JP2013181021A - Artificial peptide with rare metal binding capacity, and use of the same - Google Patents

Artificial peptide with rare metal binding capacity, and use of the same Download PDF

Info

Publication number
JP2013181021A
JP2013181021A JP2012047585A JP2012047585A JP2013181021A JP 2013181021 A JP2013181021 A JP 2013181021A JP 2012047585 A JP2012047585 A JP 2012047585A JP 2012047585 A JP2012047585 A JP 2012047585A JP 2013181021 A JP2013181021 A JP 2013181021A
Authority
JP
Japan
Prior art keywords
peptide
amino acid
metal
rare metal
palladium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012047585A
Other languages
Japanese (ja)
Other versions
JP5943463B2 (en
Inventor
Atsuo Tamura
厚夫 田村
Sadahiro Iida
禎弘 飯田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe University NUC
Original Assignee
Kobe University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe University NUC filed Critical Kobe University NUC
Priority to JP2012047585A priority Critical patent/JP5943463B2/en
Publication of JP2013181021A publication Critical patent/JP2013181021A/en
Application granted granted Critical
Publication of JP5943463B2 publication Critical patent/JP5943463B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Peptides Or Proteins (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)
  • Water Treatment By Sorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: an artificial peptide with a rare metal-binding capacity; and a method of recovering rare metals with few environmental loads.SOLUTION: A peptide has the following amino acid sequence (1), and the number of amino acid residues is at most 100. (1) SDPLVXRASLIGLLXLLLWXXXRX(SEQ ID NO 1). In the formula, Xdenotes a hydrophilic amino acid, Xdenotes H or A, Xdenotes R or K; Xdenotes M or an aliphatic amino acid, Xdenotes D or E, and Xdenotes an arbitrary amino acid.

Description

本発明は、レアメタル結合能を有する人工ペプチドおよびその利用に関するものであり、詳細には、レアメタル結合能を有する人工ペプチドを含有する金属吸着剤、それを用いるレアメタル回収方法、レアメタル検出方法に関するものである。   The present invention relates to an artificial peptide having a rare metal binding ability and use thereof, and more particularly to a metal adsorbent containing an artificial peptide having a rare metal binding ability, a rare metal recovery method using the same, and a rare metal detection method. is there.

先端科学技術の発展に深く関わり、高性能化の材料となっているのがレアメタルとよばれる非鉄金属類であり、材料・触媒化学の分野において広く注目を浴びている。近年の技術革新や新興国の発展に伴い、貴金属をはじめとするレアメタルの使用量が急増しており、資源確保観点からも金属の回収法の効率化が急務の課題となっている。   Deeply involved in the development of advanced science and technology, non-ferrous metals called rare metals are becoming high-performance materials, and are attracting widespread attention in the field of materials and catalytic chemistry. With recent technological innovation and the development of emerging countries, the use of rare metals including precious metals has increased rapidly, and from the viewpoint of securing resources, the efficiency of metal recovery methods has become an urgent issue.

従来のレアメタル回収技術は、高温や強酸性など極端な条件で行われるため、環境負荷が大きく、エネルギー消費も大きい。また、特定のレアメタルのみを選択的に回収することは困難である。そこで、環境負荷の少ないレアメタル回収技術が求められており、種々の技術が提案されている(例えば、特許文献1参照)。   Conventional rare metal recovery technology is performed under extreme conditions such as high temperature and strong acidity, and therefore has a large environmental load and energy consumption. In addition, it is difficult to selectively recover only specific rare metals. Thus, a rare metal recovery technique with a low environmental load is required, and various techniques have been proposed (for example, see Patent Document 1).

特開2008−127651号公報JP 2008-127651 A

本発明は、レアメタル結合能を有する人工ペプチドを提供し、環境負荷の少ないレアメタル回収方法を提供することを課題とする。   An object of the present invention is to provide an artificial peptide having a rare metal binding ability, and to provide a method for recovering a rare metal with less environmental load.

本発明は、上記課題を解決するために、以下の各発明を包含する。
[1]以下のアミノ酸配列(1)を有し、かつアミノ酸残基数が100以下であるペプチド。
(1)SDPLVXRASLIGLLXLLLWXRX(配列番号1)
(Xは親水性アミノ酸、XはHまたはA、XはRまたはK、XはMまたは脂肪族アミノ酸、XはDまたはE、Xは任意のアミノ酸を表す。)
[2]XがNまたはR、XがMまたはL、XがKまたはLである前記[1]に記載のペプチド。
[3]アミノ酸配列(1)が、以下のアミノ酸配列(2)または(3)である前記[2]に記載のペプチド。
(2)SDPLVNRASLIGLLHLLLWRMDRL(配列番号2)
(3)SDPLVRRASLIGLLHLLLWKMDRK(配列番号3)
[4]アミノ酸配列(1)が、以下のアミノ酸配列(4)または(5)である前記[2]に記載のペプチド。
(4)SDPLVRRASLIGLLHLLLWKLERK(配列番号4)
(5)SDPLVRRASLIGLLALLLWKMDRK(配列番号5)
[5]前記[1]〜[4]のいずれかに記載のペプチドを含有する金属吸着剤。
[6]金属がレアメタルである前記[5]に記載の金属吸着剤。
[7]レアメタルがパラジウムおよび/または白金である前記[6]に記載の金属吸着剤。
[8]前記[5]〜[7]のいずれかに記載の金属吸着材とレアメタルを含む金属成分を含有する水溶液とを接触させる工程とを含むことを特徴とするレアメタル回収方法。
[9]レアメタルがパラジウムおよび/または白金である前記[8]に記載のレアメタル回収方法。
[10]前記[1]〜[4]のいずれかに記載のペプチドとレアメタルを含む金属成分を含有する水溶液とを接触させる工程、および、当該ペプチドの構造変化を検出する工程を含むことを特徴とするレアメタル検出方法。
[11]レアメタルがパラジウムおよび/または白金である前記[10]に記載のレアメタル検出方法。
The present invention includes the following inventions in order to solve the above problems.
[1] A peptide having the following amino acid sequence (1) and having 100 or fewer amino acid residues.
(1) SDPLVX 1 RASLIGLLX 2 LLLWX 3 X 4 X 5 RX 6 (SEQ ID NO: 1)
(X 1 represents a hydrophilic amino acid, X 2 represents H or A, X 3 represents R or K, X 4 represents M or an aliphatic amino acid, X 5 represents D or E, and X 6 represents any amino acid.)
[2] The peptide according to [1], wherein X 1 is N or R, X 4 is M or L, and X 6 is K or L.
[3] The peptide according to [2], wherein the amino acid sequence (1) is the following amino acid sequence (2) or (3).
(2) SDPLVNRASLIGLLLHLLWRMDRL (SEQ ID NO: 2)
(3) SDPLVRRASLIGLLLHLLWKMDRK (SEQ ID NO: 3)
[4] The peptide according to [2], wherein the amino acid sequence (1) is the following amino acid sequence (4) or (5).
(4) SDPLVRRASLIGLLLHLLWKLERK (SEQ ID NO: 4)
(5) SDPLVRRASLIGLALLLLWKMDRK (SEQ ID NO: 5)
[5] A metal adsorbent containing the peptide according to any one of [1] to [4].
[6] The metal adsorbent according to [5], wherein the metal is a rare metal.
[7] The metal adsorbent according to [6], wherein the rare metal is palladium and / or platinum.
[8] A method for recovering a rare metal, comprising a step of bringing the metal adsorbent according to any one of [5] to [7] into contact with an aqueous solution containing a metal component containing a rare metal.
[9] The rare metal recovery method according to [8], wherein the rare metal is palladium and / or platinum.
[10] The method includes contacting the peptide according to any one of [1] to [4] above with an aqueous solution containing a metal component containing a rare metal, and detecting a structural change of the peptide. Rare metal detection method.
[11] The rare metal detection method according to [10], wherein the rare metal is palladium and / or platinum.

