JP2013181719A - Superheated steam generating device and method of generating superheated steam - Google Patents

Superheated steam generating device and method of generating superheated steam Download PDF

Info

Publication number
JP2013181719A
JP2013181719A JP2012047461A JP2012047461A JP2013181719A JP 2013181719 A JP2013181719 A JP 2013181719A JP 2012047461 A JP2012047461 A JP 2012047461A JP 2012047461 A JP2012047461 A JP 2012047461A JP 2013181719 A JP2013181719 A JP 2013181719A
Authority
JP
Japan
Prior art keywords
porous body
superheated steam
wall surface
hollow portion
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012047461A
Other languages
Japanese (ja)
Other versions
JP5875024B2 (en
Inventor
Kunito Okuyama
邦人 奥山
Yoichi Muratomi
洋一 村富
Susumu Harada
享 原田
Mikako Tanaka
美香子 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2012047461A priority Critical patent/JP5875024B2/en
Publication of JP2013181719A publication Critical patent/JP2013181719A/en
Application granted granted Critical
Publication of JP5875024B2 publication Critical patent/JP5875024B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/10Efficient use of energy, e.g. using compressed air or pressurized fluid as energy carrier
    • Y02P80/15On-site combined power, heat or cool generation or distribution, e.g. combined heat and power [CHP] supply

Landscapes

  • Resistance Heating (AREA)

Abstract

PROBLEM TO BE SOLVED: To surely prevent fine powder and the like generated by frictional contact of a heating element and porous bodies, from being included in superheated steam without degrading heat efficiency, startability, controllability and responsiveness of a superheated steam generating device.SOLUTION: A superheated steam generating device supplies water (W) to hollow sections (7) of porous bodies by capillary action of porous bodies (40, 41). The porous bodies are composed of the first porous body (40) absorbing water, and the second porous body (41) disposed inside of the first porous body. The superheated steam generating device evaporates and superheats the water at pore outlet sections of the porous bodies by a heating element (42) kept into contact with an inner wall surface (46) of the hollow section, to generate superheated steam (S). The second porous body has spalling resistance and heat conductivity higher than those of the first porous body.

Description

本発明は、過熱水蒸気発生装置及び過熱水蒸気発生方法に関するものであり、より詳細には、多孔質体の毛管給水作用と発熱体の加熱作用とを用いて極めて短時間に過熱水蒸気を発生させることができる過熱水蒸気発生装置及び過熱水蒸気発生方法に関するものである。   The present invention relates to a superheated steam generator and a superheated steam generation method, and more specifically, to generate superheated steam in a very short time using a capillary water supply action of a porous body and a heating action of a heating element. The present invention relates to a superheated steam generator and a superheated steam generation method.

飽和水蒸気温度以上に加熱された過熱水蒸気が各種プラントのプロセスにおいて工業的に使用され、或いは、木材、食品、医療機材等の乾燥、加過熱、殺菌等の用途に使用されている。近年、このような過熱水蒸気を利用した家庭用調理器等が市場に普及しつつあり、過熱水蒸気の用途は、近年殊に拡大している。この種の家庭用調理器等では、水槽内の水に電熱ヒータを浸漬して水槽の水を加熱し、水の気化によって発生した水蒸気を再加熱することによって過熱水蒸気を発生させている。例えば、特開2004-186103号公報(特許文献1)には、水蒸気生成ヒータ及び水蒸気過熱ヒータを備えた調理器用の水蒸気発生装置が開示されている。この方式の装置では、水を気化して水蒸気を生成する水蒸気発生工程と、水蒸気を過熱する水蒸気過熱工程とからなる二段階の工程を段階的に実行する比較的複雑な装置構成が採用される。しかし、このような方法で過熱水蒸気を発生させる場合、装置構造が大型化するとともに、装置の起動から水蒸気発生までの予工程にかなりの時間が必要となる。このため、簡易な装置又は方法で迅速に過熱水蒸気を発生させることができる装置の開発が要望されている。   Superheated steam heated to a temperature equal to or higher than the saturated steam temperature is used industrially in various plant processes, or is used for drying, heating, sterilization, and the like of wood, food, medical equipment, and the like. In recent years, household cooking appliances and the like using such superheated steam are spreading in the market, and the use of superheated steam has been especially expanded in recent years. In this kind of household cooking appliances, the superheated steam is generated by immersing an electric heater in the water in the water tank to heat the water in the water tank, and reheating the water vapor generated by the vaporization of the water. For example, Japanese Unexamined Patent Application Publication No. 2004-186103 (Patent Document 1) discloses a steam generator for a cooker provided with a steam generating heater and a steam superheater. In this type of apparatus, a relatively complicated apparatus configuration is adopted in which a two-stage process consisting of a water vapor generation process for vaporizing water to generate water vapor and a water vapor superheating process for superheating water vapor is executed step by step. . However, when superheated steam is generated by such a method, the structure of the apparatus increases in size, and considerable time is required for the pre-process from the start of the apparatus to the generation of water vapor. For this reason, development of the apparatus which can generate superheated steam quickly with a simple apparatus or method is desired.

本発明者等は、複雑な装置構成を採用することなく、過熱水蒸気を迅速に発生させることができ、しかも、制御性及び応答性に優れた過熱水蒸気発生装置及び過熱水蒸気発生方法を開発し、特願2007-15920号(特開2009-248042号公報(特許文献2))において提案している。   The present inventors have developed a superheated steam generator and a superheated steam generation method that can quickly generate superheated steam without adopting a complicated apparatus configuration, and that are excellent in controllability and responsiveness. This is proposed in Japanese Patent Application No. 2007-15920 (Japanese Patent Laid-Open No. 2009-248042 (Patent Document 2)).

図11及び図12は、特許文献2に記載された過熱水蒸気発生装置の構成を示す概略斜視図及び縦断面図である。   11 and 12 are a schematic perspective view and a longitudinal sectional view showing a configuration of the superheated steam generator described in Patent Document 2. FIG.

過熱水蒸気発生装置Aは、多孔質体B、液槽C、過熱水蒸気送出管D及びコイル状発熱体Eを有する。発熱体Eは多孔質体Bの中空部Nに配置される。中空部Nは、円形断面の水蒸気流路を構成する。過熱水蒸気送出管Dの上流端が中空部Nの出口開口部に接続される。過熱水蒸気送出管Dの下流端は、外部装置(図示せず)に接続され、或いは、外部装置の内部領域に連通する。コイル状ニクロム線又はカンタル線等の電熱線からなる発熱体Eには、リード線Fが接続される。電圧計及び電流計を含む電気回路がリード線Fの端子に接続される。電気回路は交流電源に接続される。水質浄化装置Gが液槽Cと関連して過熱水蒸気発生装置Aに設けられる。給水管Jが水質浄化装置Gの流入口に接続され、補給水供給管Kが水質浄化装置Gの流出口に接続される。   The superheated steam generator A has a porous body B, a liquid tank C, a superheated steam delivery pipe D, and a coiled heating element E. The heating element E is disposed in the hollow portion N of the porous body B. The hollow portion N constitutes a water vapor channel having a circular cross section. The upstream end of the superheated steam delivery pipe D is connected to the outlet opening of the hollow part N. The downstream end of the superheated steam delivery pipe D is connected to an external device (not shown) or communicates with an internal region of the external device. A lead wire F is connected to a heating element E made of a heating wire such as a coiled nichrome wire or a Kanthal wire. An electric circuit including a voltmeter and an ammeter is connected to the terminal of the lead wire F. The electrical circuit is connected to an AC power source. A water purification device G is provided in the superheated steam generator A in association with the liquid tank C. The water supply pipe J is connected to the inlet of the water purification device G, and the makeup water supply pipe K is connected to the outlet of the water purification device G.

水質浄化装置Gは、浄化した水を液槽C内に供給する。多孔質体Bは液槽Cの液浴に少なくとも部分的に浸漬される。液浴の補給水Wは、多孔質体Bの毛細管現象によって多孔質体Bに吸水され、多孔質体B内を発熱体Eに向かって内方に流動する。発熱体Eに通電すると、発熱体Eの表面温度は500℃以上の高温に加熱され、中空部Nの内周面細孔部に形成されるメニスカスの液膜部において急峻な水の蒸発が生じる。多孔質体Bとして、比較的低い熱伝導率の素材、例えば、耐火断熱レンガを採用することにより、多孔質体Bの放熱が抑制され、発熱体Eの発熱は、集中的且つ効果的に水を気化させるので、通電開始後に水の気化・過熱が開始するまでの時間を大幅に短縮できる。この構成の過熱水蒸気発生装置の試作機は、300〜400℃の過熱水蒸気を通電開始後の約10秒経過時に発生させることが既に確認されており、従って、上記構成の過熱水蒸気発生装置によれば、極めて短時間且つ効率的に過熱水蒸気を生成することができる。   The water purification device G supplies purified water into the liquid tank C. The porous body B is at least partially immersed in the liquid bath of the liquid tank C. The replenishing water W of the liquid bath is absorbed by the porous body B due to the capillary phenomenon of the porous body B, and flows inward toward the heating element E in the porous body B. When the heating element E is energized, the surface temperature of the heating element E is heated to a high temperature of 500 ° C. or higher, and steep water evaporation occurs in the liquid film portion of the meniscus formed in the inner peripheral surface pore portion of the hollow portion N. . By adopting a material having a relatively low thermal conductivity as the porous body B, for example, a refractory heat-insulating brick, the heat release of the porous body B is suppressed, and the heat generation of the heating element E is concentrated and effective. Since the gas is vaporized, the time from the start of energization to the start of vaporization and overheating of water can be greatly reduced. The prototype of the superheated steam generator having this configuration has already been confirmed to generate superheated steam at 300 to 400 ° C. when about 10 seconds have elapsed after the start of energization. Thus, superheated steam can be generated in an extremely short time and efficiently.

特開2004-186103号公報JP 2004-186103 A 特開2009-248042号公報JP 2009-248042

このように多孔質体を用いた過熱水蒸気発生装置においては、断熱性能が劣り、従って、高い熱伝導率を有する緻密な組織の多孔質体を用いた場合、発熱体が発熱した比較的多量の熱が多孔質体の外側に放熱してしまうので、発熱体は、水を効果的に気化・過熱し難く、従って、装置の熱効率、起動性、制御性及び応答性を所望の如く確保し難い。このため、このような過熱水蒸気発生装置では、多孔質体の毛細管作用を確保するのみならず、多孔質体の断熱性能(従って、低い熱伝導率)を確保することが求められる。しかしながら、十分な毛細管作用を発揮し、しかも、熱伝導率が低い多孔質体は、一般に硬度が低く、或いは、表面が比較的脆弱な性質を有するので、耐スポーリング性能(耐剥離性能)が一般に劣る。   Thus, in the superheated steam generator using the porous body, the heat insulating performance is inferior. Therefore, when a porous body having a dense structure having high thermal conductivity is used, a relatively large amount of heat generated by the heating element is generated. Since heat is dissipated to the outside of the porous body, the heating element is difficult to effectively vaporize and overheat water, and therefore it is difficult to ensure the thermal efficiency, startability, controllability and responsiveness of the device as desired. . For this reason, in such a superheated steam generator, it is required not only to ensure the capillary action of the porous body, but also to ensure the heat insulation performance (and hence low thermal conductivity) of the porous body. However, a porous body that exhibits a sufficient capillary action and has a low thermal conductivity generally has a low hardness or a relatively fragile surface, and therefore has a spalling resistance (peeling resistance). Generally inferior.

