JP2013181810A - Method of detecting conductive film, conductive film sensor, and method for setting magnetic field frequency of conductive film sensor - Google Patents

Method of detecting conductive film, conductive film sensor, and method for setting magnetic field frequency of conductive film sensor Download PDF

Info

Publication number
JP2013181810A
JP2013181810A JP2012045443A JP2012045443A JP2013181810A JP 2013181810 A JP2013181810 A JP 2013181810A JP 2012045443 A JP2012045443 A JP 2012045443A JP 2012045443 A JP2012045443 A JP 2012045443A JP 2013181810 A JP2013181810 A JP 2013181810A
Authority
JP
Japan
Prior art keywords
conductive film
sample
magnetic field
conductor
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012045443A
Other languages
Japanese (ja)
Inventor
Tomoko Omi
知子 尾身
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Azbil Corp
Original Assignee
Azbil Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Azbil Corp filed Critical Azbil Corp
Priority to JP2012045443A priority Critical patent/JP2013181810A/en
Publication of JP2013181810A publication Critical patent/JP2013181810A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Length, Angles, Or The Like Using Electric Or Magnetic Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a sensor capable of specifying the position of a conductive film with a conductor disposed on its backside.SOLUTION: A conductive film sensor comprises: a frequency specification part 302 for acquiring Q-values when radiating a plurality of magnetic fields having different frequencies from a magnetic field radiator 1 to a sample conductive film 3 with a sample conductor 2 disposed on its backside while changing an interval between the sample conductor 2 and the sample conductive film 3, and specifying a frequency having the smallest variations in the Q-value; a relation acquisition part 303 for acquiring a relation between the position of the sample conductive film 3 and the Q-value when irradiating the sample conductive film 3 with a magnetic field of the specified frequency; and a position specification part 305 for radiating the magnetic field of the specified frequency from the magnetic field radiator 1 to a measuring object conductive film with the conductor 2 disposed on its backside to measure a Q-value, and specifying the position of the measuring object conductive film on the basis of the relation and a measured Q-value.

Description

本発明は検出技術に係り、導電性膜の検出方法、導電性膜センサ及び導電性膜センサの磁界周波数の設定方法に関する。   The present invention relates to a detection technique, and relates to a method for detecting a conductive film, a conductive film sensor, and a method for setting a magnetic field frequency of the conductive film sensor.

コイルで磁界を励磁し、金属膜等の導電性膜に磁界を照射すると、導電性膜に渦電流が生じる。ここで、電磁誘導作用により、コイルと、導電性膜と、の距離を変化させると、コイルのQ値及びインピーダンス等の電気特性が変化する。したがって、導電性膜及びコイルの間の距離と、コイルの電気特性と、の関係を予め取得しておけば、測定対象導電性膜に磁界を照射した際のコイルの電気特性の値から、測定対象導電性膜の位置を算出することが可能である(例えば、特許文献1参照。)。   When a magnetic field is excited by a coil and a magnetic film is irradiated on a conductive film such as a metal film, an eddy current is generated in the conductive film. Here, when the distance between the coil and the conductive film is changed by electromagnetic induction, the electrical characteristics such as the Q value and impedance of the coil change. Therefore, if the relationship between the distance between the conductive film and the coil and the electrical characteristics of the coil is acquired in advance, the measurement is performed from the value of the electrical characteristics of the coil when the magnetic film is irradiated to the measurement target conductive film. It is possible to calculate the position of the target conductive film (see, for example, Patent Document 1).

特開2010−164472号公報JP 2010-164472 A

しかし、導電性膜の背後に導電体が配置されている場合、コイルから磁界を励磁すると、導電性膜と、導電体と、の両方に渦電流が生じる。そのため、導電性膜と、導電体と、のいずれの位置も正確に検出できないという問題がある。そこで、本発明は、背後に導電体が配置された導電性膜の位置を特定可能な導電性膜の検出方法、導電性膜センサ及び導電性膜センサの磁界周波数の設定方法を提供することを目的の一つとする。   However, when a conductor is disposed behind the conductive film, when a magnetic field is excited from the coil, an eddy current is generated in both the conductive film and the conductor. Therefore, there is a problem that neither the conductive film nor the conductor can be accurately detected. Therefore, the present invention provides a method for detecting a conductive film, a conductive film sensor, and a method for setting a magnetic field frequency of the conductive film sensor that can specify the position of a conductive film having a conductor disposed behind. One of the purposes.

本発明の態様によれば、(a)背後にサンプル導電体が配置されたサンプル導電性膜に向けて、磁界放射器を配置することと、(b)サンプル導電性膜とサンプル導電体の間隔を変えながら、サンプル導電性膜に向けて、磁界放射器からそれぞれ周波数が異なる複数の磁界を放射し、磁界放射器の抵抗又はクオリティファクタを測定することと、(c)間隔を変えた場合の抵抗又はクオリティファクタのばらつきが最も少ない磁界の周波数を特定することと、(d)サンプル導電性膜に向けて、特定された周波数の磁界を照射した場合の、サンプル導電性膜の位置と、抵抗又はクオリティファクタと、の関係を取得することと、(e)背後に導電体が配置された測定対象導電性膜に向けて、磁界放射器を配置することと、(f)測定対象導電性膜に向けて、特定された周波数の磁界を放射し、磁界放射器の抵抗又はクオリティファクタを測定することと、(g)関係と、測定対象導電性膜に向けて磁界を放射した場合の抵抗又はクオリティファクタの測定値と、に基づいて、測定対象導電性膜の位置を特定することと、を含む、導電性膜の検出方法が提供される。   According to an aspect of the present invention, (a) a magnetic field radiator is disposed toward a sample conductive film having a sample conductor disposed behind, and (b) a distance between the sample conductive film and the sample conductor. , Radiating a plurality of magnetic fields with different frequencies from the magnetic field emitter toward the sample conductive film, measuring the resistance or quality factor of the magnetic field radiator, and (c) changing the interval Identifying the frequency of the magnetic field with the least variation in resistance or quality factor, and (d) the position of the sample conductive film and the resistance when the magnetic field of the specified frequency is irradiated toward the sample conductive film. Or obtaining a relationship with the quality factor, (e) disposing a magnetic field emitter toward the conductive film to be measured with a conductor disposed behind, and (f) conducting the measurement object. Radiating a magnetic field of a specified frequency toward the film and measuring the resistance or quality factor of the magnetic field emitter; (g) relationship and resistance when radiating the magnetic field toward the conductive film to be measured Alternatively, a method for detecting a conductive film is provided, which includes specifying a position of a conductive film to be measured based on a measurement value of a quality factor.

また、本発明の態様によれば、(a)それぞれ周波数が異なる複数の磁界を放射する磁界放射器と、(b)背後にサンプル導電体が配置されたサンプル導電性膜に向けて、サンプル導電性膜とサンプル導電体の間隔を変えながら、磁界放射器から複数の磁界を放射した場合の、磁界放射器の抵抗又はクオリティファクタを取得する特性取得部と、(c)間隔を変えた場合の抵抗又はクオリティファクタのばらつきが最も少ない磁界の周波数を特定する周波数特定部と、(d)サンプル導電性膜に向けて、特定された周波数の磁界を照射した場合の、サンプル導電性膜の位置と、抵抗又はクオリティファクタと、の関係を取得する関係取得部と、(e)背後に導電体が配置された測定対象導電性膜に向けて、磁界放射器から特定された周波数の磁界を放射し、磁界放射器の抵抗又はクオリティファクタを測定する測定部と、(f)関係と、測定対象導電性膜に向けて磁界を放射した場合の抵抗又はクオリティファクタの測定値と、に基づいて、測定対象導電性膜の位置を特定する位置特定部と、を備える、導電性膜センサが提供される。   Further, according to the aspect of the present invention, the sample conduction is directed to (a) a magnetic field radiator that radiates a plurality of magnetic fields having different frequencies, and (b) a sample conductive film having a sample conductor disposed behind. A characteristic acquisition unit for acquiring the resistance or quality factor of the magnetic field emitter when a plurality of magnetic fields are radiated from the magnetic field radiator while changing the distance between the conductive film and the sample conductor; and (c) when the interval is changed. A frequency specifying unit that specifies the frequency of the magnetic field having the least variation in resistance or quality factor; and (d) the position of the sample conductive film when the magnetic field having the specified frequency is irradiated toward the sample conductive film. A relationship acquisition unit for acquiring the relationship between the resistance or the quality factor, and (e) the frequency specified from the magnetic field emitter toward the conductive film to be measured with the conductor disposed behind. A measurement unit that radiates the field and measures the resistance or quality factor of the magnetic field radiator; and (f) the relationship and the measured value of the resistance or quality factor when the magnetic field is radiated toward the conductive film to be measured. A conductive film sensor is provided that includes a position specifying unit that specifies the position of the conductive film to be measured.

