated antennas having a cooling apparatus for cooling the phase shifter to a superconductive transition temperature or lower, and an antenna connected to one end of the microstrip lines connected in series.

Description

本発明の実施形態は、フェイズドアレイシーカ及びフェイズドアレイシーカの高周波信号送受信方法に関する。   Embodiments described herein relate generally to a phased array seeker and a high-frequency signal transmission / reception method for the phased array seeker.

従来の反射型アンテナを用いたフェイズドアレイシーカは、アンテナと、PINダイオード及びマイクロストリップ線路を備える移相器と、を有する集積アンテナを数十から数百配列されたアレイを有する。   A conventional phased array seeker using a reflective antenna has an array in which several tens to several hundreds of integrated antennas each having an antenna and a phase shifter including a PIN diode and a microstrip line are arranged.

このフェイズドアレイシーカは、送信時には1次放射器から放射された高周波送信信号をアンテナにより受信し、移相器によって位相を制御して反射し、アンテナから任意の方向の空間に放射する。また、受信時には、アンテナによって高周波信号を受信し、移相器によって位相を制御して1次放射器に向けて反射する。   This phased array seeker receives a high-frequency transmission signal radiated from a primary radiator at the time of transmission by an antenna, reflects the signal while controlling the phase by a phase shifter, and radiates it from the antenna to a space in an arbitrary direction. At the time of reception, a high-frequency signal is received by the antenna, and the phase is controlled by the phase shifter and reflected toward the primary radiator.

ここで、高周波信号は、送信時には移相器の挿入損失分の送信電力が低下し、受信時には移相器によって雑音指数が悪化する。この送信電力低下と雑音指数の悪化は移相器のPINダイオード及びマイクロストリップ線路における導体損失の影響が大きい。   Here, the transmission power of the high-frequency signal corresponding to the insertion loss of the phase shifter is reduced during transmission, and the noise figure is deteriorated by the phase shifter during reception. This reduction in transmission power and deterioration in noise figure are greatly affected by conductor loss in the PIN diode and microstrip line of the phase shifter.

特開平5−110329号公報Japanese Patent Laid-Open No. 5-110329

従って、集積アンテナの移相器の挿入損失を低減させるフェイズドアレイシーカ及びフェイズドアレイシーカの高周波信号送受信方法が求められている。   Accordingly, there is a need for a phased array seeker and a phased array seeker high-frequency signal transmission / reception method that reduce the insertion loss of the phase shifter of the integrated antenna.

上記の課題を解決するために、本発明の一実施形態は、アンテナ、アンテナに一端が接続し、導体部が超伝導材料により形成される直列接続される複数のマイクロストリップ線路、及びマイクロストリップ線路にアノードが接続され、カソードが接地される複数のPINダイオードを備える移相器を備える複数の反射型集積アンテナと、移相器を超伝導転移温度以下に冷却する冷却装置と、を備えるフェイズドアレイシーカを提供する。   In order to solve the above problems, an embodiment of the present invention includes an antenna, a plurality of microstrip lines connected in series, one end of which is connected to the antenna, and a conductor portion formed of a superconducting material, and a microstrip line A phased array comprising: a plurality of reflective integrated antennas comprising a phase shifter comprising a plurality of PIN diodes having an anode connected to the cathode and a cathode grounded; and a cooling device for cooling the phase shifter to a superconducting transition temperature or lower. Provide Seeka.

フェイズドアレイシーカの斜視図である。It is a perspective view of a phased array seeker. 集積アンテナの構成を示す図である。It is a figure which shows the structure of an integrated antenna. フェイズドアレイシーカの集積アンテナ周辺の部分平面図である。It is a partial top view of the periphery of the integrated antenna of a phased array seeker. フェイズドアレイシーカの図3におけるAA線断面図である。It is AA sectional view taken on the line of FIG. 3 of a phased array seeker.

以下、フェイズドアレイシーカ及びフェイズドアレイシーカの高周波信号送受信方法の一実施形態について、図面を用いて詳細に説明する。   Hereinafter, an embodiment of a phased array seeker and a high-frequency signal transmitting / receiving method of the phased array seeker will be described in detail with reference to the drawings.

