JP2009180632A - Scanning probe microscope - Google Patents

Scanning probe microscope Download PDF

Info

Publication number
JP2009180632A
JP2009180632A JP2008020311A JP2008020311A JP2009180632A JP 2009180632 A JP2009180632 A JP 2009180632A JP 2008020311 A JP2008020311 A JP 2008020311A JP 2008020311 A JP2008020311 A JP 2008020311A JP 2009180632 A JP2009180632 A JP 2009180632A
Authority
JP
Japan
Prior art keywords
sample
liquid
probe
scanning probe
probe microscope
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2008020311A
Other languages
Japanese (ja)
Other versions
JP5043699B2 (en
Inventor
Shinichi Kitamura
村 真 一 北
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2008020311A priority Critical patent/JP5043699B2/en
Publication of JP2009180632A publication Critical patent/JP2009180632A/en
Application granted granted Critical
Publication of JP5043699B2 publication Critical patent/JP5043699B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a scanning probe microscope capable of stably maintaining a liquid amount forming a liquid layer. <P>SOLUTION: A sample S placed on a sample-placing table 2' and a probe 5 are closely and oppositely disposed in a liquid layer W, the relative position between the probe 5 and the sample S is changed, image information of the sample surface is obtained based on the interaction between the probe 5 and the sample S, and a liquid container 20 is provided and a liquid contained in the liquid container is directed to the liquid layer W through sending liquids 21A, 21B, etc. generating a capillarity. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は液中の試料観察に適した走査プローブ顕微鏡に関する。   The present invention relates to a scanning probe microscope suitable for observing a sample in a liquid.

最近、探針付きカンチレバーと試料を接近させて対向配置し、探針により試料表面を走査することにより、探針と試料間に働く原子間力,或いは磁気力,或いは静電気力等を測定し、該測定に基づいて試料表面の凹凸像を得る様に成した走査プローブ顕微鏡や、探針と試料を接近させて対向配置し、且つ探針と試料間にバイアス電圧を印加し、探針により試料表面を走査することにより、探針と試料間に流れるトンネル電流を測定し、該測定に基づいて試料表面の凹凸像等を得る様に成した走査プローブ顕微鏡が注目されている。   Recently, a cantilever with a probe and a sample are placed close to each other, and the surface of the sample is scanned with the probe to measure the atomic force, magnetic force, electrostatic force, etc. acting between the probe and the sample. A scanning probe microscope configured to obtain a concavo-convex image of the sample surface based on the measurement, a probe and the sample are placed close to each other, a bias voltage is applied between the probe and the sample, and the sample is detected by the probe. Attention has been focused on a scanning probe microscope which measures a tunnel current flowing between a probe and a sample by scanning the surface and obtains an uneven image on the sample surface based on the measurement.

さて、この様な走査プローブ顕微鏡における試料観察において、液中の試料を観察する場合がある。その際、微量の液中で試料観察を行うことが出来れば液として高価な試薬等を使用しても高コスト化を防ぐことが出来る。   Now, in sample observation with such a scanning probe microscope, a sample in the liquid may be observed. At that time, if the sample can be observed in a very small amount of liquid, it is possible to prevent an increase in cost even if an expensive reagent or the like is used as the liquid.

また、探針により試料表面を走査するとき溶液の抵抗を小さく抑えることができる。   Further, the resistance of the solution can be kept small when scanning the sample surface with the probe.

図1は液中で試料を観察出来る様に成した原子間力顕微鏡の一概略例を示している。   FIG. 1 shows a schematic example of an atomic force microscope that can observe a sample in a liquid.

図中1は試料チャンバーで、該チャンバー内の底面上に、例えば、圧電素子から成り、試料Sがセットされる試料載置台2をX、Y、Z軸方向に独立して移動させるスキャナ3が支持されている。   In the figure, reference numeral 1 denotes a sample chamber, and a scanner 3 made of, for example, a piezoelectric element on the bottom surface of the chamber, which moves the sample mounting table 2 on which the sample S is set independently in the X, Y, and Z axis directions. It is supported.

4は先端に探針5が付けられたカンチレバーで、支持体6を介して前記チャンバー上蓋7に取り付けられている。   Reference numeral 4 denotes a cantilever having a probe 5 attached to the tip, which is attached to the chamber upper lid 7 via a support 6.

