JP2007248042A - Steam generator and steam generation method - Google Patents

Steam generator and steam generation method Download PDF

Info

Publication number
JP2007248042A
JP2007248042A JP2007015920A JP2007015920A JP2007248042A JP 2007248042 A JP2007248042 A JP 2007248042A JP 2007015920 A JP2007015920 A JP 2007015920A JP 2007015920 A JP2007015920 A JP 2007015920A JP 2007248042 A JP2007248042 A JP 2007248042A
Authority
JP
Japan
Prior art keywords
porous body
heating element
water vapor
steam
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2007015920A
Other languages
Japanese (ja)
Other versions
JP4923258B2 (en
Inventor
Kunito Okuyama
奥山邦人
Masashi Mori
森昌司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama National University NUC
Original Assignee
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama National University NUC filed Critical Yokohama National University NUC
Priority to JP2007015920A priority Critical patent/JP4923258B2/en
Publication of JP2007248042A publication Critical patent/JP2007248042A/en
Application granted granted Critical
Publication of JP4923258B2 publication Critical patent/JP4923258B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a generator of superheated steam capable of generating superheated steam without employing a complicated device configuration, and excelling in controllability and responsiveness; and to provide a generation method thereof. <P>SOLUTION: This steam generator 1 is provided with a porous body 6 partially immersed in a liquid bath W, and heating elements 8 for generating superheated steam S by heating water in the liquid bath supplied by a capillary phenomenon of the porous body. A hollow part 7 is formed in the porous body, and the superheated steam S is delivered to the outside of the porous body from the hollow part through steam delivery means 7a and 3. Exit parts 31 of pores 30 of the porous body are located on the inside wall surface 6a of the hollow part, and the heating elements contact or in proximity to the inside wall surface, and extend along the inside wall surface. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、水蒸気発生装置及び水蒸気発生方法に関するものであり、より詳細には、多孔質体の毛管給水作用と発熱体の加熱作用とを用いて極めて短時間に過熱水蒸気を発生させることができる過熱水蒸気の発生装置及び発生方法に関するものである。   The present invention relates to a water vapor generation apparatus and a water vapor generation method, and more specifically, superheated water vapor can be generated in a very short time using a capillary water supply action of a porous body and a heating action of a heating element. The present invention relates to an apparatus and a method for generating superheated steam.

飽和水蒸気温度以上に加熱された過熱水蒸気が各種プラントのプロセスにおいて工業的に使用され、或いは、木材、食品等の乾燥、加工、殺菌等の用途に使用されている。近年、このような過熱水蒸気を利用した家庭用調理器等が市場に普及しつつあり、過熱水蒸気の用途は、近年殊に拡大している。この種の家庭用調理器等では、水槽内の水に電熱ヒータを浸漬して水槽の水を加熱し、水の気化によって発生した水蒸気を再加熱することによって過熱水蒸気を発生させている。例えば、特開2004−186103公報(特許文献1)には、水蒸気生成ヒータ及び水蒸気加熱ヒータを備えた調理器用の水蒸気発生装置が開示されている。この方式の装置では、水を気化して水蒸気を生成する水蒸気発生工程と、水蒸気を加熱する水蒸気加熱工程とからなる二段階の工程を段階的に実行する比較的複雑な装置構成が採用される。しかし、このような方法で過熱水蒸気を発生させる場合、装置構造が大型化するとともに、装置の起動から水蒸気発生までの予工程にかなりの時間が必要となるという問題が生じる。このため、簡易な装置又は方法で迅速に過熱水蒸気を発生させることができる装置の開発が要望されている。   Superheated steam heated to a saturated steam temperature or higher is industrially used in various plant processes, or is used for drying, processing, sterilization and the like of wood and food. In recent years, household cooking appliances and the like using such superheated steam are spreading in the market, and the use of superheated steam has been especially expanded in recent years. In this kind of household cooking appliances, the superheated steam is generated by immersing an electric heater in the water in the water tank to heat the water in the water tank, and reheating the water vapor generated by the vaporization of the water. For example, Japanese Patent Application Laid-Open No. 2004-186103 (Patent Document 1) discloses a steam generator for a cooker provided with a steam generating heater and a steam heater. In this type of apparatus, a relatively complicated apparatus configuration is adopted in which a two-stage process consisting of a water vapor generation process for vaporizing water to generate water vapor and a water vapor heating process for heating the water vapor is executed in stages. . However, when superheated steam is generated by such a method, the structure of the apparatus increases in size, and a considerable time is required for the pre-process from the start of the apparatus to the generation of water vapor. For this reason, development of the apparatus which can generate superheated steam quickly with a simple apparatus or method is desired.

特開平9−273755号公報(特許文献2)には、マイクロ波透過性及び吸水性を有する多孔質体をマイクロ波加熱手段によって加熱し、多孔質体に供給された水を加熱して過熱水蒸気を発生させるように構成された水蒸気発生装置が記載されている。同様に、特開2001−267061号公報(特許文献3)及び特開2001−254952号公報(特許文献4)には、マイクロ波加熱手段及び多孔質体を用いた水蒸気発生装置が開示されている。この方式の装置は、マイクロ波加熱装置を含む比較的複雑な装置構成を要する。   In JP-A-9-273755 (Patent Document 2), a porous body having microwave permeability and water absorption is heated by microwave heating means, and water supplied to the porous body is heated to superheated steam. A steam generator configured to generate water is described. Similarly, Japanese Patent Application Laid-Open No. 2001-267061 (Patent Document 3) and Japanese Patent Application Laid-Open No. 2001-254952 (Patent Document 4) disclose a steam generator using a microwave heating means and a porous body. . This type of apparatus requires a relatively complicated apparatus configuration including a microwave heating apparatus.

多孔質体及び発熱体を用いた水蒸気発生装置として、電熱ヒータ等の発熱体を埋め込んだ多孔質体を部分的に液浴に浸漬してなる水蒸気発生装置が知られている(特開昭50−14901号公報(特許文献5))。この方式の水蒸気発生装置の構造が、図13に概略的に示されている。図13に示す如く、液浴Wの水は、多孔質体101の細孔に吸い上げられ、発熱体102によって加熱され、多孔質体101の外側面から流出する。他の構造の水蒸気発生装置として、伝熱効率を改善する多孔質の溶射被覆層を気化器内面及び発熱体表面に形成し、効率的に水蒸気を発生させるように構成した水蒸気発生装置(特開昭56−49163号公報(特許文献6))、或いは、電極間に配置された多孔質体に水を供給し、多孔質内の水の導電性又はジュール効果によって水を気化させるように構成された水蒸気発生装置(特開昭53−109001号公報(特許文献7))が知られている。   As a steam generator using a porous body and a heating element, there is known a steam generating apparatus in which a porous body in which a heating element such as an electric heater is embedded is partially immersed in a liquid bath (Japanese Patent Laid-Open No. 50). No. 14901 (Patent Document 5)). The structure of this type of steam generator is schematically shown in FIG. As shown in FIG. 13, the water in the liquid bath W is sucked into the pores of the porous body 101, heated by the heating element 102, and flows out from the outer surface of the porous body 101. As a water vapor generator having another structure, a water vapor generator configured to efficiently generate water vapor by forming a porous spray coating layer to improve heat transfer efficiency on the inner surface of the vaporizer and the surface of the heating element 56-49163 (Patent Document 6)), or configured to supply water to a porous body disposed between electrodes and vaporize water by conductivity or Joule effect of water in the porous body. A steam generator (Japanese Patent Laid-Open No. 53-109001 (Patent Document 7)) is known.

多孔質体を用いた同様な構造の水蒸気発生装置として、宇宙等の無重力空間において未蒸発ミストの発生を防止すべく、定量ポンプを用いて多孔質体に液を供給し、多孔質体中空部の内壁面に漏出した液を伝熱管の発熱によって蒸発させるように構成されたものが特開昭61−243201号公報(特許文献8)に記載されている。
特開2004−186103公報 特開平9−273755号公報 特開2001−267061号公報 特開2001−254952号公報 特開昭50−14901号公報 特開昭56−49163号公報 特開昭53−109001号公報 特開昭61−243201号公報
As a water vapor generator with a similar structure using a porous body, a liquid is supplied to the porous body using a metering pump in order to prevent the generation of non-evaporated mist in a zero-gravity space such as the universe. Japanese Patent Application Laid-Open No. 61-243201 (Patent Document 8) describes a configuration in which liquid leaking to the inner wall surface of the tube is evaporated by the heat generated by the heat transfer tube.
JP 2004-186103 A JP-A-9-273755 JP 2001-267061 A Japanese Patent Laid-Open No. 2001-254952 JP 50-14901 A JP 56-49163 A JP-A-53-109001 JP-A 61-243201

しかしながら、発熱体を被覆し又は発熱体を埋込んだ多孔質体の外側面から水蒸気を発生させるように構成した従来の水蒸気発生装置(特許文献5及び6)では、保水状態の多孔質体を全体的に加熱しなければならない。保水状態の多孔質体は、大きな熱容量を有するので、発熱体の加熱開始から水蒸気発生までに、かなりの時間が必要となる。仮に、短時間に水蒸気を発生させるために多孔質体の容積を低減し、薄い多孔質体で発熱体を被覆するように設計することも考慮し得るが、このような設計を採用した場合、液浴から水を吸い上げる多孔質体の機能(即ち、発熱体に対する液体の供給量)が極端に低下するので、水蒸気発生量は、大きく低下してしまう。   However, in the conventional water vapor generating apparatus (Patent Documents 5 and 6) configured to generate water vapor from the outer surface of the porous body that covers the heat generating element or has the heat generating element embedded therein, The whole must be heated. Since the water-retained porous body has a large heat capacity, a considerable time is required from the start of heating of the heating element to the generation of water vapor. Temporarily, in order to generate water vapor in a short time, it can be considered to reduce the volume of the porous body and to cover the heating element with a thin porous body, but when such a design is adopted, Since the function of the porous body that sucks water from the liquid bath (that is, the amount of liquid supplied to the heating element) is extremely reduced, the amount of water vapor generated is greatly reduced.

また、気化すべき水は、毛細管現象によって多孔質体内を発熱体に向かって径方向内方に流動するのに対し、加熱面に発生した水蒸気は、気化による急激な体積増大を伴って水と逆の方向、即ち、加熱面から径方向外方に流動する。即ち、水蒸気は、水と逆行し、加熱面に対する水の供給は、妨げられる。この結果、水蒸気生成量の増大または水蒸気温度の上昇のために発熱体の発熱量を増大させると、発熱体廻りの多孔質体部分が過乾燥し、或いは、発熱体を構成する電熱ヒータが過熱し又は焼き切れるといった問題が生じる。   The water to be vaporized flows in the porous body radially inward toward the heating element by capillary action, whereas the water vapor generated on the heating surface is accompanied by a rapid volume increase due to vaporization. It flows in the opposite direction, that is, radially outward from the heating surface. That is, the water vapor goes backwards with the water and the supply of water to the heating surface is hindered. As a result, if the heat generation amount of the heating element is increased due to an increase in the amount of water vapor generated or a rise in the water vapor temperature, the porous body portion around the heating element is overdried or the electric heater constituting the heating element is overheated. The problem that it burns out or burns out arises.

他方、多孔質体内の水に直に通電し、水の発熱によって水を気化させるように構成した従来の水蒸気発生装置(特許文献7)においては、ポンプ等の圧送装置によって水を多孔質体内に圧入する必要が生じる。また、この構成の装置では、多孔質体内の多量の水を全体的又は一律に蒸発させる必要が生じるので、高い電圧を多孔質体内の水に印加しなければならない。このため、高電圧の電力供給が必要となり、これは、装置使用上の安全性の観点からも望ましくない。   On the other hand, in the conventional water vapor generating device (Patent Document 7) configured to directly energize the water in the porous body and vaporize the water by heat generation of the water (Patent Document 7), the water is fed into the porous body by a pumping device such as a pump. It is necessary to press fit. Further, in the apparatus having this configuration, it is necessary to evaporate a large amount of water in the porous body as a whole or uniformly, and therefore, a high voltage must be applied to the water in the porous body. For this reason, a high-voltage power supply is required, which is not desirable from the viewpoint of safety in use of the apparatus.