さらに、本発明の態様によれば、(a)背後にサンプル導電体が配置されたサンプル導電性膜に向けて、磁界放射器を配置することと、(b)サンプル導電性膜とサンプル導電体の間隔を変えながら、サンプル導電性膜に向けて、磁界放射器からそれぞれ周波数が異なる複数の磁界を放射し、磁界放射器の抵抗又はクオリティファクタを測定することと、(c)間隔を変えた場合の抵抗又はクオリティファクタのばらつきが最も少ない磁界の周波数を特定することと、を含む、導電性膜センサの磁界周波数の設定方法が提供される。   Further, according to an aspect of the present invention, (a) a magnetic field radiator is disposed toward a sample conductive film having a sample conductor disposed behind, and (b) the sample conductive film and the sample conductor are disposed. The magnetic field radiator emits a plurality of magnetic fields each having a different frequency toward the sample conductive film while changing the interval, and the resistance or quality factor of the magnetic field emitter is measured, and (c) the interval is changed. And determining the frequency of the magnetic field with the least variation in resistance or quality factor, and a method for setting the magnetic field frequency of the conductive film sensor is provided.

本発明によれば、背後に導電体が配置された導電性膜の位置を特定可能な導電性膜の検出方法、導電性膜センサ及び導電性膜センサの磁界周波数の設定方法を提供可能である。   ADVANTAGE OF THE INVENTION According to this invention, the detection method of the conductive film which can pinpoint the position of the conductive film with which the conductor is arrange | positioned in the back, a conductive film sensor, and the setting method of the magnetic field frequency of a conductive film sensor can be provided. .

本発明の第1の実施の形態に係る導電性膜センサの第1の模式図である。It is a 1st schematic diagram of the electroconductive film sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る導電性膜センサの第2の模式図である。It is a 2nd schematic diagram of the electroconductive film sensor which concerns on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る周波数10kHzの磁界を照射した場合の、コイルの抵抗と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the resistance of a coil at the time of irradiating the magnetic field of frequency 10kHz which concerns on the 1st Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明の第1の実施の形態に係る周波数10kHzの磁界を照射した場合の、コイルのQ値と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the Q value of a coil at the time of irradiating the magnetic field of frequency 10kHz which concerns on the 1st Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明の第1の実施の形態に係る周波数50kHzの磁界を照射した場合の、コイルの抵抗と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the resistance of a coil at the time of irradiating the magnetic field of frequency 50kHz which concerns on the 1st Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明の第1の実施の形態に係る周波数50kHzの磁界を照射した場合の、コイルのQ値と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the Q value of a coil at the time of irradiating the magnetic field of frequency 50kHz which concerns on the 1st Embodiment of this invention, and the distance between a coil and a sample electroconductive film. 本発明の第1の実施の形態に係る周波数200kHzの磁界を照射した場合の、コイルの抵抗と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the resistance of a coil at the time of irradiating the magnetic field of frequency 200kHz which concerns on the 1st Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明の第1の実施の形態に係る周波数200kHzの磁界を照射した場合の、コイルのQ値と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the Q value of a coil at the time of irradiating the magnetic field of frequency 200kHz which concerns on the 1st Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明の第1の実施の形態に係るサンプル導電体及びサンプル導電性膜の間隔の変化に伴う、コイルのQ値の変化量を示すグラフである。It is a graph which shows the variation | change_quantity of the Q value of a coil accompanying the change of the space | interval of the sample conductor and sample conductive film which concern on the 1st Embodiment of this invention. 本発明の第1の実施の形態に係る周波数10kHzの磁界を照射した場合の、コイルのインダクタンスと、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the inductance of a coil at the time of irradiating the magnetic field of frequency 10kHz which concerns on the 1st Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明の第1の実施の形態に係る周波数50kHzの磁界を照射した場合の、コイルのインダクタンスと、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the inductance of a coil at the time of irradiating the magnetic field of frequency 50kHz which concerns on the 1st Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明の第1の実施の形態に係る周波数200kHzの磁界を照射した場合の、コイルのインダクタンスと、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the inductance of a coil at the time of irradiating the magnetic field of frequency 200kHz which concerns on the 1st Embodiment of this invention, and the distance between a coil and a sample electroconductive film. 本発明の第2の実施の形態に係る周波数50kHzの磁界を照射した場合の、コイルの抵抗と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the resistance of a coil at the time of irradiating the magnetic field of frequency 50kHz which concerns on the 2nd Embodiment of this invention, and the distance between a coil and a sample electroconductive film. 本発明の第2の実施の形態に係る周波数50kHzの磁界を照射した場合の、コイルのQ値と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the Q value of a coil at the time of irradiating the magnetic field of frequency 50kHz which concerns on the 2nd Embodiment of this invention, and the distance between a coil and a sample electroconductive film. 本発明の第2の実施の形態に係る周波数120kHzの磁界を照射した場合の、コイルの抵抗と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the resistance of a coil at the time of irradiating the magnetic field of the frequency of 120 kHz which concerns on the 2nd Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明の第2の実施の形態に係る周波数120kHzの磁界を照射した場合の、コイルのQ値と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the Q value of a coil at the time of irradiating the magnetic field of frequency 120kHz which concerns on the 2nd Embodiment of this invention, and the distance between a coil and a sample electroconductive film. 本発明の第2の実施の形態に係る周波数300kHzの磁界を照射した場合の、コイルの抵抗と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the resistance of a coil at the time of irradiating the magnetic field of frequency 300kHz which concerns on the 2nd Embodiment of this invention, and the distance between a coil and a sample electroconductive film. 本発明の第2の実施の形態に係る周波数300kHzの磁界を照射した場合の、コイルのQ値と、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the Q value of a coil at the time of irradiating the magnetic field of frequency 300kHz which concerns on the 2nd Embodiment of this invention, and the distance between a coil and a sample electroconductive film. 本発明の第2の実施の形態に係るサンプル導電体及びサンプル導電性膜の間隔の変化に伴う、コイルのQ値の変化量を示すグラフである。It is a graph which shows the variation | change_quantity of the Q value of a coil accompanying the change of the space | interval of the sample conductor and sample conductive film which concern on the 2nd Embodiment of this invention. 本発明の第2の実施の形態に係る周波数50kHzの磁界を照射した場合の、コイルのインダクタンスと、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the inductance of a coil at the time of irradiating the magnetic field of frequency 50kHz which concerns on the 2nd Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明の第2の実施の形態に係る周波数120kHzの磁界を照射した場合の、コイルのインダクタンスと、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the inductance of a coil at the time of irradiating the magnetic field of the frequency of 120 kHz which concerns on the 2nd Embodiment of this invention, and the distance between a coil and a sample electroconductive film. 本発明の第2の実施の形態に係る周波数300kHzの磁界を照射した場合の、コイルのインダクタンスと、コイルとサンプル導電性膜の間の距離と、の関係を示すグラフである。It is a graph which shows the relationship between the inductance of a coil at the time of irradiating the magnetic field of frequency 300kHz which concerns on the 2nd Embodiment of this invention, and the distance between a coil and a sample conductive film. 本発明のその他の実施の形態に係る導電性膜センサの模式図である。It is a schematic diagram of the electroconductive film sensor which concerns on other embodiment of this invention.