本発明によれば、レアメタル結合能を有する人工ペプチドを提供することができる。当該人工ペプチドは、金属吸着材として好適に使用することができる。当該金属吸着材を用いることにより、レアメタルを効率よく回収することができる。   According to the present invention, an artificial peptide having a rare metal binding ability can be provided. The artificial peptide can be suitably used as a metal adsorbent. By using the metal adsorbent, the rare metal can be efficiently recovered.

本発明のペプチド(M2SAP2)溶液に金属イオンを添加してCD(円二色性)測定した結果を示す図である。It is a figure which shows the result of having added metal ion to the peptide (M2SAP2) solution of this invention, and measuring CD (circular dichroism). 本発明のペプチド(M2SAP2)溶液に(A)銅イオン溶液または(B)パラジウムイオン溶液を滴定してITC測定した結果を示す図である。It is a figure which shows the result of having titrated (A) copper ion solution or (B) palladium ion solution to the peptide (M2SAP2) solution of this invention, and performing ITC measurement. 本発明のペプチド(M2SAP3)溶液に金属イオンを添加してCD測定した結果を示す図である。It is a figure which shows the result of having added metal ion to the peptide (M2SAP3) solution of this invention, and having measured CD. 本発明のペプチド(M2SAP3)溶液に(A)銅イオン溶液または(B)パラジウムイオン溶液を滴定してITC測定した結果を示す図である。It is a figure which shows the result of having titrated (A) copper ion solution or (B) palladium ion solution to the peptide (M2SAP3) solution of this invention, and performing ITC measurement. 本発明のペプチド(M2SAP5)溶液に金属イオンを添加してCD測定した結果を示す図である。It is a figure which shows the result of having added metal ion to the peptide (M2SAP5) solution of this invention, and having measured CD. 本発明のペプチド(M2SAP5)溶液に(A)銅イオン溶液または(B)パラジウムイオン溶液を滴定してITC測定した結果を示す図である。It is a figure which shows the result of having titrated (A) copper ion solution or (B) palladium ion solution to the peptide (M2SAP5) solution of this invention, and performing ITC measurement. 本発明のペプチド(M2SAP6)溶液に金属イオンを添加してCD測定した結果を示す図である。It is a figure which shows the result of having added metal ion to the peptide (M2SAP6) solution of this invention, and having measured CD. 本発明のペプチド(M2SAP6)溶液に(A)銅イオン溶液または(B)パラジウムイオン溶液を滴定してITC測定した結果を示す図である。It is a figure which shows the result of having titrated (A) copper ion solution or (B) palladium ion solution to the peptide (M2SAP6) solution of this invention, and performing ITC measurement. 本発明のペプチド(M2SAP5)塗工した薄葉紙のパラジウムイオン吸着能を検討した結果を示す図である。It is a figure which shows the result of having examined the palladium ion adsorption ability of the thin paper coated with the peptide (M2SAP5) of the present invention.

M2タンパク質はA型インフルエンザウイルスのエンベロープ内に存在する膜タンパク質である。M2タンパク質は、97残基のアミノ酸(配列番号6)からなる1回膜貫通タンパク質であり、天然状態ではヘリックス構造をとっておりテトラマーを構成している。さらに、その4本膜貫通ヘリックスはpH依存性のプロトンチャネルを形成しており、その中に含むHis37はpHセンサーであり、Trp41はゲートの役割を担っている(Jasen R. Schnell et al., Nature 451 591-595 2008. 、Stouffer AL et al., Nature 451 596-599 2008.)。また、M2タンパク質は銅イオンと選択的に結合する能力を保有していることが知られている(Chris S. Gandhi et al., J Biol Chem 274(9) 5474-82 1999)。
そこで、本発明者らは、M2タンパク質の膜貫通ドメインを含むSer23からLeu46までのアミノ酸配列からなるペプチドは疎水性が高く水に不溶であったためアミノ酸配列を改変することで水溶性を獲得させ、さらに新たな金属結合能を付与するべくペプチド分子を設計し、種々の性質について検討を行った。その結果、レアメタル結合能を有する水溶性アナログを見出し、本発明を完成させるに至った。
M2 protein is a membrane protein present in the envelope of influenza A virus. The M2 protein is a single-transmembrane protein consisting of 97 amino acids (SEQ ID NO: 6). In the natural state, the M2 protein has a helical structure and constitutes a tetramer. Furthermore, the four transmembrane helix forms a pH-dependent proton channel, His37 contained therein is a pH sensor, and Trp41 plays a role of a gate (Jasen R. Schnell et al.,). Nature 451 591-595 2008., Stouffer AL et al., Nature 451 596-599 2008.). It is also known that M2 protein possesses the ability to selectively bind to copper ions (Chris S. Gandhi et al., J Biol Chem 274 (9) 5474-82 1999).
Therefore, the present inventors acquired a water-solubility by altering the amino acid sequence because the peptide consisting of the amino acid sequence from Ser23 to Leu46 containing the transmembrane domain of M2 protein was highly hydrophobic and insoluble in water. Furthermore, peptide molecules were designed to give new metal binding ability, and various properties were examined. As a result, a water-soluble analog having a rare metal binding ability was found and the present invention was completed.

〔ペプチド〕
本発明は、以下のアミノ酸配列(1)を有し、かつアミノ酸残基数が100以下であるペプチドを提供する。
(1)SDPLVXRASLIGLLXLLLWXRX(配列番号1)
(Xは親水性アミノ酸、XはHまたはA、XはRまたはK、XはMまたは脂肪族アミノ酸、XはDまたはE、Xは任意のアミノ酸を表す。)
本発明のペプチドは、水溶性かつレアメタル結合能を有しているペプチドであればよい。本発明のペプチドは、上記アミノ酸配列(1)を含むものであればよく、それ以外の部分のアミノ酸配列は、水溶性およびレアメタル結合能の少なくとも一方を損なわない限り特に限定されない。なお、本明細書において、「ペプチド」は2個以上のアミノ酸がペプチド結合によって結合したものを意味し、結合するアミノ酸の数は問わない。すなわち、本発明における「ペプチド」にはポリペプチドが含まれる。
〔peptide〕
The present invention provides a peptide having the following amino acid sequence (1) and having 100 or fewer amino acid residues.
(1) SDPLVX 1 RASLIGLLX 2 LLLWX 3 X 4 X 5 RX 6 (SEQ ID NO: 1)
(X 1 represents a hydrophilic amino acid, X 2 represents H or A, X 3 represents R or K, X 4 represents M or an aliphatic amino acid, X 5 represents D or E, and X 6 represents any amino acid.)
The peptide of the present invention may be any peptide that is water-soluble and has a rare metal binding ability. The peptide of this invention should just contain the said amino acid sequence (1), and the amino acid sequence of a part other than that is not specifically limited unless at least one of water solubility and a rare metal binding ability is impaired. In the present specification, “peptide” means a peptide in which two or more amino acids are bound by peptide bonds, and the number of bound amino acids is not limited. That is, the “peptide” in the present invention includes a polypeptide.