これに対し、上記特許文献8の水蒸気発生装置は、定量ポンプによって水を供給する構成を備えるものの、この水蒸気発生装置によれば、水の流動は、水蒸気の挙動によって妨げられず、多孔質体の過乾燥の問題も回避し得ると考えられ、従って、特許文献8の水蒸気発生装置は、この意味において優れた構成を備える。しかしながら、特許文献8の水蒸気発生装置では、多孔質体は、液を多孔質体に保持し、未蒸発ミストが中空部に飛散するのを防止する手段として主に使用されたものにすぎず、液は、多孔質体中空部の内壁面に漏出してからヒータ外面に伝熱接触し、蒸発する。このため、特許文献8の装置では、表面積を大きく設定した二重管構造のシースヒータが用いられる。しかしながら、シースヒータの表面平均熱流束は、40〜90kW/m2程度であるにすぎず、伝熱面の熱流束は小さい。このような構成では、飽和水蒸気を生成し得たとしても、過熱水蒸気を生成することはできない。 On the other hand, although the water vapor generating device of the above-mentioned Patent Document 8 has a configuration for supplying water with a metering pump, according to this water vapor generating device, the flow of water is not hindered by the behavior of water vapor, and the porous body. Therefore, it is considered that the problem of overdrying can be avoided. Therefore, the water vapor generator of Patent Document 8 has an excellent structure in this sense. However, in the water vapor generating device of Patent Document 8, the porous body is merely used mainly as a means for holding the liquid in the porous body and preventing the non-evaporated mist from scattering into the hollow portion. The liquid leaks to the inner wall surface of the hollow portion of the porous body and then comes into heat transfer contact with the outer surface of the heater and evaporates. For this reason, in the apparatus of Patent Document 8, a sheath heater having a double tube structure with a large surface area is used. However, the surface average heat flux of the sheath heater is only about 40 to 90 kW / m 2 , and the heat flux on the heat transfer surface is small. In such a configuration, even if saturated steam can be generated, superheated steam cannot be generated.

仮に、特許文献8の装置において、ヒータ発熱量を増大したとしても、供給された熱の多くは、水蒸気発生量を増大するのに消費されてしまい、発生する水蒸気量が増大するにすぎず、発熱体の熱は、水蒸気温度の上昇に所望の如く寄与し難い。即ち、特許文献8の水蒸気発生装置は、過熱水蒸気の生成を意図したものではなく、過熱水蒸気の生成の可能性については、開示も示唆もしていない。   Even if the heater heat generation amount is increased in the apparatus of Patent Document 8, much of the supplied heat is consumed to increase the amount of water vapor generated, and only the amount of water vapor generated increases. The heat of the heating element is unlikely to contribute as desired to the increase in water vapor temperature. That is, the steam generator of Patent Document 8 is not intended to generate superheated steam, and does not disclose or suggest the possibility of generating superheated steam.

本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、複雑な装置構成を採用することなく、迅速に過熱水蒸気を発生させることができ、しかも、制御性及び応答性に優れた過熱水蒸気の発生装置及び発生方法を提供することにある。   The present invention has been made in view of such problems, and the object of the present invention is to quickly generate superheated steam without adopting a complicated apparatus configuration, and to achieve controllability and An object of the present invention is to provide an apparatus and a method for generating superheated steam having excellent responsiveness.

本発明は又、液浴から水を吸い上げる多孔質体の機能を損なわずに加熱開始から過熱水蒸気発生までの時間を短縮し、多孔質体及び発熱体の過乾燥又は過熱を防止することができる過熱水蒸気の発生装置及び発生方法を提供することを目的とする。   The present invention can also shorten the time from the start of heating to the generation of superheated steam without impairing the function of the porous body that sucks up water from the liquid bath, and can prevent overdrying or overheating of the porous body and the heating element. An object of the present invention is to provide a superheated steam generator and method.

本発明は更に、圧送装置を要することなく、水蒸気発生面に水を円滑に供給し、しかも、比較的低電圧の電力を供給することによって迅速に過熱水蒸気を発生させることができる過熱水蒸気の発生装置及び発生方法を提供することを目的とする。   The present invention further generates superheated steam that can smoothly generate superheated steam by supplying water to the steam generation surface smoothly without supplying a pumping device, and by supplying relatively low voltage power. An object is to provide an apparatus and a generation method.

本発明は、上記目的を達成すべく、液浴に部分的に浸漬した多孔質体と、多孔質体の毛細管現象によって供給された前記液浴の水を加熱して水蒸気を発生させる発熱体とを備えた水蒸気発生装置において、
前記多孔質体内に形成された中空部と、
前記中空部に生成した水蒸気を該中空部から多孔質体外に送出する水蒸気送出手段とを有し、
前記多孔質体の細孔の出口部は、前記中空部の内壁面に位置し、
前記発熱体は、前記出口部の水を前記細孔内で気化させ且つ該細孔に発生した水蒸気を過熱するように、前記中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びることを特徴とする水蒸気発生装置を提供する。
In order to achieve the above object, the present invention provides a porous body partially immersed in a liquid bath, and a heating element that generates water vapor by heating the water in the liquid bath supplied by the capillary phenomenon of the porous body. In the steam generator with
A hollow portion formed in the porous body;
Water vapor delivery means for delivering the water vapor generated in the hollow part out of the porous body from the hollow part,
The outlet portion of the pore of the porous body is located on the inner wall surface of the hollow portion,
The heating element is in contact with or close to the inner wall surface of the hollow portion so as to vaporize the water in the outlet portion and superheat the water vapor generated in the pore. A water vapor generating device is provided.

本発明は又、液浴に部分的に浸漬した多孔質体の毛細管現象によって水を発熱体に供給し、該発熱体の熱によって水蒸気を発生させる水蒸気発生方法において、
前記多孔質体内に形成した中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる前記発熱体によって、前記中空部の内壁面に位置する前記多孔質体の細孔出口部の水を加熱し、
前記発熱体の熱によって前記出口部のメニスカス部の水を蒸発させて前記細孔の出口部に水蒸気を発生させ且つ該細孔に発生した水蒸気を過熱し、
過熱水蒸気を前記中空部から多孔質体外に送出することを特徴とする水蒸気発生方法を提供する。
The present invention also provides a water vapor generation method in which water is supplied to a heating element by capillary action of a porous body partially immersed in a liquid bath, and water vapor is generated by the heat of the heating element.
The heating element that contacts or is close to the inner wall surface of the hollow portion formed in the porous body and extends along the inner wall surface of the pore outlet portion of the porous body located on the inner wall surface of the hollow portion. Heat the water,
The water of the meniscus part of the outlet part is evaporated by the heat of the heating element to generate water vapor at the outlet part of the pores and superheat the water vapor generated in the pores,
Provided is a method for generating water vapor, characterized in that superheated water vapor is sent out of the porous body from the hollow portion.

本発明の上記構成によれば、液浴の水は、毛細管現象によって中空部内壁面の出口部に供給される。出口部から発生した水蒸気は、水蒸気送出手段によって中空部内の領域から装置外に送出される。水蒸気の流動領域と、供給水の流動領域とは分離し、水蒸気は、水の供給を妨げない。   According to the said structure of this invention, the water of a liquid bath is supplied to the exit part of a hollow part inner wall surface by a capillary phenomenon. The water vapor generated from the outlet portion is sent out of the apparatus from the region in the hollow portion by the water vapor delivery means. The water vapor flow region and the feed water flow region are separated, and the water vapor does not hinder the water supply.

また、発熱体の熱は、出口部に形成されたメニスカス部の水に作用する。メニスカス部の薄い水膜は、熱容量が小さい微小量の水であることから、比較的低電圧の電力を発熱体に供給することにより、発熱体の熱によって水を急激に蒸発させることができる。しかも、水は、細孔内で気化するので、水蒸気は、細孔出口部に近接した発熱体によって直ちに過熱される。過熱水蒸気は、発熱開始後数十秒〜数分以内に中空部に生成し、発熱停止後速やかに消失する。   Further, the heat of the heating element acts on the water in the meniscus portion formed at the outlet portion. Since the thin water film of the meniscus portion is a minute amount of water having a small heat capacity, water can be rapidly evaporated by the heat of the heating element by supplying relatively low voltage power to the heating element. Moreover, since water vaporizes in the pores, the water vapor is immediately heated by the heating element close to the pore outlet. The superheated steam is generated in the hollow portion within several tens of seconds to several minutes after the start of heat generation, and disappears rapidly after the heat generation is stopped.

更に、液浴の水は、多孔質体の毛細管現象により、蒸発速度に相応して供給されるので、水蒸気は、中空部内壁面から連続的に発生する。多孔質体及び発熱体の接触部又はその近傍には、常に水が供給されるので、多孔質体及び発熱体の過乾燥又は過熱を防止することができる。しかも、多孔質体に熱伝導する発熱体の熱は、出口部に向かって流動する水の予熱に有効利用されるので、多孔質体の外側面から系外に散逸する熱量は、低減する。   Furthermore, since the water in the liquid bath is supplied according to the evaporation rate due to the capillary action of the porous body, water vapor is continuously generated from the inner wall surface of the hollow portion. Since water is always supplied to the contact portion of the porous body and the heating element or in the vicinity thereof, overdrying or overheating of the porous body and the heating element can be prevented. In addition, since the heat of the heating element that conducts heat to the porous body is effectively used for preheating water flowing toward the outlet, the amount of heat dissipated out of the system from the outer surface of the porous body is reduced.

好ましくは、発熱体の熱によって発熱体近傍の内壁面に乾燥帯域が形成され、湿潤な内壁面帯域が乾燥帯域の間に形成される。更に好ましくは、中空部内壁面と発熱体との接触部分の熱流束は、1MW/m2以上に設定され、或いは、発熱体全表面の平均熱流束値は、200kW/m2以上に設定される。これにより、細孔内の水を瞬時に気化し、200℃以上の過熱水蒸気を発熱開始後1分以内に中空部に確実に生成することができる。所望により、発熱開始後30秒以内に、300℃以上の過熱水蒸気を中空部に生成することも可能である。 Preferably, a drying zone is formed on the inner wall surface in the vicinity of the heating element by the heat of the heating element, and a wet inner wall zone is formed between the drying zones. More preferably, the heat flux at the contact portion between the inner wall surface of the hollow part and the heating element is set to 1 MW / m 2 or more, or the average heat flux value of the entire surface of the heating element is set to 200 kW / m 2 or more. . Thereby, water in the pores can be instantly vaporized, and superheated steam at 200 ° C. or higher can be reliably generated in the hollow portion within 1 minute after the start of heat generation. If desired, it is possible to generate superheated steam at 300 ° C. or higher in the hollow portion within 30 seconds after the start of heat generation.

他の観点より、本発明は、液浴に部分的に浸漬した多孔質体と、
多孔質体の毛細管現象によって供給された前記液浴の液体を加熱して蒸気を発生させる発熱体と、
前記多孔質体内に形成された中空部と、
前記中空部に生成した蒸気を該中空部から多孔質体外に送出する蒸気送出手段とを有し、
前記多孔質体の細孔の出口部は、前記中空部の内壁面に位置し、
前記発熱体は、前記出口部の液体を前記細孔内で気化させ且つ該細孔に発生した水蒸気を過熱するように、前記中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びることを特徴とする蒸気発生装置を提供する。
From another viewpoint, the present invention provides a porous body partially immersed in a liquid bath,
A heating element for heating the liquid in the liquid bath supplied by the capillary action of the porous body to generate steam;
A hollow portion formed in the porous body;
Vapor delivery means for delivering the vapor generated in the hollow part out of the porous body from the hollow part,
The outlet portion of the pore of the porous body is located on the inner wall surface of the hollow portion,
The heating element is in contact with or close to the inner wall surface of the hollow portion and along the inner wall surface so as to vaporize the liquid in the outlet portion in the pores and superheat water vapor generated in the pores. A steam generator is provided that extends.

本発明は又、液浴に部分的に浸漬した多孔質体の毛細管現象によって前記液浴の液体を発熱体に供給し、
前記多孔質体内に形成した中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる前記発熱体によって、前記中空部の内壁面に位置する前記多孔質体の細孔出口部の液体を加熱し、
前記発熱体の熱によって前記出口部のメニスカス部の液体を気化させて前記細孔の出口部に蒸気を発生させるとともに前記細孔に発生した蒸気を過熱し、
過熱蒸気を前記中空部から多孔質体外に送出することを特徴とする蒸気発生方法を提供する。
The present invention also supplies the liquid in the liquid bath to the heating element by capillary action of a porous body partially immersed in the liquid bath,
The heating element that contacts or is close to the inner wall surface of the hollow portion formed in the porous body and extends along the inner wall surface of the pore outlet portion of the porous body located on the inner wall surface of the hollow portion. Heating the liquid,
Vaporizing the liquid in the meniscus portion of the outlet portion by the heat of the heating element to generate steam at the outlet portion of the pores and superheating the steam generated in the pores;
Provided is a steam generation method characterized in that superheated steam is sent out of the porous body from the hollow portion.