これに対し、多孔質体に接触する発熱体は熱膨張・収縮挙動を繰り返するので、多孔質体の表面に対して繰り返し相対変位する。発熱体の外面は、このような相対変位により、多孔質体の中空部内壁面を擦過し、この結果、中空部内壁面の多孔質材料は、発熱体と中空部内壁面との摩擦接触により削られる状況が生じ易い。発熱体によって削られた微細な多孔質材料の粒体又は粉体が、過熱水蒸気とともに過熱水蒸気送出管に送出されると、多孔質体の微粉末等を不純物として含む過熱水蒸気が外部装置等に供給される結果を招くので、殊に食品、医療機材等の加熱、殺菌等の用途や、精密機械部品又は電子部品等の乾燥の用途においては、上記構成の過熱水蒸気発生装置を好適に使用し難い事情がある。   On the other hand, the heating element in contact with the porous body repeats the thermal expansion / contraction behavior, and therefore repeatedly displaces relative to the porous body surface. The outer surface of the heating element rubs the inner wall surface of the porous body due to such relative displacement, and as a result, the porous material on the inner wall surface of the hollow part is scraped by frictional contact between the heating element and the inner wall surface of the hollow part. Is likely to occur. When the fine porous material particles or powder cut by the heating element are sent to the superheated steam delivery pipe together with the superheated steam, the superheated steam containing the fine powder of the porous body as an impurity is transferred to the external device or the like. In particular, the superheated steam generator with the above configuration is preferably used for heating and sterilizing foods, medical equipment, etc., and for drying precision machine parts and electronic parts. There are difficult circumstances.

本発明は、このような事情に鑑みてなされたものであり、その目的とするところは、多孔質体の中空部に内装した発熱体によって過熱水蒸気を生成する過熱水蒸気発生装置及び過熱水蒸気発生方法において、装置の熱効率、起動性、制御性及び応答性を損なうことなく、発熱体と多孔質体との摩擦接触により発生し得る微小粉体等が過熱水蒸気に含まれるのを確実に防止することができる過熱水蒸気発生装置及び過熱水蒸気発生方法を提供することにある。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a superheated steam generator and a superheated steam generation method for generating superheated steam by a heating element built in a hollow portion of a porous body. Therefore, it is possible to reliably prevent the superheated steam from containing fine powder that can be generated by frictional contact between the heating element and the porous body without impairing the thermal efficiency, startability, controllability and responsiveness of the apparatus. The present invention provides a superheated steam generator and a superheated steam generation method.

本発明は、上記目的を達成すべく、水蒸気生成用の水を毛細管作用によって外側面から吸水して、中空部の内壁面に供給する多孔質体を有し、前記中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる発熱体によって前記多孔質体の細孔内で前記水を気化し且つ過熱して過熱水蒸気を発生させる過熱水蒸気発生装置において、
前記多孔質体は、毛細管作用によって外側面から前記水を吸水する第1多孔質体と、該第1多孔質体の内側に配置され且つ前記中空部を形成する第2多孔質体とを有し、
前記第2多孔質体は、前記第1多孔質体の耐スポーリング性及び熱伝導率よりも高い又は大きい耐スポーリング性及び熱伝導率を有し
前記第2多孔質体は、前記第1多孔質体が吸水した前記水が多孔質体の毛細管作用によって前記中空部に向けて供給されるように、前記第1多孔質体の内側に配置されることを特徴とする過熱水蒸気発生装置を提供する。
In order to achieve the above object, the present invention has a porous body that absorbs water for water vapor generation from the outer surface by capillary action and supplies the water to the inner wall surface of the hollow portion, and contacts the inner wall surface of the hollow portion. In the superheated steam generator for generating superheated steam by evaporating and superheating the water in the pores of the porous body by a heating element that extends near or close to the inner wall surface,
The porous body has a first porous body that absorbs the water from the outer surface by capillary action, and a second porous body that is disposed inside the first porous body and forms the hollow portion. And
The second porous body has a spalling resistance and thermal conductivity that is higher or larger than the spalling resistance and thermal conductivity of the first porous body. A superheated steam generator, which is disposed inside the first porous body so that the water absorbed by the porous body is supplied toward the hollow portion by capillary action of the porous body. provide.

本発明は又、水蒸気生成用の水を多孔質体の毛細管作用によって吸水し且つ前記多孔質体の中空部の内壁面に供給し、該中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる発熱体によって前記多孔質体の細孔内で前記水を気化し且つ過熱して過熱水蒸気を発生させる過熱水蒸気発生方法において、
毛細管作用により外側面から前記水を吸水する前記第1多孔質体と、該第1多孔質体の耐スポーリング性及び熱伝導率よりも高い又は大きい耐スポーリング性及び熱伝導率を有し且つ前記中空部を形成する第2多孔質体とを用い、該第2多孔質体の外側に前記第1多孔質体を配置して、前記第1多孔質体が吸水した水を多孔質体の毛細管作用により前記中空部に向けて供給し、
前記発熱体の熱によって多孔質体の細孔内で前記水を気化し且つ過熱して過熱水蒸気を発生させることを特徴とする過熱水蒸気発生方法を提供する。
The present invention also absorbs water for water vapor generation by the capillary action of the porous body and supplies it to the inner wall surface of the hollow portion of the porous body so as to be in contact with or close to the inner wall surface of the hollow portion. In the superheated steam generation method in which the water is vaporized and heated in the pores of the porous body by a heating element extending along the wall surface to generate superheated steam,
The first porous body that absorbs the water from the outer surface by capillary action, and has a spalling resistance and thermal conductivity that is higher or greater than the spalling resistance and thermal conductivity of the first porous body. And the second porous body that forms the hollow portion, the first porous body is disposed outside the second porous body, and the water absorbed by the first porous body is porous. To the hollow part by the capillary action of
There is provided a method for generating superheated steam, characterized in that the heat of the heating element vaporizes and superheats the water in the pores of a porous body to generate superheated steam.

本発明は、耐スポーリング性及び熱伝導率が異なる異種多孔質体(第1及び第2多孔質体)を組み合わせてなる複合構造、或いは、二重管又は多重管構造の多孔質体によって過熱水蒸気発生装置の多孔質体を構成し、相対的に耐スポーリング性が優れ且つ相対的に熱伝導率が高い第2多孔質体(内側の多孔質体)によって上記中空部を形成するとともに、相対的に耐スポーリング性及び熱伝導率が低い第1多孔質体(外側の多孔質体)によって吸水及び断熱を行い、これにより、多孔質体全体の所望の吸水作用及び断熱性を確保するとともに、発熱体と多孔質体との摩擦接触により粉体等が発生するのを防止しようとしたものである。   In the present invention, superheat is performed by a composite structure formed by combining different porous bodies (first and second porous bodies) having different spalling resistance and thermal conductivity, or a porous body having a double tube structure or a multi-tube structure. Constructing a porous body of a water vapor generating device, forming the hollow portion by a second porous body (inner porous body) having relatively excellent spalling resistance and relatively high thermal conductivity, Water absorption and heat insulation are performed by the first porous body (outer porous body) having relatively low spalling resistance and thermal conductivity, thereby ensuring the desired water absorption action and heat insulation of the entire porous body. At the same time, it is intended to prevent generation of powder or the like due to frictional contact between the heating element and the porous body.

即ち、本発明の上記構成によれば、各多孔質体(第1及び第2多孔質体)の毛細管作用を利用して中空部の内壁面に水蒸気生成用の水を供給することができ、しかも、内側の多孔質体(第2多孔質体)として、繰り返し熱衝撃性に強い物性の多孔質体を用いることにより、中空部内壁面の耐スポーリング性能(耐剥離性能)を向上し、発熱体と中空部内壁面との摩擦接触によって微細な多孔質材料の粒体又は粉体が中空部に発生するのを確実に防止することができる。また、第2多孔質体は、熱伝導率が相対的に低い第1多孔質体の内側に配置されるので、多孔質体全体の断熱性能を確保することができる。本発明者の実験によれば、このような複合構造の多孔質体を用いた過熱水蒸気発生装置は、単一構造の多孔質体を用いた過熱水蒸気発生装置と実質的に同一又は同等の熱効率、起動性、制御性及び応答性を発揮することができる。   That is, according to the above-described configuration of the present invention, water for generating water vapor can be supplied to the inner wall surface of the hollow portion using the capillary action of each porous body (first and second porous bodies). In addition, the use of a porous material having physical properties that are highly resistant to repeated thermal shocks as the inner porous material (second porous material) improves the spalling resistance (peeling resistance) of the inner wall surface of the hollow portion, and generates heat. It is possible to reliably prevent generation of fine porous material particles or powder in the hollow portion by frictional contact between the body and the inner wall surface of the hollow portion. Moreover, since the 2nd porous body is arrange | positioned inside the 1st porous body with relatively low heat conductivity, the heat insulation performance of the whole porous body can be ensured. According to the inventor's experiment, the superheated steam generator using the porous body having such a composite structure has substantially the same or equivalent thermal efficiency as the superheated steam generator using the porous body having a single structure. In addition, startability, controllability and responsiveness can be exhibited.

また、本発明の概念は、過熱水蒸気の生成のみならず、多孔質体の毛細管現象によって吸い上げ可能な液体の気化及び過熱に適用し得る構成のものである。使用可能な液体として、各種液体燃料が挙げられる。   The concept of the present invention is applicable not only to the generation of superheated steam but also to the vaporization and superheating of a liquid that can be sucked up by the capillary action of a porous body. Examples of usable liquids include various liquid fuels.

このような観点より、本発明は、蒸気生成用の液体を毛細管作用によって外側面から吸液して、中空部の内壁面に供給する多孔質体を有し、前記中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる発熱体によって前記多孔質体の細孔内で前記液体を気化し且つ過熱して過熱蒸気を発生させる過熱蒸気発生装置において、
前記多孔質体は、毛細管作用によって外側面から前記液体を吸液する第1多孔質体と、該第1多孔質体の内側に配置され且つ前記中空部を形成する第2多孔質体とを有し、
前記第2多孔質体は、前記第1多孔質体の耐スポーリング性及び熱伝導率よりも高い又は大きい耐スポーリング性及び熱伝導率を有し
前記第2多孔質体は、前記第1多孔質体が吸液した前記液体が多孔質体の毛細管作用によって前記中空部に向けて供給されるように、前記第1多孔質体の内側に配置されることを特徴とする過熱蒸気発生装置を提供する。
From such a viewpoint, the present invention has a porous body that absorbs liquid for generating steam from the outer surface by capillary action and supplies the liquid to the inner wall surface of the hollow portion, and contacts the inner wall surface of the hollow portion. In the superheated steam generator for generating superheated steam by vaporizing and superheating the liquid in the pores of the porous body by a heating element extending along or close to the inner wall surface,
The porous body includes a first porous body that absorbs the liquid from the outer surface by capillary action, and a second porous body that is disposed inside the first porous body and forms the hollow portion. Have
The second porous body has a spalling resistance and thermal conductivity that is higher or larger than the spalling resistance and thermal conductivity of the first porous body. The superheated steam generator is disposed inside the first porous body so that the liquid absorbed by the porous body is supplied toward the hollow portion by capillary action of the porous body. I will provide a.

また、本発明は、蒸気生成用の液体を多孔質体の毛細管作用によって吸液し且つ前記多孔質体の中空部の内壁面に供給し、該中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる発熱体によって前記多孔質体の細孔内で前記液体を気化し且つ過熱して過熱蒸気を発生させる過熱蒸気発生方法において、
毛細管作用により外側面から前記液体を吸水する前記第1多孔質体と、該第1多孔質体の耐スポーリング性及び熱伝導率よりも高い又は大きい耐スポーリング性及び熱伝導率を有し且つ前記中空部を形成する第2多孔質体とを用い、該第2多孔質体の外側に前記第1多孔質体を配置して、前記第1多孔質体が吸液した液体を多孔質体の毛細管作用により前記中空部に向けて供給し、
前記発熱体の熱によって多孔質体の細孔内で前記液体を気化し且つ過熱して過熱水蒸気を発生させることを特徴とする過熱蒸気発生方法を提供する。
Further, the present invention absorbs liquid for generating steam by the capillary action of the porous body and supplies it to the inner wall surface of the hollow portion of the porous body, and is in contact with or close to the inner wall surface of the hollow portion. In the superheated steam generation method in which the liquid is vaporized in the pores of the porous body by the heating element extending along the inner wall surface and is superheated to generate superheated steam.
The first porous body that absorbs the liquid from the outer surface by capillary action, and has a spalling resistance and thermal conductivity that is higher or greater than the spalling resistance and thermal conductivity of the first porous body. And the second porous body that forms the hollow portion, the first porous body is disposed outside the second porous body, and the liquid absorbed by the first porous body is porous. Supply toward the hollow part by the capillary action of the body,
There is provided a method for generating superheated steam, characterized in that the liquid is vaporized and superheated in the pores of a porous body by the heat of the heating element to generate superheated steam.