は親水性アミノ酸であればよい。Xの親水性アミノ酸としては、例えばアスパラギン、アルギニン、アスパラギン酸、グルタミン酸、グルタミン、ヒスチジン、リジン、セリン、トレオニン等が挙げられる。好ましくは、アスパラギン、アルギニンまたはグルタミン酸である。
はメチオニンまたは脂肪族アミノ酸であればよい。Xの脂肪族アミノ酸としては、例えばロイシン、イソロイシン、アラニン、バリン等が挙げられる。好ましくはロイシンである。
のアミノ酸は特に限定されず、いずれのアミノ酸でもよい。好ましくは、ロイシン、リジン、グリシンであり、より好ましくは、ロイシンまたはリジンである。
X 1 may be a hydrophilic amino acid. The hydrophilic amino acids X 1, for example asparagine, arginine, aspartic acid, glutamic acid, glutamine, histidine, lysine, serine, threonine, and the like. Preferred is asparagine, arginine or glutamic acid.
X 4 may be methionine or an aliphatic amino acid. Examples of the aliphatic amino acid X 4 include leucine, isoleucine, alanine, valine and the like. Preferred is leucine.
Amino acid X 6 is not particularly limited, and may be any amino acid. Preferred are leucine, lysine and glycine, and more preferred is leucine or lysine.

上記アミノ酸配列(1)は、以下のアミノ酸配列(2)または(3)であることが好ましい。
(2)SDPLVNRASLIGLLHLLLWRMDRL(配列番号2)
(3)SDPLVRRASLIGLLHLLLWKMDRK(配列番号3)
アミノ酸配列(2)または(3)からなるペプチドは水溶性であり、パラジウムおよび銅と選択的に結合することが確認されている。
The amino acid sequence (1) is preferably the following amino acid sequence (2) or (3).
(2) SDPLVNRASLIGLLLHLLWRMDRL (SEQ ID NO: 2)
(3) SDPLVRRASLIGLLLHLLWKMDRK (SEQ ID NO: 3)
The peptide consisting of the amino acid sequence (2) or (3) is water-soluble and has been confirmed to bind selectively to palladium and copper.

また、上記アミノ酸配列(1)は、以下のアミノ酸配列(4)または(5)であることが好ましい。
(4)SDPLVRRASLIGLLHLLLWKLERK(配列番号4)
(5)SDPLVRRASLIGLLALLLWKMDRK(配列番号5)
アミノ酸配列(4)または(5)からなるペプチドは水溶性であり、パラジウムと選択的に結合することが確認されている。
The amino acid sequence (1) is preferably the following amino acid sequence (4) or (5).
(4) SDPLVRRASLIGLLLHLLWKLERK (SEQ ID NO: 4)
(5) SDPLVRRASLIGLALLLLWKMDRK (SEQ ID NO: 5)
The peptide consisting of the amino acid sequence (4) or (5) is water-soluble and has been confirmed to selectively bind to palladium.

本発明のペプチドのアミノ酸残基数は、24残基以上100残基以下であれば特に限定されない。取り扱いの簡便さ、製造効率等の観点から、アミノ酸残基数の上限は約80残基が好ましく、より好ましくは約50残基、さらに好ましくは約40残基、特に好ましくは約30残基である。   The number of amino acid residues of the peptide of the present invention is not particularly limited as long as it is 24 residues or more and 100 residues or less. From the viewpoint of easy handling and production efficiency, the upper limit of the number of amino acid residues is preferably about 80 residues, more preferably about 50 residues, still more preferably about 40 residues, and particularly preferably about 30 residues. is there.

本発明のペプチドの具体例としては、例えば、配列番号6のアミノ酸配列からなるM2タンパク質のSer23からLeu46を、上記アミノ酸配列(1)で置換したペプチドを含むペプチドを好適に用いることができる。また、上記アミノ酸配列(1)を2〜4回繰り返した配列を含むペプチドを好適に用いることができる。上記アミノ酸配列(1)を2〜4回繰り返した配列としては、具体的には、例えば、上記アミノ酸配列(2)〜(5)のいずれか1種を2〜4回繰り返した配列、上記アミノ酸配列(2)〜(5)の2〜4種を適宜組み合わせて結合した配列などが挙げられる。好ましくは上記アミノ酸配列(2)〜(5)のいずれか1種からなるペプチドであり、より好ましくは上記アミノ酸配列(4)または(5)からなるペプチドである。   As a specific example of the peptide of the present invention, for example, a peptide containing a peptide obtained by substituting Ser23 to Leu46 of M2 protein consisting of the amino acid sequence of SEQ ID NO: 6 with the amino acid sequence (1) can be preferably used. Moreover, the peptide containing the sequence which repeated the said amino acid sequence (1) 2-4 times can be used conveniently. Specific examples of the sequence in which the amino acid sequence (1) is repeated 2 to 4 times include, specifically, a sequence in which any one of the amino acid sequences (2) to (5) is repeated 2 to 4 times, the amino acid Examples include sequences in which 2 to 4 types of sequences (2) to (5) are combined in an appropriate combination. A peptide consisting of any one of the amino acid sequences (2) to (5) is preferred, and a peptide consisting of the amino acid sequence (4) or (5) is more preferred.

本発明のペプチドは、公知の一般的なペプチド合成のプロトコールに従って、固相合成法(Fmoc法、Boc法)または液相合成法により製造することができる。また、本発明のペプチドをコードするDNAを含有する発現ベクターを導入した形質転換体を用いる方法や、in vitro転写・翻訳系を用いる方法により製造することができる。   The peptide of the present invention can be produced by a solid phase synthesis method (Fmoc method, Boc method) or a liquid phase synthesis method according to a known general peptide synthesis protocol. Further, it can be produced by a method using a transformant into which an expression vector containing a DNA encoding the peptide of the present invention has been introduced, or a method using an in vitro transcription / translation system.

本発明のペプチドは、C末端がカルボキシル基(−COOH)、カルボキシレート(−COO)、アミド(−CONH)またはエステル(−COOR)の何れであってもよい。エステルにおけるRとしては、例えば、メチル、エチル、n−プロピル、イソプロピルもしくはn−ブチルなどのC1−6アルキル基、例えば、シクロペンチル、シクロヘキシルなどのC3−8シクロアルキル基、例えば、フェニル、α−ナフチルなどのC6−12アリール基、例えば、ベンジル、フェネチルなどのフェニル−C1−2アルキル基もしくはα−ナフチルメチルなどのα−ナフチル−C1−2アルキル基などのC7−14アラルキル基のほか、経口用エステルとして汎用されるピバロイルオキシメチル基などが挙げられる。本発明のペプチドがC末端以外にカルボキシル基またはカルボキシレートを有している場合、それらの基がアミド化またはエステル化されているものも本発明のペプチドに含まれる。 In the peptide of the present invention, the C-terminus may be any of a carboxyl group (—COOH), a carboxylate (—COO ), an amide (—CONH 2 ), or an ester (—COOR). As R in the ester, for example, a C 1-6 alkyl group such as methyl, ethyl, n-propyl, isopropyl or n-butyl, for example, a C 3-8 cycloalkyl group such as cyclopentyl, cyclohexyl, for example, phenyl, α - C 6-12 aryl group such as naphthyl, for example, benzyl, C 7 - 14 aralkyl such as α- naphthyl -C 1-2 alkyl group such as a phenyl -C 1-2 alkyl or α- naphthylmethyl such phenethyl In addition to the group, a pivaloyloxymethyl group, which is widely used as an oral ester, can be mentioned. When the peptide of the present invention has a carboxyl group or a carboxylate other than the C-terminus, those in which these groups are amidated or esterified are also included in the peptide of the present invention.