本発明は、水蒸気の生成のみならず、多孔質体の毛細管現象によって吸い上げ可能な液の蒸発に適用することができる。使用可能な液体として、各種液体燃料が挙げられる。本発明の蒸気発生装置又は蒸気発生方法によれば、液浴の液は、毛細管現象によって中空部内壁面の出口部に供給され、出口部で気化した燃料の蒸気は、蒸気送出手段によって中空部内の領域から装置外に送出される。蒸気の流動領域と、供給液の流動領域とは分離するので、蒸気は、液の供給を妨げない。また、液は、細孔内で気化するので、蒸気は、細孔出口部に近接した発熱体によって過熱される。   The present invention can be applied not only to the generation of water vapor but also to the evaporation of liquid that can be sucked up by the capillary action of a porous body. Examples of usable liquids include various liquid fuels. According to the steam generating apparatus or the steam generating method of the present invention, the liquid in the liquid bath is supplied to the outlet portion of the inner wall surface of the hollow portion by capillary action, and the vapor of the fuel vaporized at the outlet portion is contained in the hollow portion by the steam delivery means. It is sent out of the device from the area. Since the flow region of the steam and the flow region of the supply liquid are separated, the steam does not hinder the supply of the liquid. Further, since the liquid is vaporized in the pores, the vapor is superheated by a heating element close to the outlet portion of the pores.

本発明は、複雑な装置構成を採用することなく、迅速に過熱水蒸気を発生させることができ、しかも、制御性及び応答性に優れた過熱水蒸気の発生装置及び発生方法を提供する。   The present invention provides a superheated steam generator and a method for generating superheated steam that can quickly generate superheated steam without adopting a complicated apparatus configuration, and that are excellent in controllability and responsiveness.

本発明の水蒸気発生装置及び水蒸気発生方法によれば、液浴から水を吸い上げる多孔質体の機能を損なわずに加熱開始から過熱水蒸気発生までの時間を短縮し、多孔質体及び発熱体の過乾燥又は過熱を防止することができる。   According to the steam generator and the steam generating method of the present invention, the time from the start of heating to the generation of superheated steam is shortened without impairing the function of the porous body that sucks up water from the liquid bath, and the excess of the porous body and the heating element is reduced. Drying or overheating can be prevented.

また、本発明の水蒸気発生装置及び水蒸気発生方法によれば、圧送装置を要することなく、水蒸気発生面に水を円滑に供給するとともに、比較的低電圧の供給によって過熱水蒸気を発生させることができる。   Moreover, according to the water vapor generation apparatus and the water vapor generation method of the present invention, it is possible to smoothly supply water to the water vapor generation surface without requiring a pumping apparatus and to generate superheated water vapor by supplying a relatively low voltage. .

更に、本発明は、液浴から液を吸い上げる多孔質体の機能を損なわずに発熱体の熱で効果的に過熱蒸気を発生させることができる蒸気発生装置及び蒸気発生方法を提供する。   Furthermore, the present invention provides a steam generating apparatus and a steam generating method capable of effectively generating superheated steam with the heat of the heating element without impairing the function of the porous body that sucks the liquid from the liquid bath.

本発明の好適な実施形態において、上記水蒸気発生装置は、上記中空部に生成した過熱水蒸気を更に加熱する水蒸気加熱装置を更に有し、水蒸気加熱装置は、水蒸気送出手段を介して多孔質体の中空部と連通する。中空部に発生した過熱水蒸気は、加熱装置によって更に高温に加熱される。加熱装置によって加熱した水蒸気は、高温の過熱水蒸気として系外の装置等に供給される。好ましくは、液浴に水を供給するための給水系には、水質浄化装置が介装される。水質浄化装置は、例えば、給水に含まれるカルシウム等の硬度成分を吸着するイオン交換樹脂のフィルタを内蔵する。   In a preferred embodiment of the present invention, the steam generator further includes a steam heating device that further heats the superheated steam generated in the hollow portion, and the steam heating device is a porous body through a steam delivery means. It communicates with the hollow part. The superheated steam generated in the hollow portion is further heated to a high temperature by the heating device. The steam heated by the heating device is supplied to a device outside the system as high-temperature superheated steam. Preferably, a water purification device is interposed in a water supply system for supplying water to the liquid bath. The water purification apparatus incorporates, for example, an ion exchange resin filter that adsorbs hardness components such as calcium contained in the water supply.

発熱体は、例えば、中空部の内壁面に密着したニクロム線又はカンタル線からなる。発熱体は、所望により、赤熱する程度に加熱される。このように加熱した場合であっても、発熱体の輻射熱は、含水状態の多孔質体に吸熱されるので、放熱による熱損失は極めて小さく、従って、所望の熱効率が得られる。   The heating element is made of, for example, a nichrome wire or a Kanthal wire that is in close contact with the inner wall surface of the hollow portion. The heating element is heated to the extent that it is red hot as desired. Even in the case of heating in this way, the radiant heat of the heating element is absorbed by the porous body in a water-containing state, so that heat loss due to heat dissipation is extremely small, and thus the desired thermal efficiency can be obtained.

好ましくは、上記中空部は、円形断面を有し、上記発熱体は、中空部の内周面に接し又は近接し且つ軸芯を中空部の軸線方向に配向したコイル状電熱体からなる。コイル状電熱体は、加熱時に径方向に熱膨張し、中空部の内周面を押圧するので、接触熱抵抗は低下し、更に効率的に過熱水蒸気又は過熱蒸気を中空部に発生させる。このような装置構造は、電熱体の熱膨張によって多孔質体と電熱体とが離間し、接触熱抵抗が増大する構造(例えば、多孔質体の外周に電熱体を配置した構造)と比べ、熱効率の観点より極めて有利である。所望により、複数の中空部を多孔質体に形成し、各中空部に発熱体を内装しても良い。   Preferably, the hollow portion has a circular cross section, and the heating element is formed of a coiled electric heating body that is in contact with or close to the inner peripheral surface of the hollow portion and whose axis is oriented in the axial direction of the hollow portion. The coiled electric heating body thermally expands in the radial direction during heating and presses the inner peripheral surface of the hollow portion, so that the contact thermal resistance is reduced, and moreover superheated steam or superheated steam is efficiently generated in the hollow portion. Such a device structure is compared to a structure in which the porous body and the electric heating element are separated by thermal expansion of the electric heating element and the contact thermal resistance is increased (for example, a structure in which the electric heating element is disposed on the outer periphery of the porous body) This is extremely advantageous from the viewpoint of thermal efficiency. If desired, a plurality of hollow portions may be formed in a porous body, and a heating element may be provided in each hollow portion.

多孔質体の細孔径、有効熱伝導率、材質、中空部断面寸法等は、水蒸気加熱装置又は蒸気加熱装置の使用目的、液体の物性、水蒸気又は蒸気の物性等に相応して適宜設定される。例えば、多孔質体の細孔径を小径に設定した場合、毛管力及び蒸発界面積を増大し得るが、反面、液体の流動抵抗が増大する。従って、多孔質体の細孔径には、使用目的等に相応した最適値があると考えられる。また、有効熱伝導率が小さい多孔質体を用いた場合、多孔質体内の温度勾配が増大して中空部内壁面の表面温度が上昇するので、水蒸気又は蒸気は、効率的に蒸発界面から発生する。しかしながら、実際には、多孔質体の素材の耐熱性、熱変形等の要因をも考慮する必要があるので、各種の要因を考慮した上で最適な有効熱伝導率の多孔質体を選択すべき必要があると考えられる。   The pore diameter, effective thermal conductivity, material, cross-sectional dimension of the hollow portion, etc. of the porous body are appropriately set according to the purpose of use of the steam heating device or the steam heating device, the physical properties of the liquid, the physical properties of the steam or steam, etc. . For example, when the pore diameter of the porous body is set to a small diameter, the capillary force and the evaporation interface area can be increased, but the flow resistance of the liquid is increased. Therefore, it is considered that there is an optimum value corresponding to the purpose of use and the like in the pore diameter of the porous body. In addition, when a porous body having a small effective thermal conductivity is used, the temperature gradient in the porous body increases and the surface temperature of the inner wall surface of the hollow portion increases, so that water vapor or steam is efficiently generated from the evaporation interface. . However, in fact, it is necessary to consider factors such as heat resistance and thermal deformation of the porous material, so select a porous material with the optimum effective thermal conductivity in consideration of various factors. It is considered necessary.

また、多孔質体の寸法、殊に、多孔質体の高さは、液浴の液を多孔質体固有の毛管力によって中空部の内周壁面全域に供給し得るように設定することが望ましい。   In addition, the dimensions of the porous body, in particular, the height of the porous body, is preferably set so that the liquid in the liquid bath can be supplied to the entire inner peripheral wall surface of the hollow portion by the capillary force inherent to the porous body. .

本発明の好適な実施形態によれば、水蒸気発生装置又は蒸気発生装置は、発熱体に通電するための電力供給装置を更に備える。更に好適には、電力供給装置は、発熱体に通電すべき電力の電圧値又は電流値を制御して発熱体の発熱量を制御する発熱体制御手段を有する。本発明の水蒸気発生装置又は蒸気発生装置においては、発熱体の発熱量を制御することによって水又は液体の蒸発速度を変化させることができるので、発熱体制御手段は、水又は液体の蒸発速度を可変制御することができる。従って、このような構成によれば、水又は蒸気の蒸発速度を発熱体の発熱量に応じて任意に設定することができ、これにより、例えば、次工程に供給される過熱水蒸気又は過熱蒸気の流量制御等を実行することが可能となる。   According to a preferred embodiment of the present invention, the steam generator or the steam generator further includes a power supply device for energizing the heating element. More preferably, the power supply device includes a heating element control unit that controls a voltage value or a current value of power to be supplied to the heating element to control a heat generation amount of the heating element. In the steam generator or the steam generator of the present invention, since the evaporation rate of water or liquid can be changed by controlling the heat generation amount of the heating element, the heating element control means controls the evaporation rate of water or liquid. Variable control is possible. Therefore, according to such a configuration, the evaporation rate of water or steam can be arbitrarily set according to the calorific value of the heating element, and thus, for example, the superheated steam or superheated steam supplied to the next process can be set. It becomes possible to execute flow rate control and the like.

図1は、本発明を適用した水蒸気発生装置の実施例を概略的に示す斜視図であり、図2及び図3は、図1に示す水蒸気発生装置の縦断面図及び横断面図である。   FIG. 1 is a perspective view schematically showing an embodiment of a steam generator to which the present invention is applied, and FIGS. 2 and 3 are a longitudinal sectional view and a transverse sectional view of the steam generator shown in FIG.

水蒸気発生装置1は、過熱水蒸気を発生させる気化装置2と、水蒸気送出管3を介して気化装置2に接続された補助加熱装置4とから構成される。気化装置2は、液浴Wを収容する液槽5と、液槽5内の液浴Wに下部を浸漬した多孔質体6と、多孔質体6の中空部7に内装したコイル状発熱体8とから構成される。中空部7の下流端(水蒸気送出口)7aが多孔質体6の端面に位置決めされる。他方、中空部7の上流側は、多孔質体6内の閉塞端7bにおいて終端する。   The steam generator 1 includes a vaporizer 2 that generates superheated steam and an auxiliary heating device 4 that is connected to the vaporizer 2 via a steam delivery pipe 3. The vaporizer 2 includes a liquid tank 5 that contains a liquid bath W, a porous body 6 that has a lower part immersed in the liquid bath W in the liquid tank 5, and a coiled heating element that is housed in a hollow part 7 of the porous body 6. 8. The downstream end (steam outlet) 7 a of the hollow portion 7 is positioned on the end surface of the porous body 6. On the other hand, the upstream side of the hollow portion 7 terminates at a closed end 7 b in the porous body 6.

水蒸気送出管3の上流端が中空部7の下流端7aに接続される。補助加熱装置4は、耐熱性断熱材からなる本体9と、本体9を貫通する水蒸気流路10と、水蒸気流路10内に収容した補助加熱用発熱体11とから構成される。水蒸気流路10の下流端(水蒸気送出口)は、水蒸気給送管12の上流端に接続され、水蒸気給送管12の下流端(図示せず)は、系外の装置(図示せず)に接続され、或いは、系外の装置内に過熱水蒸気を吐出する。   The upstream end of the water vapor delivery pipe 3 is connected to the downstream end 7 a of the hollow portion 7. The auxiliary heating device 4 includes a main body 9 made of a heat-resistant heat insulating material, a water vapor channel 10 penetrating the main body 9, and a heating element 11 for auxiliary heating accommodated in the water vapor channel 10. The downstream end (steam outlet) of the steam channel 10 is connected to the upstream end of the steam feed pipe 12, and the downstream end (not shown) of the steam feed pipe 12 is a device outside the system (not shown). Or superheated steam is discharged into a device outside the system.