本発明の過熱水蒸気発生装置及び過熱水蒸気発生方法によれば、多孔質体の中空部に内装した発熱体によって過熱水蒸気を生成する過熱水蒸気発生装置及び過熱水蒸気発生方法において、装置の熱効率、起動性、制御性及び応答性を損なうことなく、発熱体と多孔質体との摩擦接触により微小粉体等が発生するのを防止し、これにより、微小粉体等が過熱水蒸気に含まれるのを確実に防止することができる。   According to the superheated steam generator and superheated steam generation method of the present invention, in the superheated steam generator and superheated steam generation method for generating superheated steam by the heating element built in the hollow portion of the porous body, the thermal efficiency and startability of the apparatus , Preventing loss of fine powder due to frictional contact between the heating element and the porous body without impairing controllability and responsiveness, thereby ensuring that the fine powder is contained in superheated steam. Can be prevented.

また、本発明の過熱蒸気発生装置及び過熱蒸気発生方法によれば、多孔質体の中空部に内装した発熱体によって過熱蒸気を生成する過熱蒸気発生装置及び過熱蒸気発生方法において、装置の熱効率、起動性、制御性及び応答性を損なうことなく、発熱体と多孔質体との摩擦接触により微小粉体等が発生するのを防止し、これにより、微小粉体等が過熱蒸気に含まれるのを確実に防止することができる。   Further, according to the superheated steam generator and superheated steam generation method of the present invention, in the superheated steam generator and superheated steam generating method for generating superheated steam by the heating element built in the hollow portion of the porous body, the thermal efficiency of the apparatus, Without impairing the startability, controllability and responsiveness, it prevents the generation of fine powder due to frictional contact between the heating element and the porous body, so that the fine powder is included in the superheated steam. Can be reliably prevented.

図1は、本発明を適用した過熱水蒸気発生装置の好適な実施例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing a preferred embodiment of a superheated steam generator to which the present invention is applied. 図2は、図1のI−I線における断面図である。2 is a cross-sectional view taken along the line II of FIG. 図3は、図1及び図2に示す過熱水蒸気発生装置の構成を示す斜視図である。FIG. 3 is a perspective view showing a configuration of the superheated steam generator shown in FIGS. 1 and 2. 図4は、気化・過熱装置の構成を示す斜視図である。FIG. 4 is a perspective view showing the configuration of the vaporization / superheater. 図5は、コイル状発熱体と多孔質体との関係を示す断面図である。FIG. 5 is a cross-sectional view showing the relationship between the coiled heating element and the porous body. 図6は、図5に示す"a"部分の拡大図である。FIG. 6 is an enlarged view of a portion “a” shown in FIG. 図7(A)は、コイル状発熱体と中空部内壁面との接触部を示す拡大断面図であり、図7(B)及び図7(C)は、図7(A)の部分拡大断面図である。7A is an enlarged cross-sectional view showing a contact portion between the coiled heating element and the inner wall surface of the hollow portion, and FIGS. 7B and 7C are partial enlarged cross-sectional views of FIG. 7A. It is. 図8は、図7(B)に示す"b"部分の拡大図である。FIG. 8 is an enlarged view of a “b” portion shown in FIG. 図9は、本発明の実施例に係る過熱水蒸気発生装置を備えた調理器の構成を示す概略断面図である。FIG. 9: is a schematic sectional drawing which shows the structure of the cooking appliance provided with the superheated steam generator which concerns on the Example of this invention. 図10(A)、図10(B)及び図10(C)は、図9に示す過熱水蒸気発生装置を構成する気化・過熱装置の構造を示す平面図、正面図及び斜視図である。10A, 10B, and 10C are a plan view, a front view, and a perspective view showing the structure of the vaporization / superheater that constitutes the superheated steam generator shown in FIG. 図11は、従来技術に係る過熱水蒸気発生装置の構成を示す斜視図である。FIG. 11 is a perspective view showing a configuration of a superheated steam generator according to the prior art. 図12は、図11に示す過熱水蒸気発生装置の縦断面図である。FIG. 12 is a longitudinal sectional view of the superheated steam generator shown in FIG.

本発明の好適な実施形態によれば、上記第2多孔質体の外側面は、第1多孔質体が吸水又は吸液した水又は液体を第2多孔質体の毛細管作用によって上記内壁面に供給するように、第1多孔質体の内側面に接触し又は近接しており、上記中空部に生成した過熱水蒸気又は過熱蒸気を中空部から多孔質体外に送出する過熱水蒸気送出手段又は過熱蒸気送出手段が、過熱水蒸気発生装置又は過熱蒸気発生装置に設けられる。   According to a preferred embodiment of the present invention, the outer surface of the second porous body has water or liquid absorbed or absorbed by the first porous body on the inner wall surface by the capillary action of the second porous body. Superheated steam delivery means or superheated steam that is in contact with or close to the inner side surface of the first porous body and feeds the superheated steam or superheated steam generated in the hollow portion from the hollow portion to the outside of the porous body so as to be supplied The delivery means is provided in the superheated steam generator or the superheated steam generator.

好ましくは、上記発熱体は、間隔を隔てて上記中空部の内壁面に接触し又は近接する電熱線からなり、電熱線近傍の内壁面には、電熱線の熱によって表面が乾燥した乾燥帯域が間隔を隔てて形成されるとともに、湿潤な内壁面帯域が、乾燥帯域の間に形成される。更に好ましくは、上記中空部は、円形断面を有し、上記発熱体は、中空部の内周面に接触し又は近接し且つ軸芯を中空部の軸線方向に配向したコイル状電熱体からなる。好ましくは、内壁面と電熱体との接触部分の熱流束は、1MW/m2以上に設定される。 Preferably, the heating element is composed of a heating wire that is in contact with or close to the inner wall surface of the hollow portion at an interval, and the inner wall surface near the heating wire has a drying zone whose surface is dried by the heat of the heating wire. A wet inner wall zone is formed between the drying zones while being spaced apart. More preferably, the hollow portion has a circular cross section, and the heating element is made of a coil-shaped electric heater that is in contact with or close to the inner peripheral surface of the hollow portion and whose axis is oriented in the axial direction of the hollow portion. . Preferably, the heat flux at the contact portion between the inner wall surface and the electric heater is set to 1 MW / m 2 or more.

本発明の更に好適な実施形態によれば、上記第2多孔質体は、上記第1多孔質体の穴又は中空部内に挿入又は嵌入されたアルミナ質、ムライト質又は炭化珪素質のセラミックチューブからなる。好ましくは、第1多孔質体は、0.5W/m・K以下の熱伝導率、10x10-6/℃以上の線膨張率、そして、50%を超える気孔率(空隙率)を有する耐火断熱レンガ等の多孔質体からなり、第2多孔質体は、第1多孔質体に比べて熱伝導率が大きく、線膨張率が小さく、そして、気孔率が小さい(例えば、気孔率50%以下の)比較的高強度のセラミックチューブからなる。例えば、第2多孔質体を構成するセラミックチューブは、第1多孔質体を構成する耐火断熱レンガに比べて10倍以上の熱伝導率及び30倍以上の圧縮強度を有する。なお、耐スポーリング性能は、一般に、熱伝導率が大きいほど高く、線膨張率が小さいほど高く、気孔率が小さいほど高く、そして、圧縮強度が大きいほど高い。耐火断熱レンガの耐スポーリング性能の試験方法は、「JIS R 2657 耐火煉瓦及び耐火断熱れんがのスポーリング試験方法」に規定されている。 According to a further preferred embodiment of the present invention, the second porous body is made of an alumina, mullite, or silicon carbide ceramic tube inserted or fitted into a hole or hollow portion of the first porous body. Become. Preferably, the first porous body has a heat conductivity of 0.5 W / m · K or less, a linear expansion coefficient of 10 × 10 −6 / ° C. or more, and a porosity (porosity) of more than 50%. The porous body is made of a porous material such as brick, and the second porous body has a higher thermal conductivity, a lower linear expansion coefficient, and a lower porosity (for example, a porosity of 50% or less). Of) a relatively high strength ceramic tube. For example, the ceramic tube constituting the second porous body has a thermal conductivity of 10 times or more and a compressive strength of 30 times or more compared to the refractory heat-insulating brick constituting the first porous body. Note that the spalling resistance is generally higher as the thermal conductivity is higher, higher as the linear expansion coefficient is lower, higher as the porosity is lower, and higher as the compressive strength is higher. The test method for the spalling resistance of the refractory heat insulating brick is defined in “JIS R 2657 Spalling Test Method for Refractory Brick and Refractory Insulating Brick”.

好ましくは、第2多孔質体は、第1多孔質体の平均細孔径及び/又はモード径よりも小さい平均細孔径及び/又はモード径を有するとともに、第2多孔質体の細孔の最小径が第1多孔質体の細孔の最小径よりも小さく、第2多孔質体の細孔の最大径が第1多孔質体の細孔の最小径よりも大きく、しかも、第2多孔質体の細孔の最大径が第1多孔質体の細孔の最大径より小さい細孔径分布を有する。例えば、第1多孔質体は、5μm以上の平均細孔径を有し、第2多孔質体は、5μm未満の平均細孔径を有する。   Preferably, the second porous body has an average pore diameter and / or mode diameter smaller than the average pore diameter and / or mode diameter of the first porous body, and the minimum diameter of the pores of the second porous body. Is smaller than the minimum diameter of the pores of the first porous body, the maximum diameter of the pores of the second porous body is larger than the minimum diameter of the pores of the first porous body, and the second porous body Has a pore size distribution smaller than the maximum pore size of the first porous body. For example, the first porous body has an average pore diameter of 5 μm or more, and the second porous body has an average pore diameter of less than 5 μm.

本発明の或る好適な実施形態において、上記第1多孔質体は、陽イオン交換能を有し且つ耐熱性を有する多孔質の無機イオン交換体を少なくとも部分的に含む。第1多孔質体を少なくとも部分的に構成する無機イオン交換体は、第1多孔質体が吸水した水に含まれるスケール成分を除去する。無機イオン交換体のスケール除去作用により浄化された水は、上記第2多孔質体の毛細管作用によって中空部の内壁面に供給される。無機イオン交換体として、天然又は合成のゼオライトを主成分とする多孔質の成形体を好適に使用し得る。このような構成によれば、第2多孔質体の細孔出口部におけるスケール析出や、これに伴う細孔の閉塞を防止し、第2多孔質体の交換頻度を低減することができる。   In a preferred embodiment of the present invention, the first porous body at least partially includes a porous inorganic ion exchanger having a cation exchange capacity and heat resistance. The inorganic ion exchanger constituting at least part of the first porous body removes scale components contained in the water absorbed by the first porous body. The water purified by the scale removal action of the inorganic ion exchanger is supplied to the inner wall surface of the hollow portion by the capillary action of the second porous body. As the inorganic ion exchanger, a porous molded body mainly composed of natural or synthetic zeolite can be preferably used. According to such a configuration, it is possible to prevent scale deposition at the pore outlet portion of the second porous body and blockage of the pores associated therewith, and reduce the replacement frequency of the second porous body.