本実施形態のフェイズドアレイシーカは、アンテナ、アンテナに一端が接続し、導体部が超伝導材料により形成される直列接続される複数のマイクロストリップ線路、及びマイクロストリップ線路にアノードが接続され、カソードが接地される複数のPINダイオードを備える移相器を備える複数の反射型集積アンテナと、移相器を超伝導転移温度以下に冷却する冷却装置と、を備える。   The phased array seeker of this embodiment has an antenna, one end connected to the antenna, a plurality of microstrip lines connected in series with a conductor portion formed of a superconductive material, an anode connected to the microstrip line, and a cathode A plurality of reflective integrated antennas including a phase shifter including a plurality of grounded PIN diodes; and a cooling device that cools the phase shifter to a superconducting transition temperature or less.

図1は、本実施形態のフェイズドアレイシーカ100の斜視図である。図1に示すように、フェイズドアレイシーカ100は、複数の集積アンテナ101を配列したアレイを備える。   FIG. 1 is a perspective view of a phased array seeker 100 of the present embodiment. As shown in FIG. 1, the phased array seeker 100 includes an array in which a plurality of integrated antennas 101 are arranged.

フェイズドアレイシーカ100は、1次放射器200から放射された高周波信号X1を集積アンテナ101が受信し、集積アンテナ101が受信した高周波信号の位相を制御して反射し、送信高周波信号X2として任意の方向の空間に放射する。   In the phased array seeker 100, the integrated antenna 101 receives the high-frequency signal X1 radiated from the primary radiator 200, controls the phase of the high-frequency signal received by the integrated antenna 101, reflects it, and arbitrarily transmits it as a transmission high-frequency signal X2. Radiates in the direction space.

また、フェイズドアレイシーカ100は、高周波信号Y1を集積アンテナ101によって受信し、集積アンテナ101が受信した高周波信号の位相を制御して反射し、受信高周波信号Y2として1次放射器200に向けて放射する。   The phased array seeker 100 receives the high-frequency signal Y1 by the integrated antenna 101, reflects the high-frequency signal received by the integrated antenna 101 by controlling the phase thereof, and radiates the received high-frequency signal Y2 toward the primary radiator 200. To do.

図2は、集積アンテナ101の構成を示す図である。図2に示すように、集積アンテナ101は、導体部が超伝導材料により形成され、直列に接続される複数のマイクロストリップ線路103、このマイクロストリップ線路103毎に、マイクロストリップ線路103の入力高周波信号伝送方向下流の端部にアノードが接続され、カソードが接地されるPINダイオード104、及び直列に接続されたマイクロストリップ線路103の他端に接続する接地部105を備える移相器と、この移相器を超伝導転移温度以下に冷却する冷却装置106と、直列に接続されたマイクロストリップ線路103の一端に接続するアンテナ102と、を備える。   FIG. 2 is a diagram illustrating the configuration of the integrated antenna 101. As shown in FIG. 2, the integrated antenna 101 includes a plurality of microstrip lines 103 whose conductor portions are formed of a superconductive material and are connected in series, and an input high-frequency signal of the microstrip line 103 for each microstrip line 103. A phase shifter including a PIN diode 104 having an anode connected to the downstream end in the transmission direction and a cathode grounded, and a grounding unit 105 connected to the other end of the microstrip line 103 connected in series, and the phase shift A cooling device 106 for cooling the vessel to a superconducting transition temperature or lower, and an antenna 102 connected to one end of a microstrip line 103 connected in series.

マイクロストリップ線路103は、例えば3個接続され、接続されるマイクロストリップ線路103の長さは送受信する高周波信号の波長λの4分の1である。   For example, three microstrip lines 103 are connected, and the length of the connected microstrip lines 103 is ¼ of the wavelength λ of the high-frequency signal to be transmitted and received.