気化装置2の中空部7は、全長に亘って均等な直径を有する円形断面の水蒸気流路を多孔質体6内に形成する。気化装置2の発熱体8は、概ね全周に亘って中空部7の内周面に接し又は密着した円形断面のコイル状ニクロム線又はカンタル線からなり、通電時に発熱する。補助加熱装置4の水蒸気流路10は、全長に亘って均等な直径を有する円形断面の流体流路を本体9内に形成する。補助加熱装置4の発熱体11は、水蒸気が流通可能な間隙を有する。発熱体11も又、通電時に発熱する。本例では、不規則に曲げられ且つ丸められた金属線材(ステンレスワイヤ等)の綿状集合体が、発熱体11として水蒸気流路10内に充填される。このような発熱体11は、表面積が大きく、従って、発熱体11と水蒸気との十分な伝熱接触面積を確保するので、効率良く水蒸気を加熱することができる。   The hollow portion 7 of the vaporizer 2 forms a circular cross-section water vapor channel having a uniform diameter over the entire length in the porous body 6. The heating element 8 of the vaporizer 2 is formed of a coiled nichrome wire or a Kanthal wire having a circular cross section that is in contact with or in close contact with the inner peripheral surface of the hollow portion 7 over the entire circumference, and generates heat when energized. The steam channel 10 of the auxiliary heating device 4 forms a fluid channel with a circular cross section having a uniform diameter over the entire length in the main body 9. The heating element 11 of the auxiliary heating device 4 has a gap through which water vapor can flow. The heating element 11 also generates heat when energized. In this example, an irregularly bent and rounded metal wire rod (stainless steel wire or the like) is filled into the water vapor channel 10 as a heating element 11. Such a heating element 11 has a large surface area, and therefore ensures a sufficient heat transfer contact area between the heating element 11 and water vapor, so that the water vapor can be efficiently heated.

気化装置2及び補助加熱装置4の発熱体8、11には、リード線15が夫々接続される。各リード線15の端子16には、電流供給装置20の通電配線21が接続される。電流供給装置20は、給電線22を介して交流電源23に接続される。本例の電流供給装置20は、交流電源(AC100V)23の電圧を降下させ、比較的低電圧の電力を発熱体10に供給する電圧調整器からなる。電流供給装置20は、端子16を介して発熱体8、11に交流電圧を印加し、発熱体8、11を発熱させる。   Lead wires 15 are connected to the heating elements 8 and 11 of the vaporizer 2 and the auxiliary heating device 4, respectively. An energization wiring 21 of the current supply device 20 is connected to the terminal 16 of each lead wire 15. The current supply device 20 is connected to the AC power source 23 via the feeder line 22. The current supply device 20 of this example includes a voltage regulator that drops the voltage of the AC power supply (AC 100 V) 23 and supplies relatively low voltage power to the heating element 10. The current supply device 20 applies an AC voltage to the heating elements 8 and 11 via the terminal 16 to cause the heating elements 8 and 11 to generate heat.

給水装置25が、気化装置2の液槽5と関連して水蒸気発生装置1に設けられる。給水装置25は、系外の給水設備(図示せず)に接続された給水管26と、給水を浄化する水質浄化装置27と、液槽5内に水を供給する供給管28とから構成される。浄化装置27は、給水に含まれるカルシウム等の硬度成分を吸着するイオン交換樹脂のフィルタを内蔵し、液槽5に供給すべき水を浄化する。従って、水質浄化した水が、液浴Wとして液槽5内に貯留されるとともに、液浴Wの液面低下と関連して液浴Wに適宜補給される。   A water supply device 25 is provided in the water vapor generator 1 in association with the liquid tank 5 of the vaporizer 2. The water supply device 25 includes a water supply pipe 26 connected to a water supply facility (not shown) outside the system, a water quality purification device 27 that purifies the water supply, and a supply pipe 28 that supplies water into the liquid tank 5. The The purification device 27 incorporates an ion exchange resin filter that adsorbs hardness components such as calcium contained in the water supply, and purifies the water to be supplied to the liquid tank 5. Accordingly, the purified water is stored in the liquid tank 5 as the liquid bath W and is appropriately replenished to the liquid bath W in connection with the liquid level lowering of the liquid bath W.

図3に示す矢印で示す如く、多孔質体6は、液浴Wの水を吸い上げる。吸い上げられた水は、中空部7に向かって流動し、中空部7の内周面において発熱体8の熱を受熱する。水は、発熱体8の熱によって加熱され、急激に気化する。中空部7の内周面から発生した水蒸気Sは、発熱体8との伝熱接触によって更に加熱される。中空部7の水蒸気Sは、100℃以上の温度を有する。   As shown by the arrows in FIG. 3, the porous body 6 sucks up the water in the liquid bath W. The sucked water flows toward the hollow portion 7 and receives heat from the heating element 8 on the inner peripheral surface of the hollow portion 7. Water is heated by the heat of the heating element 8 and vaporizes rapidly. The water vapor S generated from the inner peripheral surface of the hollow portion 7 is further heated by heat transfer contact with the heating element 8. The water vapor S in the hollow portion 7 has a temperature of 100 ° C. or higher.

一般に、含水多孔質体に高温物体を接近させると、多孔質体の表面において急激な水の気化が生じること、そして、多孔質体の表面の水が蒸発によって減少すると、多孔質体の毛管力によって自動的に多孔質体表面に水が供給され、多孔質体表面の液枯れが生じ難いことは、知られている。気化装置2は、このような原理を応用し、急峻な装置の起動と、瞬時の飽和水蒸気(又は過熱水蒸気)生成と、迅速な過熱水蒸気の供給とを可能にしようとするものである。気化装置2は、後述する作動試験結果より明らかなとおり、装置起動後7秒程度で飽和水蒸気を発生させる。この時間は、構造の最適化、電力供給量の設定等により、更に短縮することが可能である。   In general, when a hot object is brought close to a hydrous porous body, rapid vaporization of water occurs on the surface of the porous body, and when the water on the surface of the porous body is reduced by evaporation, the capillary force of the porous body It is known that water is automatically supplied to the surface of the porous body due to the above, and that the surface of the porous body does not easily drain. The vaporizer 2 applies such a principle and intends to enable rapid start-up of the apparatus, instantaneous saturated steam (or superheated steam) generation, and rapid supply of superheated steam. The vaporizer 2 generates saturated water vapor in about 7 seconds after the start of the device, as is apparent from the operation test results described later. This time can be further shortened by optimizing the structure and setting the power supply amount.

図2に示すように、中空部7の水蒸気Sは、水蒸気送出管3を介して補助加熱装置4の水蒸気流路10に流入し、補助加熱用の発熱体11に伝熱接触し、発熱体11の熱を受熱して更に加熱される。加熱後の水蒸気Sは、約300℃の温度を有する過熱水蒸気として水蒸気流路10から水蒸気給送管12に送出される。   As shown in FIG. 2, the water vapor S in the hollow portion 7 flows into the water vapor flow path 10 of the auxiliary heating device 4 through the water vapor delivery pipe 3 and is in heat transfer contact with the heat generating body 11 for auxiliary heating. 11 heat is received and further heated. The steam S after heating is sent to the steam feed pipe 12 from the steam channel 10 as superheated steam having a temperature of about 300 ° C.

図4(A)は、図3のI−I線における断面図であり、図4(B)は、図4(A)の部分拡大断面図である。   4A is a cross-sectional view taken along the line II of FIG. 3, and FIG. 4B is a partially enlarged cross-sectional view of FIG. 4A.

多孔質体6は、多数の連通空隙を有するセラミックス成形体からなり、耐熱性及び電気絶縁性を有する。連通空隙によって多孔質体6内に形成される多数の細孔30が、図4(B)に模式的に示されている。細孔30は、多孔質体6の下部において液槽5内の水(液浴W)に接し、水は、毛細管現象によって細孔30に吸い上げられる。細孔30は、中空部7の内壁面6aにおいて開口し、細孔30の開口部31が、発熱体8の表面に近接する。   The porous body 6 is made of a ceramic molded body having a large number of communicating voids, and has heat resistance and electrical insulation. A large number of pores 30 formed in the porous body 6 by the communicating voids are schematically shown in FIG. The pores 30 are in contact with the water (liquid bath W) in the liquid tank 5 at the lower part of the porous body 6, and the water is sucked into the pores 30 by capillary action. The pore 30 opens at the inner wall surface 6 a of the hollow portion 7, and the opening 31 of the pore 30 is close to the surface of the heating element 8.

図5は、図4(B)に示す”a”部の拡大図である。   FIG. 5 is an enlarged view of a portion “a” shown in FIG.

細孔30内の水は、開口部31において表面張力により湾曲し、メニスカスMを形成する。メニスカスMは、薄い水膜として開口部31の全周に形成される。発熱体8から多孔質体6に熱伝導した発熱体8の熱Hは、メニスカスMの水に伝熱し、メニスカスMの水を加熱する。メニスカスMの水は又、発熱体8の輻射熱によっても加熱される。メニスカスMは、細孔30の出口の縁部に位置する微小質量の水又は薄い水膜であることから、熱容量が極めて小さく、メニスカスMの水は、発熱体8の熱によって瞬時に気化する。メニスカスMの水の気化によって発生した水蒸気Sは、発熱体8の表面に沿って流動し、発熱体8の表面と熱交換し、発熱体8の熱を更に受熱する。   The water in the pores 30 is bent by the surface tension at the opening 31 to form a meniscus M. The meniscus M is formed as a thin water film all around the opening 31. The heat H of the heating element 8 conducted from the heating element 8 to the porous body 6 is transferred to the water of the meniscus M and heats the water of the meniscus M. The water of the meniscus M is also heated by the radiant heat of the heating element 8. Since the meniscus M is a minute mass of water or a thin water film located at the edge of the outlet of the pore 30, the heat capacity is extremely small, and the water of the meniscus M is instantly vaporized by the heat of the heating element 8. The water vapor S generated by the vaporization of the water of the meniscus M flows along the surface of the heating element 8, exchanges heat with the surface of the heating element 8, and further receives the heat of the heating element 8.

中空部7内に生成した水蒸気Sは、中空部7内を流動し、前述の如く、水蒸気送出管3(図1)に流出する。他方、図4(B)に矢印で示すように液浴Wから細孔30によって吸い上げられる水は、多孔質体6の外表面(外側面)から細孔30の開口部に供給される。従って、内壁面6aから発生した水蒸気Sは、開口部31に向かって供給される水の流動を妨げない。即ち、水蒸気発生面を構成する多孔質体6の内壁面6aと、内壁面6aに水を供給する液浴Wとが、多孔質体6を挟んで反対側に位置し(即ち、互い分離し)、水及び水蒸気の流動方向が実質的に同じ方向に設定されるので、液浴Wの水は、開口部31に円滑に供給され、開口部31には、メニスカスMが常に形成される。かくして、水蒸気Sは、多孔質体6の毛管給水作用の下で中空部7に連続的に生成する。   The steam S generated in the hollow part 7 flows in the hollow part 7 and flows out to the steam delivery pipe 3 (FIG. 1) as described above. On the other hand, the water sucked up by the pores 30 from the liquid bath W as shown by arrows in FIG. 4B is supplied from the outer surface (outer side surface) of the porous body 6 to the openings of the pores 30. Therefore, the water vapor S generated from the inner wall surface 6 a does not hinder the flow of water supplied toward the opening 31. That is, the inner wall surface 6a of the porous body 6 constituting the water vapor generating surface and the liquid bath W for supplying water to the inner wall surface 6a are located on the opposite side with respect to the porous body 6 (that is, separated from each other). ), Since the flow directions of water and water vapor are set to be substantially the same direction, the water in the liquid bath W is smoothly supplied to the opening 31, and the meniscus M is always formed in the opening 31. Thus, the water vapor S is continuously generated in the hollow portion 7 under the capillary water supply action of the porous body 6.

しかも、多孔質体6に伝達した熱Hは、内壁面6aの径方向外方に熱伝導し、細孔30によって吸い上げられる水に熱伝達する。従って、開口部31に供給される前に給水の予熱がなされるとともに、多孔質体6の温度上昇が抑制される。   Moreover, the heat H transmitted to the porous body 6 is thermally conducted outward in the radial direction of the inner wall surface 6 a and is transferred to the water sucked up by the pores 30. Therefore, the water supply is preheated before being supplied to the opening 31, and the temperature rise of the porous body 6 is suppressed.