8は前記カンチレバー4の先端部の背面部(前記探針5が取り付けられた面と反対側の面)に光を照射するための光源(例えば、レーザー光源)、9は該カンチレバーの背面で反射した光を受光する光検出器(例えば、二分割若しくは四分割半導体光検出器)で、共に、前記チャンバー外に配設されている。   Reference numeral 8 denotes a light source (for example, a laser light source) for irradiating light to the back surface of the tip of the cantilever 4 (surface opposite to the surface on which the probe 5 is attached). A photodetector (for example, a two-divided or four-divided semiconductor photodetector) that receives the emitted light is disposed outside the chamber.

10は前記上蓋7の中央部に取り外し可能に嵌めこまれた透明板である。   Reference numeral 10 denotes a transparent plate that is detachably fitted in the central portion of the upper lid 7.

この様な原子間力顕微鏡において、先ず、オペレータは前記上蓋7から透明板10を取り外し、試料Sを試料載置台2上の所定の位置にセットする。そして、例えば、ピペットにより試料上に所定の量の液体を滴下する。該滴下された液体は表面張力により半球状になり、前記試料S及び探針5を含むカンチレバー4の一部を浸す液溜まりを形成する。   In such an atomic force microscope, the operator first removes the transparent plate 10 from the upper lid 7 and sets the sample S at a predetermined position on the sample mounting table 2. Then, for example, a predetermined amount of liquid is dropped onto the sample with a pipette. The dropped liquid becomes hemispherical due to surface tension and forms a liquid pool in which a part of the cantilever 4 including the sample S and the probe 5 is immersed.

次に、オペレータは前記液溜まり上に極めて薄いカバーガラス16を置く。すると、前記半球状の液溜まりが図1のWに示す様に、直方体上の液層に変形する。   Next, the operator places a very thin cover glass 16 on the liquid reservoir. Then, the hemispherical liquid reservoir is deformed into a liquid layer on a rectangular parallelepiped as indicated by W in FIG.

次に、オペレータは前記透明板10を再び前記上蓋7に取り付ける。
この状態において、スキャンジェネレータ(図示せず)からのZ軸方向(図1においては上下方向)の高さ調整信号により前記スキャナ3のZ軸圧電素子(図示せず)が駆動され、前記探針5と試料Sの間の距離が初期設定距離に設定される。
Next, the operator attaches the transparent plate 10 to the upper lid 7 again.
In this state, a Z-axis piezoelectric element (not shown) of the scanner 3 is driven by a height adjustment signal in the Z-axis direction (vertical direction in FIG. 1) from a scan generator (not shown), and the probe The distance between 5 and the sample S is set as an initial set distance.

一方、前記光源8から発せられた光は前記透明板10、前記カバーガラス16及び前記液層Wを順次通過した後、前記カンチバー4の背面に当たって反射する。該反射光は前記液層W、前記カバーガラス16及び前記透明板10を順次通過して光検出器9に検出される。   Meanwhile, the light emitted from the light source 8 sequentially passes through the transparent plate 10, the cover glass 16, and the liquid layer W, and then strikes and reflects the back surface of the cantilever 4. The reflected light sequentially passes through the liquid layer W, the cover glass 16 and the transparent plate 10 and is detected by the photodetector 9.

この際、前記スキャンジェネレータ(図示せず)からのX方向,Y方向制御信号により、前記スキャナ3のX軸,Y軸圧電素子(図示せず)がそれぞれ駆動されて、前記試料SがX軸方向(図1においては左右方向)及びY軸方向(図1においては紙面に垂直な方向)にそれぞれ移動される。   At this time, the X-axis and Y-axis piezoelectric elements (not shown) of the scanner 3 are driven by the X-direction and Y-direction control signals from the scan generator (not shown), and the sample S is moved to the X-axis. It is moved in the direction (left-right direction in FIG. 1) and the Y-axis direction (direction perpendicular to the paper surface in FIG. 1).

前記試料Sの観察すべき表面には凹凸があり、該凹凸に従って前記探針5と前記試料Sの観察面との間の距離が前記初期設定距離からずれるので前記探針5と前記試料Sとの間の原子間力が変位する。   The surface of the sample S to be observed has irregularities, and the distance between the probe 5 and the observation surface of the sample S deviates from the initial set distance according to the irregularities, so that the probe 5 and the sample S The interatomic force between is displaced.