本発明のペプチドを構成するアミノ酸は、側鎖が任意の置換基で修飾されたものでもよい。置換基は特に限定されないが、例えば、フッ素原子、塩素原子、シアノ基、水酸基、ニトロ基、アルキル基、シクロアルキル基、アルコキシ基、アミノ基などが挙げられる。 さらに、本発明のペプチドには、N末端のメチオニン残基のアミノ基が保護基(例えば、ホルミル基、アセチルなどのC2−6アルカノイル基などのC1−6アシル基など)で保護されているもの、N末端側が生体内で切断され生成したグルタミル基がピログルタミン酸化したもの、分子内のアミノ酸の側鎖上の置換基(例えば、−OH、−SH、アミノ基、イミダゾール基、インドール基、グアニジノ基など)が適当な保護基(例えば、ホルミル基、アセチルなどのC2−6アルカノイル基などのC1−6アシル基など)で保護されているものも含まれる。 The amino acid constituting the peptide of the present invention may be one in which the side chain is modified with an arbitrary substituent. Although a substituent is not specifically limited, For example, a fluorine atom, a chlorine atom, a cyano group, a hydroxyl group, a nitro group, an alkyl group, a cycloalkyl group, an alkoxy group, an amino group etc. are mentioned. Furthermore, in the peptide of the present invention, the amino group of the N-terminal methionine residue is protected with a protecting group (for example, a C 1-6 acyl group such as a C 2-6 alkanoyl group such as formyl group or acetyl). A glutamyl group produced by cleavage of the N-terminal side in vivo, pyroglutamine oxidation, a substituent on the side chain of an amino acid in the molecule (for example, —OH, —SH, amino group, imidazole group, indole group) , A guanidino group, and the like) are protected with an appropriate protecting group (for example, a C 1-6 acyl group such as a C 2-6 alkanoyl group such as formyl group or acetyl).

本発明のペプチドは塩を形成していてもよく、その塩としては、例えば、塩酸、硫酸、燐酸、乳酸、酒石酸、マレイン酸、フマル酸、シュウ酸、リンゴ酸、クエン酸、オレイン酸、パルミチン酸などの酸との塩;ナトリウム、カリウム、カルシウムなどのアルカリ金属もしくはアルカリ土類金属の、またはアルミニウムの水酸化物または炭酸塩との塩;トリエチルアミン、ベンジルアミン、ジエタノールアミン、t−ブチルアミン、ジシクロヘキシルアミン、アルギニンなどとの塩などが挙げられる。   The peptide of the present invention may form a salt. Examples of the salt include hydrochloric acid, sulfuric acid, phosphoric acid, lactic acid, tartaric acid, maleic acid, fumaric acid, oxalic acid, malic acid, citric acid, oleic acid, palmitic acid. Salts with acids such as acids; salts with alkali or alkaline earth metals such as sodium, potassium, calcium, or aluminum hydroxides or carbonates; triethylamine, benzylamine, diethanolamine, t-butylamine, dicyclohexylamine And salts with arginine and the like.

〔金属吸着剤およびレアメタル回収方法〕
本発明のペプチドは金属(金属イオン)と結合できる性質を有するため、金属吸着剤として好適に用いることができる。本発明の金属吸着剤の吸着対象金属は、本発明のペプチドに特異的(選択的)に結合可能な金属に限定されず、非特異的に結合可能な金属であってもよい。本発明の金属吸着剤の吸着対象金属としては、例えば、金、銀、銅、亜鉛、白金、パラジウム、コバルト、クロム、マンガン、ニッケルなどが挙げられる。
[Metal adsorbent and rare metal recovery method]
Since the peptide of this invention has the property which can be couple | bonded with a metal (metal ion), it can be used suitably as a metal adsorbent. The metal to be adsorbed by the metal adsorbent of the present invention is not limited to a metal that can specifically (selectively) bind to the peptide of the present invention, and may be a metal that can bind nonspecifically. Examples of the metal to be adsorbed by the metal adsorbent of the present invention include gold, silver, copper, zinc, platinum, palladium, cobalt, chromium, manganese, nickel and the like.

本発明のペプチドは選択的レアメタル結合能を有しているので、レアメタル吸着剤として有用である。レアメタルとしては、例えば、白金、パラジウム、ロジウム、イリジウム、ルテニウム、オスミウム、金、銀、コバルト、クロム、マンガン、ニッケルなどが挙げられる。好ましくはパラジウムおよび/または白金である。   Since the peptide of the present invention has selective rare metal binding ability, it is useful as a rare metal adsorbent. Examples of rare metals include platinum, palladium, rhodium, iridium, ruthenium, osmium, gold, silver, cobalt, chromium, manganese, nickel, and the like. Palladium and / or platinum are preferred.

本発明の金属吸着剤は、本発明のペプチドのみからなるものでもよいが、本発明のペプチド以外のものを含んでもよい。好ましくは、本発明のペプチドが適当な担体に担持された形態の金属吸着剤である。担体は、本発明のペプチドを担持可能なものであれば特に限定されず、公知のペプチド担体から適宜選択して用いることができる。担体の材質は特に限定されず、例えば、紙、木材、プラスチック等が挙げられる。担体の形状は特に限定されず、平板状、球状、糸状等が挙げられる。   The metal adsorbent of the present invention may be composed only of the peptide of the present invention, but may contain other than the peptide of the present invention. Preferably, it is a metal adsorbent in a form in which the peptide of the present invention is supported on a suitable carrier. The carrier is not particularly limited as long as it can carry the peptide of the present invention, and can be appropriately selected from known peptide carriers. The material of the carrier is not particularly limited, and examples thereof include paper, wood, and plastic. The shape of the carrier is not particularly limited, and examples thereof include a flat plate shape, a spherical shape, and a thread shape.

本発明の金属吸着剤を、金属成分を含有する水溶液と接触させることにより、本発明のペプチドが水溶液中の金属イオンと結合し、結合した金属を回収することができる。したがって、本発明は、上記本発明の金属吸着剤と金属成分を含有する水溶液とを接触させる工程を含む金属回収方法を提供する。また、本発明のペプチドは、レアメタルと特異的(選択的)に結合することができるので、回収対象金属をレアメタルとすることが好ましい。レアメタルを回収する場合は、本発明の金属吸着剤とレアメタルを含む金属成分を含有する水溶液とを接触させればよい。回収対象のレアメタルとしては、上記に例示したものが好ましい。   By bringing the metal adsorbent of the present invention into contact with an aqueous solution containing a metal component, the peptide of the present invention binds to metal ions in the aqueous solution, and the bound metal can be recovered. Therefore, this invention provides the metal collection | recovery method including the process which the metal adsorbent of the said invention and the aqueous solution containing a metal component are made to contact. Moreover, since the peptide of this invention can couple | bond with a rare metal specifically (selectively), it is preferable to make a collection object metal into a rare metal. When recovering the rare metal, the metal adsorbent of the present invention may be brought into contact with an aqueous solution containing a metal component containing the rare metal. As the rare metal to be collected, those exemplified above are preferable.