以下に本発明の実施の形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号で表している。但し、図面は模式的なものである。したがって、具体的な寸法等は以下の説明を照らし合わせて判断するべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。   Embodiments of the present invention will be described below. In the following description of the drawings, the same or similar parts are denoted by the same or similar reference numerals. However, the drawings are schematic. Therefore, specific dimensions and the like should be determined in light of the following description. Moreover, it is a matter of course that portions having different dimensional relationships and ratios are included between the drawings.

(第1の実施の形態)
第1の実施の形態に係る導電性膜センサは、図1に示すように、それぞれ周波数が異なる複数の磁界を放射する磁界放射器1と、磁界放射器1に接続された中央演算処理装置(CPU)300と、を備える。CPU300は、特性取得部301と、周波数特定部302と、関係取得部303と、を備える。特性取得部301は、背後にサンプル導電体2が配置されたサンプル導電性膜3に向けて、サンプル導電性膜3とサンプル導電体2の間隔Mを変えながら、磁界放射器1から複数の磁界を放射した場合の、磁界放射器1の抵抗の値又はクオリティファクタの値(以下において、「Q値」あるいは「Qの値」などという。)を取得する。周波数特定部302は、サンプル導電性膜3とサンプル導電体2の間隔Mを変えた場合の磁界放射器1の抵抗の値又はQ値のばらつきが最も少ない磁界の周波数を特定する。
(First embodiment)
As shown in FIG. 1, the conductive film sensor according to the first embodiment includes a magnetic field radiator 1 that emits a plurality of magnetic fields having different frequencies, and a central processing unit connected to the magnetic field radiator 1 ( CPU) 300. The CPU 300 includes a characteristic acquisition unit 301, a frequency identification unit 302, and a relationship acquisition unit 303. The characteristic acquisition unit 301 changes a plurality of magnetic fields from the magnetic field radiator 1 while changing the distance M between the sample conductive film 3 and the sample conductor 2 toward the sample conductive film 3 on which the sample conductor 2 is disposed behind. The value of the resistance or the quality factor of the magnetic field radiator 1 (hereinafter referred to as “Q value” or “Q value”) is acquired. The frequency specifying unit 302 specifies the frequency of the magnetic field with the least variation in the resistance value or Q value of the magnetic field radiator 1 when the distance M between the sample conductive film 3 and the sample conductor 2 is changed.

関係取得部303は、サンプル導電性膜3に向けて、周波数特定部302で特定された周波数の磁界を照射した場合の、サンプル導電性膜3の位置と、抵抗又はQ値と、の関係を取得する。ここで、サンプル導電性膜3の位置とは、例えば、磁界放射器1に対するサンプル導電性膜3の表面又は裏面の相対位置であり、より具体的には、磁界放射器1からの距離Dである。   The relationship acquisition unit 303 indicates the relationship between the position of the sample conductive film 3 and the resistance or Q value when the magnetic field having the frequency specified by the frequency specifying unit 302 is irradiated toward the sample conductive film 3. get. Here, the position of the sample conductive film 3 is, for example, a relative position of the front surface or the back surface of the sample conductive film 3 with respect to the magnetic field radiator 1, and more specifically, a distance D from the magnetic field radiator 1. is there.

CPU300は、さらに、測定部304と、位置特定部305と、を備える。測定部304は、図2に示すように、背後に導電体4が配置された測定対象導電性膜5に向けて、周波数特定部302で特定された周波数の磁界を磁界放射器1から放射した場合の、磁界放射器1の抵抗の値又はQ値を測定する。位置特定部305は、関係取得部303で取得された関係と、測定対象導電性膜5に向けて周波数特定部302で特定された周波数の磁界を放射した場合の磁界放射器1の抵抗の測定値又はQの測定値と、に基づいて、測定対象導電性膜5の位置を特定する。ここで、測定対象導電性膜5の位置とは、例えば、磁界放射器1に対する測定対象導電性膜5の表面又は裏面の相対位置であり、より具体的には、磁界放射器1からの距離Dである。   CPU 300 further includes a measurement unit 304 and a position specifying unit 305. As shown in FIG. 2, the measuring unit 304 radiates a magnetic field having a frequency specified by the frequency specifying unit 302 from the magnetic field radiator 1 toward the measurement target conductive film 5 in which the conductor 4 is arranged behind. In this case, the resistance value or Q value of the magnetic field radiator 1 is measured. The position specifying unit 305 measures the relationship acquired by the relationship acquiring unit 303 and the resistance of the magnetic field radiator 1 when the magnetic field having the frequency specified by the frequency specifying unit 302 is radiated toward the measurement target conductive film 5. The position of the conductive film 5 to be measured is specified based on the value or the measured value of Q. Here, the position of the measurement target conductive film 5 is, for example, the relative position of the front or back surface of the measurement target conductive film 5 with respect to the magnetic field radiator 1, and more specifically, the distance from the magnetic field radiator 1. D.

図1及び図2に示す磁界放射器1は、コイル11を有する。コイル11は、例えば、それぞれ周波数の異なる、第1の磁界と、第2の磁界と、第3の磁界と、を切替スイッチで、各々放射する。あるいは、所定時間毎又は所定波数毎に、それぞれ周波数が異なる、第1の磁界と、第2の磁界と、第3の磁界と、を交互に放射する。   The magnetic field radiator 1 shown in FIGS. 1 and 2 has a coil 11. The coil 11 radiates, for example, a first magnetic field, a second magnetic field, and a third magnetic field, each having a different frequency, with a changeover switch. Alternatively, the first magnetic field, the second magnetic field, and the third magnetic field, each having a different frequency, are radiated alternately every predetermined time or every predetermined wave number.

図1に示すサンプル導電体2は、例えば鉄等の磁性体、あるいはアルミニウム、銅、又はこれらを支配的に含む合金等の非磁性体からなる。サンプル導電性膜3は、例えばアルミニウム、銅、又はこれらを支配的に含む合金等の非磁性体からなる。コイル11は、LC発振回路の一部をなしている。LC発振回路は、発振振幅がコイル11のQ値の単調関数となるよう、構成されている。コイル11のQ値は、ωを共振角周波数、Lをコイル11の自己インダクタンス、Rをコイル11の抵抗として、下記(1)式で与えられる。
Q = ωL / R ・・・(1)
The sample conductor 2 shown in FIG. 1 is made of, for example, a magnetic material such as iron, or a nonmagnetic material such as aluminum, copper, or an alloy containing these predominantly. The sample conductive film 3 is made of, for example, a nonmagnetic material such as aluminum, copper, or an alloy mainly containing these. The coil 11 forms a part of the LC oscillation circuit. The LC oscillation circuit is configured such that the oscillation amplitude is a monotone function of the Q value of the coil 11. The Q value of the coil 11 is given by the following equation (1), where ω is the resonance angular frequency, L is the self-inductance of the coil 11, and R is the resistance of the coil 11.
Q = ωL / R (1)

LC発振回路の発振に伴い、コイル11からサンプル導電性膜3及びサンプル導電体2に向かって、高周波交流磁界が形成され、サンプル導電性膜3及びサンプル導電体2のそれぞれに渦電流が発生する。渦電流による電気エネルギの損失は、コイル11の見かけ上の抵抗Rを増大させ、Q値を低下させる。コイルの抵抗値RあるいはQ値の変化は、磁界放射器1からサンプル導電性膜3までの距離Dと、サンプル導電性膜3とサンプル導電体2の間隔Mと、に依存する。   Along with the oscillation of the LC oscillation circuit, a high-frequency AC magnetic field is formed from the coil 11 toward the sample conductive film 3 and the sample conductor 2, and eddy currents are generated in the sample conductive film 3 and the sample conductor 2, respectively. . The loss of electrical energy due to the eddy current increases the apparent resistance R of the coil 11 and decreases the Q value. The change in the resistance value R or Q value of the coil depends on the distance D from the magnetic field radiator 1 to the sample conductive film 3 and the interval M between the sample conductive film 3 and the sample conductor 2.