マイクロストリップ線路103を形成する超伝導材料は、高温超電導材料であることが望ましい。超伝導転移温度が液体窒素の沸点である77K°より高いため、液体窒素にて冷却が可能であるからである。   The superconducting material forming the microstrip line 103 is preferably a high-temperature superconducting material. This is because the superconducting transition temperature is higher than 77 K ° which is the boiling point of liquid nitrogen, so that cooling with liquid nitrogen is possible.

高温超電導材料は、公知の高温超電導材料を用いることができる。公知の高温超電導材料としては、例えば、Hg12TlBa30Ca30Cu45127、BiSrCaCu10、YBaCuなどを用いることができる。 A known high temperature superconducting material can be used as the high temperature superconducting material. Known high-temperature superconducting material, for example, can be used as the Hg 12 Tl 3 Ba 30 Ca 30 Cu 45 O 127, Bi 2 Sr 2 Ca 2 Cu 3 O 10, YBa 2 Cu 3 O 7.

PINダイオード103は、集積アンテナ101を統括制御する制御部によってスイッチングされる。   The PIN diode 103 is switched by a control unit that performs overall control of the integrated antenna 101.

このスイッチングにより、高周波信号の移相器内での反射位置が変化するため、位相を制御することが可能となる。   This switching changes the reflection position of the high-frequency signal in the phase shifter, so that the phase can be controlled.

冷却装置106は、マイクロストリップ線路103に高温超電導材料を用いた場合には冷媒として液体窒素を用いることができる。   The cooling device 106 can use liquid nitrogen as a refrigerant when a high-temperature superconducting material is used for the microstrip line 103.

冷却装置106は、冷媒を格納するタンクと、タンクに冷媒を注入する注入孔と、気化した冷媒を排出する排出孔と、を備える。   The cooling device 106 includes a tank that stores the refrigerant, an injection hole that injects the refrigerant into the tank, and a discharge hole that discharges the vaporized refrigerant.

冷却装置106は、移相器を冷却するため、移相器の挿入損失が低減し、送信電力が上がり、受信時の雑音指数が低減する。   Since the cooling device 106 cools the phase shifter, the insertion loss of the phase shifter is reduced, the transmission power is increased, and the noise figure at the time of reception is reduced.

図3は、フェイズドアレイシーカ100の集積アンテナ101周辺の部分平面図である。図4は、フェイズドアレイシーカ100の図3におけるAA線断面図である。   FIG. 3 is a partial plan view around the integrated antenna 101 of the phased array seeker 100. 4 is a cross-sectional view of the phased array seeker 100 taken along line AA in FIG.

図3に示すように、フェイズドアレイシーカ100は、複数の集積アンテナ101が一つの冷却装置106を共有していてもよい。   As shown in FIG. 3, in the phased array seeker 100, a plurality of integrated antennas 101 may share a single cooling device 106.

図3及び図4に示すように、フェイズドアレイシーカ100は、集積アンテナ101と、移相器を冷却する冷却装置106と、集積アンテナ101を支持する断熱部材109と、断熱部材109を支持し、冷却装置106を非接触に格納する空隙部112を有する筺体111と、PINダイオード104のスイッチングを制御する位相制御端子108と、位相制御端子108が接続される基板110と、を備える。   As shown in FIGS. 3 and 4, the phased array seeker 100 supports the integrated antenna 101, the cooling device 106 that cools the phase shifter, the heat insulating member 109 that supports the integrated antenna 101, and the heat insulating member 109. A housing 111 having a gap portion 112 for storing the cooling device 106 in a non-contact manner, a phase control terminal 108 for controlling switching of the PIN diode 104, and a substrate 110 to which the phase control terminal 108 is connected are provided.

断熱部材109は、熱抵抗の高い金属を用いることが望ましい、熱抵抗の高い金属としては、例えば、鉄ニッケル合金を用いることができる。断熱部材109は、接地を取るために導電性を有することが望ましい。   For the heat insulating member 109, it is desirable to use a metal having a high thermal resistance. As the metal having a high thermal resistance, for example, an iron nickel alloy can be used. The heat insulating member 109 is desirably conductive in order to take a ground.