本発明のレアメタル回収方法では、本発明の金属吸着剤とレアメタルを含む金属成分を含有する水溶液とを接触させた後、例えば、遠心分離、ろ過、pHの変化などによりレアメタルが結合した本発明の金属吸着剤を回収し、酵素による加水分解や燃焼によって金属吸着剤を分解消滅させることなどにより本発明の金属吸着剤からレアメタルを分離すればよい。   In the rare metal recovery method of the present invention, after bringing the metal adsorbent of the present invention into contact with an aqueous solution containing a metal component containing a rare metal, the rare metal is bound by, for example, centrifugation, filtration, pH change, etc. What is necessary is just to isolate | separate a rare metal from the metal adsorbent of this invention by collect | recovering a metal adsorbent and decomposing | dissolving a metal adsorbent by enzyme hydrolysis or combustion.

〔レアメタル検出方法〕
本発明者らは、後の実施例で示すように、本発明のペプチドが特定のレアメタルと結合することにより構造変化することを見出した。したがって、本発明は、本発明のペプチドを用いるレアメタル検出方法を提供することができる。すなわち、本発明のレアメタル検出方法は、本発明のペプチドと目的のレアメタルを含有する可能性のある水溶液とを接触させる工程、および、接触後の本発明のペプチドの構造変化を検出する工程を含むものであればよい。本発明のレアメタル検出方法において、本発明のペプチドは、上記本発明の金属吸着剤の形態で使用することが好ましい。ペプチドの構造変化を検出する手段としては、特に限定されないが、例えば、円二色性(CD)測定、赤外分光(IR)測定、核磁気共鳴(NMR)測定などが挙げられる。
[Rare metal detection method]
The present inventors have found that the structure of the peptide of the present invention is changed by binding to a specific rare metal, as shown in the following examples. Therefore, the present invention can provide a rare metal detection method using the peptide of the present invention. That is, the rare metal detection method of the present invention includes a step of bringing the peptide of the present invention into contact with an aqueous solution that may contain the target rare metal, and a step of detecting a structural change of the peptide of the present invention after contact. Anything is acceptable. In the rare metal detection method of the present invention, the peptide of the present invention is preferably used in the form of the metal adsorbent of the present invention. The means for detecting the structural change of the peptide is not particularly limited, and examples thereof include circular dichroism (CD) measurement, infrared spectroscopy (IR) measurement, and nuclear magnetic resonance (NMR) measurement.

〔レアメタルセンサー〕
本発明のペプチドは特定のレアメタルと結合することにより構造変化するので、特定のレアメタルに対するセンシング素子として用いることができる。本発明のペプチドを用いるセンシング素子と、特定のレアメタルの結合に伴うペプチドの構造変化を他の信号に変換する手段とを組み合わせることにより、特定のレアメタルに対するセンサー(検出器)を提供することができる。
[Rare metal sensor]
Since the structure of the peptide of the present invention is changed by binding to a specific rare metal, it can be used as a sensing element for the specific rare metal. A sensor (detector) for a specific rare metal can be provided by combining a sensing element using the peptide of the present invention and a means for converting the structural change of the peptide accompanying the binding of the specific rare metal into another signal. .

以下、実施例により本発明を詳細に説明するが、本発明はこれらに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in detail, this invention is not limited to these.

〔実施例1:人工ペプチドの金属イオン結合能の検討〕
(1)ペプチドの合成
以下の4種類のペプチドを、ペプチド合成機(Pioneer, Peptide synthesis System; Applied Biosystems社製)を用いて、F−moc固相法により合成した。
M2SAP2:SDPLVNRASLIGLLHLLLWRMDRL(配列番号2)
M2SAP3:SDPLVRRASLIGLLHLLLWKMDRK(配列番号3)
M2SAP5:SDPLVRRASLIGLLHLLLWKLERK(配列番号4)
M2SAP6:SDPLVRRASLIGLLALLLWKMDRK(配列番号5)
[Example 1: Examination of metal ion binding ability of artificial peptide]
(1) Peptide synthesis The following four types of peptides were synthesized by the F-moc solid phase method using a peptide synthesizer (Pioneer, Peptide synthesis System; Applied Biosystems).
M2SAP2: SDPLVNRASLIGLLLHLLWRMDRL (SEQ ID NO: 2)
M2SAP3: SDPLVRRASLIGLHLLLWKMDRK (SEQ ID NO: 3)
M2SAP5: SDPLVRRASLIGLLLHLLWKLERK (SEQ ID NO: 4)
M2SAP6: SDPLVRRASLIGLALLLLWKMDRK (SEQ ID NO: 5)

(2)実験方法
(2−1)CD(円二色性)測定
合成した各ペプチドを酢酸バッファー(pH5.5)にそれぞれ溶解して、300μMのペプチド溶液を調製した。このペプチド溶液にコバルト、銅またはパラジウムを含む溶液を添加した。ペプチド溶液のみ(金属非添加)、コバルト添加ペプチド溶液、銅添加ペプチド溶液およびパラジウム添加ペプチド溶液について、それぞれCDを測定した。測定には、Jasco J−720 spectro−polarrimeter(日本分光社製)を使用し、光路長0.1mmのタイコセルを用いて200μLのペプチド溶液について測定した。測定条件は、温度25℃、走査波長250nm〜190nm、データ間隔0.2nm、走査速度100nm/min、レスポンス2sec、 バンド幅1nm、 感度10mdeg、積算回数8回とした。
(2) Experimental Method (2-1) CD (Circular Dichroism) Measurement Each synthesized peptide was dissolved in an acetate buffer (pH 5.5) to prepare a 300 μM peptide solution. A solution containing cobalt, copper or palladium was added to the peptide solution. CD was measured for the peptide solution only (no metal added), the cobalt-added peptide solution, the copper-added peptide solution, and the palladium-added peptide solution. For the measurement, Jasco J-720 spectro-polarimeter (manufactured by JASCO Corporation) was used, and 200 μL of the peptide solution was measured using a Tyco cell having an optical path length of 0.1 mm. The measurement conditions were a temperature of 25 ° C., a scanning wavelength of 250 nm to 190 nm, a data interval of 0.2 nm, a scanning speed of 100 nm / min, a response of 2 sec, a bandwidth of 1 nm, a sensitivity of 10 mdeg, and an integration count of 8 times.

(2−2)ITC測定(等温滴定熱測定)
合成した各ペプチドを酢酸バッファー(pH5.5)にそれぞれ溶解して、300μMのペプチド溶液を調製した。測定には、VP−ITC Micro Calorimeter(MicroCal社製)を使用した。セルに1.5mLのペプチド溶液を入れ、撹拌しながら銅イオン溶液またはパラジウムイオン溶液を滴定した。得られた発熱量の変化を解析して結合定数を算出した。
(2-2) ITC measurement (isothermal titration heat measurement)
Each synthesized peptide was dissolved in an acetate buffer (pH 5.5) to prepare a 300 μM peptide solution. For the measurement, VP-ITC Micro Calorimeter (manufactured by MicroCal) was used. A 1.5 mL peptide solution was placed in the cell, and a copper ion solution or a palladium ion solution was titrated while stirring. The coupling constant was calculated by analyzing the change in the calorific value obtained.