ここでは、磁界放射器1は、例として、コイル11から第1の周波数として10kHzの第1の磁界をサンプル導電性膜3及びサンプル導電体2に照射し、コイル11の抵抗Rの測定値あるいはQの測定値を特性取得部301に送信する。図3は、アルミからなる厚さ10μmのサンプル導電性膜3と、アルミからなる厚さ10mmのサンプル導電体2と、の間隔Mを5μm、25μm、50μm、75μm、100μm、500μm、及び1000μmにし、コイル11から10kHzの第1の磁界を放射した場合に、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11の抵抗Rの測定値と、の関係の一例を示すグラフである。図4は、同様の条件下で、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11のQの測定値と、の関係の一例を示すグラフである。   Here, as an example, the magnetic field radiator 1 irradiates the sample conductive film 3 and the sample conductor 2 with a first magnetic field of 10 kHz as the first frequency from the coil 11, and the measured value of the resistance R of the coil 11 or The measured value of Q is transmitted to the characteristic acquisition unit 301. FIG. 3 shows that the distance M between the sample conductive film 3 made of aluminum having a thickness of 10 μm and the sample conductor 2 made of aluminum having a thickness of 10 mm is 5 μm, 25 μm, 50 μm, 75 μm, 100 μm, 500 μm, and 1000 μm. When the first magnetic field of 10 kHz is radiated from the coil 11, the distance D between the coil 11 and the sample conductive film 3 acquired by the characteristic acquisition unit 301 and the measured value of the resistance R of the coil 11 It is a graph which shows an example of a relationship. FIG. 4 is a graph showing an example of the relationship between the distance D between the coil 11 and the sample conductive film 3 and the measured value of Q of the coil 11 acquired by the characteristic acquisition unit 301 under the same conditions. is there.

また、図1に示す磁界放射器1は、例として、コイル11から第2の周波数として50kHzの第2の磁界をサンプル導電性膜3及びサンプル導電体2に照射し、コイル11の抵抗Rの測定値あるいはQの測定値を特性取得部301に送信する。図5は、アルミからなる厚さ10μmのサンプル導電性膜3と、アルミからなる厚さ10mmのサンプル導電体2と、の間隔Mを5μm、25μm、50μm、75μm、100μm、500μm、及び1000μmにし、コイル11から50kHzの第2の磁界を放射した場合に、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11の抵抗Rの測定値と、の関係の一例を示すグラフである。図6は、同様の条件下で、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11のQの測定値と、の関係の一例を示すグラフである。   Further, as an example, the magnetic field radiator 1 shown in FIG. 1 irradiates the sample conductive film 3 and the sample conductor 2 with a second magnetic field of 50 kHz as the second frequency from the coil 11, and the resistance R of the coil 11 is reduced. The measured value or the measured value of Q is transmitted to the characteristic acquisition unit 301. FIG. 5 shows that the distance M between the sample conductive film 3 made of aluminum having a thickness of 10 μm and the sample conductor 2 made of aluminum having a thickness of 10 mm is set to 5 μm, 25 μm, 50 μm, 75 μm, 100 μm, 500 μm, and 1000 μm. When the second magnetic field of 50 kHz is emitted from the coil 11, the distance D between the coil 11 and the sample conductive film 3 acquired by the characteristic acquisition unit 301 and the measured value of the resistance R of the coil 11 It is a graph which shows an example of a relationship. FIG. 6 is a graph showing an example of the relationship between the distance D between the coil 11 and the sample conductive film 3 and the measured value of Q of the coil 11 acquired by the characteristic acquisition unit 301 under the same conditions. is there.

さらに、図1に示す磁界放射器1は、例として、コイル11から第3の周波数として200kHzの第3の磁界をサンプル導電性膜3及びサンプル導電体2に照射し、コイル11の抵抗Rの測定値あるいはQの測定値を特性取得部301に送信する。図7は、アルミからなる厚さ10μmのサンプル導電性膜3と、アルミからなる厚さ10mmのサンプル導電体2と、の間隔Mを5μm、25μm、50μm、75μm、100μm、500μm、及び1000μmにし、コイル11から200kHzの第3の磁界を放射した場合に、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11の抵抗Rの測定値と、の関係の一例を示すグラフである。図8は、同様の条件下で、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11のQの測定値と、の関係の一例を示すグラフである。   Further, as an example, the magnetic field radiator 1 shown in FIG. 1 irradiates the sample conductive film 3 and the sample conductor 2 with a third magnetic field of 200 kHz as the third frequency from the coil 11, and the resistance R of the coil 11 is reduced. The measured value or the measured value of Q is transmitted to the characteristic acquisition unit 301. FIG. 7 shows that the distance M between the sample conductive film 3 made of aluminum having a thickness of 10 μm and the sample conductor 2 made of aluminum having a thickness of 10 mm is 5 μm, 25 μm, 50 μm, 75 μm, 100 μm, 500 μm, and 1000 μm. When the third magnetic field of 200 kHz is radiated from the coil 11, the distance D between the coil 11 and the sample conductive film 3 acquired by the characteristic acquisition unit 301 and the measured value of the resistance R of the coil 11 It is a graph which shows an example of a relationship. FIG. 8 is a graph showing an example of the relationship between the distance D between the coil 11 and the sample conductive film 3 and the measured value of Q of the coil 11 acquired by the characteristic acquisition unit 301 under the same conditions. is there.

図1に示すサンプル導電体2及びサンプル導電性膜3に磁界を照射すると、サンプル導電体2と、サンプル導電性膜3と、の間隔Mが増えるに従って、サンプル導電体2における渦電流損失は減少する。しかし、この場合、サンプル導電体2で発生する反磁界が減少するため、サンプル導電性膜3における渦電流損失は増加する。   When the sample conductor 2 and the sample conductive film 3 shown in FIG. 1 are irradiated with a magnetic field, the eddy current loss in the sample conductor 2 decreases as the distance M between the sample conductor 2 and the sample conductive film 3 increases. To do. However, in this case, since the demagnetizing field generated in the sample conductor 2 is reduced, the eddy current loss in the sample conductive film 3 is increased.

ここで、サンプル導電体2及びサンプル導電性膜3に照射する磁界の周波数が高くなると、サンプル導電性膜3における渦電流損失の増加量は、サンプル導電体2における渦電流損失の減少量に比べて大きくなる。したがって、サンプル導電体2及びサンプル導電性膜3に照射する磁界の周波数が高い場合、サンプル導電体2と、サンプル導電性膜3と、の間隔Mが増えるに従って、サンプル導電体2及びサンプル導電性膜3の全体における渦電流損失は増加し、図7に示すようにコイル11の抵抗Rの値も増加し、図8に示すようにコイル11のQ値は低下する傾向にある。   Here, when the frequency of the magnetic field irradiated to the sample conductor 2 and the sample conductive film 3 is increased, the increase amount of the eddy current loss in the sample conductive film 3 is larger than the decrease amount of the eddy current loss in the sample conductor 2. Become bigger. Accordingly, when the frequency of the magnetic field applied to the sample conductor 2 and the sample conductive film 3 is high, the sample conductor 2 and the sample conductivity are increased as the distance M between the sample conductor 2 and the sample conductive film 3 increases. The eddy current loss in the entire film 3 increases, the value of the resistance R of the coil 11 increases as shown in FIG. 7, and the Q value of the coil 11 tends to decrease as shown in FIG.