冷却装置106は、集積アンテナ101の移相器にできるだけ近づけて、望ましくは接触させて係止される。   The cooling device 106 is locked as close as possible to, preferably in contact with, the phase shifter of the integrated antenna 101.

冷却装置106は、集積アンテナ101に接触する部分を除いて空隙部112によって囲まれる。従って、筺体111の熱が冷却装置106に伝わりにくい。   The cooling device 106 is surrounded by the gap 112 except for the portion that contacts the integrated antenna 101. Accordingly, the heat of the casing 111 is not easily transmitted to the cooling device 106.

基板110は、例えばガラスエポキシによって形成され、移相器の位相を制御する。   The substrate 110 is formed of glass epoxy, for example, and controls the phase of the phase shifter.

位相制御端子108は、空隙部112に挿通される。従って、位相制御端子108は筺体111と接触することがなく、筺体111の熱を移相器に伝えにくい。   The phase control terminal 108 is inserted into the gap portion 112. Therefore, the phase control terminal 108 does not come into contact with the casing 111 and it is difficult to transfer the heat of the casing 111 to the phase shifter.

以上述べたように、本実施形態のフェイズドアレイシーカ100は、導体部が超伝導材料により形成され、直列に接続される複数のマイクロストリップ線路103、このマイクロストリップ線路103毎に、マイクロストリップ線路103の入力高周波信号伝送方向下流の端部にアノードが接続され、カソードが接地されるPINダイオード104、及び直列に接続されたマイクロストリップ線路103の他端に接続する接地部105を備える移相器と、この移相器を超伝導転移温度以下に冷却する冷却装置106と、直列に接続されたマイクロストリップ線路103の一端に接続するアンテナ102と、を備える複数の集積アンテナ101を備える。   As described above, the phased array seeker 100 according to this embodiment includes a plurality of microstrip lines 103 whose conductor portions are formed of a superconducting material and are connected in series, and each microstrip line 103 has a microstrip line 103. A phase shifter including a PIN diode 104 having an anode connected to the downstream end of the input high-frequency signal transmission direction and a cathode grounded, and a grounding unit 105 connected to the other end of the microstrip line 103 connected in series. And a plurality of integrated antennas 101 each including a cooling device 106 for cooling the phase shifter to a superconducting transition temperature or lower and an antenna 102 connected to one end of a microstrip line 103 connected in series.

従って、集積アンテナ101の移相器の挿入損失を低減させることが可能となるという効果がある。   Therefore, there is an effect that the insertion loss of the phase shifter of the integrated antenna 101 can be reduced.

いくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれると同様に、特許請求の範囲に記載された発明とその均等の範囲に含まれるものである。   Although several embodiments have been described, these embodiments have been presented by way of example and are not intended to limit the scope of the invention. These embodiments can be implemented in various other forms, and various omissions, replacements, and changes can be made without departing from the spirit of the invention. These embodiments and their modifications are included in the scope and gist of the invention, and are also included in the invention described in the claims and the equivalents thereof.

101:集積アンテナ
103:マイクロストリップ線路
104:PINダイオード
106:冷却装置
109:断熱材
112:空隙部
101: integrated antenna 103: microstrip line 104: PIN diode 106: cooling device 109: heat insulating material 112: gap

Claims (6)