図1は、本発明を適用した過熱水蒸気発生装置の好適な実施例を示す縦断面図であり、図2は、図1のI−I線における断面図である。また、図3は、過熱水蒸気発生装置の構成を示す斜視図であり、図4は、気化・過熱装置の構成を示す斜視図である。  FIG. 1 is a longitudinal sectional view showing a preferred embodiment of a superheated steam generator to which the present invention is applied, and FIG. 2 is a sectional view taken along the line II of FIG. FIG. 3 is a perspective view showing the configuration of the superheated steam generator, and FIG. 4 is a perspective view showing the configuration of the vaporization / superheater.

過熱水蒸気発生装置1は、金属製又はプラッチック製のケーシング2と、ケーシング2の端壁21から外方に延びる過熱水蒸気給送管3と、ケーシング2内に収容された気化・過熱装置4と、気化・過熱装置4に補給水を供給するための給水装置5とから構成される。   The superheated steam generator 1 includes a casing 2 made of metal or latchac, a superheated steam feed pipe 3 extending outward from the end wall 21 of the casing 2, a vaporization / superheater 4 accommodated in the casing 2, It comprises a water supply device 5 for supplying makeup water to the vaporization / superheater 4.

ケーシング2は、全体的に直方体形状を有する函体又は容器からなり、前後の端壁21、22、頂壁23、底壁24および左右の側壁25、26を有する。ケーシング2の端壁21には、一対の円形開口部20が形成される。開口部20は、例えば、10mmの直径を有する。ケーシング2の頂壁23には、開口部28を備えた隆起部27が形成される。開口部28には、給水装置5を構成する樹脂製の給水用ボトル51が挿入される。ケーシング2は、例えば、幅100mm×高さ60mm×長さ140mmの外形寸法を有する(高さは、隆起部27の高さを除く)。なお、ケーシング2は、必ずしも直方体の形態、或いは、直方体を組合わせた形態を有する筐体又は容器でなくとも良く、気化・過熱装置4を収容可能な任意の形態の筐体又は容器をケーシング2として使用し得る。   The casing 2 is formed of a box or a container having a rectangular parallelepiped shape as a whole, and has front and rear end walls 21, 22, a top wall 23, a bottom wall 24, and left and right side walls 25, 26. A pair of circular openings 20 are formed in the end wall 21 of the casing 2. The opening 20 has a diameter of 10 mm, for example. A raised portion 27 having an opening 28 is formed on the top wall 23 of the casing 2. A resin water supply bottle 51 constituting the water supply device 5 is inserted into the opening 28. The casing 2 has, for example, an external dimension of width 100 mm × height 60 mm × length 140 mm (the height excludes the height of the raised portion 27). Note that the casing 2 does not necessarily have to be a rectangular parallelepiped or a casing or container having a combination of rectangular parallelepipeds. Can be used as

過熱水蒸気給送管3は、全体的に下方に湾曲した真円形断面の金属製管体からなる。過熱水蒸気給送管3の上流端31は、端壁21と接触することなくケーシング2の円形開口部20を貫通し、後述する内管41の下流側(吐出側)端部に接続される。過熱水蒸気給送管3の下流端32は、調理器等の外部装置(図示せず)に接続され、或いは、外部装置の内部領域に開放される。過熱水蒸気給送管3は、気化・過熱装置4が生成した過熱水蒸気Sを外部装置に送出する。   The superheated steam supply pipe 3 is made of a metal tube having a true circular cross section that is curved downward as a whole. The upstream end 31 of the superheated steam feed pipe 3 passes through the circular opening 20 of the casing 2 without contacting the end wall 21 and is connected to the downstream (discharge side) end of the inner pipe 41 described later. The downstream end 32 of the superheated steam feed pipe 3 is connected to an external device (not shown) such as a cooker, or is opened to an internal region of the external device. The superheated steam feed pipe 3 sends the superheated steam S generated by the vaporization / superheater 4 to an external device.

気化・過熱装置4は、ケーシング2内に配置された多孔質体40と、多孔質体40内に配置された多孔質の内管41と、内管41の管内領域に配置されたコイル状発熱体42とから構成される。多孔質体40及び内管41は、多数の連通空隙を有するセラミックス成形体からなり、耐熱性及び電気絶縁性を有する。なお、多孔質体40は、前述の第1多孔質体を構成し、内管41は、前述の第2多孔質体を構成する。   The vaporization / superheater 4 includes a porous body 40 disposed in the casing 2, a porous inner tube 41 disposed in the porous body 40, and a coil-shaped heat generation disposed in the inner region of the inner tube 41. And a body 42. The porous body 40 and the inner tube 41 are made of a ceramic molded body having a large number of communicating voids, and have heat resistance and electrical insulation. The porous body 40 constitutes the aforementioned first porous body, and the inner tube 41 constitutes the aforementioned second porous body.

多孔質体40は、例えば、幅90mm×高さ50mm×長さ90mmの寸法を有する。多孔質体40は、例えば、市販の耐火断熱レンガ(イソライト工業株式会社製品、型式B5、主成分:SiO2 55%、 Al2O3 41%、熱伝導率:0.33 [W/(m・K)])からなり、平均細孔径=9μm、モード径=90.6μm、空隙率=62.3%、嵩比重約0.8、圧縮強度約1.7MPaの諸物性を有する。一対の貫通穴43が多孔質体40に穿設される。貫通穴43は、全長に亘って均一な真円形断面を有し、貫通穴43の直径は、円形開口部20の直径よりも僅かに大さい直径を有する。貫通穴43の直径は、例えば、12.5mmに設定される。 The porous body 40 has dimensions of, for example, width 90 mm × height 50 mm × length 90 mm. The porous body 40 is, for example, a commercially available fire-resistant insulating brick (product of Isolite Industry Co., Ltd., model B5, main component: SiO 2 55%, Al 2 O 3 41%, thermal conductivity: 0.33 [W / (m K)]) and has various physical properties such as average pore diameter = 9 μm, mode diameter = 90.6 μm, porosity = 62.3%, bulk specific gravity of about 0.8, and compressive strength of about 1.7 MPa. A pair of through holes 43 are formed in the porous body 40. The through-hole 43 has a uniform true circular cross section over the entire length, and the diameter of the through-hole 43 is slightly larger than the diameter of the circular opening 20. The diameter of the through hole 43 is set to 12.5 mm, for example.

変形例として、陽イオン交換能を有し且つ耐熱性を有する多孔質の無機イオン交換体を多孔質体40として用い、或いは、このような多孔質の無機イオン交換体によって多孔質体40を部分的に構成しても良い。殊に、本発明においては、後述するように細孔径が比較的小さい緻密な多孔質体を内管41として用いるので、内管41に供給される水に含まれるスケール成分(カルシウム、マグネシウム等の化合物)を除去することは、スケール成分の析出によって内管41の細孔が閉塞するのを防止するとともに、内管41の寿命を延ばす上で有効な手段である。例えば、天然又は合成のゼオライトを主成分とする多孔質の成形体を多孔質体40として用い、多孔質体40の細孔を流通する水に含まれるスケール成分をイオン交換により除去し、これにより、内管41の細孔出口部におけるスケール析出と、これに伴う細孔の閉塞とを防止して、内管41の交換頻度を低減することができる。   As a modification, a porous inorganic ion exchanger having cation exchange capacity and heat resistance is used as the porous body 40, or the porous body 40 is partially formed by such a porous inorganic ion exchanger. You may comprise. In particular, in the present invention, as described later, a dense porous body having a relatively small pore diameter is used as the inner tube 41. Therefore, scale components (calcium, magnesium, etc.) contained in water supplied to the inner tube 41 are used. The removal of the compound) is an effective means for preventing the pores of the inner tube 41 from being blocked by the precipitation of the scale component and extending the life of the inner tube 41. For example, a porous molded body mainly composed of natural or synthetic zeolite is used as the porous body 40, and scale components contained in water flowing through the pores of the porous body 40 are removed by ion exchange. In addition, it is possible to prevent scale precipitation at the pore outlet portion of the inner tube 41 and blockage of the pores associated therewith, and reduce the replacement frequency of the inner tube 41.

図2に示すように、内管41は、全長に亘って均一な断面を有する円筒体からなる。内管41として、肉厚2mm、内径8.8mm、外径12.5mm、全長72mm、平均細孔径=3μmのアルミナ質セラミックチューブを好適に使用し得る。内管41は又、多孔質体40のモード径よりも小さいモード径を有する。なお、内管41の全細孔が多孔質体40の細孔よりも小さい細孔径を有すると、吸水時における水の流動抵抗が内管41において増大し、多孔質体40及び内管41の毛細管作用が低下する。このため、内管41は、内管41の細孔の最小径が多孔質体40の細孔の最小径よりも小さく、内管41の細孔の最大径が多孔質体40の細孔の最小径よりも大きく、しかも、内管41の細孔の最大径が多孔質体40の細孔の最大径より小さい細孔径分布を有する。   As shown in FIG. 2, the inner tube 41 is formed of a cylindrical body having a uniform cross section over the entire length. As the inner tube 41, an alumina ceramic tube having a wall thickness of 2 mm, an inner diameter of 8.8 mm, an outer diameter of 12.5 mm, a total length of 72 mm, and an average pore diameter of 3 μm can be suitably used. The inner tube 41 also has a mode diameter that is smaller than the mode diameter of the porous body 40. If all the pores of the inner tube 41 have a smaller pore diameter than the pores of the porous body 40, the flow resistance of water during water absorption increases in the inner tube 41, and the porous body 40 and the inner tube 41 Capillary action is reduced. Therefore, in the inner tube 41, the minimum diameter of the pores of the inner tube 41 is smaller than the minimum diameter of the pores of the porous body 40, and the maximum diameter of the pores of the inner tube 41 is smaller than the pores of the porous body 40. The pore diameter distribution is larger than the minimum diameter, and the maximum diameter of the pores of the inner tube 41 is smaller than the maximum diameter of the pores of the porous body 40.

内管41は、真円形断面の中空部7を有し、中空部7は、過熱水蒸気給送管3の管内領域と連通する。例えば、内管41を構成するアルミナ質セラミックチューブは、粒子(骨材)40〜45vol%、結合剤10〜15vol%、気孔30〜50vol%の容積比率を有し、熱膨張率7〜8(10-6/℃)、熱伝導率4〜5kcal/mhr℃(4.6〜5.8 [W/(m・K)])、抗張力(引張強度)150〜200kg/cm2(15〜20MPa)、抗折力(曲げ強度)300〜500kg/cm2(29〜49MPa)、抗圧力(圧縮強度)700〜1000kg/cm2(69〜98MPa)、嵩比重2.0〜2.4の諸物性を有する。内管41として、同等の平均細孔径、モード径及び物性を有するムライト質セラミックチューブ(但し、熱膨張率4〜5(10-6/℃)、嵩比重1.7〜2.0)、或いは、炭化珪素質セラミックチューブ(但し、熱膨張率4〜5(10-6/℃)、熱伝導度7〜8kcal/mhr℃、嵩比重1.6〜1.9)等を使用しても良い。このようなセラミックチューブは、多孔質体40の熱伝導率の10倍以上の熱伝導率を有し、多孔質体40の圧縮強度の40倍以上の圧縮強度を有する。内管41を構成するセラミックチューブとして、上水等の水処理用濾過材として市場で入手可能な円筒状濾過材を用いても良い。また、内管41として、透水性を有する砥石を用いることも可能である。 The inner tube 41 has a hollow portion 7 having a true circular cross section, and the hollow portion 7 communicates with a tube inner region of the superheated steam supply tube 3. For example, the alumina ceramic tube constituting the inner tube 41 has a volume ratio of particles (aggregate) 40 to 45 vol%, binder 10 to 15 vol%, pores 30 to 50 vol%, and thermal expansion coefficient 7 to 8 ( 10 −6 / ° C.), thermal conductivity 4 to 5 kcal / mhr ° C. (4.6 to 5.8 [W / (m · K)]), tensile strength (tensile strength) 150 to 200 kg / cm 2 (15 to 20 MPa), bending resistance It has various physical properties such as force (bending strength) 300 to 500 kg / cm 2 (29 to 49 MPa), coercive pressure (compression strength) 700 to 1000 kg / cm 2 (69 to 98 MPa), and bulk specific gravity 2.0 to 2.4. As the inner tube 41, a mullite ceramic tube having the same average pore diameter, mode diameter and physical properties (however, a coefficient of thermal expansion of 4 to 5 (10 −6 / ° C.), a bulk specific gravity of 1.7 to 2.0), or , Silicon carbide ceramic tubes (however, thermal expansion coefficient 4 to 5 (10 −6 / ° C.), thermal conductivity 7 to 8 kcal / mhr ° C., bulk specific gravity 1.6 to 1.9) may be used. . Such a ceramic tube has a thermal conductivity of 10 times or more that of the porous body 40 and a compressive strength of 40 times or more that of the porous body 40. As the ceramic tube constituting the inner pipe 41, a cylindrical filter medium available on the market as a filter for water treatment such as clean water may be used. Moreover, it is also possible to use a grindstone having water permeability as the inner tube 41.