(3)結果
(3−1)M2SAP2
M2SAP2のCD測定の結果を図1に、ITC測定の結果を図2(A)および(B)に示した。図1から、M2SAP2は、銅イオンまたはパラジウムイオンを添加することによりこれらの金属と結合してα−へリックスに構造変化することが示された。一方、コバルトイオンを添加した場合は構造変化が生じないことが示された。示していないが、他の金属(鉄イオン、ニッケルイオン等)を添加した場合も構造変化が生じなかった。この結果から、M2SAP2は、銅およびパラジウムと選択的に結合することが明らかとなった。図2(A)および(B)に示した発熱量の変化に基づいて得られた結合常数(表1参照)から、M2SAP2の銅およびパラジウムに対する結合能は同程度であった。
(3) Result (3-1) M2SAP2
The results of CD measurement of M2SAP2 are shown in FIG. 1, and the results of ITC measurement are shown in FIGS. 2 (A) and (B). From FIG. 1, it was shown that M2SAP2 binds to these metals by addition of copper ions or palladium ions and changes its structure to α-helix. On the other hand, it was shown that no structural change occurred when cobalt ions were added. Although not shown, the structural change did not occur when other metals (iron ion, nickel ion, etc.) were added. From this result, it was revealed that M2SAP2 selectively binds to copper and palladium. From the binding constants (see Table 1) obtained based on the changes in the calorific values shown in FIGS. 2A and 2B, the binding capacities of M2SAP2 to copper and palladium were comparable.

(3−2)M2SAP3
M2SAP3のCD測定の結果を図3に、ITC測定の結果を図4(A)および(B)に示した。図3から、M2SAP3は、銅イオンまたはパラジウムイオンを添加することによりこれらの金属と結合してα−へリックスに構造変化することが示された。一方、コバルトイオンを添加した場合は構造変化が生じないことが示された。示していないが、他の金属(鉄イオン、ニッケルイオン等)を添加した場合も構造変化が生じなかった。この結果から、M2SAP3は、銅およびパラジウムと選択的に結合することが明らかとなった。図4(A)および(B)に示した発熱量の変化に基づいて得られた結合常数(表1参照)から、M2SAP3の銅およびパラジウムに対する結合能は同程度であった。
(3-2) M2SAP3
The results of CD measurement of M2SAP3 are shown in FIG. 3, and the results of ITC measurement are shown in FIGS. 4 (A) and 4 (B). From FIG. 3, it was shown that M2SAP3 binds to these metals by adding copper ions or palladium ions, and changes its structure into an α-helix. On the other hand, it was shown that no structural change occurred when cobalt ions were added. Although not shown, the structural change did not occur when other metals (iron ion, nickel ion, etc.) were added. From this result, it was revealed that M2SAP3 selectively binds to copper and palladium. From the binding constants (see Table 1) obtained based on the changes in the calorific values shown in FIGS. 4A and 4B, the binding capacities of M2SAP3 to copper and palladium were comparable.

(3−3)M2SAP5
M2SAP5のCD測定の結果を図5に、ITC測定の結果を図6(A)および(B)に示した。図5から、M2SAP3は、パラジウムイオンを添加することによりこれと結合してα−へリックスに構造変化することが示された。一方、銅イオンまたはコバルトイオンを添加した場合は構造変化が生じないことが示された。示していないが、他の金属(鉄イオン、ニッケルイオン等)を添加した場合も構造変化が生じなかった。この結果から、M2SAP5は、パラジウムと選択的に結合することが明らかとなった。図6(A)および(B)に示した発熱量の変化に基づいて得られた結合常数(表1参照)から、M2SAP5のパラジウムに対する結合能は、銅に対する結合能の約4倍であった。なお、パラジウムに対する結合能がM2SAP3と比して約2倍向上している点で、より有用性が高い。
(3-3) M2SAP5
The results of CD measurement of M2SAP5 are shown in FIG. 5, and the results of ITC measurement are shown in FIGS. 6 (A) and 6 (B). From FIG. 5, it was shown that M2SAP3 was combined with this by adding palladium ion and changed its structure into an α-helix. On the other hand, it was shown that no structural change occurred when copper ions or cobalt ions were added. Although not shown, the structural change did not occur when other metals (iron ion, nickel ion, etc.) were added. From this result, it was revealed that M2SAP5 selectively binds to palladium. From the binding constant (see Table 1) obtained based on the change in the calorific value shown in FIGS. 6A and 6B, the binding ability of M2SAP5 to palladium was about four times that of copper. . In addition, it is more useful in that the binding ability to palladium is improved by about 2 times compared to M2SAP3.

(3−4)M2SAP6
M2SAP6のCD測定の結果を図7に、ITC測定の結果を図8(A)および(B)に示した。図7から、M2SAP6は、パラジウムイオンを添加することによりこれと結合してα−へリックスに構造変化することが示された。一方、銅イオンまたはコバルトイオンを添加した場合は構造変化が生じないことが示された。示していないが、他の金属(鉄イオン、ニッケルイオン等)を添加した場合も構造変化が生じなかった。この結果から、M2SAP6は、パラジウムと選択的に結合することが明らかとなった。図8(A)および(B)に示した発熱量の変化に基づいて得られた結合常数(表1参照)から、M2SAP6のパラジウムに対する結合能は、銅に対する結合能の約4倍であった。なお、パラジウムに対する結合能がM2SAP3と比して約4倍向上している点で、より有用性が高い。
(3-4) M2SAP6
The results of CD measurement of M2SAP6 are shown in FIG. 7, and the results of ITC measurement are shown in FIGS. 8 (A) and 8 (B). From FIG. 7, it was shown that M2SAP6 was combined with this by adding palladium ions and changed in structure to an α-helix. On the other hand, it was shown that no structural change occurred when copper ions or cobalt ions were added. Although not shown, the structural change did not occur when other metals (iron ion, nickel ion, etc.) were added. From this result, it was revealed that M2SAP6 selectively binds to palladium. From the binding constant (see Table 1) obtained based on the change in the calorific value shown in FIGS. 8A and 8B, the binding capacity of M2SAP6 to palladium was about 4 times that of copper. . In addition, usefulness is higher in that the binding ability to palladium is improved by about 4 times compared to M2SAP3.

〔実施例2:ペプチド塗工紙のPdイオン吸着能の検討〕
(1)ペプチド塗工紙の作製
原紙として、薄葉紙14g/m(50mm×50mm)を用いた。ペプチド塗工液(原液)として、バインダー樹脂(25%品)40mgにM2SAP5を10mg添加して攪拌混合したもの(バインダー樹脂(固形量):ペプチド(固形量)=1:1)を用いた。ペプチド塗工液の入ったシャーレの中に薄葉紙を入れて含浸させ、その後オーブン乾燥機にて100℃で10分間乾燥を行った。ペプチド塗工液(原液)を水で希釈して濃度を調整することにより、塗工量が2g/m(ペプチド1g/m)の塗工紙および1g/m(ペプチド0.5g/m)の塗工紙の2種類を作製した。
[Example 2: Examination of Pd ion adsorption ability of peptide-coated paper]
(1) Production of peptide-coated paper Thin paper 14 g / m 2 (50 mm × 50 mm) was used as the base paper. As a peptide coating solution (stock solution), 10 mg of M2SAP5 was added to 40 mg of binder resin (25% product) and mixed by stirring (binder resin (solid amount): peptide (solid amount) = 1: 1). A thin paper was placed in a petri dish containing the peptide coating solution and impregnated, and then dried in an oven dryer at 100 ° C. for 10 minutes. By adjusting the concentration by diluting the peptide coating solution (stock solution) with water, the coating amount is 2 g / m 2 (peptide 1 g / m 2 ) and 1 g / m 2 (peptide 0.5 g / peptide). Two types of m 2 ) coated paper were prepared.