アンテナ、前記アンテナに一端が接続し、導体部が超伝導材料により形成される直列接続される複数のマイクロストリップ線路、及び前記マイクロストリップ線路にアノードが接続され、カソードが接地される複数のPINダイオードを備える移相器を備える複数の反射型集積アンテナと、
前記移相器を超伝導転移温度以下に冷却する冷却装置と、
を備えるフェイズドアレイシーカ。
An antenna, a plurality of microstrip lines connected in series with one end connected to the antenna and a conductor portion made of a superconducting material, and a plurality of PIN diodes having an anode connected to the microstrip line and a cathode grounded A plurality of reflective integrated antennas comprising a phase shifter comprising:
A cooling device for cooling the phase shifter to a superconducting transition temperature or lower;
Phased array seeker with
前記超伝導材料は、高温超電導材料であり、
前記冷却装置は、冷媒が液体窒素である請求項1記載のフェイズドアレイシーカ。
The superconducting material is a high temperature superconducting material,
The phased array seeker according to claim 1, wherein in the cooling device, the refrigerant is liquid nitrogen.
前記冷却装置は、
前記反射型集積アンテナと接触する部分を除いて空隙により囲まれる請求項2記載のフェイズドアレイシーカ。
The cooling device is
3. The phased array seeker according to claim 2, wherein the phased array seeker is surrounded by a gap except for a portion in contact with the reflective integrated antenna.
前記集積アンテナは、
導電性のある断熱部材を介して筺体に係止される請求項3記載のフェイズドアレイシーカ。
The integrated antenna is
The phased array seeker according to claim 3, wherein the phased array seeker is locked to the housing via a conductive heat insulating member.
導体部が超伝導材料により形成される複数のマイクロストリップ線路、及び前記マイクロストリップ線路にアノードが接続され、カソードが接地される複数のPINダイオードを備える移相器を備える複数の反射型集積アンテナの前記移相器を冷却装置により超伝導転移温度以下に冷却し、
前記反射型集積アンテナにより高周波信号を反射して送受信する
フェイズドアレイシーカの高周波信号送受信方法。
A plurality of reflective integrated antennas comprising a plurality of microstrip lines having conductor portions made of a superconducting material, and a phase shifter comprising a plurality of PIN diodes having anodes connected to the microstrip lines and cathodes grounded The phase shifter is cooled to a superconducting transition temperature or lower by a cooling device,
A phased array seeker high-frequency signal transmission / reception method in which a high-frequency signal is reflected and transmitted / received by the reflective integrated antenna.
前記超伝導材料は、高温超電導材料であり、
前記冷却装置は、冷媒が液体窒素である請求項5記載のフェイズドアレイシーカの高周波信号送受信方法。
The superconducting material is a high temperature superconducting material,
6. The method of transmitting and receiving a high frequency signal of a phased array seeker according to claim 5, wherein the cooling device is liquid nitrogen.
JP2012048140A 2012-03-05 2012-03-05 Phased array seeker and high-frequency signal transmission / reception method of phased array seeker Active JP5674694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012048140A JP5674694B2 (en) 2012-03-05 2012-03-05 Phased array seeker and high-frequency signal transmission / reception method of phased array seeker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012048140A JP5674694B2 (en) 2012-03-05 2012-03-05 Phased array seeker and high-frequency signal transmission / reception method of phased array seeker

Publications (2)

Publication Number Publication Date
JP2013183431A true JP2013183431A (en) 2013-09-12
JP5674694B2 JP5674694B2 (en) 2015-02-25

Family

ID=49273772

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012048140A Active JP5674694B2 (en) 2012-03-05 2012-03-05 Phased array seeker and high-frequency signal transmission / reception method of phased array seeker

Country Status (1)

Country Link
JP (1) JP5674694B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356593A (en) * 2016-08-31 2017-01-25 安徽赛福电子有限公司 High-accuracy and low-loss loaded line microwave phase shifter
CN111180874A (en) * 2018-11-09 2020-05-19 华为技术有限公司 Antenna system and control signal transmission method
CN111413685A (en) * 2020-04-13 2020-07-14 上海航天控制技术研究所 Servo-free active three-dimensional detection seeker

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320800A (en) * 1991-04-20 1992-11-11 Nec Corp Guidance device
JPH10135715A (en) * 1996-11-01 1998-05-22 Matsushita Electric Ind Co Ltd Superconductor signal processor
JPH10322102A (en) * 1997-05-16 1998-12-04 Toshiba Corp Reflection-type phase shifter
JP2000236206A (en) * 1998-12-17 2000-08-29 Ntt Docomo Inc High-sensitivity radio receiver
JP2002353867A (en) * 2001-05-23 2002-12-06 Nec Corp Information terminal provided with variable directivity antenna
JP4236408B2 (en) * 2000-01-31 2009-03-11 富士通株式会社 Thermal shutdown signal transmission unit and superconducting signal transmission device
JP4302939B2 (en) * 2002-06-13 2009-07-29 株式会社東芝 Superconductor device