図1に示すように、セラミック製プラグ44が、給水装置5の側から多孔質体40の貫通穴43内に挿入される。プラグ44は、給水装置5の側において中空部7内に嵌入し、中空部7の上流側開口端を閉塞する。他方、開口部20の側に位置する中空部7の下流側開口部は、過熱水蒸気給送管3の管内流路と連通する。内管41の外径は、開口部20の直径よりも大きく、内管41の端面45は、断熱材(図示せず)を介してケーシングの端壁21に保持される。   As shown in FIG. 1, the ceramic plug 44 is inserted into the through hole 43 of the porous body 40 from the water supply device 5 side. The plug 44 is fitted into the hollow portion 7 on the water supply device 5 side, and closes the upstream opening end of the hollow portion 7. On the other hand, the downstream opening of the hollow portion 7 located on the opening 20 side communicates with the in-pipe flow path of the superheated steam supply pipe 3. The outer diameter of the inner tube 41 is larger than the diameter of the opening 20, and the end surface 45 of the inner tube 41 is held on the end wall 21 of the casing via a heat insulating material (not shown).

図5は、コイル状発熱体42と内管41及び多孔質体40との関係を示す断面図である。   FIG. 5 is a cross-sectional view showing the relationship between the coiled heating element 42, the inner tube 41 and the porous body 40.

図5に示すように、コイル状発熱体42は、概ね全周に亘って内管41の内壁面46に接し又は密着した円形断面のコイル状ニクロム線又はカンタル線からなり、通電時に発熱する。例えば、発熱体42は、直径d(L1)=0.35mmの電熱線(ニクロム線又はカンタル線)からなり、内壁面46に沿って螺旋状に配置され、内壁面46に密接する。発熱体42のピッチ間隔は、約2.5mmに設定され、カンタル線の巻数は、軸線方向の長さ約70mmあたり25〜30巻程度に設定される。   As shown in FIG. 5, the coiled heating element 42 is composed of a coiled nichrome wire or Kanthal wire having a circular cross section that is in contact with or in close contact with the inner wall surface 46 of the inner tube 41 over the entire circumference, and generates heat when energized. For example, the heating element 42 is made of a heating wire (nichrome wire or Kanthal wire) having a diameter d (L 1) = 0.35 mm, and is arranged spirally along the inner wall surface 46, and is in close contact with the inner wall surface 46. The pitch interval of the heating elements 42 is set to about 2.5 mm, and the number of turns of the Kanthal wire is set to about 25 to 30 turns per length of about 70 mm in the axial direction.

図1及び図3に示すように、リード線61が発熱体42の各端部に夫々接続される。各リード線61は、電源スイッチ60の給電側端子(図示せず)に接続される。電源スイッチ60は、手指にて操作可能な手動操作式ON−OFFスイッチ、或いは、遠隔操作式のON−OFFスイッチからなる。電源スイッチ60の電源側端子(図示せず)は、一対のリード線62を介して電気回路6に接続される。電気回路6は、電圧計及び電流計を備えるとともに、交流電源(AC100V)に接続される。所望により、電源スイッチ60を電源コード等によって交流電源に直に接続して良く、或いは、交流電源の電圧を降下させる電圧調整器等を電気回路6に組み込んでも良い。電気回路6は、電源スイッチ60のON作動により交流電圧を発熱体42に印加し、発熱体42を発熱させる。   As shown in FIGS. 1 and 3, lead wires 61 are connected to the respective end portions of the heating element 42. Each lead wire 61 is connected to a power supply side terminal (not shown) of the power switch 60. The power switch 60 includes a manually operated ON-OFF switch that can be operated with a finger or a remote-operated ON-OFF switch. A power supply side terminal (not shown) of the power switch 60 is connected to the electric circuit 6 via a pair of lead wires 62. The electric circuit 6 includes a voltmeter and an ammeter, and is connected to an AC power supply (AC100V). If desired, the power switch 60 may be directly connected to the AC power source by a power cord or the like, or a voltage regulator or the like for dropping the voltage of the AC power source may be incorporated in the electric circuit 6. The electric circuit 6 applies an AC voltage to the heating element 42 by turning on the power switch 60 to cause the heating element 42 to generate heat.

図1に示すように、給水装置5は、補給水Wを収容可能な樹脂製の給水用ボトル51と、ボトル51の給水ポート部分52に接続された自動給水弁装置53と、弁装置53から流出した補給水Wを吸水する樹脂製の耐熱スポンジ54とから構成される。耐熱スポンジ54は、連続気泡構造を有する。弁装置53は、耐熱スポンジ54の吸水状態を検知して自動的に給水ポート部分52を開放し、ボトル51内の補給水Wを耐熱スポンジ54に流出させる。ボトル51内の補給水Wが減少した場合には、ボトル51を開口部28から上方に引き抜いた後、満水状態の他のボトル51を開口部28内に挿入し、或いは、ボトル51内に補給水Wを再充填して開口部28に再び挿入し、給水ポート部分52を弁装置53に連結すれば良い。   As shown in FIG. 1, the water supply device 5 includes a resin water supply bottle 51 that can store makeup water W, an automatic water supply valve device 53 connected to a water supply port portion 52 of the bottle 51, and a valve device 53. A heat-resistant sponge 54 made of resin that absorbs the replenished replenishing water W is formed. The heat-resistant sponge 54 has an open cell structure. The valve device 53 detects the water absorption state of the heat-resistant sponge 54 and automatically opens the water supply port portion 52 so that the makeup water W in the bottle 51 flows out to the heat-resistant sponge 54. When the replenishment water W in the bottle 51 decreases, after the bottle 51 is pulled out from the opening 28, another full bottle 51 is inserted into the opening 28 or refilled into the bottle 51. The water W may be refilled and reinserted into the opening 28, and the water supply port portion 52 may be connected to the valve device 53.

図2に示すように、耐熱スポンジ54は、ケーシング2の内面と多孔質体40の外面との間の領域に充填される。耐熱スポンジ54に浸透した補給水Wは、多孔質体40の外面全域にゆきわたる。多数の連通空隙を有する多孔質体40は、毛細管現象によって耐熱スポンジ54から吸水する。多孔質体40に吸水された水Wは、図2及び図5に矢印で示すように中空部7に向かって流動する。   As shown in FIG. 2, the heat-resistant sponge 54 is filled in a region between the inner surface of the casing 2 and the outer surface of the porous body 40. The makeup water W that has penetrated into the heat-resistant sponge 54 spreads over the entire outer surface of the porous body 40. The porous body 40 having a large number of communicating voids absorbs water from the heat-resistant sponge 54 by capillary action. The water W absorbed by the porous body 40 flows toward the hollow portion 7 as indicated by arrows in FIGS. 2 and 5.

図6は、図5に示す"a"部分の拡大図である。図6には、連通空隙によって多孔質体40及び内管41の内部に形成される多数の細孔47、48が、模式的に示されている。   FIG. 6 is an enlarged view of a portion “a” shown in FIG. FIG. 6 schematically shows a large number of pores 47 and 48 formed inside the porous body 40 and the inner tube 41 by the communication gap.

内管41も又、多数の連通空隙を有するセラミックス成形体からなり、耐熱性及び電気絶縁性を有する。前述のとおり、内管41の平均細孔径及びモード径は夫々、多孔質体40の平均細孔径及びモード径よりも小さい。内管41の外周面及び貫通孔43の内周面は、微細な不陸又は凹凸によって部分的に接触するとともに、毛管作用を維持する5μm程度の微小間隙を少なくとも部分的に形成する。所望により、このような微小間隙を内管41の全外周に亘って均等に形成しても良い。   The inner tube 41 is also made of a ceramic molded body having a large number of communicating voids, and has heat resistance and electrical insulation. As described above, the average pore diameter and mode diameter of the inner tube 41 are smaller than the average pore diameter and mode diameter of the porous body 40, respectively. The outer peripheral surface of the inner tube 41 and the inner peripheral surface of the through-hole 43 partially contact with each other by fine unevenness or unevenness, and at least partially form a minute gap of about 5 μm that maintains the capillary action. If desired, such a minute gap may be formed uniformly over the entire outer periphery of the inner tube 41.

多孔質体40及び内管41の細孔47、48は、直列に連通し、或いは、多孔質体40と内管41との境界部分(微小間隙)に形成される液膜を介して連通する。多孔質体40の毛細管現象によって細孔47に吸い上げられた水Wは、内管41の毛細管現象によって細孔48に更に吸い上げられる。   The pores 47 and 48 of the porous body 40 and the inner tube 41 communicate in series, or communicate via a liquid film formed at the boundary portion (micro gap) between the porous body 40 and the inner tube 41. . The water W sucked into the pores 47 by the capillary phenomenon of the porous body 40 is further sucked into the pores 48 by the capillary phenomenon of the inner tube 41.

図7(A)は、コイル状発熱体42と内管41の内壁面46との接触部を示す拡大断面図であり、図7(B)及び図7(C)は、図7(A)の部分拡大断面図である。また、図8は、図7(B)に示す"b"部分の拡大図である。   7A is an enlarged cross-sectional view showing a contact portion between the coiled heating element 42 and the inner wall surface 46 of the inner tube 41. FIGS. 7B and 7C are shown in FIG. FIG. FIG. 8 is an enlarged view of a “b” portion shown in FIG.

図8に示すように、細孔48内の水は、開口部49において表面張力により湾曲し、メニスカスMを形成する。メニスカスMは、薄い水膜として開口部49の全周に形成される。発熱体42に通電すると、発熱体42の表面温度は、500℃以上、例えば、700℃に達する。発熱体42から内管48に熱伝導した発熱体42の熱Hは、メニスカスMの水に伝熱し、メニスカスMの水を加熱する。メニスカスMの水は又、発熱体42の輻射熱によっても加熱される。メニスカスMは、細孔48の出口の縁部に位置する微小質量の水又は薄い水膜であることから、熱容量が極めて小さく、従って、メニスカスMの水は、発熱体42の熱によって瞬時に気化する。メニスカスMの水の気化によって細孔48内に発生した水蒸気Sは、発熱体42の表面に沿って流動し、発熱体42の表面と熱交換し、発熱体42の熱を更に受熱する。中空部7内の水蒸気Sは、図7(A)及び図5に示すように中空部7内を流動し、前述の如く、過熱水蒸気給送管3(図1)に流出する。   As shown in FIG. 8, the water in the pores 48 is bent by the surface tension at the opening 49 to form a meniscus M. The meniscus M is formed as a thin water film all around the opening 49. When the heating element 42 is energized, the surface temperature of the heating element 42 reaches 500 ° C. or higher, for example, 700 ° C. The heat H of the heating element 42 conducted from the heating element 42 to the inner tube 48 is transferred to the water of the meniscus M, and heats the water of the meniscus M. The water of the meniscus M is also heated by the radiant heat of the heating element 42. Since the meniscus M is a minute mass of water or a thin water film located at the edge of the outlet of the pore 48, the heat capacity is extremely small. Therefore, the water of the meniscus M is instantly vaporized by the heat of the heating element 42. To do. The water vapor S generated in the pores 48 by the vaporization of water of the meniscus M flows along the surface of the heating element 42, exchanges heat with the surface of the heating element 42, and further receives the heat of the heating element 42. The steam S in the hollow portion 7 flows in the hollow portion 7 as shown in FIGS. 7A and 5 and flows out to the superheated steam feed pipe 3 (FIG. 1) as described above.