一方、サンプル導電体2及びサンプル導電性膜3に照射する磁界の周波数が低くなるに従って、サンプル導電性膜3における渦電流損失の増加量は、サンプル導電体2における渦電流損失の減少量に比べて小さくなる。したがって、サンプル導電体2及びサンプル導電性膜3に照射する磁界の周波数が低い場合、サンプル導電体2と、サンプル導電性膜3と、の間隔Mが増えるに従って、サンプル導電体2及びサンプル導電性膜3の全体における渦電流損失は減少し、図3に示すようにコイル11の抵抗Rの値も減少し、図4に示すようにコイル11のQ値は増加する傾向にある。   On the other hand, as the frequency of the magnetic field applied to the sample conductor 2 and the sample conductive film 3 decreases, the increase in eddy current loss in the sample conductive film 3 is smaller than the decrease in eddy current loss in the sample conductor 2. Become smaller. Therefore, when the frequency of the magnetic field applied to the sample conductor 2 and the sample conductive film 3 is low, the sample conductor 2 and the sample conductivity are increased as the distance M between the sample conductor 2 and the sample conductive film 3 increases. The eddy current loss in the entire film 3 decreases, the value of the resistance R of the coil 11 decreases as shown in FIG. 3, and the Q value of the coil 11 tends to increase as shown in FIG.

しかし、サンプル導電体2及びサンプル導電性膜3に照射する磁界の周波数を適当な値に設定すると、磁界の周波数と、間隔Mと、に起因するサンプル導電体2における渦電流損失の減少量と、サンプル導電性膜3における渦電流損失の増加量と、がほぼ等しくなる。この場合、サンプル導電体2と、サンプル導電性膜3と、の間隔Mの変化に起因する、サンプル導電体2及びサンプル導電性膜3の全体における渦電流損失の変化は抑制される。そのため、図5に示すように、間隔Mの変化によるコイル11の抵抗Rの値の変化も抑制され、図6に示すように、間隔Mの変化によるコイル11のQ値の変化も抑制される。この場合、コイル11の抵抗Rの値及びQ値は、磁界放射器1からサンプル導電性膜3までの距離Dに主に従って変化する。   However, if the frequency of the magnetic field applied to the sample conductor 2 and the sample conductive film 3 is set to an appropriate value, the amount of decrease in eddy current loss in the sample conductor 2 due to the frequency of the magnetic field and the interval M The amount of increase in eddy current loss in the sample conductive film 3 is substantially equal. In this case, the change in the eddy current loss in the entire sample conductor 2 and the sample conductive film 3 due to the change in the distance M between the sample conductor 2 and the sample conductive film 3 is suppressed. Therefore, as shown in FIG. 5, the change in the value of the resistance R of the coil 11 due to the change in the interval M is also suppressed, and as shown in FIG. . In this case, the resistance R value and Q value of the coil 11 change mainly according to the distance D from the magnetic field radiator 1 to the sample conductive film 3.

図9は、磁界放射器1からサンプル導電性膜3までの距離Dを2mmとし、サンプル導電体2及びサンプル導電性膜3の間隔Mを変化させたときの、Q値の変化量の一例を示すグラフである。図9に示すように、磁界の周波数が50kHzであるときに、Q値の変化量が最も少ない。この場合、図1に示す周波数特定部302は、間隔Mが変化した際に生じる、コイル11のQ値のばらつきが最も小さい磁界の周波数として、50kHzを特定する。なお、周波数特定部302は、間隔Mが変化した際に生じる、コイル11の抵抗Rの値のばらつきが最も小さい磁界の周波数として、50kHzを特定してもよい。また、周波数特定部302は、所定の閾値を設け、コイル11の抵抗Rの値又はQ値のばらつきが閾値内となる周波数を特定してもよい。   FIG. 9 shows an example of the amount of change in the Q value when the distance D from the magnetic field radiator 1 to the sample conductive film 3 is 2 mm and the distance M between the sample conductor 2 and the sample conductive film 3 is changed. It is a graph to show. As shown in FIG. 9, when the frequency of the magnetic field is 50 kHz, the amount of change in the Q value is the smallest. In this case, the frequency specifying unit 302 shown in FIG. 1 specifies 50 kHz as the frequency of the magnetic field with the smallest variation in the Q value of the coil 11 that occurs when the interval M changes. The frequency specifying unit 302 may specify 50 kHz as the frequency of the magnetic field having the smallest variation in the resistance R value of the coil 11 that occurs when the interval M changes. In addition, the frequency specifying unit 302 may provide a predetermined threshold value and specify a frequency at which the variation of the resistance R or the Q value of the coil 11 falls within the threshold value.

なお、図10乃至図12は、図3乃至図9のグラフを作成する際と同様の条件で、コイル11のインダクタンスLを測定した場合のグラフである。図10乃至図12に示すように、コイル11のインダクタンスLは、サンプル導電体2及びサンプル導電性膜3に照射する磁界の周波数がどのような値をとっても、間隔Mの変化の影響を受ける。したがって、図1に示す周波数特定部302は、コイル11のインダクタンスLに基づいて、間隔Mの変化の影響を受けない磁界の周波数を特定することはできない。   10 to 12 are graphs when the inductance L of the coil 11 is measured under the same conditions as those for creating the graphs of FIGS. 3 to 9. As shown in FIGS. 10 to 12, the inductance L of the coil 11 is affected by the change in the interval M regardless of the value of the frequency of the magnetic field applied to the sample conductor 2 and the sample conductive film 3. Therefore, the frequency specifying unit 302 shown in FIG. 1 cannot specify the frequency of the magnetic field that is not affected by the change in the interval M, based on the inductance L of the coil 11.

図1に示す関係取得部303は、例えば、図5に示す磁界放射器1からサンプル導電性膜3までの距離Dに対するコイル11の抵抗Rの値の平均をとり、コイル11の抵抗Rの値から、距離Dが一意的に定まる関係式を算出する。あるいは、関係取得部303は、コイル11の抵抗Rの値から、距離Dが一意的に定まるテーブルを算出してもよい。又は、関係取得部303は、例えば、図6に示す距離Dに対するコイル11のQ値の平均をとり、コイル11のQ値から、距離Dが一意的に定まる関係式あるいはテーブルを算出する。図1に示す関係取得部303は、算出した関係式又はテーブルを、関係記憶装置401に保存する。   The relationship acquisition unit 303 shown in FIG. 1 takes, for example, an average value of the resistance R of the coil 11 with respect to the distance D from the magnetic field radiator 1 to the sample conductive film 3 shown in FIG. From this, a relational expression that uniquely determines the distance D is calculated. Alternatively, the relationship acquisition unit 303 may calculate a table in which the distance D is uniquely determined from the value of the resistance R of the coil 11. Alternatively, for example, the relationship acquisition unit 303 takes the average of the Q values of the coil 11 with respect to the distance D shown in FIG. 6 and calculates a relational expression or table that uniquely determines the distance D from the Q value of the coil 11. The relationship acquisition unit 303 illustrated in FIG. 1 stores the calculated relationship formula or table in the relationship storage device 401.

次に、図2に示すように、第1の実施の形態に係る導電性膜センサの前に、背後に導電体4が配置された測定対象導電性膜5が配置される。導電体4は、図1に示すサンプル導電体2と、ほぼ同じ材料からなる。導電体4は、サンプル導電体2と、ほぼ同じ厚さを有していてもよいし、異なる厚さを有していてもよい。ただし、導電体4及びサンプル導電体2のそれぞれの厚さは、厚さの違いの影響を受けないように、特定された周波数に対する表皮深さより十分に厚い。図2に示す測定対象導電性膜5は、図1に示すサンプル導電性膜3と、ほぼ同じ厚さを有し、ほぼ同じ材料からなる。ここで、図2に示す磁界放射器1から測定対象導電性膜5までの距離Dが測定対象であり、導電体4と測定対象導電性膜5の間隔Mは未知であり、変化し得る。   Next, as shown in FIG. 2, the conductive film 5 to be measured with the conductor 4 disposed behind is disposed in front of the conductive film sensor according to the first embodiment. The conductor 4 is made of substantially the same material as the sample conductor 2 shown in FIG. The conductor 4 may have substantially the same thickness as the sample conductor 2, or may have a different thickness. However, the thicknesses of the conductor 4 and the sample conductor 2 are sufficiently thicker than the skin depth for the specified frequency so as not to be affected by the difference in thickness. The measurement target conductive film 5 shown in FIG. 2 has substantially the same thickness as the sample conductive film 3 shown in FIG. 1 and is made of substantially the same material. Here, the distance D from the magnetic field radiator 1 to the measurement target conductive film 5 shown in FIG. 2 is the measurement target, and the interval M between the conductor 4 and the measurement target conductive film 5 is unknown and can vary.