図6は、図1に示す水蒸気発生装置1の作動試験結果を示す線図である。   FIG. 6 is a diagram showing an operation test result of the steam generator 1 shown in FIG.

本発明者は、水蒸気給送管12の端部を大気開放するとともに、図2に示すように熱電対40を水蒸気給送管12に挿入し、計測器41によって水蒸気Sの温度を計測した。なお、作動試験に用いた多孔質体6及び本体9には、直径9mmの円形中空部7及び水蒸気流路10が夫々形成され、多孔質体6の下部は、約1mmだけ液浴Wの水に浸漬された。   The inventor opened the end of the water vapor feed pipe 12 to the atmosphere, inserted a thermocouple 40 into the water vapor feed pipe 12 as shown in FIG. 2, and measured the temperature of the water vapor S by the measuring instrument 41. The porous body 6 and the main body 9 used in the operation test are each formed with a circular hollow portion 7 having a diameter of 9 mm and a water vapor channel 10, and the lower portion of the porous body 6 has a water bath W of about 1 mm. Soaked in

また、作動試験においては、多孔質体6として、高さ3cm程度の直方体形状のセラミックス多孔質体が採用された。このような多孔質体6では、水面から約3cmの高さに位置する多孔質体6の上面が水によって自然に湿り又は湿潤する状態が観察された。これは、多孔質体6の毛管力によって吸い上げられた水が中空部7の高さを超えて上昇し、中空部7の内周壁面(内壁面6a)全域に達していることを意味する。即ち、多孔質体6の寸法(殊に、高さ)は、中空部7の内周壁面全域に液浴Wの水を供給し得るように多孔質体固有の毛管力と関連して設定することが望ましい。   Further, in the operation test, a rectangular parallelepiped ceramic porous body having a height of about 3 cm was adopted as the porous body 6. In such a porous body 6, it was observed that the upper surface of the porous body 6 located at a height of about 3 cm from the water surface was naturally wetted or wetted by water. This means that the water sucked up by the capillary force of the porous body 6 rises beyond the height of the hollow portion 7 and reaches the entire inner peripheral wall surface (inner wall surface 6a) of the hollow portion 7. That is, the dimensions (in particular, the height) of the porous body 6 are set in relation to the capillary force unique to the porous body so that the water of the liquid bath W can be supplied to the entire inner peripheral wall surface of the hollow portion 7. It is desirable.

計測器41の温度計測結果が図6に示されている。図6の横軸は、水蒸気発生装置1の起動後の経過時間を示し、図6の縦軸は、計測器41によって測定された水蒸気温度を示す。   The temperature measurement result of the measuring instrument 41 is shown in FIG. The horizontal axis in FIG. 6 indicates the elapsed time after the activation of the water vapor generator 1, and the vertical axis in FIG. 6 indicates the water vapor temperature measured by the measuring instrument 41.

作動試験において、電流供給装置20から350Wの電力を発熱体8に給電するとともに、電流供給装置20によって発熱体11に通電し、発熱体11を加熱した。図6に示す如く、水蒸気発生装置1は、起動後約7秒経過時に100℃の飽和水蒸気を発生させ、起動から約20秒後に約300℃の過熱水蒸気を発生させた。起動後約60秒経過時に電力供給装置20から発熱体8、11への給電を停止し、発熱体8、11の加熱を停止すると、水蒸気温度は、急激に低下した。   In the operation test, 350 W of electric power was supplied from the current supply device 20 to the heating element 8, and the heating element 11 was energized by the current supply device 20 to heat the heating element 11. As shown in FIG. 6, the steam generator 1 generated saturated steam at 100 ° C. after about 7 seconds from startup, and generated superheated steam at about 300 ° C. after about 20 seconds from startup. When about 60 seconds passed after the start-up, power supply from the power supply device 20 to the heating elements 8 and 11 was stopped, and when the heating of the heating elements 8 and 11 was stopped, the water vapor temperature rapidly decreased.

作動試験結果から明らかなとおり、水蒸気発生装置1は、急峻な水蒸気生成作用の下で起動後短時間で過熱水蒸気を発生させるとともに、発熱体8、11の加熱停止後、速やかに飽和水蒸気及び過熱水蒸気の発生を停止する。即ち、水蒸気発生装置1は、応答性及び制御性に極めて優れる。   As is apparent from the operation test results, the steam generator 1 generates superheated steam in a short time after startup under a steep steam generating action, and immediately after the heating elements 8 and 11 stop heating, saturated steam and superheat. Stop the generation of water vapor. That is, the steam generator 1 is extremely excellent in responsiveness and controllability.

以上説明した如く、上記構成の水蒸気発生装置1によれば、液浴Wから水を吸い上げる多孔質体6の機能を損なわずに加熱開始から水蒸気発生までの時間を短縮することができる。しかも、多孔質体6の毛管給水作用により、多孔質体6及び発熱体8の過乾燥又は過熱を防止することできる。   As described above, according to the steam generator 1 having the above-described configuration, the time from the start of heating to the generation of steam can be shortened without impairing the function of the porous body 6 that sucks water from the liquid bath W. In addition, due to the capillary water supply action of the porous body 6, overdrying or overheating of the porous body 6 and the heating element 8 can be prevented.

従って、水蒸気発生装置1によれば、飽和水蒸気又は過熱水蒸気をほぼ瞬間的に発生させるとともに、飽和水蒸気又は過熱水蒸気の供給をほぼ瞬間的に停止させることが可能となる。   Therefore, according to the steam generator 1, it is possible to generate saturated steam or superheated steam almost instantaneously and to stop the supply of saturated steam or superheated steam almost instantaneously.

また、水蒸気発生装置1は、多孔質体の毛管力によって水を水蒸気発生面に供給するので、送水用ポンプ等の圧送装置を要しない。   Moreover, since the water vapor generating device 1 supplies water to the water vapor generating surface by the capillary force of the porous body, a pumping device such as a water supply pump is not required.

更に、水蒸気発生装置1は、多孔質体表面における水の気化によって水蒸気を生成するように構成されているので、細孔径等の適切な設定により、沸騰時の騒音(水の沸騰作用を用いた水蒸気発生装置の場合に生じるような沸騰時の騒音)は、かなり軽減する。   Furthermore, since the water vapor generating device 1 is configured to generate water vapor by vaporizing water on the surface of the porous body, noise during boiling (water boiling action is used by appropriately setting the pore diameter and the like. The noise at the time of boiling as occurs in the case of a steam generator is considerably reduced.

しかも、水蒸気発生装置1は、極めて単純且つ小型に設計し得る構造を有する。これは、装置の低価格化をも可能にするので、実用的観点からも極めて有利である。   Moreover, the water vapor generator 1 has a structure that can be designed extremely simply and in a small size. This also makes it possible to reduce the cost of the apparatus, which is extremely advantageous from a practical viewpoint.

図7は、本発明の第2実施例に係る水蒸気発生装置の構成を概略的に示す斜視図であり、図8は、図7に示す水蒸気発生装置の縦断面図である。図7及び図8において、上記第1実施例の構成要素と実質的に同じ構成要素については、同一の参照符号が付されている。   FIG. 7 is a perspective view schematically showing the configuration of the steam generator according to the second embodiment of the present invention, and FIG. 8 is a longitudinal sectional view of the steam generator shown in FIG. 7 and 8, substantially the same components as those of the first embodiment are given the same reference numerals.

本実施例の水蒸気発生装置1は、上記第1実施例の水蒸気発生装置を更に発展させたものであり、上記第1実施例の水蒸気発生装置が付加的な加熱手段(補助加熱装置4)を備えるのに対し、本実施例の水蒸気発生装置1は、このような付加的加熱手段を備えず、気化装置2によって直に過熱水蒸気を生成する構成を備える。即ち、水蒸気発生装置1は、気化装置2、水蒸気送出管3、液槽5、多孔質体6及びコイル状発熱体8を有し、水蒸気送出管3の下流端(図示せず)は、系外の装置(図示せず)に接続されて該装置に過熱水蒸気を供給し、或いは、系外の装置内に過熱水蒸気を吐出する。発熱体8には、リード線15が接続され、リード線15の端子16には、電流供給装置20の通電配線21が接続され、電流供給装置20は、給電線22を介して交流電源23に接続される。給水装置25が、気化装置2の液槽5と関連して水蒸気発生装置1に設けられる。給水管26、水質浄化装置27及び供給管28を含む給水装置25は、水質浄化した水を液槽5内に供給する。多孔質体6の下部が液槽5の液浴Wに浸漬される。   The steam generator 1 of the present embodiment is a further development of the steam generator of the first embodiment, and the steam generator of the first embodiment provides additional heating means (auxiliary heating device 4). On the other hand, the steam generator 1 of the present embodiment does not include such additional heating means, and has a configuration in which superheated steam is generated directly by the vaporizer 2. That is, the water vapor generator 1 has a vaporizer 2, a water vapor delivery pipe 3, a liquid tank 5, a porous body 6, and a coiled heating element 8, and a downstream end (not shown) of the water vapor delivery pipe 3 is connected to the system. Connected to an external device (not shown) to supply superheated steam to the device, or discharge superheated steam into the external device. A lead wire 15 is connected to the heating element 8, an energization wiring 21 of a current supply device 20 is connected to a terminal 16 of the lead wire 15, and the current supply device 20 is connected to an AC power supply 23 via a feeder line 22. Connected. A water supply device 25 is provided in the water vapor generator 1 in association with the liquid tank 5 of the vaporizer 2. A water supply device 25 including a water supply pipe 26, a water purification device 27, and a supply pipe 28 supplies water that has undergone water purification into the liquid tank 5. The lower part of the porous body 6 is immersed in the liquid bath W of the liquid tank 5.

気化装置2の中空部7は、前述の第1実施例と同じく、全長に亘って均等な直径を有する円形断面の水蒸気流路を多孔質体6内に形成する。本発明者の実験によれば、多孔質体6に接触する発熱体8の熱容量を極力低下し、小電力で高い熱流束が得られるように発熱体を構成することにより、常温(大気温度又は室温)の水から短時間且つ効率的に過熱水蒸気を発生させることができると判明した。   The hollow part 7 of the vaporizer 2 forms a circular cross-section water vapor channel having a uniform diameter over the entire length in the porous body 6 as in the first embodiment. According to the inventor's experiment, by configuring the heating element so that the heat capacity of the heating element 8 in contact with the porous body 6 is reduced as much as possible and a high heat flux can be obtained with a small electric power, It has been found that superheated steam can be generated from water at room temperature in a short time and efficiently.

図9は、実験に使用した多孔質体6の横断面図であり、図10は、図9に示す中空部7の部分拡大断面図である。図11は、過熱水蒸気の温度及び発生時間に関する実験結果を示す線図であり、図12は、発熱体8の加熱量と、エネルギー変換効率との関係を示す線図である。   9 is a transverse sectional view of the porous body 6 used in the experiment, and FIG. 10 is a partially enlarged sectional view of the hollow portion 7 shown in FIG. FIG. 11 is a diagram showing experimental results regarding the temperature and generation time of superheated steam, and FIG. 12 is a diagram showing the relationship between the heating amount of the heating element 8 and the energy conversion efficiency.

図9に示す多孔質体6は、幅50mm×高さ50mm×長さ120mmの寸法を有する市販の耐熱断熱レンガ(型式B5、 イソライト社製品、主成分:SiO2 55%、 Al2O3 41%、有効熱伝導率:0.33 [W/(m・K)])からなり、平均細孔径=9μm、モード径=90.6μm、空隙率=62.3%の物性を有する。直径D=8mmの中空部7が、図9に示す断面(50mm×50mm)の中心において、貫通孔として多孔質体6に穿設された。直径d(L1)=0.35mm、長さ1.1mのカンタル線が発熱体8として螺旋状に中空部7に配設された。カンタル線は、図10(A)に示すように、内壁面6aに密着するように配置された。カンタル線のピッチ間隔L2は、約2.5mmに設定され、カンタル線の巻数は、約40巻に設定された。中空部7の一端がシリコンゴム栓によって閉塞されるとともに、蒸留水が液槽5に供給され、多孔質体6を浸漬可能な室温の液浴Wが用意された。多孔質体6の下部が液浴Wに浸漬された。多孔質体6の下面の水深は、約3mmに設定された。カンタル線(発熱体8)に交流電流が印加され、発熱体8は発熱した。 The porous body 6 shown in FIG. 9 is a commercially available heat-resistant insulating brick having dimensions of 50 mm width × 50 mm height × 120 mm length (model B5, product of Isolite, main component: SiO 2 55%, Al 2 O 3 41 %, Effective thermal conductivity: 0.33 [W / (m · K)]), and has physical properties of average pore diameter = 9 μm, mode diameter = 90.6 μm, porosity = 62.3%. A hollow portion 7 having a diameter D = 8 mm was formed in the porous body 6 as a through hole at the center of the cross section (50 mm × 50 mm) shown in FIG. A Kanthal wire having a diameter d (L1) = 0.35 mm and a length of 1.1 m was spirally disposed in the hollow portion 7 as a heating element 8. As shown in FIG. 10 (A), the Kanthal line was disposed so as to be in close contact with the inner wall surface 6a. The pitch interval L2 of the Kanthal line was set to about 2.5 mm, and the number of turns of the Kanthal line was set to about 40 turns. One end of the hollow portion 7 was closed with a silicon rubber stopper, and distilled water was supplied to the liquid tank 5 to prepare a room temperature liquid bath W in which the porous body 6 can be immersed. The lower part of the porous body 6 was immersed in the liquid bath W. The water depth of the lower surface of the porous body 6 was set to about 3 mm. An alternating current was applied to the cantal wire (heating element 8), and the heating element 8 generated heat.