図8に示すように、水Wの気化が開始すると、発熱体42と接触した内壁面46及びその近傍では、細孔48内に蒸気層が形成されるとともに、内壁面46の局部的な乾燥が生じる。発熱体42の近傍の細孔48内において、水Wの液面は、図7(C)に示すように、細孔48の出口開口(開口部49)から細孔48内に後退する。この結果、発熱体42の発熱は、細孔48内に生成した水蒸気Sを過熱する。即ち、細孔48内に発生した水蒸気Sは、細孔48から流出する際、そして、中空部7内を流動する際、発熱体42の近傍を流動し、発熱体42の熱放射作用と、発熱体42の表面近傍の領域における対流伝熱作用とによって急激に過熱される。かくして、過熱水蒸気が中空部7に生成し、過熱水蒸気給送管3(図1)に流出する。   As shown in FIG. 8, when the vaporization of the water W starts, a vapor layer is formed in the pores 48 in and around the inner wall surface 46 in contact with the heating element 42, and the inner wall surface 46 is locally dried. Occurs. In the pores 48 in the vicinity of the heating element 42, the liquid level of the water W moves back into the pores 48 from the outlet opening (opening 49) of the pores 48 as shown in FIG. As a result, the heat generated by the heating element 42 overheats the water vapor S generated in the pores 48. That is, when the water vapor S generated in the pores 48 flows out of the pores 48 and flows in the hollow portion 7, it flows in the vicinity of the heating element 42, Due to the convective heat transfer action in the region near the surface of the heating element 42, it is rapidly heated. Thus, superheated steam is generated in the hollow portion 7 and flows out to the superheated steam feed pipe 3 (FIG. 1).

図7に示すように、内壁面46には、乾燥した発熱体42近傍の内壁面帯域αと、湿潤な発熱体42間の内壁面帯域βとが、内壁面46の局部加熱によって形成される。間隔を隔てて乾燥帯域(帯域α)を形成することにより、発熱体42近傍への三次元的な水Wの移動が生じるので、内管48の全体的な乾燥が防止され、水Wが毛管作用によって円滑に発熱体42の近傍に補給される。   As shown in FIG. 7, an inner wall surface zone α in the vicinity of the dried heating element 42 and an inner wall surface zone β between the wet heating elements 42 are formed on the inner wall surface 46 by local heating of the inner wall surface 46. . By forming the drying zone (zone α) at an interval, three-dimensional movement of the water W to the vicinity of the heating element 42 occurs, so that the entire inner tube 48 is prevented from drying, and the water W is capillary. By the action, the heat source 42 is smoothly replenished in the vicinity.

図9は、上記構成の過熱水蒸気発生装置1を用いた調理器の概略断面図であり、図10(A)、図10(B)及び図10(C)は、図9に示す過熱水蒸気発生装置1を構成する気化・過熱装置4の構造を示す平面図、正面図及び斜視図である。なお、図9及び図10において、図1〜図8に示す各構成要素又は構成部材と同一又は同等の構成要素又は構成部材については、同一の参照符号が付されている。   FIG. 9 is a schematic cross-sectional view of a cooking device using the superheated steam generator 1 having the above-described configuration, and FIGS. 10A, 10B, and 10C show the superheated steam generation shown in FIG. FIG. 2 is a plan view, a front view, and a perspective view showing a structure of a vaporization / superheating device 4 constituting the device 1. 9 and 10, the same reference numerals are assigned to the same or equivalent components or components as those shown in FIGS. 1 to 8.

調理器70は、凝縮水を受ける露受けトレイ71と、多数の開口部を有する水切りトレイ72と、透明又は半透明のドーム状カバー73と、カバー73の頂面に配置された過熱水蒸気発生ユニット75とを有する。過熱水蒸気発生ユニット75のハウジング76内には、過熱水蒸気発生装置1が収容される。調理すべき食品Q等は、水切りトレイ72上に配置される。過熱水蒸気発生装置1は補機80に接続される。補機80は、過熱水蒸気発生装置1の作動を制御する制御ユニット81と、過熱水蒸気発生装置1に蒸留水等の水Wを供給する給水ユニット82とから構成される。   The cooker 70 includes a dew receiving tray 71 for receiving condensed water, a draining tray 72 having a large number of openings, a transparent or translucent dome-shaped cover 73, and a superheated steam generating unit disposed on the top surface of the cover 73. 75. The superheated steam generator 1 is accommodated in the housing 76 of the superheated steam generation unit 75. The food Q or the like to be cooked is placed on the draining tray 72. The superheated steam generator 1 is connected to the auxiliary machine 80. The auxiliary machine 80 includes a control unit 81 that controls the operation of the superheated steam generator 1 and a water supply unit 82 that supplies water W such as distilled water to the superheated steam generator 1.

過熱水蒸気発生装置1は、気化・過熱装置4を収容したケーシング2を備える。ケーシング2の下部領域は、補給水Wを貯留可能な液槽を構成し、気化・過熱装置4の多孔質体40は、少なくとも部分的に水Wの液浴に浸漬される。給水ユニット82の給水管83がケーシング2に連結され、給水管83の吐出口がケーシング2内に開口する。給水ユニット82は給水ポンプ84を備え、吸水ポンプ84の吐出口が給水管83の上流端に接続される。フロートスイッチ等の水位計85がケーシング2内に配設される。水位計85は、ケーシング2内に貯留された補給水Wの水位を検出する。水位計85の検出値は、制御信号線86を介して制御ユニット81の検出部(図示せず)に入力される。また、過熱水蒸気発生装置1は、過熱水蒸気給送管3が吐出する過熱水蒸気の温度を検出するための熱電対等の水蒸気温度検出器87を備える。水蒸気温度検出器87の検出値は、制御信号線88を介して制御ユニット81の検出部に入力される。   The superheated steam generator 1 includes a casing 2 that houses a vaporization / superheater 4. The lower region of the casing 2 constitutes a liquid tank capable of storing make-up water W, and the porous body 40 of the vaporization / superheater 4 is at least partially immersed in a liquid bath of water W. A water supply pipe 83 of the water supply unit 82 is connected to the casing 2, and a discharge port of the water supply pipe 83 opens into the casing 2. The water supply unit 82 includes a water supply pump 84, and the discharge port of the water absorption pump 84 is connected to the upstream end of the water supply pipe 83. A water level gauge 85 such as a float switch is disposed in the casing 2. The water level meter 85 detects the water level of the makeup water W stored in the casing 2. The detection value of the water level meter 85 is input to a detection unit (not shown) of the control unit 81 via the control signal line 86. Moreover, the superheated steam generator 1 includes a steam temperature detector 87 such as a thermocouple for detecting the temperature of superheated steam discharged from the superheated steam feed pipe 3. The detection value of the water vapor temperature detector 87 is input to the detection unit of the control unit 81 via the control signal line 88.

過熱水蒸気発生装置1の発熱体42には、一対の給電線90が接続される。給電線90は、制御ユニット81の駆動部(図示せず)に接続される。制御ユニット81は、発熱体42に印加すべき電圧を水位計85及び水蒸気温度検出器87の検出値に基づいて設定する制御部(図示せず)を備えるとともに、過熱水蒸気発生装置1の空焚きを防止する漏電ブレーカー等の安全装置(図示せず)を備える。制御ユニット81は、電源コード91等によって交流電源に接続され、制御部によって設定された電圧を発熱体42に印加するとともに、水位計85の検出値に基づいて給水ポンプ84を作動させ、ケーシング2の液槽に補給水Wを適宜供給する。   A pair of feeders 90 are connected to the heating element 42 of the superheated steam generator 1. The power supply line 90 is connected to a drive unit (not shown) of the control unit 81. The control unit 81 includes a control unit (not shown) that sets the voltage to be applied to the heating element 42 based on the detection values of the water level meter 85 and the water vapor temperature detector 87, and is used to empty the superheated steam generator 1. A safety device (not shown) such as an earth leakage breaker is provided. The control unit 81 is connected to an AC power source by a power cord 91 or the like, applies a voltage set by the control unit to the heating element 42, operates the water supply pump 84 based on the detected value of the water level gauge 85, and the casing 2 The replenishing water W is appropriately supplied to the liquid tank.

図10に示すように、過熱水蒸気発生装置1は、8本の過熱水蒸気給送管3を備える。発熱体42を内装した4本の内管41が、多孔質体40の貫通穴内に配置され、過熱水蒸気給送管3は、内管41の両端部に連結される。図9に示すように、過熱水蒸気給送管3は、カバー73を貫通して調理領域77に開口し、過熱水蒸気発生装置1は、前述の如く、発熱体42の発熱に応答して過熱水蒸気Sを調理領域77に供給する。   As shown in FIG. 10, the superheated steam generator 1 includes eight superheated steam feed pipes 3. Four inner pipes 41 with heating elements 42 are arranged in the through holes of the porous body 40, and the superheated steam feed pipe 3 is connected to both ends of the inner pipe 41. As shown in FIG. 9, the superheated steam feed pipe 3 passes through the cover 73 and opens into the cooking region 77, and the superheated steam generator 1 responds to the heat generated by the heating element 42 as described above. S is supplied to the cooking area 77.

図9に示す如く、制御ユニット81は、過熱水蒸気Sの温度及び供給量を手動設定するための手動操作部89を備える。運転モード切換スイッチ(図示せず)が手動操作部89に更に配設される。運転モード切換スイッチは、過熱水蒸気Sの温度及び供給量を上記制御部によって自動制御する自動制御モードと、手動設定の設定温度及び設定供給量に基づいて過熱水蒸気Sを調理領域77に供給する手動設定モードとに過熱水蒸気発生装置1の運転を切換える   As shown in FIG. 9, the control unit 81 includes a manual operation unit 89 for manually setting the temperature and supply amount of the superheated steam S. An operation mode changeover switch (not shown) is further provided in the manual operation unit 89. The operation mode changeover switch automatically controls the temperature and supply amount of the superheated steam S by the control unit, and manually supplies the superheated steam S to the cooking region 77 based on the set temperature and set supply amount set manually. Switch operation of superheated steam generator 1 to setting mode

制御ユニット81は、自動設定又は手動設定された過熱水蒸気Sの温度及び供給量に基づいて発熱体42の電圧を制御し、或いは、複数の発熱体42を台数制御し、これにより、調理領域77に供給される過熱水蒸気Sを制御する。このように構成された調理器70の試作機においては、300〜400℃の過熱水蒸気が起動後の約10秒経過時に調理領域77に供給され、従って、極めて短時間且つ効率的に調理を開始することが可能である。しかも、内管41を備えた過熱水蒸気発生装置1が調理領域77に供給する過熱水蒸気Sは、微細な多孔質材料の粒体又は粉体等を含まず、従って、不純物を含まない清浄な過熱水蒸気Sを調理領域77に継続的に供給することができる。   The control unit 81 controls the voltage of the heating elements 42 based on the automatically set or manually set temperature and supply amount of the superheated steam S, or controls the number of the heating elements 42, thereby the cooking area 77. The superheated steam S supplied to the is controlled. In the prototype of the cooking device 70 configured as described above, superheated steam at 300 to 400 ° C. is supplied to the cooking area 77 when about 10 seconds elapse after starting, and therefore, cooking is started very quickly and efficiently. Is possible. Moreover, the superheated steam S supplied to the cooking region 77 by the superheated steam generator 1 provided with the inner pipe 41 does not contain fine porous material particles or powders, and therefore clean superheat without impurities. The steam S can be continuously supplied to the cooking region 77.