この場合、前記探針5は前記初期設定距離を保持しようとして前記試料Sの観察表面の凸凹に応じて上下動する。その為、この上下動に応じて前記カンチレバー4の傾きも変化するので、前記光検出器9に入る反射光の位置も変化する。   In this case, the probe 5 moves up and down according to the unevenness of the observation surface of the sample S so as to maintain the initial set distance. For this reason, the inclination of the cantilever 4 also changes in accordance with this vertical movement, so that the position of the reflected light entering the photodetector 9 also changes.

原子間力顕微鏡において、この検出した反射光の位置変化はZ軸方向の位置変化に換算され、該換算された信号(画像信号)に基づいて液中にある試料表面の凸凹像が観察される。   In the atomic force microscope, the detected position change of the reflected light is converted into a position change in the Z-axis direction, and an uneven image of the sample surface in the liquid is observed based on the converted signal (image signal). .

特許2936311号公報Japanese Patent No. 2936311

さて、この様に液中で試料を観察する様に成した原子間力顕微鏡において、探針5と試料Sを浸すための液の量は微量のため、短時間に液層Wが蒸発してしまう。その為に、頻繁に、試料観察を一時中断し、液体を試料S上に滴下しなければならず、継続的な液中での試料観察が不可能となるばかりか、操作自体が極めて厄介となる。   Now, in the atomic force microscope configured to observe the sample in the liquid in this way, since the amount of the liquid for immersing the probe 5 and the sample S is very small, the liquid layer W evaporates in a short time. End up. For this reason, the sample observation must be interrupted frequently and the liquid must be dropped on the sample S, which makes continuous sample observation impossible in the liquid, and the operation itself is extremely troublesome. Become.

本発明は、このような問題点を解決するためになされたもので、新規な走査プローブ顕微鏡を提供することを目的とする。   The present invention has been made to solve such problems, and an object thereof is to provide a novel scanning probe microscope.

本発明の走査プローブ顕微鏡は、探針と、試料台に載置された試料とを接近させて対向配置し、前記探針と試料との相対的位置を変化させ、前記探針と試料間の相互作用に基づいて試料表面の像情報を得る様にした走査プローブ顕微鏡であって、少なくとも前記試料の観察部と前記探針が液層で満たされた状態で測定を行う様に成した走査プローブ顕微鏡において、液体を収納する容器を設け、該容器からの液体を毛管現象を発生する送液体を介して前記液層に導く様に成したことを特徴とする。   In the scanning probe microscope of the present invention, the probe and the sample placed on the sample stage are placed close to each other, the relative position between the probe and the sample is changed, and the probe is placed between the sample and the sample. A scanning probe microscope that obtains image information on the surface of a sample based on interaction, wherein the scanning probe is configured to perform measurement in a state where at least the observation portion of the sample and the probe are filled with a liquid layer In the microscope, a container for storing a liquid is provided, and the liquid from the container is guided to the liquid layer through a liquid feed that generates a capillary phenomenon.

本発明によれば、液中の試料を観察することが出来る様に成した走査プローブ顕微鏡において、探針と試料を浸す為の液体が蒸発により減少しても、該減少した分の液を常時補充することが出来るので、液中での試料観察を中断させることがない。その為、継続的な液中での試料観察が可能となるばかりか、操作を極めて容易に行うことが出来る。   According to the present invention, in a scanning probe microscope configured to be able to observe a sample in a liquid, even if the liquid for immersing the probe and the sample is reduced by evaporation, the reduced liquid is always supplied. Since it can be replenished, sample observation in the liquid is not interrupted. Therefore, it is possible not only to continuously observe the sample in the liquid, but also to perform the operation very easily.

図2は、本発明の走査プローブ顕微鏡の一つである原子間力顕微鏡の一概略例を示している。   FIG. 2 shows a schematic example of an atomic force microscope which is one of the scanning probe microscopes of the present invention.

図2において、図1で使用した記号と同一記号の付したものは同一構成要素を示す。   In FIG. 2, the same reference numerals as those used in FIG. 1 denote the same components.

図中2’は、スキャナ3上取り付けられ、試料Sを載置する為の試料載置台であるが、図2の例では、一方の開口が該試料載置台の試料載置面で試料Sと接しない部分(例えば、試料載置面のエッジに近い部分)に、他方の開口が該試料載置台の側面に位置する様に、複数の孔Aa,Ab,…が形成されている。   In FIG. 2, 2 ′ is a sample mounting table mounted on the scanner 3 for mounting the sample S. In the example of FIG. 2, one of the openings is the sample mounting surface of the sample mounting table. A plurality of holes Aa, Ab,... Are formed in a non-contact portion (for example, a portion close to the edge of the sample mounting surface) so that the other opening is positioned on the side surface of the sample mounting table.