発熱体8の表面温度は、加熱開始後、短時間で100℃以上の温度に達した。300W(100V×3A)の電力を供給したとき、発熱体8の表面温度は、約0.1 秒で25℃(室温)から100 ℃に上昇した。発熱体8に対して、100W、200W及び300Wの電力を段階的に給電し、中空部7から流出する水蒸気の温度及び発生量が測定された。測定は、中空部7の出口に連結した測定用管路(図示せず)に熱電対(図示せず)を配置するとともに、凝縮器又は冷却器(図示せず)と、メスシリンダ(図示せず)とを熱電対の下流側に配置することによって実施された。なお、熱電対の位置は、中空部7の出口部から下流側に距離30mmを隔てた測定用管路内に設定され、また、水蒸気発生量は、20 分間の連続運転によって得られた凝縮水の量をメスシリンダで計測することによって行われた。   The surface temperature of the heating element 8 reached 100 ° C. or higher in a short time after heating was started. When 300 W (100 V × 3 A) was supplied, the surface temperature of the heating element 8 rose from 25 ° C. (room temperature) to 100 ° C. in about 0.1 seconds. 100 W, 200 W, and 300 W of electric power were gradually supplied to the heating element 8, and the temperature and amount of water vapor flowing out of the hollow portion 7 were measured. In the measurement, a thermocouple (not shown) is arranged in a measurement pipe line (not shown) connected to the outlet of the hollow portion 7, a condenser or a cooler (not shown), and a graduated cylinder (not shown). Was placed downstream of the thermocouple. Note that the position of the thermocouple is set in a measurement pipe line separated by a distance of 30 mm from the outlet of the hollow part 7 to the downstream side, and the amount of water vapor generated is the condensed water obtained by continuous operation for 20 minutes. Was measured by measuring with a graduated cylinder.

図11に示す如く、100W(J/s)の電力を発熱体8に給電した場合、約20秒経過時に飽和水蒸気が中空部7に生成し、飽和水蒸気は、その後、継続的に中空部7に生成した。200Wの電力を発熱体8に給電した場合、約40秒経過時に300℃以上の過熱水蒸気が中空部7に生成した。300Wの電力を発熱体8に給電すると、約19秒経過時に300℃以上の過熱水蒸気が中空部7に生成した。なお、200W又は300Wの電力を発熱体8に給電した場合、管路内の温度は、数秒で100℃に達し、100℃の温度を一時的に維持した後、急速に温度上昇する特性を示した。   As shown in FIG. 11, when power of 100 W (J / s) is supplied to the heating element 8, saturated water vapor is generated in the hollow portion 7 after about 20 seconds, and the saturated water vapor is continuously generated in the hollow portion 7. Generated. When power of 200 W was supplied to the heating element 8, superheated steam at 300 ° C. or higher was generated in the hollow portion 7 after about 40 seconds had elapsed. When 300 W of electric power was supplied to the heating element 8, superheated steam at 300 ° C. or higher was generated in the hollow portion 7 after about 19 seconds had elapsed. In addition, when power of 200 W or 300 W is supplied to the heating element 8, the temperature in the pipe line reaches 100 ° C. in a few seconds, and after the temperature of 100 ° C. is temporarily maintained, the temperature rapidly rises. It was.

測定用管路の温度が初期的に室温であり、中空部7に生成した水蒸気が測定用管路において初期的に凝縮する点を考慮すると、熱電対の測定値には若干の時間遅れが生じていると考えられ、中空部7の水蒸気温度は、実際には、測定値よりも早期に高温に達していると考えられる。   In consideration of the fact that the temperature of the measurement pipe is initially room temperature and the water vapor generated in the hollow portion 7 is initially condensed in the measurement pipe, the measured value of the thermocouple is slightly delayed. It is considered that the water vapor temperature of the hollow portion 7 actually reaches a high temperature earlier than the measured value.

また、200W又は300Wの電力を発熱体8に給電した場合、電力供給を停止すると、水蒸気の温度は急激に降下した。しかしながら、図11に示す測定結果において、水蒸気温度は、発熱体8の加熱停止後に室温まで降下していない。これは、過熱水蒸気によって測定用管路が加熱され、測定用管路の水蒸気がその影響を受けたことに起因すると考えられる。   In addition, when power of 200 W or 300 W was supplied to the heating element 8, when the power supply was stopped, the temperature of the water vapor dropped rapidly. However, in the measurement result shown in FIG. 11, the water vapor temperature has not dropped to room temperature after the heating of the heating element 8 is stopped. This is considered to be due to the fact that the measurement pipeline is heated by the superheated steam, and that the steam in the measurement pipeline is affected.

かくして、本実施例の水蒸気発生装置1は、補助的な加熱手段を用いずに、多孔質体6及び発熱体8のみによって迅速且つ効率的に過熱水蒸気を生成する。しかも、水蒸気発生装置1は、発熱体8の発熱後、極めて迅速に過熱水蒸気を生成することができ、発熱体8の発熱停止後、極めて迅速に温度降下する。即ち、水蒸気発生装置1は、制御性及び応答性に極めて優れる。   Thus, the steam generator 1 of this embodiment generates superheated steam quickly and efficiently only by the porous body 6 and the heating element 8 without using an auxiliary heating means. Moreover, the steam generator 1 can generate superheated steam very quickly after the heating element 8 generates heat, and the temperature drops very quickly after the heating element 8 stops generating heat. That is, the steam generator 1 is extremely excellent in controllability and responsiveness.

図12には、エネルギー変換効率ηと、多孔質体6の底面温度との関係が示されている。エネルギー変換効率ηは、次式によって求められた。   FIG. 12 shows the relationship between the energy conversion efficiency η and the bottom surface temperature of the porous body 6. The energy conversion efficiency η was obtained by the following equation.

エネルギー変換効率η=Q/P
Q =m・Cpl(Tsat-Tin)+m・hfg +m・Cpv (Tv-Tsat)
P =V×I
ここに、
m : 蒸気発生速度[kg/s]
Tsat: 飽和温度[K]
Tin: 多孔質体下面部の温度[K]
Tv: 多孔質中空部出口より30mm 下流における水蒸気温度[K]
Cpl : (Tsat + Tin )/2 における水の定圧比熱[J/(kg ・K)]
Cpv : (Tsat + Tv )/2 における水蒸気の定圧比熱[J/(kg ・K)]
hfg : 蒸発潜熱[J/kg]
I : 電流[A]
V : 電圧[V]
Energy conversion efficiency η = Q / P
Q = m ・ C pl (T sat -T in ) + m ・ h fg + m ・ C pv (T v -T sat )
P = V × I
here,
m: Steam generation rate [kg / s]
T sat : Saturation temperature [K]
T in : Temperature of the lower surface of the porous body [K]
T v : Water vapor temperature [K] 30mm downstream from the porous hollow section outlet
C pl : Constant-pressure specific heat of water at (T sat + T in ) / 2 [J / (kg ・ K)]
C pv : Specific pressure specific heat of water vapor at (T sat + T v ) / 2 [J / (kg · K)]
h fg : latent heat of vaporization [J / kg]
I: Current [A]
V: Voltage [V]

発熱体8に給電する電力を100Wから300Wに段階的に増大すると、エネルギー変換効率ηは、図12に示す如く増大し、エネルギー変換効率ηの最大値は、0.89に達した。他方、多孔質体6の底面温度Tinは、発熱体8に給電する電力の増大に伴って低下する傾向を示した。これは、熱伝導による放熱の方向(図9に実線矢印で示す方向)と、多孔質体6の毛管力による蒸発面への液体(水)の供給方向(図9に破線矢印で示す方向)とが、逆方向であり、熱伝導によって多孔質体6の内部に伝わる熱の一部が、蒸発面に向かう水の予熱に消費されることに起因する。即ち、発熱体8の発熱量が増大するにつれて蒸発面に流入しようとする水の流量が増大することから、中空部7の径方向外方に向かう熱の熱伝導効果に比して、毛管力によって蒸発面に供給される水の顕熱輸送効果が優り、この結果、多孔質体6の底面温度Tinが相対的に低下してエネルギー変換効率ηが増大したものと考えられる。 When the power supplied to the heating element 8 was increased stepwise from 100 W to 300 W, the energy conversion efficiency η increased as shown in FIG. 12, and the maximum value of the energy conversion efficiency η reached 0.89. On the other hand, the bottom surface temperature T in of the porous body 6, showed a tendency to decrease with an increase of power feeding to the heating element 8. This is because the direction of heat release by heat conduction (direction indicated by solid line arrows in FIG. 9) and the direction of liquid (water) supply to the evaporation surface by capillary force of the porous body 6 (direction indicated by broken line arrows in FIG. 9). Is the reverse direction, and is caused by the fact that a part of the heat transferred to the inside of the porous body 6 by heat conduction is consumed for preheating water toward the evaporation surface. That is, as the amount of heat generated by the heating element 8 increases, the flow rate of water that flows into the evaporation surface increases, so that the capillary force is greater than the heat conduction effect of the heat directed radially outward of the hollow portion 7. outperform the sensible heat transport effect of the water supplied to the evaporation surface by this result, it is considered that the energy conversion efficiency η bottom temperature T in of the porous body 6 is relatively lowered is increased.

従って、本実施例の水蒸気発生装置1は、発熱体8の発熱を極めて効率的且つ合理的に利用し、過熱水蒸気を中空部7に生成する。   Therefore, the steam generator 1 of the present embodiment generates the superheated steam in the hollow portion 7 by using the heat generated by the heating element 8 very efficiently and rationally.

図9(B)及び図9(C)には、水蒸気発生装置1における過熱水蒸気生成の原理が模式的に示されている。   FIGS. 9B and 9C schematically show the principle of superheated steam generation in the steam generator 1.

発熱体8に通電すると、発熱体8の表面温度は、500℃以上、例えば、700℃に達する。発熱体8の発熱は、主として発熱体8と内壁面6aとの接触部分から多孔質体6に伝熱し、この結果、図9(B)に示すように多孔質体6の表面細孔部に形成されるメニスカスの液膜部において急峻な水Wの蒸発が生じる。多孔質体6として、比較的低い熱伝導率の材質のものを採用した場合、多孔質体内部への伝熱作用が抑制されるので、水Wの気化が開始するまでの時間を短縮できると考えられる。   When the heating element 8 is energized, the surface temperature of the heating element 8 reaches 500 ° C. or higher, for example, 700 ° C. The heat generated by the heating element 8 is transferred mainly from the contact portion between the heating element 8 and the inner wall surface 6a to the porous body 6, and as a result, as shown in FIG. Steep evaporation of water W occurs in the liquid film portion of the meniscus formed. When a material having a relatively low thermal conductivity is adopted as the porous body 6, the heat transfer action to the inside of the porous body is suppressed, and therefore the time until the vaporization of the water W can be shortened. Conceivable.