以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.

例えば、多孔質体の素材及び空隙率、多孔質体及び内管の細孔径、中空部の断面寸法、貫通穴又は中空部の箇所数等は、本発明の目的に従って適宜設計変更することができる。   For example, the material and porosity of the porous body, the pore diameter of the porous body and the inner tube, the cross-sectional dimension of the hollow part, the number of through holes or the number of hollow parts, etc. can be appropriately changed in accordance with the purpose of the present invention .

また、上記実施例においては、第1多孔質体(多孔質体40)は、第2多孔質体(内管41)の外面を完全に囲むように構成されているが、第1多孔質体は、吸水経路を十分に確保できる限りにおいて、必ずしも第2多孔質体の外面を完全に囲むことを要しない。同じく、前述の実施例においては、耐熱スポンジが第1多孔質体(多孔質体40)の外面を完全に囲んでいるが、耐熱スポンジは、吸水経路を十分に確保できる限りにおいて、必ずしも第2多孔質体の外面を完全に囲むことを要しない。   In the above embodiment, the first porous body (porous body 40) is configured to completely surround the outer surface of the second porous body (inner tube 41). As long as a sufficient water absorption path can be secured, it is not always necessary to completely surround the outer surface of the second porous body. Similarly, in the above-described embodiment, the heat-resistant sponge completely surrounds the outer surface of the first porous body (porous body 40), but the heat-resistant sponge is not necessarily the second as long as a sufficient water absorption path can be secured. It is not necessary to completely surround the outer surface of the porous body.

更に、上記実施例においては、二重構造の多孔質体を用いているが、更に多くの異種多孔質体によって多孔質体全体を構成することも可能である。   Furthermore, in the above embodiment, a porous body having a double structure is used, but it is also possible to form the whole porous body with more different types of porous bodies.

また、上記実施例においては、第1多孔質体(多孔質体40)の内側面と第2多孔質体(内管41)の外側面とは、接触し又は近接しており、各多孔質体の細孔は、第1及び第2多孔質体の境界部分(微小間隙)に形成される液膜を介して流体連通し、第1多孔質体の毛細管現象によって吸い上げられた水は、第2多孔質体の毛細管現象によって更に吸い上げられる。しかしながら、第1多孔質体(多孔質体40)の内側面と第2多孔質体(内管41)の外側面とを離間させ、第1及び第2多孔質体との間に水蒸気又は蒸気の流動域を形成しても良い。この場合、水又は液体は、発熱体の発熱を第2多孔質体(内管41)の外面の輻射熱として受熱するとともに、流動域の対流伝熱作用により受熱し、第1多孔質体(多孔質体40)の内側面において気化し、第1多孔質体の細孔から流動域に流出する。流動域の水蒸気又は蒸気は、第2多孔質体(内管41)の細孔を介して第2多孔質体の中空部に流入し、第2多孔質体との伝熱接触により過熱される。   Moreover, in the said Example, the inner surface of a 1st porous body (porous body 40) and the outer surface of a 2nd porous body (inner pipe | tube 41) are contacting or adjoining, and each porous The pores of the body are in fluid communication via a liquid film formed at the boundary portion (micro gap) between the first and second porous bodies, and the water sucked up by the capillary action of the first porous body It is further sucked up by the capillary action of two porous bodies. However, the inner surface of the first porous body (porous body 40) and the outer surface of the second porous body (inner tube 41) are separated from each other, and water vapor or vapor is provided between the first and second porous bodies. May be formed. In this case, the water or liquid receives the heat generated by the heating element as radiant heat on the outer surface of the second porous body (inner tube 41), and also receives heat by the convective heat transfer action in the flow region, and the first porous body (porous Vaporizes on the inner surface of the material 40) and flows out from the pores of the first porous material into the flow region. The water vapor or steam in the flow region flows into the hollow portion of the second porous body through the pores of the second porous body (inner tube 41), and is superheated by heat transfer contact with the second porous body. .

本発明によれば、過熱水蒸気を利用する各種の機器において採用可能な小型且つ安価な構造を有し、しかも、極めて迅速に過熱水蒸気を発生させる過熱水蒸気発生装置及び過熱水蒸気発生方法が提供される。殊に、本発明の過熱水蒸気発生装置及び過熱水蒸気発生方法は、家庭用調理器、蒸し器、殺菌消毒器、乾燥機等の如く、過熱水蒸気を利用した家庭用又は産業用の機器において好適に使用し得る。このような機器に本発明を適用した場合、本発明は、過熱水蒸気発生機構の小型化及び低価格化を可能にするので、極めて有利である。また、本発明の構成は、液体燃料等を気化させて過熱蒸気を発生させる過熱蒸気発生手段に応用することができるので、その実用的効果は顕著である。   According to the present invention, there are provided a superheated steam generator and a superheated steam generation method that have a small and inexpensive structure that can be employed in various devices that use superheated steam, and that generate superheated steam very quickly. . In particular, the superheated steam generator and the method of generating superheated steam according to the present invention are preferably used in household or industrial equipment using superheated steam such as household cooking appliances, steamers, sterilizers, and dryers. Can do. When the present invention is applied to such a device, the present invention is very advantageous because it enables downsizing and cost reduction of the superheated steam generating mechanism. In addition, the configuration of the present invention can be applied to superheated steam generating means for generating superheated steam by vaporizing liquid fuel or the like, and its practical effect is remarkable.

1 過熱水蒸気発生装置
2 ケーシング
3 過熱水蒸気給送管
4 気化・過熱装置
5 給水装置
6 電気回路
7 中空部
40 多孔質体(第1多孔質体)
41 内管(第2多孔質体)
42 コイル状発熱体
43 貫通穴
44 セラミック製プラグ
46 内壁面
47、48 細孔
60 電源スイッチ
70 調理器
80 補機
W 補給水
M メニスカス
S 過熱水蒸気
DESCRIPTION OF SYMBOLS 1 Superheated steam generator 2 Casing 3 Superheated steam feed pipe 4 Vaporization / superheater 5 Water supply device 6 Electric circuit 7 Hollow part 40 Porous body (1st porous body)
41 Inner pipe (second porous body)
42 Coiled heating element 43 Through hole 44 Ceramic plug 46 Inner wall surface 47, 48 Fine hole 60 Power switch 70 Cooker 80 Auxiliary machine W Supplementary water M Meniscus S Superheated steam

Claims (14)