測定部304は、磁界放射器1を介して、周波数特定部302が特定した例えば50kHzの磁界を測定対象導電性膜5及び導電体4に照射し、コイル11の抵抗Rの測定値あるいはQの測定値を測定する。測定部304は、コイル11の抵抗Rの測定値あるいはQの測定値を、位置特定部305に送信する。   The measurement unit 304 irradiates the measurement target conductive film 5 and the conductor 4 with the magnetic field of, for example, 50 kHz specified by the frequency specification unit 302 via the magnetic field radiator 1, and measures the measured value of the resistance R or Q of the coil 11. Measure the measured value. The measuring unit 304 transmits the measured value of the resistance R or the measured value of Q of the coil 11 to the position specifying unit 305.

位置特定部305は、測定部304から、50kHzの磁界を測定対象導電性膜5及び導電体4に照射した場合の、コイル11の抵抗Rの測定値あるいはQの測定値を受信する。また、位置特定部305は、関係記憶装置401から、コイル11の抵抗Rと距離Dとの関係、あるいはコイル11のQと距離Dとの関係を読み出す。さらに、位置特定部305は、読み出した関係と、コイル11の抵抗Rの測定値あるいはQの測定値と、に基づいて、磁界放射器1から測定対象導電性膜5までの距離Dの値を算出する。例えば、関係が、距離Dを従属変数とし、抵抗Rを独立変数とする式で表される場合、位置特定部305は、式の独立変数に、抵抗Rの測定値を代入して、距離Dの値を算出する。あるいは、関係が、距離Dを従属変数とし、Qを独立変数とする式で表される場合、位置特定部305は、式の独立変数に、Qの測定値を代入して、距離Dの値を算出する。位置特定部305は、算出した距離Dの値を、例えば出力装置313に出力させる。   The position specifying unit 305 receives the measured value of the resistance R or the measured value of Q of the coil 11 when the measuring target conductive film 5 and the conductor 4 are irradiated with the magnetic field of 50 kHz from the measuring unit 304. Further, the position specifying unit 305 reads the relationship between the resistance R of the coil 11 and the distance D or the relationship between the Q of the coil 11 and the distance D from the relationship storage device 401. Further, the position specifying unit 305 calculates the value of the distance D from the magnetic field radiator 1 to the measurement target conductive film 5 based on the read relationship and the measured value of the resistance R or the measured value of the coil 11. calculate. For example, when the relationship is represented by an expression in which the distance D is a dependent variable and the resistance R is an independent variable, the position specifying unit 305 substitutes the measured value of the resistance R into the independent variable of the expression, and the distance D Is calculated. Alternatively, when the relationship is represented by an expression in which the distance D is a dependent variable and Q is an independent variable, the position specifying unit 305 substitutes the measured value of Q for the independent variable of the expression to obtain the value of the distance D Is calculated. The position specifying unit 305 causes the output device 313 to output the calculated value of the distance D, for example.

以上示したように、第1の実施の形態に係る導電性膜センサによれば、適切な周波数を選択することにより、導電体4と測定対象導電性膜5の間隔Mが未知であり、かつ変化しても、磁界放射器1から測定対象導電性膜5までの距離Dを正確に測定することが可能となる。第1の実施の形態に係る導電性膜センサは、例えば、電池の電極などに用いられる金属箔であって、背後に搬送用の金属製ローラが配置された金属箔の位置の測定などに有用である。   As described above, according to the conductive film sensor according to the first embodiment, by selecting an appropriate frequency, the interval M between the conductor 4 and the conductive film 5 to be measured is unknown, and Even if it changes, the distance D from the magnetic field radiator 1 to the conductive film 5 to be measured can be accurately measured. The conductive film sensor according to the first embodiment is a metal foil used for, for example, an electrode of a battery, and is useful for measuring the position of a metal foil in which a metal roller for transportation is arranged behind. It is.

(第2の実施の形態)
第1の実施の形態では、図1に示すサンプル導電性膜3がアルミからなり、10μmの厚さを有し、サンプル導電体2がアルミからなり、10mmの厚さを有する例を示した。ここで、コイルの抵抗値RあるいはQ値は、サンプル導電性膜3及びサンプル導電体2のそれぞれの材料と厚さによって変化し得る。よって、関係記憶装置401に保存される関係は、サンプル導電性膜3及びサンプル導電体2のそれぞれの材料と厚さに関連づけて保存されていてもよい。
(Second Embodiment)
In the first embodiment, the sample conductive film 3 shown in FIG. 1 is made of aluminum and has a thickness of 10 μm, and the sample conductor 2 is made of aluminum and has a thickness of 10 mm. Here, the resistance value R or Q value of the coil can vary depending on the material and thickness of the sample conductive film 3 and the sample conductor 2. Therefore, the relationship stored in the relationship storage device 401 may be stored in association with the respective materials and thicknesses of the sample conductive film 3 and the sample conductor 2.

図13は、アルミからなる厚さ10μmのサンプル導電性膜3と、第1の実施の形態とは異なりステンレス鋼(SUS)からなる厚さ10mmのサンプル導電体2と、の間隔Mを5μm、25μm、50μm、75μm、100μm、500μm、及び1000μmにし、コイル11から50kHzの磁界を放射した場合に、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11の抵抗Rの測定値と、の関係の一例を示すグラフである。図14は、同様の条件下で、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11のQの測定値と、の関係の一例を示すグラフである。   FIG. 13 shows that the distance M between the sample conductive film 3 made of aluminum and having a thickness of 10 μm and the sample conductor 2 made of stainless steel (SUS) and having a thickness of 10 mm unlike the first embodiment is 5 μm, The distance D between the coil 11 and the sample conductive film 3 acquired by the characteristic acquisition unit 301 when the magnetic field of 50 kHz is radiated from the coil 11 to 25 μm, 50 μm, 75 μm, 100 μm, 500 μm, and 1000 μm, and the coil It is a graph which shows an example of the relationship with the measured value of 11 resistance R. FIG. 14 is a graph showing an example of the relationship between the distance D between the coil 11 and the sample conductive film 3 and the measured value of Q of the coil 11 acquired by the characteristic acquisition unit 301 under the same conditions. is there.

図15は、アルミからなる厚さ10μmのサンプル導電性膜3と、ステンレス鋼(SUS)からなる厚さ10mmのサンプル導電体2と、の間隔Mを5μm、25μm、50μm、75μm、100μm、500μm、及び1000μmにし、コイル11から120kHzの磁界を放射した場合に、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11の抵抗Rの測定値と、の関係の一例を示すグラフである。図16は、同様の条件下で、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11のQの測定値と、の関係の一例を示すグラフである。   FIG. 15 shows the distance M between the sample conductive film 3 made of aluminum having a thickness of 10 μm and the sample conductor 2 made of stainless steel (SUS) having a thickness of 10 mm, which is 5 μm, 25 μm, 50 μm, 75 μm, 100 μm, 500 μm. When the magnetic field of 120 kHz is radiated from the coil 11 to 1000 μm, the distance D between the coil 11 and the sample conductive film 3 acquired by the characteristic acquisition unit 301 and the measured value of the resistance R of the coil 11 are obtained. It is a graph which shows an example of this relationship. FIG. 16 is a graph showing an example of the relationship between the distance D between the coil 11 and the sample conductive film 3 and the measured value of Q of the coil 11 acquired by the characteristic acquisition unit 301 under the same conditions. is there.