図中20は、内筒20Aの一方の端部と外筒20Bの一方の端部とをドーナツ板20Cで接続することにより前記内筒20Aと外筒20Bとを一体化して成した有底二重円管形状の液体収納器で、前記試料載置台2’の側面に取り付けられており、該液体収納器内(即ち、内筒20Aと外筒20Bの間の空間部)には試料観察に使用する液と同種類の液が入れられている。   In the figure, reference numeral 20 denotes a bottomed two formed by integrating the inner cylinder 20A and the outer cylinder 20B by connecting one end of the inner cylinder 20A and one end of the outer cylinder 20B with a donut plate 20C. It is a liquid container in the shape of a circular tube, and is attached to the side surface of the sample mounting table 2 '. In the liquid container (that is, the space between the inner cylinder 20A and the outer cylinder 20B), sample observation is performed. The same type of liquid is used as the liquid used.

21A,21B,…は、毛管現象を発生することが出来る物体、例えば、合成繊維の束から成る送液体で、該送液体の一方の端部は前記液体収納器20内に配置され、他端部は前記試料載置台2’の測面の開口を介して前記孔Aa,Ab,…内に配置される様に成っている。   21A, 21B,... Is an object capable of generating capillary action, for example, a liquid feed composed of a bundle of synthetic fibers, and one end of the liquid feed is disposed in the liquid container 20 and the other end Are arranged in the holes Aa, Ab,... Through the surface opening of the sample mounting table 2 ′.

この様な原子間力顕微鏡において、先ず、オペレータは前記上蓋7から透明板10を取り外し、試料Sを試料載置台2´上の所定の位置にセットする。そして、ピペットにより試料上に所定の量の液体を滴下する。該滴下された液体は表面張力により半球状になり、前記試料S及び探針5を含むカンチレバー4の一部を浸す液溜まりを形成する。次に、オペレータは前記液溜まり上に極めて薄いカバーガラス16を置く。すると、前記半球状の液溜まりが図2のWに示す様に、直方体上の液層に変形する。次に、オペレータは前記透明板10を再び前記上蓋7に取り付ける。この状態において、スキャンジェネレータ(図示せず)からのZ軸方向(図2においては上下方向)の高さ調整信号により前記スキャナ3のZ軸圧電素子(図示せず)が駆動され、前記探針5と試料Sの間の距離が初期設定距離に設定される。   In such an atomic force microscope, the operator first removes the transparent plate 10 from the upper lid 7 and sets the sample S at a predetermined position on the sample mounting table 2 '. Then, a predetermined amount of liquid is dropped onto the sample with a pipette. The dropped liquid becomes hemispherical due to surface tension and forms a liquid pool in which a part of the cantilever 4 including the sample S and the probe 5 is immersed. Next, the operator places a very thin cover glass 16 on the liquid reservoir. Then, the hemispherical liquid reservoir is deformed into a liquid layer on a rectangular parallelepiped as indicated by W in FIG. Next, the operator attaches the transparent plate 10 to the upper lid 7 again. In this state, a Z-axis piezoelectric element (not shown) of the scanner 3 is driven by a height adjustment signal in the Z-axis direction (vertical direction in FIG. 2) from a scan generator (not shown), and the probe The distance between 5 and the sample S is set as an initial set distance.

一方、前記光源8から発せられた光は前記透明板10、前記カバーガラス16及び前記液層Wを順次通過した後、前記カンチバー4の背面に当たって反射する。該反射光は前記液層W、前記カバーガラス16及び前記透明板10を順次通過して光検出器9に検出される。   Meanwhile, the light emitted from the light source 8 sequentially passes through the transparent plate 10, the cover glass 16, and the liquid layer W, and then strikes and reflects the back surface of the cantilever 4. The reflected light sequentially passes through the liquid layer W, the cover glass 16 and the transparent plate 10 and is detected by the photodetector 9.