(2)Pdイオン吸着試験
パラジウム標準液(1000ppm)が5ml入ったシャーレに、25mm×25mm角の塗工紙を4時間含浸させ、パラジウムイオンを吸着させた。その後、残液のパラジウムイオン濃度を原子吸光分光光度計を用いて測定し、初期濃度との差を吸着量とした(n=2)。
結果を図9および表2に示した。図9は、4時間含浸後の薄葉紙の写真であり、(A)が薄葉紙14g/m、(B)が薄葉紙14g/m+ペプチド塗工液2g/m、(C)が薄葉紙14g/m+ペプチド塗工液1g/mの写真である。図9からわかるように、薄葉紙の着色の程度は(B)>(C)>(A)であった。また、表2に示したように、薄葉紙に本発明のペプチドを塗工することでパラジウムイオンの吸着量が用量依存的に増加した。また、ペプチド塗工紙作製における原料ペプチドの歩留まりを100%と仮定した場合、ペプチド1gあたりのパラジウムイオン吸着量は約90〜約135mg/gと推定された。
(2) Pd ion adsorption test A petri dish containing 5 ml of a palladium standard solution (1000 ppm) was impregnated with a 25 mm × 25 mm square coated paper for 4 hours to adsorb palladium ions. Thereafter, the palladium ion concentration in the residual liquid was measured using an atomic absorption spectrophotometer, and the difference from the initial concentration was taken as the adsorption amount (n = 2).
The results are shown in FIG. FIG. 9 is a photograph of thin paper after impregnation for 4 hours, (A) is thin paper 14 g / m 2 , (B) is thin paper 14 g / m 2 + peptide coating solution 2 g / m 2 , (C) is thin paper 14 g. It is a photograph of / m 2 + peptide coating solution 1 g / m 2 . As can be seen from FIG. 9, the degree of coloring of the thin paper was (B)>(C)> (A). Moreover, as shown in Table 2, the amount of palladium ion adsorbed increased in a dose-dependent manner by applying the peptide of the present invention to thin paper. Further, assuming that the yield of the starting peptide in peptide-coated paper production was 100%, the palladium ion adsorption amount per 1 g of peptide was estimated to be about 90 to about 135 mg / g.

なお本発明は上述した各実施形態および実施例に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、異なる実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。また、本明細書中に記載された学術文献および特許文献の全てが、本明細書中において参考として援用される。   The present invention is not limited to the above-described embodiments and examples, and various modifications are possible within the scope shown in the claims, and technical means disclosed in different embodiments are appropriately combined. The obtained embodiment is also included in the technical scope of the present invention. Moreover, all the academic literatures and patent literatures described in this specification are incorporated herein by reference.

Claims (11)

以下のアミノ酸配列(1)を有し、かつアミノ酸残基数が100以下であるペプチド。
(1)SDPLVXRASLIGLLXLLLWXRX(配列番号1)
(Xは親水性アミノ酸、XはHまたはA、XはRまたはK、XはMまたは脂肪族アミノ酸、XはDまたはE、Xは任意のアミノ酸を表す。)
A peptide having the following amino acid sequence (1) and having 100 or fewer amino acid residues.
(1) SDPLVX 1 RASLIGLLX 2 LLLWX 3 X 4 X 5 RX 6 (SEQ ID NO: 1)
(X 1 represents a hydrophilic amino acid, X 2 represents H or A, X 3 represents R or K, X 4 represents M or an aliphatic amino acid, X 5 represents D or E, and X 6 represents any amino acid.)
がNまたはR、XがMまたはL、XがKまたはLである請求項1に記載のペプチド。 The peptide according to claim 1, wherein X 1 is N or R, X 4 is M or L, and X 6 is K or L. アミノ酸配列(1)が、以下のアミノ酸配列(2)または(3)である請求項2に記載のペプチド。
(2)SDPLVNRASLIGLLHLLLWRMDRL(配列番号2)
(3)SDPLVRRASLIGLLHLLLWKMDRK(配列番号3)
The peptide according to claim 2, wherein the amino acid sequence (1) is the following amino acid sequence (2) or (3).
(2) SDPLVNRASLIGLLLHLLWRMDRL (SEQ ID NO: 2)
(3) SDPLVRRASLIGLLLHLLWKMDRK (SEQ ID NO: 3)
アミノ酸配列(1)が、以下のアミノ酸配列(4)または(5)である請求項2に記載のペプチド。
(4)SDPLVRRASLIGLLHLLLWKLERK(配列番号4)
(5)SDPLVRRASLIGLLALLLWKMDRK(配列番号5)
The peptide according to claim 2, wherein the amino acid sequence (1) is the following amino acid sequence (4) or (5).
(4) SDPLVRRASLIGLLLHLLWKLERK (SEQ ID NO: 4)
(5) SDPLVRRASLIGLALLLLWKMDRK (SEQ ID NO: 5)
請求項1〜4のいずれかに記載のペプチドを含有する金属吸着剤。   The metal adsorption agent containing the peptide in any one of Claims 1-4. 金属がレアメタルである請求項5に記載の金属吸着剤。   The metal adsorbent according to claim 5, wherein the metal is a rare metal. レアメタルがパラジウムおよび/または白金である請求項6に記載の金属吸着剤。   The metal adsorbent according to claim 6, wherein the rare metal is palladium and / or platinum. 請求項5〜7のいずれかに記載の金属吸着材とレアメタルを含む金属成分を含有する水溶液とを接触させる工程を含むことを特徴とするレアメタル回収方法。   A rare metal recovery method comprising a step of bringing the metal adsorbent according to any one of claims 5 to 7 into contact with an aqueous solution containing a metal component containing a rare metal. レアメタルがパラジウムおよび/または白金である請求項8に記載のレアメタル回収方法。   The method for recovering a rare metal according to claim 8, wherein the rare metal is palladium and / or platinum. 請求項1〜4のいずれかに記載のペプチドとレアメタルを含む金属成分を含有する水溶液とを接触させる工程、および、当該ペプチドの構造変化を検出する工程を含むことを特徴とするレアメタル検出方法。   A method for detecting a rare metal, comprising: bringing the peptide according to any one of claims 1 to 4 into contact with an aqueous solution containing a metal component containing a rare metal; and detecting a structural change of the peptide. レアメタルがパラジウムおよび/または白金である請求項10に記載のレアメタル検出方法。   The method for detecting a rare metal according to claim 10, wherein the rare metal is palladium and / or platinum.
JP2012047585A 2012-03-05 2012-03-05 Artificial peptide having rare metal binding ability and use thereof Active JP5943463B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012047585A JP5943463B2 (en) 2012-03-05 2012-03-05 Artificial peptide having rare metal binding ability and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012047585A JP5943463B2 (en) 2012-03-05 2012-03-05 Artificial peptide having rare metal binding ability and use thereof

Publications (2)

Publication Number Publication Date
JP2013181021A true JP2013181021A (en) 2013-09-12
JP5943463B2 JP5943463B2 (en) 2016-07-05

Family

ID=49271933

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012047585A Active JP5943463B2 (en) 2012-03-05 2012-03-05 Artificial peptide having rare metal binding ability and use thereof

Country Status (1)