水蒸気生成用の水を毛細管作用によって外側面から吸水して、中空部の内壁面に供給する多孔質体を有し、前記中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる発熱体によって前記多孔質体の細孔内で前記水を気化し且つ過熱して過熱水蒸気を発生させる過熱水蒸気発生装置において、
前記多孔質体は、毛細管作用によって外側面から前記水を吸水する第1多孔質体と、該第1多孔質体の内側に配置され且つ前記中空部を形成する第2多孔質体とを有し、
前記第2多孔質体は、前記第1多孔質体の耐スポーリング性及び熱伝導率よりも高い又は大きい耐スポーリング性及び熱伝導率を有し
前記第2多孔質体は、前記第1多孔質体が吸水した前記水が多孔質体の毛細管作用によって前記中空部に向けて供給されるように、前記第1多孔質体の内側に配置されることを特徴とする過熱水蒸気発生装置。
It has a porous body that absorbs water for water vapor generation from the outer surface by capillary action and supplies it to the inner wall surface of the hollow portion, and is in contact with or close to the inner wall surface of the hollow portion along the inner wall surface In the superheated steam generator for generating superheated steam by evaporating the water in the pores of the porous body and heating it with a heating element that extends,
The porous body has a first porous body that absorbs the water from the outer surface by capillary action, and a second porous body that is disposed inside the first porous body and forms the hollow portion. And
The second porous body has a spalling resistance and thermal conductivity that is higher or larger than the spalling resistance and thermal conductivity of the first porous body. The superheated steam generator, which is disposed inside the first porous body so that the water absorbed by the porous body is supplied toward the hollow portion by capillary action of the porous body.
前記第2多孔質体の外側面は、前記第1多孔質体が吸水した前記水を前記第2多孔質体の毛細管作用によって前記内壁面に供給するように、前記第1多孔質体の内側面に接触し又は近接しており、
前記細孔から前記中空部に流出した過熱水蒸気を該中空部から多孔質体外に送出する過熱水蒸気送出手段が設けられたことを特徴とする請求項1に記載の過熱水蒸気発生装置。
The outer surface of the second porous body is arranged so that the water absorbed by the first porous body is supplied to the inner wall surface by the capillary action of the second porous body. In contact with or close to the side,
2. The superheated steam generator according to claim 1, further comprising superheated steam delivery means for delivering superheated steam that has flowed out of the pores into the hollow portion from the hollow portion to the outside of the porous body.
前記発熱体は、間隔を隔てて前記内壁面に接触し又は近接する電熱線からなり、前記電熱線近傍の内壁面には、該電熱線の発熱によって表面が乾燥した乾燥帯域が形成され、湿潤な内壁面帯域が、前記乾燥帯域の間の前記内壁面に形成されることを特徴とする請求項1又は2に記載の過熱水蒸気発生装置。   The heating element is composed of a heating wire in contact with or close to the inner wall surface at an interval, and the inner wall surface in the vicinity of the heating wire is formed with a drying zone whose surface is dried by the heat generation of the heating wire. The inner wall surface zone is formed on the inner wall surface between the drying zones, and the superheated steam generator according to claim 1 or 2. 前記中空部は、円形断面を有し、前記発熱体は、前記中空部の内周面に接触し又は近接し且つ軸芯を該中空部の軸線方向に配向したコイル状電熱体からなることを特徴とする請求項1乃至3のいずれか1項に記載の過熱水蒸気発生装置。   The hollow portion has a circular cross section, and the heating element is made of a coil-shaped electric heating element that is in contact with or close to the inner peripheral surface of the hollow portion and whose axis is oriented in the axial direction of the hollow portion. The superheated steam generator according to any one of claims 1 to 3. 前記第2多孔質体は、前記第1多孔質体に形成された穴又は中空部内に挿入又は嵌入されたアルミナ質、ムライト質又は炭化珪素質のセラミックチューブからなることを特徴とする請求項1乃至4のいずれか1項に記載の過熱水蒸気発生装置。   2. The second porous body is made of an alumina, mullite, or silicon carbide ceramic tube inserted or inserted into a hole or hollow portion formed in the first porous body. The overheated steam generator of any one of thru | or 4. 前記第1多孔質体は、0.5W/m・K以下の熱伝導率、10x10-6/℃以上の線膨張率、50%を超える気孔率(空隙率)を有し、前記第2多孔質体は、前記第1多孔質体に比べて相対的に熱伝導率が大きく、線膨張率が小さく、気孔率が小さいことを特徴とする請求項1乃至5のいずれか1項に記載の過熱水蒸気発生装置。 The first porous body has a thermal conductivity of 0.5 W / m · K or less, a linear expansion coefficient of 10 × 10 −6 / ° C. or more, and a porosity (porosity) of more than 50%. The material according to any one of claims 1 to 5, wherein the material has a relatively large thermal conductivity, a small linear expansion coefficient, and a low porosity as compared with the first porous body. Superheated steam generator. 前記第2多孔質体は、前記第1多孔質体の平均細孔径及び/又はモード径よりも小さい平均細孔径及び/又はモード径を有するとともに、前記第2多孔質体の細孔の最小径が前記第1多孔質体の細孔の最小径よりも小さく、前記第2多孔質体の細孔の最大径が前記第1多孔質体の細孔の最小径よりも大きく、しかも、前記第2多孔質体の細孔の最大径が前記第1多孔質体の細孔の最大径より小さい細孔径分布を有することを特徴とする請求項1乃至6のいずれか1項に記載の過熱水蒸気発生装置。   The second porous body has an average pore diameter and / or mode diameter smaller than the average pore diameter and / or mode diameter of the first porous body, and the minimum pore diameter of the second porous body. Is smaller than the minimum diameter of the pores of the first porous body, the maximum diameter of the pores of the second porous body is larger than the minimum diameter of the pores of the first porous body, and The superheated steam according to any one of claims 1 to 6, wherein the maximum pore diameter of the two porous bodies has a pore size distribution smaller than the maximum diameter of the pores of the first porous body. Generator. 前記第1多孔質体は、陽イオン交換能を有し且つ耐熱性を有する多孔質の無機イオン交換体を少なくとも部分的に含むことを特徴とする請求項1乃至7のいずれか1項に記載の過熱水蒸気発生装置。   8. The first porous body according to claim 1, wherein the first porous body at least partially includes a porous inorganic ion exchanger having a cation exchange capacity and heat resistance. Superheated steam generator. 水蒸気生成用の水を多孔質体の毛細管作用によって吸水し且つ前記多孔質体の中空部の内壁面に供給し、該中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる発熱体によって前記多孔質体の細孔内で前記水を気化し且つ過熱して過熱水蒸気を発生させる過熱水蒸気発生方法において、
毛細管作用により外側面から前記水を吸水する前記第1多孔質体と、該第1多孔質体の耐スポーリング性及び熱伝導率よりも高い又は大きい耐スポーリング性及び熱伝導率を有し且つ前記中空部を形成する第2多孔質体とを用い、該第2多孔質体の外側に前記第1多孔質体を配置して、前記第1多孔質体が吸水した水を多孔質体の毛細管作用により前記中空部に向けて供給し、
前記発熱体の熱によって多孔質体の細孔内で前記水を気化し且つ過熱して過熱水蒸気を発生させることを特徴とする過熱水蒸気発生方法。
Water for generating water vapor is absorbed by the capillary action of the porous body and supplied to the inner wall surface of the hollow portion of the porous body, and is in contact with or close to the inner wall surface of the hollow portion and extends along the inner wall surface. In the superheated steam generation method of generating superheated steam by vaporizing and superheating the water in the pores of the porous body by a heating element,
The first porous body that absorbs the water from the outer surface by capillary action, and has a spalling resistance and thermal conductivity that is higher or greater than the spalling resistance and thermal conductivity of the first porous body. And the second porous body that forms the hollow portion, the first porous body is disposed outside the second porous body, and the water absorbed by the first porous body is porous. To the hollow part by the capillary action of
A method for generating superheated steam, characterized in that the water is vaporized and superheated in the pores of the porous body by the heat of the heating element to generate superheated steam.
前記第2多孔質体の外側面を前記第1多孔質体の内側面に接触させ又は近接させるとともに、前記発熱体として、間隔を隔てて前記内壁面に接触し又は近接する電熱線を用い、前記電熱線の発熱によって該電熱線近傍の前記内壁面に乾燥帯域を形成するとともに、湿潤な内壁面帯域を前記乾燥帯域の間の前記内壁面に形成することを特徴とする請求項9に記載の過熱水蒸気発生方法。   The outer surface of the second porous body is brought into contact with or close to the inner side surface of the first porous body, and as the heating element, a heating wire that is in contact with or close to the inner wall surface at a distance is used. The drying zone is formed on the inner wall surface near the heating wire by heat generation of the heating wire, and the wet inner wall zone is formed on the inner wall surface between the drying zones. Method for generating superheated steam. 前記内壁面と前記電熱線との接触部分の熱流束を1MW/m2以上に設定することを特徴とする請求項10に記載の過熱水蒸気発生方法。 The method for generating superheated steam according to claim 10, wherein a heat flux at a contact portion between the inner wall surface and the heating wire is set to 1 MW / m 2 or more. 前記第1多孔質体を無機イオン交換体によって少なくとも部分的に構成し、前記無機イオン交換体によってスケール成分を除去した水を前記第2多孔質体の毛細管作用によって前記内壁面に供給することを特徴とする請求項10又は11に記載の過熱水蒸気発生方法。   Supplying at least partly the first porous body with an inorganic ion exchanger, and supplying water from which scale components have been removed by the inorganic ion exchanger to the inner wall surface by capillary action of the second porous body. The superheated steam generation method according to claim 10 or 11, characterized in that 蒸気生成用の液体を毛細管作用によって外側面から吸液して、中空部の内壁面に供給する多孔質体を有し、前記中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる発熱体によって前記多孔質体の細孔内で前記液体を気化し且つ過熱して過熱蒸気を発生させる過熱蒸気発生装置において、
前記多孔質体は、毛細管作用によって外側面から前記液体を吸液する第1多孔質体と、該第1多孔質体の内側に配置され且つ前記中空部を形成する第2多孔質体とを有し、
前記第2多孔質体は、前記第1多孔質体の耐スポーリング性及び熱伝導率よりも高い又は大きい耐スポーリング性及び熱伝導率を有し
前記第2多孔質体は、前記第1多孔質体が吸液した前記液体が多孔質体の毛細管作用によって前記中空部に向けて供給されるように、前記第1多孔質体の内側に配置されることを特徴とする過熱蒸気発生装置。
It has a porous body that absorbs liquid for vapor generation from the outer surface by capillary action and supplies it to the inner wall surface of the hollow portion, and is in contact with or close to the inner wall surface of the hollow portion and along the inner wall surface In the superheated steam generator for generating superheated steam by evaporating the liquid in the pores of the porous body by a heating element extending in a superheated manner,
The porous body includes a first porous body that absorbs the liquid from the outer surface by capillary action, and a second porous body that is disposed inside the first porous body and forms the hollow portion. Have
The second porous body has a spalling resistance and thermal conductivity that is higher or larger than the spalling resistance and thermal conductivity of the first porous body. The superheated steam generator is disposed inside the first porous body so that the liquid absorbed by the porous body is supplied toward the hollow portion by capillary action of the porous body. .
蒸気生成用の液体を多孔質体の毛細管作用によって吸液し且つ前記多孔質体の中空部の内壁面に供給し、該中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる発熱体によって前記多孔質体の細孔内で前記液体を気化し且つ過熱して過熱蒸気を発生させる過熱蒸気発生方法において、
毛細管作用により外側面から前記液体を吸水する前記第1多孔質体と、該第1多孔質体の耐スポーリング性及び熱伝導率よりも高い又は大きい耐スポーリング性及び熱伝導率を有し且つ前記中空部を形成する第2多孔質体とを用い、該第2多孔質体の外側に前記第1多孔質体を配置して、前記第1多孔質体が吸液した液体を多孔質体の毛細管作用により前記中空部に向けて供給し、
前記発熱体の熱によって多孔質体の細孔内で前記液体を気化し且つ過熱して過熱水蒸気を発生させることを特徴とする過熱蒸気発生方法。
The liquid for vapor generation is absorbed by the capillary action of the porous body and supplied to the inner wall surface of the hollow portion of the porous body, and is in contact with or close to the inner wall surface of the hollow portion along the inner wall surface. In the superheated steam generation method in which the liquid is vaporized and superheated in the pores of the porous body by a heating element extending to generate superheated steam,
The first porous body that absorbs the liquid from the outer surface by capillary action, and has a spalling resistance and thermal conductivity that is higher or greater than the spalling resistance and thermal conductivity of the first porous body. And the second porous body that forms the hollow portion, the first porous body is disposed outside the second porous body, and the liquid absorbed by the first porous body is porous. Supply toward the hollow part by the capillary action of the body,
A method for generating superheated steam, characterized in that the liquid is vaporized in the pores of the porous body by the heat of the heat generating body and heated to generate superheated steam.
JP2012047461A 2012-03-03 2012-03-03 Superheated steam generator and superheated steam generation method Active JP5875024B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012047461A JP5875024B2 (en) 2012-03-03 2012-03-03 Superheated steam generator and superheated steam generation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012047461A JP5875024B2 (en) 2012-03-03 2012-03-03 Superheated steam generator and superheated steam generation method

Publications (2)

Publication Number Publication Date
JP2013181719A true JP2013181719A (en) 2013-09-12
JP5875024B2 JP5875024B2 (en) 2016-03-02

Family

ID=49272503

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047461A Active JP5875024B2 (en) 2012-03-03 2012-03-03 Superheated steam generator and superheated steam generation method

Country Status (1)

Country Link
JP (1) JP5875024B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900009972A1 (en) * 2019-06-24 2020-12-24 Atihc FOOD COOKING EQUIPMENT

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649163A (en) * 1979-09-29 1981-05-02 Matsushita Electric Ind Co Ltd Vapor generator
JPS61243201A (en) * 1985-04-19 1986-10-29 三菱重工業株式会社 Steam generator
JP2007248042A (en) * 2006-02-14 2007-09-27 Yokohama National Univ Steam generator and steam generation method
JP2010091234A (en) * 2008-10-10 2010-04-22 Sharp Corp Steam generator and steam cooker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649163A (en) * 1979-09-29 1981-05-02 Matsushita Electric Ind Co Ltd Vapor generator
JPS61243201A (en) * 1985-04-19 1986-10-29 三菱重工業株式会社 Steam generator
JP2007248042A (en) * 2006-02-14 2007-09-27 Yokohama National Univ Steam generator and steam generation method
JP2010091234A (en) * 2008-10-10 2010-04-22 Sharp Corp Steam generator and steam cooker

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201900009972A1 (en) * 2019-06-24 2020-12-24 Atihc FOOD COOKING EQUIPMENT
WO2020261308A1 (en) * 2019-06-24 2020-12-30 Atihc S.r.l. Apparatus for cooking food

Also Published As

Publication number Publication date
JP5875024B2 (en) 2016-03-02

Similar Documents

Publication Publication Date Title
JP2022116345A5 (en)
JP4077017B2 (en) Electric heat radiating pipe and electric heat radiating equipment using the same
JP2017528221A (en) Steam equipment
WO2019109369A1 (en) Multi-stage electrothermal quick steam generation apparatus
JP5875024B2 (en) Superheated steam generator and superheated steam generation method
US9664378B2 (en) Energy efficient pressure less steam generator
JP4923258B2 (en) Superheated steam generator and superheated steam generation method
JP2009097790A (en) Steam generator
JP6716232B2 (en) Steam generator
US8285128B2 (en) Steam generator for a household appliance, heatable using a heat accumulator
JPH11235276A (en) Heater
JP2011043314A (en) Vaporization type humidifier
JPH1194202A (en) Steam producing equipment
JP2004333089A (en) Heating device
EP3903042B1 (en) An oven with steam cooking function
KR100860237B1 (en) Boiler having a spiral shaped heat pipe
JP7190627B2 (en) Superheated steam generator and cooker
JP2006138522A (en) Heater
CN221763519U (en) Heating system
JP2004245467A (en) Steam generator
JP2012000074A (en) Cooking method and apparatus
KR20130076171A (en) Hot water storage tank
KR200391168Y1 (en) Fuid Heating Apparatus
US20230210178A1 (en) Aerosol Generation Device
JP2010091234A (en) Steam generator and steam cooker

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141208

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150814

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150915

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151218

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160110

R150 Certificate of patent or registration of utility model

Ref document number: 5875024

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250