この際、前記スキャンジェネレータ(図示せず)からのX方向,Y方向制御信号により、前記スキャナ3のX軸,Y軸圧電素子(図示せず)がそれぞれ駆動されて、前記試料SがX軸方向(図2においては左右方向)及びY軸方向(図2においては紙面に垂直な方向)にそれぞれ移動される。   At this time, the X-axis and Y-axis piezoelectric elements (not shown) of the scanner 3 are driven by the X-direction and Y-direction control signals from the scan generator (not shown), and the sample S is moved to the X-axis. It is moved in the direction (left-right direction in FIG. 2) and the Y-axis direction (direction perpendicular to the paper surface in FIG. 2).

前記試料Sの観察すべき表面には凹凸があり、該凹凸に従って前記探針5と前記試料Sの観察面との間の距離が前記初期設定距離からずれるので前記探針5と前記試料Sとの間の原子間力が変位する。   The surface of the sample S to be observed has irregularities, and the distance between the probe 5 and the observation surface of the sample S deviates from the initial set distance according to the irregularities, so that the probe 5 and the sample S The interatomic force between is displaced.

この場合、前記探針5は前記初期設定距離を保持しようとして前記試料Sの観察表面の凸凹に応じて上下動する。その為、この上下動に応じて前記カンチレバー4の傾きも変化するので、前記光検出器9に入る反射光の位置も変化する。   In this case, the probe 5 moves up and down according to the unevenness of the observation surface of the sample S so as to maintain the initial set distance. For this reason, the inclination of the cantilever 4 also changes in accordance with this vertical movement, so that the position of the reflected light entering the photodetector 9 also changes.

原子間力顕微鏡において、この検出した反射光の位置変化はZ軸方向の位置変化に換算され、該換算された信号(画像信号)に基づいて液中にある試料表面の凸凹像が観察される。   In the atomic force microscope, the detected position change of the reflected light is converted into a position change in the Z-axis direction, and an uneven image of the sample surface in the liquid is observed based on the converted signal (image signal). .

さて、この様な試料の観察において、時間の経過と共に前記液層Wを成す液体は蒸発しその液量が減少する。   In the observation of such a sample, the liquid forming the liquid layer W evaporates with the passage of time, and the amount of the liquid decreases.

しかし、この様な試料観察中において、前記送液体21A,21B,………の毛管現象により、前記液体収納器20に収容された液が吸い上げられ、前記試料載置台2’内に形成された各孔Aa,Ab,………を通って該試料載置台の試料載置面に導かれ、前記液層Wに常時僅かずつ(例えば、前記液層Wからの液の蒸発を補う程度の量)供給される。従って、液層Wの液量は常時、所定量安定に維持されることになる。   However, during such sample observation, the liquid stored in the liquid container 20 is sucked up and formed in the sample mounting table 2 ′ by the capillary phenomenon of the liquid feeding liquids 21A, 21B,. ... Is guided through the holes Aa, Ab,... To the sample mounting surface of the sample mounting table, and is always slightly in the liquid layer W (for example, an amount sufficient to compensate for evaporation of the liquid from the liquid layer W). ) Supplied. Therefore, the liquid amount of the liquid layer W is always kept stable by a predetermined amount.

尚、前記例では液体収納容器20を試料載置台2’に取り付ける様に成したが、該液体収納容器の取り付け箇所はこれに限定されず、例えば、試料チャンバー1の内壁に取り付けても良い。   In the above example, the liquid storage container 20 is attached to the sample mounting table 2 ′, but the attachment location of the liquid storage container is not limited to this, and may be attached to the inner wall of the sample chamber 1, for example.

又、前記液層Wを成す液体としては、純水、生理食塩水、電解質溶液等があるが、例えば、試料に応じて選択される。   The liquid forming the liquid layer W includes pure water, physiological saline, electrolyte solution, and the like, and is selected according to the sample, for example.

又、前記送液体21は毛管現象により液体を吸い上げて所定の場所へ導く素材であれば良いので合成繊維の束に限定されず、多孔質体を使用しても良い。   Further, the liquid feed 21 is not limited to a bundle of synthetic fibers, and may be a porous body, as long as it is a material that sucks liquid by capillary action and guides it to a predetermined place.

又、前記液体収納器20内の液が不足した場合を考慮して、前記液体収納容器20内に液面を検出する液面検出センサーを設けると共に、別に液体収納器を設け、前記液面検出センサーの検出信号に基づいて前記液体収納器20内の液の不足を検知し、前記別の液体収納容器から所定の液量を前記液体収納容器20に供給するように成しても良い。   In consideration of a case where the liquid in the liquid container 20 is insufficient, a liquid level detection sensor for detecting the liquid level is provided in the liquid storage container 20, and a liquid container is provided separately to detect the liquid level. A shortage of liquid in the liquid container 20 may be detected based on a detection signal of a sensor, and a predetermined liquid amount may be supplied from the other liquid container to the liquid container 20.