図17は、アルミからなる厚さ10μmのサンプル導電性膜3と、ステンレス鋼(SUS)からなる厚さ10mmのサンプル導電体2と、の間隔Mを5μm、25μm、50μm、75μm、100μm、500μm、及び1000μmにし、コイル11から300kHzの磁界を放射した場合に、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11の抵抗Rの測定値と、の関係の一例を示すグラフである。図18は、同様の条件下で、特性取得部301が取得した、コイル11とサンプル導電性膜3の間の距離Dと、コイル11のQの測定値と、の関係の一例を示すグラフである。   FIG. 17 shows an interval M between the sample conductive film 3 made of aluminum having a thickness of 10 μm and the sample conductor 2 having a thickness of 10 mm made of stainless steel (SUS) of 5 μm, 25 μm, 50 μm, 75 μm, 100 μm, and 500 μm. When the magnetic field of 300 kHz is radiated from the coil 11 to 1000 μm, the distance D between the coil 11 and the sample conductive film 3 acquired by the characteristic acquisition unit 301 and the measured value of the resistance R of the coil 11 are obtained. It is a graph which shows an example of this relationship. FIG. 18 is a graph showing an example of the relationship between the distance D between the coil 11 and the sample conductive film 3 and the measured value of Q of the coil 11 acquired by the characteristic acquisition unit 301 under the same conditions. is there.

図19は、サンプル導電体2がステンレス鋼(SUS)からなる場合に、磁界放射器1からサンプル導電性膜3までの距離Dを2mmとし、サンプル導電体2及びサンプル導電性膜3の間隔Mを変化させたときの、Q値の変化量の一例を示すグラフである。図19に示すように、磁界の周波数が120kHzであるときに、Q値の変化量が最も少ない。このように、Q値の変化量が最も少なくなる磁界の周波数は、サンプル導電性膜3及びサンプル導電体2のそれぞれの材料と厚さによって変化し得る。   FIG. 19 shows that when the sample conductor 2 is made of stainless steel (SUS), the distance D from the magnetic field radiator 1 to the sample conductive film 3 is 2 mm, and the distance M between the sample conductor 2 and the sample conductive film 3 is set. It is a graph which shows an example of the variation | change_quantity of Q value when changing. As shown in FIG. 19, when the frequency of the magnetic field is 120 kHz, the amount of change in the Q value is the smallest. As described above, the frequency of the magnetic field at which the amount of change in the Q value is minimized can vary depending on the material and thickness of the sample conductive film 3 and the sample conductor 2.

なお、図20乃至図22は、図13乃至図19のグラフを作成する際と同様の条件で、コイル11のインダクタンスLを測定した場合のグラフである。図20乃至図22に示すように、コイル11のインダクタンスLは、サンプル導電体2がステンレス鋼(SUS)からなる場合であっても、間隔Mの変化の影響を受ける。   20 to 22 are graphs when the inductance L of the coil 11 is measured under the same conditions as those for creating the graphs of FIGS. 13 to 19. As shown in FIGS. 20 to 22, the inductance L of the coil 11 is affected by the change in the interval M even when the sample conductor 2 is made of stainless steel (SUS).

(その他の実施の形態)
上記のように、本発明を実施の形態によって記載したが、この開示の一部をなす記述及び図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施の形態及び運用技術が明らかになるはずである。例えば、第1の実施の形態では、磁界放射器1が一つのコイル11を有する例を示したが、磁界放射器1は、図23に示すように、第1のコイル111、第2のコイル112、及び第3のコイル113を有していてもよい。この場合、第1のコイル111が第1の磁界を発し、第2のコイル112が第2の磁界を発し、第3のコイル113が第3の磁界を発する。第1のコイル111と、第2のコイル112と、第3のコイル113と、は、サンプル導電性膜3との距離Dが同じになるよう、平行に配置される。第1のコイル111と、第2のコイル112と、第3のコイル113と、は、第1の磁界と、第2の磁界と、第3の磁界と、の干渉が低減されるよう、離して配置されてもよい。あるいは、第1のコイル111と、第2のコイル112と、第3のコイル113と、は、所定時間毎又は所定波数毎に、交互に磁界を発してもよい。この様に、本発明はここでは記載していない様々な実施の形態等を包含するということを理解すべきである。
(Other embodiments)
As mentioned above, although this invention was described by embodiment, it should not be understood that the description and drawing which form a part of this indication limit this invention. From this disclosure, various alternative embodiments, embodiments, and operation techniques should be apparent to those skilled in the art. For example, in the first embodiment, the example in which the magnetic field radiator 1 has one coil 11 has been shown. However, as shown in FIG. 112 and a third coil 113 may be included. In this case, the first coil 111 emits a first magnetic field, the second coil 112 emits a second magnetic field, and the third coil 113 emits a third magnetic field. The first coil 111, the second coil 112, and the third coil 113 are arranged in parallel so that the distance D from the sample conductive film 3 is the same. The first coil 111, the second coil 112, and the third coil 113 are separated from each other so that interference between the first magnetic field, the second magnetic field, and the third magnetic field is reduced. May be arranged. Alternatively, the first coil 111, the second coil 112, and the third coil 113 may alternately generate a magnetic field every predetermined time or every predetermined wave number. Thus, it should be understood that the present invention includes various embodiments and the like not described herein.

1 磁界放射器
2 サンプル導電体
3 サンプル導電性膜
4 導電体
5 測定対象導電性膜
11、111、112、113 コイル
301 特性取得部
302 周波数特定部
303 関係取得部
304 測定部
305 位置特定部
313 出力装置
401 関係記憶装置
DESCRIPTION OF SYMBOLS 1 Magnetic field radiator 2 Sample conductor 3 Sample conductive film 4 Conductor 5 Measuring object conductive film 11, 111, 112, 113 Coil 301 Characteristic acquisition part 302 Frequency specification part 303 Relationship acquisition part 304 Measurement part 305 Position specification part 313 Output device 401 relation storage device

Claims (9)