発熱体8の全発熱が水Wに伝熱して水Wの気化熱として消費された場合、水蒸気発生量は増大するが、発熱体8の発熱は、水蒸気温度の上昇に所望の如く寄与し難い。しかしながら、水蒸気発生装置1においては、水Wの気化が開始すると、発熱体8と接触した内壁面6a及びその近傍では、細孔30内に蒸気層が形成されるとともに、内壁面6aの局部的な乾燥が生じる。発熱体8の近傍の細孔30内において、水Wの液面は、図9(C)に示すように、細孔30の出口開口から細孔30内に後退する。この結果、発熱体8の発熱は、細孔30内に生成した水蒸気Sを過熱するように作用する。即ち、細孔30内に発生した水蒸気Sは、細孔30から流出する際、そして、中空部7内を流動する際、発熱体8の近傍を流動し、発熱体8の熱放射作用と、発熱体8の表面近傍の領域における対流伝熱作用とによって急激に過熱される。かくして、過熱水蒸気が中空部7に生成し、中空部7から系外の装置等に供給される。   When the total heat generated by the heating element 8 is transferred to the water W and consumed as the heat of vaporization of the water W, the amount of water vapor generated increases, but the heat generated by the heating element 8 is unlikely to contribute as desired to the increase in water vapor temperature. . However, in the water vapor generator 1, when the vaporization of the water W starts, a vapor layer is formed in the pores 30 in the inner wall surface 6a in contact with the heating element 8 and in the vicinity thereof, and the inner wall surface 6a is locally localized. Dry. In the pores 30 in the vicinity of the heating element 8, the liquid level of the water W recedes from the outlet opening of the pores 30 into the pores 30 as shown in FIG. As a result, the heat generation of the heating element 8 acts to superheat the water vapor S generated in the pores 30. That is, when the water vapor S generated in the pores 30 flows out of the pores 30 and flows in the hollow portion 7, the water vapor S flows in the vicinity of the heating element 8, Due to the convective heat transfer action in the region near the surface of the heating element 8, it is rapidly heated. Thus, superheated steam is generated in the hollow portion 7 and supplied from the hollow portion 7 to a device outside the system.

このように内壁面6aを局部加熱し、細孔30内に発生した水蒸気Sを過熱するためには、発熱体8が局所的に極めて高い熱流束を発生させる必要があると考えられる。内壁面6aと発熱体8との接触面積を仮に発熱体表面積の1/5と仮定し、全ての熱が内壁面6a及び発熱体8の接触部分を介して多孔質体6に伝熱すると仮定すると、300Wの電力を発熱体8に給電した場合、接触部分の熱流束は、計算上は、約1.3 MW/m2 である。好ましくは、発熱体8は、1MW/m2以上の熱流束が内壁面6a及び発熱体8の接触部分に得られるように構成され、或いは、発熱体8全表面の平均熱流束値は、200kW/m2以上に設定される。 Thus, in order to locally heat the inner wall surface 6a and superheat the water vapor S generated in the pores 30, it is considered that the heating element 8 needs to generate a very high heat flux locally. Assuming that the contact area between the inner wall surface 6a and the heating element 8 is 1/5 of the surface area of the heating element, it is assumed that all the heat is transferred to the porous body 6 through the contact portion between the inner wall surface 6a and the heating element 8. Then, when 300 W of electric power is supplied to the heating element 8, the heat flux at the contact portion is about 1.3 MW / m 2 in calculation. Preferably, the heating element 8 is configured such that a heat flux of 1 MW / m 2 or more is obtained at the contact portion between the inner wall surface 6a and the heating element 8, or the average heat flux value of the entire surface of the heating element 8 is 200 kW. Set to / m 2 or higher.

また、発熱体8は、内壁面6aを全面的に均一加熱するのではなく、間隔を隔てて内壁面6aを局部加熱するように配置されるので、水Wの気化と、水蒸気Sの過熱とが適切にバランスし、過熱水蒸気が中空部7に定常的に生成する。発熱体8の線径L1(図9(A))と、発熱体8の間隔L2(図9(A))との比は、例えば、1/3〜1/10の範囲に設定される。   Further, since the heating element 8 is arranged not to uniformly heat the entire inner wall surface 6a but to locally heat the inner wall surface 6a at an interval, vaporization of the water W and overheating of the steam S Are appropriately balanced, and superheated steam is constantly generated in the hollow portion 7. The ratio between the wire diameter L1 of the heating element 8 (FIG. 9A) and the interval L2 between the heating elements 8 (FIG. 9A) is set in the range of 1/3 to 1/10, for example.

内壁面6aには、乾燥した発熱体8近傍の内壁面帯域と、湿潤な発熱体8間の内壁面帯域とが、内壁面6aの局部加熱によって形成される。間隔を隔てて乾燥帯域を形成することにより、発熱体8近傍への三次元的な水Wの移動が生じるとともに、多孔質体6の全体的な乾燥が防止され、水Wが毛管作用によって円滑に発熱体8の近傍に補給される。   On the inner wall surface 6a, an inner wall surface zone near the dried heating element 8 and an inner wall surface zone between the wet heating elements 8 are formed by local heating of the inner wall surface 6a. By forming the drying zone at an interval, three-dimensional movement of the water W to the vicinity of the heating element 8 occurs, and the entire porous body 6 is prevented from being dried, so that the water W is smooth by capillary action. In the vicinity of the heating element 8 is replenished.

以上説明した如く、上記構成の水蒸気発生装置1によれば、多孔質体6及び発熱体8からなる簡易な構成により、過熱水蒸気を定常的に発生させることができる。しかも、過熱水蒸気の発生は、発熱体8の発熱開始とほぼ同時に開始し、発熱体8の発熱停止とほぼ同時に終了する。即ち、過熱水蒸気を用いた従来の調理器等では、過熱水蒸気発生のための予熱時間又は準備時間に十分以上の長い時間を要していたのに対し、本発明の水蒸気発生装置によれば、数秒〜数十秒の短時間で過熱水蒸気の供給を開始することが可能である。しかも、過熱水蒸気の生成は、発熱体8の発熱開始及び発熱停止に迅速に応答するので、水蒸気発生装置1は、極めて優れた制御性及び応答性を発揮する。従って、本発明の水蒸気発生装置は、制御性・応答性の観点からも実用的に極めて有利である。   As described above, according to the steam generator 1 having the above-described configuration, the superheated steam can be constantly generated by the simple configuration including the porous body 6 and the heating element 8. Moreover, the generation of superheated steam starts almost simultaneously with the start of heat generation of the heating element 8 and ends almost simultaneously with the stop of heat generation of the heating element 8. That is, in the conventional cooker using superheated steam, the preheating time or preparation time for generating superheated steam required a long time more than enough, whereas according to the steam generator of the present invention, It is possible to start supplying superheated steam in a short time of several seconds to several tens of seconds. Moreover, since the generation of superheated steam quickly responds to the start and stop of heat generation of the heating element 8, the water vapor generating device 1 exhibits extremely excellent controllability and responsiveness. Therefore, the water vapor generating apparatus of the present invention is extremely advantageous practically from the viewpoint of controllability and responsiveness.

また、水蒸気発生装置1は、極めて高いエネルギー変換効率を発揮するので、発熱体作動電力等の投入エネルギーを極めて有効に利用できる。   Moreover, since the steam generator 1 exhibits extremely high energy conversion efficiency, input energy such as heating element operating power can be used very effectively.

更に、水蒸気発生装置1は、多孔質体の毛管力によって水を水蒸気発生面に供給するので、送水用ポンプ等の圧送装置を必要とせず、沸騰騒音の問題も解消する。   Furthermore, since the water vapor generator 1 supplies water to the water vapor generation surface by the capillary force of the porous body, a pressure feed device such as a water feed pump is not required, and the problem of boiling noise is solved.

加えて、本実施例の水蒸気発生装置1は、実施例1の水蒸気発生装置のように補助的加熱手段(加熱装置4)を備えないので、実施例1の水蒸気発生装置よりも更に単純且つ小型に設計することができる。   In addition, since the steam generator 1 of the present embodiment does not include auxiliary heating means (heating device 4) unlike the steam generator of the first embodiment, it is simpler and more compact than the steam generator of the first embodiment. Can be designed to

以上、本発明の好適な実施例について詳細に説明したが、本発明は上記実施例に限定されるものではなく、特許請求の範囲に記載された本発明の範囲内で種々の変形又は変更が可能である。   The preferred embodiments of the present invention have been described in detail above, but the present invention is not limited to the above-described embodiments, and various modifications or changes can be made within the scope of the present invention described in the claims. Is possible.

例えば、多孔質体の細孔径、中空部の断面寸法、中空部の箇所数等は、適宜設計変更することができる。また、多孔質体として、耐熱性及び電気絶縁性を有し、発熱体の熱により劣化し又は分解しない材質のものを適宜採用することができる。   For example, the pore diameter of the porous body, the cross-sectional dimension of the hollow portion, the number of locations of the hollow portion, and the like can be appropriately changed. Further, as the porous body, a material having heat resistance and electrical insulation and which is not deteriorated or decomposed by the heat of the heating element can be appropriately employed.

本発明によれば、水蒸気を利用した各種の機器において採用し得る小型且つ安価な構造を有し、しかも、極めて迅速に過熱水蒸気を発生させる水蒸気発生装置及び水蒸気発生方法が提供される。殊に、本発明の水蒸気発生装置及び水蒸気発生方法は、家庭用調理器、蒸し器、殺菌消毒器、乾燥機等の如く、過熱水蒸気を利用した家庭用又は産業用の機器において好適に使用し得る。このような機器に本発明を適用した場合、本発明は、水蒸気発生機構の小型化及び低価格化を可能にするので、極めて有利である。また、本発明の構成は、液体燃料等を気化させる蒸気発生手段に応用することができるので、その実用的効果は顕著である。   ADVANTAGE OF THE INVENTION According to this invention, it has the small and cheap structure which can be employ | adopted in the various apparatuses using water vapor | steam, Furthermore, the water vapor | steam generator and the water vapor | steam generation method which generate superheated water vapor | steam very rapidly are provided. In particular, the water vapor generating apparatus and water vapor generating method of the present invention can be suitably used in household or industrial equipment using superheated water vapor, such as household cooking appliances, steamers, sterilizers, and dryers. . When the present invention is applied to such a device, the present invention is very advantageous because it allows a water vapor generating mechanism to be reduced in size and price. Further, since the configuration of the present invention can be applied to a steam generating means for vaporizing liquid fuel or the like, its practical effect is remarkable.

本発明を適用した水蒸気発生装置の実施例を概略的に示す斜視図である。It is a perspective view showing roughly an example of a steam generator to which the present invention is applied. 図1に示す水蒸気発生装置の縦断面図である。It is a longitudinal cross-sectional view of the water vapor generator shown in FIG. 図1に示す水蒸気発生装置の横断面図である。It is a cross-sectional view of the water vapor generator shown in FIG. 図4(A)は、図3のI−I線における断面図であり、図4(B)は、図4(A)の部分拡大断面図である。4A is a cross-sectional view taken along the line II of FIG. 3, and FIG. 4B is a partially enlarged cross-sectional view of FIG. 4A. 図4(B)に示す”a”部の拡大図である。FIG. 5 is an enlarged view of a “a” portion shown in FIG. 図1〜図5に示す水蒸気発生装置の作動試験結果を示す線図である。It is a diagram which shows the operation test result of the water vapor generator shown in FIGS. 本発明の第2実施例に係る水蒸気発生装置の構成を概略的に示す斜視図である。It is a perspective view which shows roughly the structure of the water vapor generating apparatus which concerns on 2nd Example of this invention. 図7に示す水蒸気発生装置の縦断面図である。It is a longitudinal cross-sectional view of the water vapor generator shown in FIG. 過熱水蒸気発生試験に使用した多孔質体及び発熱体の横断面図である。It is a cross-sectional view of the porous body and heating element used for the superheated steam generation test. 図9に示す中空部の部分拡大断面図である。It is a partial expanded sectional view of the hollow part shown in FIG. 過熱水蒸気の温度及び発生時間に関する実験結果を示す線図である。It is a diagram which shows the experimental result regarding the temperature and generation | occurrence | production time of superheated steam. 発熱体の加熱量と、エネルギー変換効率との関係を示す線図である。It is a diagram which shows the relationship between the heating amount of a heat generating body, and energy conversion efficiency. 多孔質体及び発熱体を用いた従来の水蒸気発生装置の構造を概略的に示す断面図である。It is sectional drawing which shows roughly the structure of the conventional water vapor generating apparatus using a porous body and a heat generating body.