又、前記試料載置台2´はスキャナ3から着脱可能に成しても良い。   The sample mounting table 2 ′ may be detachable from the scanner 3.

液中で試料を観察出来る様に成した原子間力顕微鏡の一概略例を示す。A schematic example of an atomic force microscope configured to enable observation of a sample in a liquid is shown. 本発明の走査プローブ顕微鏡の一つである原子間力顕微鏡の一概略例を示している。1 shows a schematic example of an atomic force microscope that is one of the scanning probe microscopes of the present invention.

符号の説明Explanation of symbols

1…試料チャンバー
2、2´…試料載置台
3…スキャナ
4…カンチレバー
5…探針
6…支持体
7…上蓋
8…光源
9…光検出器
10…透明板
16…カバーガラス
20…液体収納容器
20A…内筒
20B…外筒
20C…ドーナツ板
21A,21B…送液体
S…試料
W…液体
Aa,Ab…孔
DESCRIPTION OF SYMBOLS 1 ... Sample chamber 2, 2 '... Sample mounting base 3 ... Scanner 4 ... Cantilever 5 ... Probe 6 ... Support body 7 ... Top cover
DESCRIPTION OF SYMBOLS 8 ... Light source 9 ... Photodetector 10 ... Transparent plate 16 ... Cover glass 20 ... Liquid storage container 20A ... Inner cylinder 20B ... Outer cylinder 20C ... Donut plate 21A, 21B ... Liquid feeding S ... Sample W ... Liquid Aa, Ab ... Hole

Claims (5)

探針と、試料台に載置された試料とを接近させて対向配置し、前記探針と試料との相対的位置を変化させ、前記探針と試料間の相互作用に基づいて試料表面の像情報を得る様にした走査プローブ顕微鏡であって、少なくとも前記試料の観察部と前記探針が液層で満たされた状態で測定を行う様に成した走査プローブ顕微鏡において、液体を収納する容器を設け、該容器からの液体を毛管現象を発生する送液体を介して前記液層に導く様に成した走査プローブ顕微鏡。 The probe and the sample placed on the sample stage are placed close to each other, and the relative position between the probe and the sample is changed, and the surface of the sample is changed based on the interaction between the probe and the sample. A scanning probe microscope configured to obtain image information, the container storing liquid in the scanning probe microscope configured to perform measurement in a state where at least the observation portion of the sample and the probe are filled with a liquid layer And a scanning probe microscope configured to guide the liquid from the container to the liquid layer through a liquid feed that generates capillary action. 毛管現象を発生する送液体は、合成繊維の束から成る請求項1記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 1, wherein the liquid-feeding liquid that generates capillary action comprises a bundle of synthetic fibers. 毛管現象を発生する送液体は、多孔質体から成る請求項1記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 1, wherein the liquid feeding liquid that generates capillary action is made of a porous material. 孔の一方の開口部が前記試料台の試料載置面で試料と接しない部分に存在する様に前記試料台内に少なくとも一つの孔を形成し、前記送液体の一端を前記容器中に配置し、他端を前記孔内に配置する様に成した請求項1記載の走査プローブ顕微鏡。 At least one hole is formed in the sample stage so that one opening of the hole exists in a part of the sample stage that does not contact the sample on the sample mounting surface, and one end of the liquid feeding is disposed in the container The scanning probe microscope according to claim 1, wherein the other end is disposed in the hole. 前記液体収納容器は前記試料台に取り付けられている請求項1記載の走査プローブ顕微鏡。 The scanning probe microscope according to claim 1, wherein the liquid storage container is attached to the sample stage.
JP2008020311A 2008-01-31 2008-01-31 Scanning probe microscope Expired - Fee Related JP5043699B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008020311A JP5043699B2 (en) 2008-01-31 2008-01-31 Scanning probe microscope

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008020311A JP5043699B2 (en) 2008-01-31 2008-01-31 Scanning probe microscope

Publications (2)

Publication Number Publication Date
JP2009180632A true JP2009180632A (en) 2009-08-13
JP5043699B2 JP5043699B2 (en) 2012-10-10