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04320800A (en) * 1991-04-20 1992-11-11 Nec Corp Guidance device
JPH10135715A (en) * 1996-11-01 1998-05-22 Matsushita Electric Ind Co Ltd Superconductor signal processor
JPH10322102A (en) * 1997-05-16 1998-12-04 Toshiba Corp Reflection-type phase shifter
JP3093677B2 (en) * 1997-05-16 2000-10-03 株式会社東芝 Reflection type phase shifter
JP2000236206A (en) * 1998-12-17 2000-08-29 Ntt Docomo Inc High-sensitivity radio receiver
JP4236408B2 (en) * 2000-01-31 2009-03-11 富士通株式会社 Thermal shutdown signal transmission unit and superconducting signal transmission device
JP2002353867A (en) * 2001-05-23 2002-12-06 Nec Corp Information terminal provided with variable directivity antenna
JP4302939B2 (en) * 2002-06-13 2009-07-29 株式会社東芝 Superconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106356593A (en) * 2016-08-31 2017-01-25 安徽赛福电子有限公司 High-accuracy and low-loss loaded line microwave phase shifter
CN111180874A (en) * 2018-11-09 2020-05-19 华为技术有限公司 Antenna system and control signal transmission method
CN111180874B (en) * 2018-11-09 2021-07-16 华为技术有限公司 Antenna system and control signal transmission method
CN111413685A (en) * 2020-04-13 2020-07-14 上海航天控制技术研究所 Servo-free active three-dimensional detection seeker

Also Published As

Publication number Publication date
JP5674694B2 (en) 2015-02-25

Similar Documents

Publication Publication Date Title
CN109643853B (en) Antenna device and electronic apparatus including the same
TWI420739B (en) Radiation pattern insulator and antenna system thereof and communication device using the antenna system
US6281849B1 (en) Printed bi-polarization antenna and corresponding network of antennas
US10205211B2 (en) Thermal insulation waveguide and wireless communication device
US20140225792A1 (en) Array antenna optimized for a base station communication system
KR20130042908A (en) Multilayered circuit type antenna package
US7800538B2 (en) Power combining and energy radiating system and method
JP5674694B2 (en) Phased array seeker and high-frequency signal transmission / reception method of phased array seeker
JPWO2017073644A1 (en) High frequency antenna module and array antenna device
US9088325B2 (en) Array antenna apparatus
KR20150054272A (en) Dual-polarized antenna for mobile communication base station
CN109616764A (en) Substrate integrates gap waveguide circular polarized antenna
US10673118B2 (en) Power divider for an antenna comprising four identical orthomode transducers
CN108321472B (en) Phase shifter, antenna feeder system and base station
JP5722258B2 (en) Phased array seeker
Tanabe et al. A small dual-band asymmetric dipole antenna for 13.56 MHz power and 2.45 GHz data transmission
KR102407360B1 (en) Thermally isolated ground planes with superconducting electrical couplers
US20160190672A1 (en) Method and Assembly for Radio-Frequency (RF) Power Coupling
Yan et al. Pattern and polarization reconfigurable circularly polarized antenna based on two pairs of planar complementary dipoles
JP2021524684A (en) Microwave coupling / coupling device and related microwave generator
Taringou et al. New interface design from substrate-integrated to regular coplanar waveguide
Biglarbegian et al. A 60 GHz on-chip slot antenna in silicon integrated passive device technology
KR102141136B1 (en) High frequency band heating loop antenna and oven using the same
EP2911236B1 (en) Millimeter wave bands semiconductor device
Hamdoun et al. Switched beam patch array antenna using SPDT GaN HEMT switches

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140131

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140625

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140729

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141125

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141222

R151 Written notification of patent or utility model registration

Ref document number: 5674694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151