符号の説明Explanation of symbols

1 水蒸気発生装置
2 気化装置
3 水蒸気送出管
5 液槽
6 多孔質体
6a 内壁面
7 中空部
7a 下流端(水蒸気送出口)
8 発熱体
20 電流供給装置
30 細孔
31 開口部
W 液浴
M メニスカス
DESCRIPTION OF SYMBOLS 1 Steam generator 2 Vaporizer 3 Steam delivery pipe 5 Liquid tank 6 Porous body 6a Inner wall surface 7 Hollow part 7a Downstream end (steam delivery port)
8 Heating element 20 Current supply device 30 Fine pore 31 Opening portion W Liquid bath M Meniscus

Claims (12)

液浴に部分的に浸漬した多孔質体と、多孔質体の毛細管現象によって供給された前記液浴の水を加熱して水蒸気を発生させる発熱体とを備えた水蒸気発生装置において、
前記多孔質体内に形成された中空部と、
前記中空部に生成した水蒸気を該中空部から多孔質体外に送出する水蒸気送出手段とを有し、
前記多孔質体の細孔の出口部は、前記中空部の内壁面に位置し、
前記発熱体は、前記出口部の水を前記細孔内で気化させ且つ該細孔に発生した水蒸気を過熱するように、前記中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びることを特徴とする水蒸気発生装置。
In a water vapor generating apparatus comprising: a porous body partially immersed in a liquid bath; and a heating element that generates water vapor by heating water in the liquid bath supplied by capillary action of the porous body,
A hollow portion formed in the porous body;
Water vapor delivery means for delivering the water vapor generated in the hollow part out of the porous body from the hollow part,
The outlet portion of the pore of the porous body is located on the inner wall surface of the hollow portion,
The heating element is in contact with or close to the inner wall surface of the hollow portion so as to vaporize the water in the outlet portion and superheat the water vapor generated in the pore. A steam generator characterized by extending.
前記過熱水蒸気を更に加熱する水蒸気加熱装置を更に有し、水蒸気加熱装置は、前記水蒸気送出手段を介して前記中空部と連通することを特徴とする請求項1に記載の水蒸気発生装置。   The steam generator according to claim 1, further comprising a steam heater for further heating the superheated steam, wherein the steam heater is communicated with the hollow portion via the steam delivery means. 前記発熱体近傍の内壁面には、該発熱体の熱によって表面が乾燥した乾燥帯域が形成され、湿潤な内壁面帯域が、前記乾燥帯域の間に形成されることを特徴とする請求項1又は2に記載の水蒸気発生装置。   2. The inner wall surface in the vicinity of the heating element is formed with a dry zone whose surface is dried by the heat of the heating element, and a wet inner wall surface zone is formed between the drying zones. Or the water vapor generator according to 2. 前記内壁面と前記発熱体との接触部分の熱流束は、1MW/m2以上に設定されることを特徴とする請求項3に記載の水蒸気発生装置。 The steam generator according to claim 3, wherein a heat flux at a contact portion between the inner wall surface and the heating element is set to 1 MW / m 2 or more. 前記中空部は、円形断面を有し、前記発熱体は、前記中空部の内周面に接し又は近接し且つ軸芯を該中空部の軸線方向に配向したコイル状電熱体からなることを特徴とする請求項1乃至4のいずれか1項に記載の水蒸気発生装置。   The hollow portion has a circular cross section, and the heating element is formed of a coil-shaped electric heating element in contact with or close to the inner peripheral surface of the hollow portion and having an axial core oriented in the axial direction of the hollow portion. The water vapor generator according to any one of claims 1 to 4. 液浴に部分的に浸漬した多孔質体の毛細管現象によって水を発熱体に供給し、該発熱体の熱によって水蒸気を発生させる水蒸気発生方法において、
前記多孔質体内に形成した中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる前記発熱体によって、前記中空部の内壁面に位置する前記多孔質体の細孔出口部の水を加熱し、
前記発熱体の熱によって前記出口部のメニスカス部の水を蒸発させて前記細孔の出口部に水蒸気を発生させ且つ該細孔に発生した水蒸気を過熱し、
過熱水蒸気を前記中空部から多孔質体外に送出することを特徴とする水蒸気発生方法。
In a water vapor generating method of supplying water to a heating element by capillary action of a porous body partially immersed in a liquid bath, and generating water vapor by the heat of the heating element,
The heating element that contacts or is close to the inner wall surface of the hollow portion formed in the porous body and extends along the inner wall surface of the pore outlet portion of the porous body located on the inner wall surface of the hollow portion. Heat the water,
The water of the meniscus part of the outlet part is evaporated by the heat of the heating element to generate water vapor at the outlet part of the pores and superheat the water vapor generated in the pores,
A method for generating water vapor, characterized in that superheated water vapor is sent out from the hollow portion to the outside of the porous body.
前記中空部に生成した過熱水蒸気を更に加熱し、高温の過熱水蒸気を生成することを特徴とする請求項6に記載の水蒸気発生方法。   The steam generation method according to claim 6, wherein the superheated steam generated in the hollow portion is further heated to generate high-temperature superheated steam. 前記発熱体の熱によって該発熱体近傍の内壁面に乾燥帯域を形成し、湿潤な内壁面帯域を前記乾燥帯域の間に形成することを特徴とする請求項6に記載の水蒸気発生方法。   The method for generating water vapor according to claim 6, wherein a drying zone is formed on an inner wall surface in the vicinity of the heating element by heat of the heating element, and a wet inner wall zone is formed between the drying zones. 前記内壁面と前記発熱体との接触部分の熱流束を1MW/m2以上に設定することを特徴とする請求項8に記載の水蒸気発生方法。 The water vapor generation method according to claim 8, wherein a heat flux at a contact portion between the inner wall surface and the heating element is set to 1 MW / m 2 or more. 前記発熱体の発熱開始後、1分以内に200℃以上の温度の過熱水蒸気を前記中空部に生成することを特徴とする請求項8又は9に記載の水蒸気発生方法。   The steam generation method according to claim 8 or 9, wherein superheated steam having a temperature of 200 ° C or higher is generated in the hollow portion within 1 minute after the heat generation of the heating element is started. 液浴に部分的に浸漬した多孔質体と、
多孔質体の毛細管現象によって供給された前記液浴の液体を加熱して蒸気を発生させる発熱体と、
前記多孔質体内に形成された中空部と、
前記中空部に生成した蒸気を該中空部から多孔質体外に送出する蒸気送出手段とを有し、
前記多孔質体の細孔の出口部は、前記中空部の内壁面に位置し、
前記発熱体は、前記出口部の液体を前記細孔内で気化させ且つ該細孔に発生した蒸気を過熱するように、前記中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びることを特徴とする蒸気発生装置。
A porous body partially immersed in a liquid bath;
A heating element for heating the liquid in the liquid bath supplied by the capillary action of the porous body to generate steam;
A hollow portion formed in the porous body;
Vapor delivery means for delivering the vapor generated in the hollow part out of the porous body from the hollow part,
The outlet portion of the pore of the porous body is located on the inner wall surface of the hollow portion,
The heating element is in contact with or close to the inner wall surface of the hollow portion and along the inner wall surface so as to vaporize the liquid in the outlet portion in the pores and superheat the vapor generated in the pores. The steam generator characterized by extending.
液浴に部分的に浸漬した多孔質体の毛細管現象によって前記液浴の液体を発熱体に供給し、
前記多孔質体内に形成した中空部の内壁面に接触し又は近接し且つ該内壁面に沿って延びる前記発熱体によって、前記中空部の内壁面に位置する前記多孔質体の細孔出口部の液体を加熱し、
前記発熱体の熱によって前記出口部のメニスカス部の液体を気化させて前記細孔の出口部に蒸気を発生させるとともに前記細孔に発生した蒸気を過熱し、
過熱蒸気を前記中空部から多孔質体外に送出することを特徴とする蒸気発生方法。
Supplying the liquid bath liquid to the heating element by capillary action of the porous body partially immersed in the liquid bath;
The heating element that contacts or is close to the inner wall surface of the hollow portion formed in the porous body and extends along the inner wall surface of the pore outlet portion of the porous body located on the inner wall surface of the hollow portion. Heating the liquid,
Vaporizing the liquid in the meniscus portion of the outlet portion by the heat of the heating element to generate steam at the outlet portion of the pores and superheating the steam generated in the pores;
A method for generating steam, characterized in that superheated steam is sent out of the porous body from the hollow portion.
JP2007015920A 2006-02-14 2007-01-26 Superheated steam generator and superheated steam generation method Active JP4923258B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007015920A JP4923258B2 (en) 2006-02-14 2007-01-26 Superheated steam generator and superheated steam generation method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006037299 2006-02-14
JP2006037299 2006-02-14
JP2007015920A JP4923258B2 (en) 2006-02-14 2007-01-26 Superheated steam generator and superheated steam generation method

Publications (2)

Publication Number Publication Date
JP2007248042A true JP2007248042A (en) 2007-09-27
JP4923258B2 JP4923258B2 (en) 2012-04-25

Family

ID=38592544

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007015920A Active JP4923258B2 (en) 2006-02-14 2007-01-26 Superheated steam generator and superheated steam generation method

Country Status (1)

Country Link
JP (1) JP4923258B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180632A (en) * 2008-01-31 2009-08-13 Jeol Ltd Scanning probe microscope
JP2013181719A (en) * 2012-03-03 2013-09-12 Yokohama National Univ Superheated steam generating device and method of generating superheated steam
CN107614735A (en) * 2015-05-19 2018-01-19 国立大学法人横浜国立大学 Cementing plant and method for carburizing
JP2018504574A (en) * 2015-02-05 2018-02-15 トルキーノ,ジョルジョ Capillary proximity heater installed between the upstream side of the microfiltration device for removing residual coal particles and the downstream side of the nozzle or closed circuit.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649164A (en) * 1979-09-29 1981-05-02 Matsushita Electric Ind Co Ltd Vapor generator
JPS61173025A (en) * 1985-01-25 1986-08-04 セブ ソシエテ アノニム Steam generator and cooking oven with said device
JP2004286265A (en) * 2003-03-20 2004-10-14 Osada Res Inst Ltd Steam generator
WO2005049185A1 (en) * 2003-10-21 2005-06-02 Vapore, Inc. Improved capillary pumps for vaporization of liquids

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5649164A (en) * 1979-09-29 1981-05-02 Matsushita Electric Ind Co Ltd Vapor generator
JPS61173025A (en) * 1985-01-25 1986-08-04 セブ ソシエテ アノニム Steam generator and cooking oven with said device
JP2004286265A (en) * 2003-03-20 2004-10-14 Osada Res Inst Ltd Steam generator
WO2005049185A1 (en) * 2003-10-21 2005-06-02 Vapore, Inc. Improved capillary pumps for vaporization of liquids

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009180632A (en) * 2008-01-31 2009-08-13 Jeol Ltd Scanning probe microscope
JP2013181719A (en) * 2012-03-03 2013-09-12 Yokohama National Univ Superheated steam generating device and method of generating superheated steam
JP2018504574A (en) * 2015-02-05 2018-02-15 トルキーノ,ジョルジョ Capillary proximity heater installed between the upstream side of the microfiltration device for removing residual coal particles and the downstream side of the nozzle or closed circuit.
CN107614735A (en) * 2015-05-19 2018-01-19 国立大学法人横浜国立大学 Cementing plant and method for carburizing
US10584408B2 (en) 2015-05-19 2020-03-10 National University Corporation Yokohama National University Carburization device and carburization method
CN107614735B (en) * 2015-05-19 2021-04-23 国立大学法人横浜国立大学 Carburizing apparatus and carburizing method

Also Published As

Publication number Publication date
JP4923258B2 (en) 2012-04-25

Similar Documents

Publication Publication Date Title
RU2655287C2 (en) Garment steaming device
RU2689078C2 (en) Steam device
JP4923258B2 (en) Superheated steam generator and superheated steam generation method
US9664378B2 (en) Energy efficient pressure less steam generator
US8285128B2 (en) Steam generator for a household appliance, heatable using a heat accumulator
JPH09196302A (en) Vapor producer
RU2680774C2 (en) Vakhov electric steam generator (options)
JP2002181306A (en) Superheated system generating device and superheated steam treatment equipment
JP2008116092A (en) Electric boiler device
KR101178975B1 (en) Apparatus for generation of superheated vapor
JP5875024B2 (en) Superheated steam generator and superheated steam generation method
JP4846536B2 (en) Steam bath
JP2004245467A (en) Steam generator
KR200493847Y1 (en) Unit for making steam
KR200364836Y1 (en) An Apparatus used as Steam-Generator
JP2006138522A (en) Heater
JPH1194202A (en) Steam producing equipment
JP2015025593A (en) Superheated steam generating device and superheated steam generating method
JP2012000074A (en) Cooking method and apparatus
JP2004333089A (en) Heating device
JP2006145069A (en) Steam generator
JP7190627B2 (en) Superheated steam generator and cooker
KR100917811B1 (en) Boiler machine using time-varying magnetic field
RU2761012C2 (en) Device for steaming food and method for generating steam in it
JP2006071132A (en) Heating unit and heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090421

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110613

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350