背後にサンプル導電体が配置されたサンプル導電性膜に向けて、磁界放射器を配置することと、
前記サンプル導電性膜と前記サンプル導電体の間隔を変えながら、前記サンプル導電性膜に向けて、前記磁界放射器からそれぞれ周波数が異なる複数の磁界を放射し、前記磁界放射器の抵抗又はクオリティファクタを測定することと、
前記間隔を変えた場合の前記抵抗又はクオリティファクタのばらつきが最も少ない前記磁界の周波数を特定することと、
前記サンプル導電性膜に向けて、前記特定された周波数の磁界を照射した場合の、前記サンプル導電性膜の位置と、前記抵抗又はクオリティファクタと、の関係を取得することと、
背後に導電体が配置された測定対象導電性膜に向けて、前記磁界放射器を配置することと、
前記測定対象導電性膜に向けて、前記特定された周波数の磁界を放射し、前記磁界放射器の抵抗又はクオリティファクタを測定することと、
前記関係と、前記測定対象導電性膜に向けて前記磁界を放射した場合の前記抵抗又はクオリティファクタの測定値と、に基づいて、前記測定対象導電性膜の位置を特定することと、
を含む、導電性膜の検出方法。
Placing a magnetic field emitter toward the sample conductive film with the sample conductor behind it;
While changing the distance between the sample conductive film and the sample conductor, a plurality of magnetic fields having different frequencies are radiated from the magnetic field radiator toward the sample conductive film, and the resistance or quality factor of the magnetic field radiator Measuring and
Identifying the frequency of the magnetic field with the least variation in resistance or quality factor when changing the spacing;
Obtaining a relationship between the position of the sample conductive film and the resistance or quality factor when the magnetic field of the specified frequency is irradiated toward the sample conductive film;
Disposing the magnetic field radiator toward a measurement target conductive film having a conductor disposed behind;
Radiating a magnetic field of the specified frequency toward the conductive film to be measured, and measuring the resistance or quality factor of the magnetic field radiator;
Based on the relationship and the measured value of the resistance or quality factor when the magnetic field is radiated toward the measurement target conductive film, specifying the position of the measurement target conductive film;
A method for detecting a conductive film, comprising:
前記サンプル導電体と、前記導電体と、が同じ材料からなり、
前記サンプル導電性膜と、前記測定対象導電性膜と、が同じ材料からなる、
請求項1に記載の導電性膜の検出方法。
The sample conductor and the conductor are made of the same material,
The sample conductive film and the measurement target conductive film are made of the same material.
The method for detecting a conductive film according to claim 1.
前記サンプル導電性膜の厚さと、前記測定対象導電性膜の厚さと、が同じである、請求項1又は2に記載の導電性膜の検出方法。   The method for detecting a conductive film according to claim 1 or 2, wherein the thickness of the sample conductive film and the thickness of the measurement target conductive film are the same. 前記サンプル導電体の厚さと、前記導電体の厚さと、が前記特定された周波数に対する表皮深さより厚い、請求項1乃至3のいずれか1項に記載の導電性膜の検出方法。   The method for detecting a conductive film according to claim 1, wherein the thickness of the sample conductor and the thickness of the conductor are thicker than a skin depth with respect to the specified frequency. それぞれ周波数が異なる複数の磁界を放射する磁界放射器と、
背後にサンプル導電体が配置されたサンプル導電性膜に向けて、前記サンプル導電性膜と前記サンプル導電体の間隔を変えながら、前記磁界放射器から前記複数の磁界を放射した場合の、前記磁界放射器の抵抗又はクオリティファクタを取得する特性取得部と、
前記間隔を変えた場合の前記抵抗又はクオリティファクタのばらつきが最も少ない前記磁界の周波数を特定する周波数特定部と、
前記サンプル導電性膜に向けて、前記特定された周波数の磁界を照射した場合の、前記サンプル導電性膜の位置と、前記抵抗又はクオリティファクタと、の関係を取得する関係取得部と、
背後に導電体が配置された測定対象導電性膜に向けて、前記磁界放射器から前記特定された周波数の磁界を放射し、前記磁界放射器の抵抗又はクオリティファクタを測定する測定部と、
前記関係と、前記測定対象導電性膜に向けて前記磁界を放射した場合の前記抵抗又はクオリティファクタの測定値と、に基づいて、前記測定対象導電性膜の位置を特定する位置特定部と、
を備える、導電性膜センサ。
A magnetic field radiator that emits a plurality of magnetic fields each having a different frequency;
The magnetic field when the plurality of magnetic fields are radiated from the magnetic field emitter while changing the distance between the sample conductive film and the sample conductor toward the sample conductive film on which the sample conductor is disposed behind. A characteristic acquisition unit for acquiring the resistance or quality factor of the radiator;
A frequency specifying unit that specifies the frequency of the magnetic field with the least variation in resistance or quality factor when the interval is changed;
A relationship acquisition unit for acquiring a relationship between the position of the sample conductive film and the resistance or quality factor when the magnetic field of the specified frequency is irradiated toward the sample conductive film;
A measurement unit that radiates a magnetic field of the specified frequency from the magnetic field radiator toward a measurement target conductive film having a conductor disposed behind, and measures a resistance or a quality factor of the magnetic field radiator;
Based on the relationship and the measured value of the resistance or quality factor when the magnetic field is emitted toward the measurement target conductive film, a position specifying unit that specifies the position of the measurement target conductive film,
A conductive film sensor.
前記サンプル導電体と、前記導電体と、が同じ材料からなり、
前記サンプル導電性膜と、前記測定対象導電性膜と、が同じ材料からなる、
請求項5に記載の導電性膜センサ。
The sample conductor and the conductor are made of the same material,
The sample conductive film and the measurement target conductive film are made of the same material.
The conductive film sensor according to claim 5.
前記サンプル導電性膜の厚さと、前記測定対象導電性膜の厚さと、が同じである、請求項5又は6に記載の導電性膜センサ。   The conductive film sensor according to claim 5 or 6, wherein a thickness of the sample conductive film and a thickness of the measurement target conductive film are the same. 前記サンプル導電体の厚さと、前記導電体の厚さと、が前記特定された周波数に対する表皮深さより厚い、請求項5乃至7のいずれか1項に記載の導電性膜センサ。   The conductive film sensor according to claim 5, wherein the thickness of the sample conductor and the thickness of the conductor are thicker than a skin depth with respect to the specified frequency. 背後にサンプル導電体が配置されたサンプル導電性膜に向けて、磁界放射器を配置することと、
前記サンプル導電性膜と前記サンプル導電体の間隔を変えながら、前記サンプル導電性膜に向けて、前記磁界放射器からそれぞれ周波数が異なる複数の磁界を放射し、前記磁界放射器の抵抗又はクオリティファクタを測定することと、
前記間隔を変えた場合の前記抵抗又はクオリティファクタのばらつきが最も少ない前記磁界の周波数を特定することと、
を含む、導電性膜センサの磁界周波数の設定方法。
Placing a magnetic field emitter toward the sample conductive film with the sample conductor behind it;
While changing the distance between the sample conductive film and the sample conductor, a plurality of magnetic fields having different frequencies are radiated from the magnetic field radiator toward the sample conductive film, and the resistance or quality factor of the magnetic field radiator Measuring and
Identifying the frequency of the magnetic field with the least variation in resistance or quality factor when changing the spacing;
A method for setting a magnetic field frequency of a conductive film sensor.
JP2012045443A 2012-03-01 2012-03-01 Method of detecting conductive film, conductive film sensor, and method for setting magnetic field frequency of conductive film sensor Pending JP2013181810A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012045443A JP2013181810A (en) 2012-03-01 2012-03-01 Method of detecting conductive film, conductive film sensor, and method for setting magnetic field frequency of conductive film sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012045443A JP2013181810A (en) 2012-03-01 2012-03-01 Method of detecting conductive film, conductive film sensor, and method for setting magnetic field frequency of conductive film sensor

Publications (1)

Publication Number Publication Date
JP2013181810A true JP2013181810A (en) 2013-09-12

Family

ID=49272568

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012045443A Pending JP2013181810A (en) 2012-03-01 2012-03-01 Method of detecting conductive film, conductive film sensor, and method for setting magnetic field frequency of conductive film sensor

Country Status (1)

Country Link
JP (1) JP2013181810A (en)

Similar Documents

Publication Publication Date Title
JP6019581B2 (en) Detection device, detection system, power transmission device, non-contact power transmission system, and detection method
US10571593B2 (en) Method for analysing measurement signal of metal sensor and detecting object via metal sensor
CN201796013U (en) Electric eddy current metal material analysis sensor
JP6594417B2 (en) Foreign object detection method for induction charging device and induction charging device
RU2005118104A (en) SENSOR FOR CONTACTLESS MEASUREMENT OF SURFACE RESISTANCE
JP5156432B2 (en) Eddy current sample measurement method and eddy current sensor
US20120206143A1 (en) Resonant electromagnetic sensor
Darrer et al. Toward an automated setup for magnetic induction tomography
CN203534998U (en) Electromagnetic induction type device for detecting solution density
JP2013205179A (en) Conductor sensor and detection method of conductor
CN113826954B (en) Non-contact temperature detection circuit and electronic cigarette
JP6291635B2 (en) Metal material identification device
JP2013181810A (en) Method of detecting conductive film, conductive film sensor, and method for setting magnetic field frequency of conductive film sensor
CN101788611A (en) Resistivity measuring device and method
JP5727312B2 (en) Conductor sensor and conductor detection method
JP2013015355A (en) Conductive film sensor and detection method of conductive film
JP6293018B2 (en) Conductive film sensor and method for detecting conductive film
RU2420749C1 (en) Device for noncontact measurement of specific resistance of semiconductor materials
JP6015954B2 (en) Electromagnetic induction type inspection apparatus and electromagnetic induction type inspection method
JP2013178145A (en) Conductor sensor and method for detecting conductor
JP2012078349A (en) Pulse excitation type inspection device, and pulse excitation type inspection method
KR100511624B1 (en) Sheet resistance measuring instrument of non contact
RU2480708C2 (en) Method and device for measuring thickness of layer of partially crystallised melts
JP6293019B2 (en) Conductor sensor and conductor detection method
CN201654133U (en) Resistivity measuring device