Country Link
JP (1) JP5943463B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227281A (en) * 2012-03-26 2013-11-07 Panasonic Corp Peptide capable of binding to gold
JP2013231024A (en) * 2012-04-04 2013-11-14 Panasonic Corp Peptide capable for binding to carbon
JP2013234170A (en) * 2012-04-10 2013-11-21 Panasonic Corp Peptide capable of being bound to rhodium
JP2013234171A (en) * 2012-04-11 2013-11-21 Panasonic Corp Peptide capable of being bound to iridium
JP2016047810A (en) * 2014-08-26 2016-04-07 株式会社デンソー Peptide, rare earth element recovering material, and recovering method for rare earth elements
JP2016088846A (en) * 2014-10-29 2016-05-23 株式会社豊田中央研究所 Rare earth trapping material and application thereof
JP2016117664A (en) * 2014-12-19 2016-06-30 株式会社豊田中央研究所 Separation method of rare earth ion
WO2017213153A1 (en) * 2016-06-06 2017-12-14 Shibaura Institute Of Technology A novel peptide and use thereof
CN112113998A (en) * 2020-09-23 2020-12-22 上海理工大学 Method for exploring interaction between metal ions and biological small molecules by isothermal titration quantitative calorimetry

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160699A (en) * 1984-08-31 1986-03-28 Agency Of Ind Science & Technol Novel cyclic octapeptide, its preparation, and extracting and separating agent comprising it as component
JPH10338700A (en) * 1997-06-09 1998-12-22 Kanegafuchi Chem Ind Co Ltd New peptide compound
JP2003284556A (en) * 1999-11-19 2003-10-07 Toyota Motor Corp Gene expressing protein capable of capturing metal
JP2005503798A (en) * 2001-09-06 2005-02-10 ロジャー・エイ・エイシー Methods associated with metal binding proteins
JP2008521431A (en) * 2004-12-02 2008-06-26 シーエスアイアール Gram-positive bacterial cells containing a disrupted flagellin gene, flagellin-based fusion protein and use in removal of metal ions from liquids

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6160699A (en) * 1984-08-31 1986-03-28 Agency Of Ind Science & Technol Novel cyclic octapeptide, its preparation, and extracting and separating agent comprising it as component
JPH10338700A (en) * 1997-06-09 1998-12-22 Kanegafuchi Chem Ind Co Ltd New peptide compound
JP2003284556A (en) * 1999-11-19 2003-10-07 Toyota Motor Corp Gene expressing protein capable of capturing metal
JP2005503798A (en) * 2001-09-06 2005-02-10 ロジャー・エイ・エイシー Methods associated with metal binding proteins
JP2008521431A (en) * 2004-12-02 2008-06-26 シーエスアイアール Gram-positive bacterial cells containing a disrupted flagellin gene, flagellin-based fusion protein and use in removal of metal ions from liquids

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JPN6016003993; Current Opinion in Biotechnology Vol.22, 2011, p.427-433 *
JPN6016003994; Journal of Chromatography A Vol.1217, 2010, p.5940-5949 *
JPN6016003995; International Biodeterioration & Biodegradation Vol.60, 2007, p.96-102 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013227281A (en) * 2012-03-26 2013-11-07 Panasonic Corp Peptide capable of binding to gold
JP2013231024A (en) * 2012-04-04 2013-11-14 Panasonic Corp Peptide capable for binding to carbon
JP2013234170A (en) * 2012-04-10 2013-11-21 Panasonic Corp Peptide capable of being bound to rhodium
JP2013234171A (en) * 2012-04-11 2013-11-21 Panasonic Corp Peptide capable of being bound to iridium
JP2016047810A (en) * 2014-08-26 2016-04-07 株式会社デンソー Peptide, rare earth element recovering material, and recovering method for rare earth elements
JP2016088846A (en) * 2014-10-29 2016-05-23 株式会社豊田中央研究所 Rare earth trapping material and application thereof
JP2016117664A (en) * 2014-12-19 2016-06-30 株式会社豊田中央研究所 Separation method of rare earth ion
US10400310B2 (en) 2014-12-19 2019-09-03 Kabushiki Kaisha Toyota Chuo Kenkyusho Method for separation of rare earth ion
WO2017213153A1 (en) * 2016-06-06 2017-12-14 Shibaura Institute Of Technology A novel peptide and use thereof
JP2017216919A (en) * 2016-06-06 2017-12-14 学校法人 芝浦工業大学 Novel peptide and method for using the same
US11168113B2 (en) 2016-06-06 2021-11-09 Shibaura Institute Of Technology Peptide and use thereof
CN112113998A (en) * 2020-09-23 2020-12-22 上海理工大学 Method for exploring interaction between metal ions and biological small molecules by isothermal titration quantitative calorimetry

Also Published As

Publication number Publication date
JP5943463B2 (en) 2016-07-05

Similar Documents

Publication Publication Date Title
JP5943463B2 (en) Artificial peptide having rare metal binding ability and use thereof
Rothenstein et al. Isolation of ZnO-binding 12-mer peptides and determination of their binding epitopes by NMR spectroscopy
EP2949750A1 (en) Antibody-binding peptide
Separovic et al. Sodium ion binding in the gramicidin A channel. Solid-state NMR studies of the tryptophan residues
JP5963248B2 (en) Antibody purification carrier, production method thereof and use thereof
JP2014051449A (en) Peptide specific to rare-earth metal, material for separating and recovering rare-earth metal, method for separating and recovering rare-earth metal and method for mutual separation and recovering of rare-earth metals
Mohanram et al. Self-assembly of a barnacle cement protein (MrCP20) into adhesive nanofibrils with concomitant regulation of CaCO3 Polymorphism
Moyer et al. Leveraging orthogonal mass spectrometry based strategies for comprehensive sequencing and characterization of ribosomal antimicrobial peptide natural products
WO2018159841A1 (en) Novel compound, fluorescence derivatization reagent including said novel compound, method for optically resolving optical isomer of amino acid in which said novel compound is used, and fluorescence derivatized amino acid
JP2003344396A (en) Method of immobilizing orientation-controlled protein and method of immobilizing aligned protein utilizing the same
JP6108549B2 (en) Artificial peptide having rare metal binding ability and use thereof
JP6213453B2 (en) Separation of rare earth ions
JP6699322B2 (en) Peptide, rare earth element recovery material and rare earth element recovery method
WO2014073464A1 (en) Peptide and antibody test material for detecting both vivax malaria and falciparum malaria
KR101586277B1 (en) self-assembled peptide nanostructures by exploiting conformational change, biosensor using the same and detection method of biomolecules using the same
JP2009525741A5 (en) A peptide consisting of a peptide region necessary for the interaction between the envelope of a virus belonging to the HERV-W interference group and the hASCT receptor
JP2008094822A (en) Cellulose-binding peptide and method for producing the same
WO2021100653A1 (en) CAPTURE METHOD FOR CANDIDATE SUBSTANCES THAT CAN BIND WITH CONJUGATE OF MR1 PROTEIN AND β2-MICROGLOBULIN PROTEIN, METHOD FOR MANUFACTURING CANDIDATE SUBSTANCE THAT CAN BIND WITH CONJUGATE OF MR1 PROTEIN AND β2-MICROGLOBULIN PROTEIN, AND METHOD FOR MANUFACTURING MAIT CELL LIGAND CANDIDATE SUBSTANCE
JP4448947B2 (en) Peptide having nanofiber forming ability, and peptide nanofiber
Imani et al. Synthetics of NiFe2O4 nanoparticles for recombinant His-tag protein purification
KR101729469B1 (en) Peptide Probe for Detection of Salmonella Enteritidis
JP5673596B2 (en) Cell membrane permeable preparation and cell membrane permeable composition
JP5564193B2 (en) Method for analyzing lipopolysaccharide or lipid A
JP5115954B2 (en) Functional magnetic bacteria
JP6951713B2 (en) IgG-binding peptide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160209

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160510

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160520

R150 Certificate of patent or registration of utility model

Ref document number: 5943463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250