Family

ID=41034720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008020311A Expired - Fee Related JP5043699B2 (en) 2008-01-31 2008-01-31 Scanning probe microscope

Country Status (1)

Country Link
JP (1) JP5043699B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257331A (en) * 2010-06-11 2011-12-22 Shimadzu Corp Scanning probe microscope
US11073535B2 (en) 2019-04-25 2021-07-27 Shimadzu Corporation Scanning probe microscope with case and elastic body

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10239325A (en) * 1997-02-26 1998-09-11 Seiko Instr Inc Sample receptacle for observing sample in liquid
JP2936311B2 (en) * 1994-09-09 1999-08-23 セイコーインスツルメンツ株式会社 Scanning near-field atomic force microscope with in-liquid observation function
JP2004267019A (en) * 2003-03-05 2004-09-30 Miura Engei:Kk Method for automatic watering and automatic watering device for potted plant
JP2006158365A (en) * 2004-12-03 2006-06-22 Osamu Murasawa Pot having moisture control lump and supply water pipe
JP2007132781A (en) * 2005-11-10 2007-05-31 Sii Nanotechnology Inc Cantilever holder used in liquid, and scanning probe microscope
JP3134687U (en) * 2007-06-06 2007-08-23 毅 今井 Flowerpot watering tool
JP2007248042A (en) * 2006-02-14 2007-09-27 Yokohama National Univ Steam generator and steam generation method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2936311B2 (en) * 1994-09-09 1999-08-23 セイコーインスツルメンツ株式会社 Scanning near-field atomic force microscope with in-liquid observation function
JPH10239325A (en) * 1997-02-26 1998-09-11 Seiko Instr Inc Sample receptacle for observing sample in liquid
JP2004267019A (en) * 2003-03-05 2004-09-30 Miura Engei:Kk Method for automatic watering and automatic watering device for potted plant
JP2006158365A (en) * 2004-12-03 2006-06-22 Osamu Murasawa Pot having moisture control lump and supply water pipe
JP2007132781A (en) * 2005-11-10 2007-05-31 Sii Nanotechnology Inc Cantilever holder used in liquid, and scanning probe microscope
JP2007248042A (en) * 2006-02-14 2007-09-27 Yokohama National Univ Steam generator and steam generation method
JP3134687U (en) * 2007-06-06 2007-08-23 毅 今井 Flowerpot watering tool

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011257331A (en) * 2010-06-11 2011-12-22 Shimadzu Corp Scanning probe microscope
US11073535B2 (en) 2019-04-25 2021-07-27 Shimadzu Corporation Scanning probe microscope with case and elastic body

Also Published As

Publication number Publication date
JP5043699B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP4987284B2 (en) Cantilever holder for liquid and scanning probe microscope
JP4253592B2 (en) Immersion objective lens, fluorescence analyzer and inverted microscope.
US7323705B2 (en) Liquid level measurement
US10564182B2 (en) Measuring device and method for determining mass and/or mechanical properties of a biological system
US8332960B2 (en) Device for scanning a sample surface covered with a liquid
JP5043699B2 (en) Scanning probe microscope
US20060262419A1 (en) Objective, optical analyzer, method of driving optical analyzer, and microscope
US7614287B2 (en) Scanning probe microscope displacement detecting mechanism and scanning probe microscope using same
CN109116054B (en) Laser adjusting method for atomic force microscope submerged measurement
US6810721B2 (en) Submerged sample observation apparatus and method
JP5234056B2 (en) Scanning probe microscope
JPH09318506A (en) Petri dish mounting equipment
CN101799392A (en) Portable surface tension tester
JP2010063430A (en) Structure, method and apparatus for measurement
JP4601000B2 (en) Specific substance observation device and specific substance observation method
CN110501525B (en) Scanning probe microscope and method for sealing sample container
JP2008122325A (en) Scanning probe microscope
JP2009133721A (en) Scanning probe microscope
JP2007033934A (en) Stage unit
JP2000221129A (en) Scanning probe microscope
JPH11118813A (en) Atomic force microscope with solution cell
JP4262621B2 (en) Atomic force microscope
JP3874685B2 (en) Scanning probe microscope
JP2014178252A (en) Inspection package, detection method and biomolecule array screening method
JP2000234994A (en) Method for measuring displacement of cantilever in scanning probe microscope

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100820

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120710

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees