JP2013179868A - Culture method of microorganism - Google Patents

Culture method of microorganism Download PDF

Info

Publication number
JP2013179868A
JP2013179868A JP2012044472A JP2012044472A JP2013179868A JP 2013179868 A JP2013179868 A JP 2013179868A JP 2012044472 A JP2012044472 A JP 2012044472A JP 2012044472 A JP2012044472 A JP 2012044472A JP 2013179868 A JP2013179868 A JP 2013179868A
Authority
JP
Japan
Prior art keywords
culture
microorganism
medium
time
culturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012044472A
Other languages
Japanese (ja)
Inventor
Shuichiro Kimura
修一郎 木村
Yasuhiko Katsumura
泰彦 勝村
Kiyokazu Nikaido
清和 二階堂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2012044472A priority Critical patent/JP2013179868A/en
Publication of JP2013179868A publication Critical patent/JP2013179868A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a culture method of microorganism, capable of performing subculture of a microorganism at proper timing without needing a complicated operation, and thus efficiently propagating the microorganism.SOLUTION: This culture method for microorganism for culturing a microorganism in a liquid medium includes: a step of measuring pH of a culture fluid with time, and subculturing the microorganism to another liquid medium after change in pH value reaches a plateau. Otherwise, the culture method of microorganism for culturing a microorganism in a liquid medium includes: a step of measuring pH of a culture fluid with time, and subculturing the microorganism to another liquid medium after the inclination of a pH change curve obtained by plotting pH value on a vertical axis and culture time on a horizontal axis changes from a negative value to zero.

Description

本発明は微生物の培養方法に関し、詳しくは、適切なタイミングで微生物の植え継ぎを行うことのできる微生物の培養方法に関する。   The present invention relates to a method for culturing microorganisms, and more particularly, to a method for cultivating microorganisms that can carry out transplanting of microorganisms at an appropriate timing.

近年、ゲノムの解読や、培養技術、育種技術、遺伝子改変技術の発達により、微生物に様々な物質を製造させることが可能になり、微生物を用いた産業用酵素や医薬品原体、化合物中間体などの有用物質の生産が盛んに行われている。微生物を用いた有用物質の生産において目的物質の産生量を高めるには、微生物の菌体量をできるだけ多くすることが求められる。その他、食用の為に微生物を培養する場合や、微生物による有機化合物の分解、発酵に用いるために大量の菌体が要求される場合等もあり、いずれにおいても効率的な菌体増殖の手段が求められている。   In recent years, with the development of genome decoding, culture technology, breeding technology, and gene modification technology, it has become possible for microorganisms to produce various substances, such as industrial enzymes, pharmaceutical active ingredients, and compound intermediates using microorganisms. The production of useful substances is actively carried out. In order to increase the production amount of the target substance in the production of useful substances using microorganisms, it is required to increase the amount of microorganisms as much as possible. In addition, there are cases where microorganisms are cultivated for edible use, and there are cases where a large amount of cells are required to be used for decomposition and fermentation of organic compounds by microorganisms. It has been demanded.

微生物の培養には液体培地が主に用いられ、炭素源や窒素源などの微生物の生育に必須な成分を含有する液体培地に菌体を導入し、適切な温度に保ちながら振盪・攪拌するなどして培養が行われる(例えば、非特許文献1)。微生物を液体培地中で培養する場合、培地中の栄養分が消費され枯渇すると、微生物の増殖がストップする。その為、ある程度培養を継続した後は、新しい培地に植え継ぎをする必要が生じる。また、工業的な規模で微生物を培養する場合に、数段階のシード培養により段階的に培養液量及び菌量を増加させ、最終的な本培養(主培養)へと植継ぎを実施する手法が一般的に用いられている。   A liquid medium is mainly used for culturing microorganisms, and the cells are introduced into a liquid medium containing components essential for the growth of microorganisms such as a carbon source and a nitrogen source, and shaken and stirred while maintaining an appropriate temperature. Then, culture is performed (for example, Non-Patent Document 1). When culturing microorganisms in a liquid medium, the growth of microorganisms stops when nutrients in the medium are consumed and depleted. Therefore, after culturing to some extent, it becomes necessary to transplant to a new medium. In addition, when cultivating microorganisms on an industrial scale, a method of gradually increasing the amount of the culture solution and the amount of bacteria by several stages of seed culture and then transferring to the final main culture (main culture) Is generally used.

新しい培地への植え継ぎは、できるだけ菌体濃度が高く、かつ、菌体の増殖が活発である段階で行うことが求められる。すなわち、培養を進めれば菌体濃度は上昇していくが、ある程度以上培養を継続すると、培地中の栄養分の欠乏などから菌体の増殖が不活発になる。菌体の増殖が不活発になった段階で新しい培地へ植え継ぎを行うと、新しい培地に順応し、再び活発な菌体増殖が見られるまでの誘導期が長くなることが知られている。さらに、栄養飢餓状態に陥ると代謝経路を変化させる微生物もあり、その場合、目的物質の生産に悪影響を与えうる。   Transplanting into a new medium is required to be performed at a stage where the bacterial cell concentration is as high as possible and the bacterial cell growth is active. That is, if the culture is advanced, the bacterial cell concentration increases, but if the culture is continued for a certain extent, the bacterial cell growth becomes inactive due to a lack of nutrients in the medium. It is known that when a cell is transferred to a new medium at a stage where the growth of the bacterial cells becomes inactive, the induction period is prolonged until adaptation to the new medium and active bacterial cell growth is observed again. Furthermore, there are microorganisms that change metabolic pathways when they fall into nutrient starvation, which can adversely affect the production of the target substance.

菌体の植え継ぎ方法としては、例えば、培養液を定期的にサンプリングして菌体濃度を測定し、培養時間と菌体濃度の変化との関係から、菌体の増殖が活発かつ菌体濃度が高い指数増殖期の後期に入った段階を判断して菌体を植え継ぐことが行われている。また、同様の培養条件で試験を行い、培養時間の経過に伴う菌体濃度の推移が毎回同じであることを確かめた後、一定の培養時間経過後に植え継ぎを行う場合もある。   As a method for transferring cells, for example, the culture solution is periodically sampled to measure the concentration of the cells, and from the relationship between the culture time and the change in the concentration of the cells, the growth of the cells is active and the concentration of the cells Judging the stage that entered the latter half of the high exponential growth period, planting the cells has been carried out. Further, after performing the test under the same culture conditions and confirming that the transition of the bacterial cell concentration with the passage of the culture time is the same every time, the transplantation may be performed after the passage of a certain culture time.

Methods in Yeast Genetics 2005: A Cold Spring Harbor Laboratory Course ManualMethods in Yeast Genetics 2005: A Cold Spring Harbor Laboratory Course Manual

しかしながら、培養液を経時的にサンプリングして菌体濃度を測定し、指数増殖期を探る作業は非常に煩雑であり、用いる培地材料の製品ロット差や培養槽の違いにより、最終的な到達菌体濃度が変化し、指数増殖期を示す菌体濃度の範囲が異なる等の影響を考慮する必要がある。一方、時間を指標とする方法は、過去に行われた培養と培養条件が異なれば採用することができず、同じ培養条件であっても、上記の培地材料の製品ロット差や培養槽の違いによる影響を受けることがあるという問題があった。   However, the work of sampling the culture solution over time, measuring the cell concentration, and searching for the exponential growth period is very complicated, and the final reaching bacteria may vary depending on the product lot of the medium material used and the difference in the culture tank. It is necessary to consider the influence such as the change in the body concentration and the range of the bacterial cell concentration indicating the exponential growth phase. On the other hand, the method using time as an index cannot be employed if the culture conditions used in the past are different from the culture conditions. There was a problem of being affected by.

そこで本発明の目的は、煩雑な作業を要することなく適切なタイミングで微生物の植え継ぎを行うことができ、微生物を効率よく増殖させることが可能な微生物の培養方法を提供することにある。   SUMMARY OF THE INVENTION An object of the present invention is to provide a microorganism culturing method that can perform microbial inoculation at an appropriate timing without requiring complicated operations and can efficiently proliferate microorganisms.

本発明者等は、上記課題を解決すべく鋭意検討した結果、微生物培養液のpHを経時的に測定することで上記課題を解決しうることを見出し、本発明を完成するに至った。すなわち、本発明者等は、微生物の指数増殖期の後期に培養液のpH変化がプラトーになる期間があること、及びその期間以降に微生物の植え継ぎを行うことで、植え継いだ培養液中での微生物の増殖が遅滞なく活発となることを見いだした。   As a result of intensive studies to solve the above problems, the present inventors have found that the above problems can be solved by measuring the pH of the microorganism culture solution over time, and have completed the present invention. That is, the present inventors have a period in which the pH change of the culture solution becomes a plateau in the later stage of the exponential growth period of the microorganism, and by transferring the microorganism after that period, We found that the growth of microorganisms in the country became active without delay.

本発明は、上記知見をもとに完成した、微生物の培養方法に係る下記[1]〜[9]である。
[1]液体培地中で微生物を培養する微生物の培養方法であって、経時的に培養液のpHを測定し、pH値の変化がプラトーになった時点以後に、微生物を別の液体培地に植え継ぐ工程を備えることを特徴とする微生物の培養方法。
[2]液体培地中で微生物を培養する微生物の培養方法であって、経時的に培養液のpHを測定し、縦軸をpH値、横軸を培養時間としてプロットしたpH変化曲線の傾きがゼロになった時点以後に、微生物を別の液体培地に植え継ぐ工程を備えることを特徴とする微生物の培養方法。
[3]液体培地中で微生物を培養する微生物の培養方法であって、経時的に培養液のpHを測定し、pH値の変化が変曲点を迎え、変化の方向が逆転した時点以後に、微生物を別の液体培地に植え継ぐ工程を備えることを特徴とする微生物の培養方法。
[4]前記微生物を別の液体培地に植え継ぐ工程が、pH値の変化がプラトーになった時点からpHが0.05変化する時点までの間に行われる[1]の微生物の培養方法。
[5]前記液体培地が富栄養培地である[1]〜[4]のいずれかの微生物の培養方法。
[6]培養温度が20〜40℃である[1]〜[5]のいずれかの微生物の培養方法。
[7]前記微生物が、サッカロミセス(Saccharomyces)属、シゾサッカロミセス(Shizosaccharomyces)属、ハンセヌラ(Hansenula)属、ピキア(Pichia)属、オガタエ(Ogataea)属、カンジダ(Candida)属などの酵母菌類、アスペルギルス(Aspergillus)属、トリコデルマ(Trichoderma)属などの糸状菌類、大腸菌(Escherichiacoli)である[1]〜[6]のいずれかの微生物の培養方法。
[8]前記微生物が、シゾサッカロミセス(Shizosaccharomyces)属酵母または大腸菌(Escherichiacoli)である[1]〜[7]のいずれかの微生物の培養方法。
[9]前記微生物が、分裂酵母シゾサッカロミセス・ポンベ(Shizosaccharomyces pombe)である[1]〜[8]のいずれかの微生物の培養方法。
The present invention includes the following [1] to [9] related to a microorganism culturing method completed based on the above findings.
[1] A method of culturing a microorganism in a liquid medium, wherein the pH of the culture solution is measured over time, and the microorganism is placed in another liquid medium after the change in pH value reaches a plateau. A method for culturing microorganisms, comprising a step of planting.
[2] A microorganism culturing method for culturing a microorganism in a liquid medium, wherein the pH of the culture solution is measured over time, and the slope of the pH change curve plotted with the pH value on the vertical axis and the culture time on the horizontal axis A method for culturing microorganisms, comprising a step of planting microorganisms in another liquid medium after the time point becomes zero.
[3] A microorganism culturing method for culturing a microorganism in a liquid medium, wherein the pH of the culture solution is measured over time, and the change of the pH value reaches the inflection point and the direction of the change is reversed. A method for culturing a microorganism, comprising the step of planting the microorganism in another liquid medium.
[4] The method of cultivating a microorganism according to [1], wherein the step of planting the microorganism in another liquid medium is performed from the time when the pH value changes to a plateau to the time when the pH changes to 0.05.
[5] The method for culturing a microorganism according to any one of [1] to [4], wherein the liquid medium is a rich medium.
[6] The method for culturing a microorganism according to any one of [1] to [5], wherein the culture temperature is 20 to 40 ° C.
[7] The microorganism is a genus Saccharomyces, a genus Shizosaccharomyces, a genus Hansenula, a genus Pichia, a genus Ogataea, a genus Candida, an Aspergillus A method of culturing a microorganism according to any one of [1] to [6], which is a filamentous fungus such as an genus (Aspergillus) or a genus Trichoderma, or Escherichiacoli.
[8] The method for culturing a microorganism according to any one of [1] to [7], wherein the microorganism is a yeast belonging to the genus Shizosaccharomyces or Escherichiacoli.
[9] The method for culturing a microorganism according to any one of [1] to [8], wherein the microorganism is the fission yeast Shizosaccharomyces pombe.

本発明により、煩雑な作業を要することなく適切なタイミングで微生物の植え継ぎを行うことができ、微生物を効率よく増殖させることが可能な微生物の培養方法を提供することができる。   According to the present invention, it is possible to provide a method for cultivating microorganisms that can perform mitosis of microorganisms at an appropriate timing without requiring complicated operations and can efficiently propagate the microorganisms.

参考例1における液体培地のpH、溶存酸素濃度(DO)および排気COの推移を表すグラフである。PH of the liquid medium in Reference Example 1 is a graph showing changes in the dissolved oxygen concentration (DO) and exhaust CO 2. 参考例1における液体培地のOD660およびグルコース濃度の推移を表すグラフである。It is a graph showing the changes in OD 660 and concentration of glucose in a liquid medium in Reference Example 1. 参考例2における液体培地のOD660およびグルコース濃度の推移を表すグラフである。It is a graph showing the changes in OD 660 and concentration of glucose in a liquid medium in Reference Example 2. 参考例2における植え継ぎ後の液体培地のOD660の推移を表すグラフである。Is a graph showing the transition of the OD 660 of the liquid medium after subcultured in Reference Example 2. 参考例3における液体培地のpHおよび溶存酸素濃度(DO)の推移を表すグラフである。It is a graph showing transition of pH and dissolved oxygen concentration (DO) of the liquid culture medium in Reference Example 3. 参考例3における液体培地のOD660およびグルコース濃度の推移を表すグラフである。It is a graph showing the changes in OD 660 and concentration of glucose in a liquid medium in Reference Example 3. 参考例4における液体培地のpHおよび溶存酸素濃度(DO)の推移を表すグラフである。It is a graph showing transition of pH of a liquid culture medium in a reference example 4, and dissolved oxygen concentration (DO). 参考例4における液体培地のOD660およびグルコース濃度の推移を表すグラフである。It is a graph showing the changes in OD 660 and concentration of glucose in a liquid medium in Reference Example 4. 参考例5における液体培地のpHおよび溶存酸素濃度(DO)の推移を表すグラフである。It is a graph showing transition of pH of a liquid culture medium in Reference Example 5, and dissolved oxygen concentration (DO). 参考例5における液体培地のOD660およびグルコース濃度の推移を表すグラフである。It is a graph showing the changes in OD 660 and concentration of glucose in a liquid medium in Reference Example 5. 参考例6における液体培地のpHおよび溶存酸素濃度(DO)の推移を表すグラフである。It is a graph showing transition of pH of a liquid culture medium in a reference example 6, and dissolved oxygen concentration (DO). 参考例6における液体培地のOD600およびグルコース濃度の推移を表すグラフである。It is a graph showing the changes in OD 600 and concentration of glucose in a liquid medium in Reference Example 6. 実施例1のロット1−1における液体培地のOD660、グルコース濃度およびpHの推移を表すグラフである。3 is a graph showing transition of OD 660 , glucose concentration and pH of a liquid medium in lot 1-1 of Example 1. FIG. 実施例1のロット1−2における液体培地のOD660、グルコース濃度およびpHの推移を表すグラフである。3 is a graph showing transition of OD 660 , glucose concentration and pH of a liquid medium in lot 1-2 of Example 1. FIG. 実施例1における植え継ぎ後の液体培地のOD660の推移を表すグラフである。Is a graph showing the transition of the OD 660 of the liquid medium after subcultured in Example 1. 実施例2のロット2−1における液体培地のOD660、グルコース濃度およびpHの推移を表すグラフである。 OD 660 of the liquid medium in lots 2-1 of Example 2 is a graph showing the changes in glucose concentration and pH. 実施例2のロット2−2における液体培地のOD660、グルコース濃度およびpHの推移を表すグラフである。 OD 660 of the liquid medium in lots 2-2 of Example 2 is a graph showing the changes in glucose concentration and pH. 実施例2における植え継ぎ後の液体培地のOD660の推移を表すグラフである。Is a graph showing the transition of the OD 660 of the liquid medium after subcultured in Example 2.

本発明の微生物の培養方法は、液体培地中で微生物を培養する微生物の培養方法であって、経時的に培養液のpHを測定し、pH値の変化がプラトーになった時点以後に、微生物を別の液体培地に植え継ぐ工程を備えることを特徴とするものである。微生物を液体培地で培養する場合、培養開始時点では、培地中の栄養分の含有量は最大であり、菌体濃度は最小である。そして、培養を継続していくと、培地中の栄養分が消費される一方、菌体は増殖していく。それに伴い、培地中の各成分濃度、例えばグルコースなどの炭素源濃度、アミノ酸などの窒素源濃度、溶存酸素濃度なども変化していく。微生物の培養を継続する中で変化する様々なパラメーターを解析する中で、本発明者等はpH変化に一定の特徴があることを見出した。すなわち、培養液のpHは培養開始時点から低下または上昇していくが、ある程度培養が継続されると、pH低下または上昇が止まる。本明細書において、上記のpH低下または上昇が止まる時点をpH変化がプラトーになった時点と称する。   The microorganism culturing method of the present invention is a microorganism culturing method in which a microorganism is cultured in a liquid medium, and the pH of the culture solution is measured over time. The method includes the step of planting in a liquid medium. When microorganisms are cultured in a liquid medium, the nutrient content in the medium is maximum and the cell concentration is minimum at the start of culture. And if culture | cultivation is continued, while the nutrient in a culture medium will be consumed, a microbial cell will proliferate. Along with this, the concentration of each component in the medium, for example, the concentration of carbon source such as glucose, the concentration of nitrogen source such as amino acid, the concentration of dissolved oxygen and the like also change. In analyzing various parameters that change during the culturing of microorganisms, the present inventors have found that the pH change has certain characteristics. That is, the pH of the culture solution decreases or increases from the beginning of the culture, but when the culture is continued to some extent, the pH decrease or increase stops. In the present specification, the time point at which the above-described pH decrease or increase stops is referred to as the time point when the pH change reaches a plateau.

微生物用の液体培地は、菌体の増殖を目的とする培養に用いるものであれば、通常、炭素源、窒素源、その他ビタミン、リンなど生育に必須な成分もしくは、生育を早めるための成分を含む。そして、強酸性、強アルカリ性などの特殊な環境下で生育する微生物の培養に用いる培地でなければ、これらの栄養成分の他に培地のpHに大きく影響するような成分を入れて、培地を強酸性ないし強アルカリ性に調整することはない。培養液のpH変化は、微生物による炭素源、窒素源などの栄養分の消費に関連する基本的な代謝活動に由来するものと考えられる。本培養に至るまでのシード培養段階では操作の煩雑性などの理由により、薬剤を用いた培養液のpH制御を実施しないことが一般的である。このため、pHの絶対値は各培地、培養によって異なるが、pHが低下または上昇からやがてプラトーに至るというpH変化の動きは、微生物の増殖培養用培地による培養であれば共通すると考えられる。また、培養液のpH制御を行う場合にはアルカリや酸の添加量の経時変化を同様に指標にすることができると考えられる。   If the liquid medium for microorganisms is used for culturing for the purpose of cell growth, it usually contains essential components for growth such as carbon source, nitrogen source, vitamins and phosphorus, or components for accelerating growth. Including. If it is not a medium used for culturing microorganisms that grow under special environments such as strong acidity and strong alkalinity, in addition to these nutrients, ingredients that greatly affect the pH of the medium are added to make the medium a strong acid. There is no adjustment to the property or strong alkalinity. The change in pH of the culture solution is considered to originate from basic metabolic activities related to consumption of nutrients such as carbon sources and nitrogen sources by microorganisms. In the seed culture stage up to the main culture, it is common not to carry out pH control of the culture solution using a drug due to the complexity of the operation. For this reason, although the absolute value of pH varies depending on each medium and culture, it is considered that the movement of the pH change in which the pH decreases or rises and eventually reaches a plateau is common in culture using a culture medium for growing microorganisms. Moreover, when pH control of a culture solution is performed, it is thought that the time-dependent change of the addition amount of an alkali or an acid can be used as a parameter | index similarly.

菌体の増殖は、一般的に、誘導期を経て、菌体が指数関数的に増殖する指数増殖期に入る。その後、菌体増殖が停止する静止期に至る。菌体の増殖速度は、指数増殖期が最も高い為、培地中の菌体を指数増殖期に保つことが効率的な菌体増殖に繋がる。培地の栄養分が消費され、枯渇してくると、菌体増殖はやがて静止期に入ってしまう。そのため、指数増殖期から静止期に入る前に、栄養分を供給すべく培養液を植え継ぐことが必要になる。一方、培地自体のコスト、植え継ぎにかかる手間を考えると、菌体濃度がなるべく高くなるまでひとつの培地で培養を続けた方が効率が良い。以上のことを考慮すると、菌体の増殖が活発で、かつ、菌体濃度が高い、指数増殖期の後期において、培地の植え継ぎを行うことが最も好ましい。   Cell growth generally enters an exponential growth phase in which cells grow exponentially after an induction phase. Then, it reaches the stationary phase where the bacterial cell growth stops. Since the growth rate of the bacterial cells is highest in the exponential growth phase, keeping the bacterial cells in the medium in the exponential growth phase leads to efficient bacterial growth. When the nutrients in the medium are consumed and depleted, the bacterial cell growth eventually enters the stationary phase. Therefore, before entering the stationary phase from the exponential growth phase, it is necessary to plant the culture solution to supply nutrients. On the other hand, considering the cost of the medium itself and the time and effort required for planting, it is more efficient to continue the culture with one medium until the bacterial cell concentration becomes as high as possible. In consideration of the above, it is most preferable to carry out the medium inoculation at the later stage of the exponential growth period in which the growth of the bacterial cells is active and the bacterial cell concentration is high.

本発明者等は、さらなる検討の結果、培地のpH変化がプラトーになる時点が、菌体増殖フェーズにおいて、指数増殖期の後期に当たることを見出した。この対応関係を利用して、pHを経時的に測定し、pH変化がプラトーになったことを見計らって、植え継ぎを行うことで、手間のかかる培養液の経時的なOD(吸光度)測定を行わなくとも、指数増殖期の後期に培養液の植え継ぎを行うことができる。
以下、本発明をさらに詳細に説明する。
As a result of further studies, the present inventors have found that the time point at which the pH change of the medium reaches a plateau falls in the late phase of the exponential growth phase in the cell growth phase. Using this correspondence, the pH is measured over time, and when the change in pH reaches a plateau, transplanting is performed to measure time-consuming OD (absorbance) of the culture solution. Even if it is not performed, the culture solution can be transplanted at the later stage of the exponential growth phase.
Hereinafter, the present invention will be described in more detail.

[プラトー]
本発明において、pH変化がプラトーになった時点とは、培養液のpH低下または上昇が止まる時点を指す。このpH変化が止まる時点とは、ごく一時的な、一瞬のpH変化の停止ではなく、ある程度まとまった時間単位で見たときのpH変化の停止である。これは、pHの経時的な変化を、縦軸をpH値、横軸を培養時間としてプロットしたpH変化曲線において、いわゆる極小値に当たる時点である。この場合の極小値とは、数時間単位の区間における極小値、例えば、8時間単位の区間における極小値であって、数分単位の短時間の区間における極小値ではない。通常、培養を開始してから菌体増殖が静止期に至るまでの間に、pHの極小値は一点のみ現れる。培養を開始してから菌体増殖が静止期に至るまでの間に、数時間単位の区間における極小値が複数回現れる場合は、最初に現れる極小値を植え継ぎの時点とするのが好ましい。
また、pH変化がプラトーになった時点とは、pHの経時的な変化を、縦軸をpH値、横軸を培養時間としてプロットしたpH変化曲線において傾きがゼロになる時点でもある。
培地のpH変化がプラトーに至った後、通常、培養液のpHはそれまでと逆方向に転じる。この、pH変化からプラトーを経てpH変化の方向が逆転した時点を植え継ぎの指標にしてもよい。プラトーになった後に、pHが殆ど変化しない状態が続くこともあるが、この場合もpHの変化がプラトーになった時点を指標にすればよいので不都合はない。
[plateau]
In the present invention, the time point when the pH change reaches a plateau refers to the time point when the pH drop or rise of the culture solution stops. The time point when the pH change stops is not a temporary stop of the pH change for a moment, but a stop of the pH change when viewed in a certain unit of time. This is a point in time at which a so-called minimum value is reached in a pH change curve in which changes with time of pH are plotted with the vertical axis representing the pH value and the horizontal axis representing the culture time. The minimum value in this case is a minimum value in a section of several hours, for example, a minimum value in a section of 8 hours, and not a minimum value in a short section of several minutes. Usually, only one point of the minimum value of pH appears between the start of culture and the growth of bacterial cells to the stationary phase. When the local minimum value appears several times in the interval of several hours from the start of the culture until the cell growth reaches the stationary phase, it is preferable to set the local minimum value that appears first as the time of transplanting.
The time point when the pH change reaches a plateau is also the time point when the slope becomes zero in the pH change curve in which the change over time in pH is plotted with the pH value on the vertical axis and the culture time on the horizontal axis.
After the change in the pH of the medium reaches a plateau, the pH of the culture solution usually changes in the opposite direction. The point in time when the direction of the pH change is reversed from the pH change through the plateau may be used as an index for planting. There may be a case where the pH hardly changes after the plateau is reached, but in this case as well, there is no inconvenience since the time when the pH change becomes a plateau may be used as an index.

本発明の培養方法においては、培養液のpH変化がプラトーになった時点を指標にして植え継ぎを行う。培養温度、微生物、培地の種類などによって指数増殖期の継続時間が異なるため、プラトーになった時点から何時間以内に植え継ぎを行うかは、培養条件に応じて適宜決定することができる。確実に指数増殖期の後期に当たる時点で植え継ぎが行えるように、植え継ぎを行う時期は、プラトーになった時点からそれほど時間を置かずに行うことが好ましく、pH変化がプラトーになった時点からグルコース等の炭素源が消費されるまでの間に植え継ぎを行うのが好ましい。より詳細には、植継ぎを行う時期は、pH変化がプラトーになった時点からpHが0.05変化するまでの範囲と規定することができる。分裂酵母を用いた検討では、pH変化がプラトーになった時点からpHが0.15変化した時点で植継ぎを行った条件では、上記範囲で植え継いだ条件と比較して、植継ぎ先の本培養での菌体増殖の立ち上がりが若干遅かった。   In the culture method of the present invention, transplanting is performed using as an index the time when the pH change of the culture solution reaches a plateau. Since the duration of the exponential growth phase varies depending on the culture temperature, microorganisms, medium type, and the like, it can be determined as appropriate according to the culture conditions as to how many hours from the point of time when the plateau is reached. In order to ensure that the planting can be carried out at the time when it falls later in the exponential growth phase, it is preferable that the time for carrying out the planting is not so long after the plateau is reached, from the time when the pH change becomes a plateau. It is preferable to carry out transplanting until a carbon source such as glucose is consumed. More specifically, the time for performing the transplanting can be defined as a range from the time when the pH change reaches a plateau until the pH changes by 0.05. In the study using fission yeast, the conditions for transplanting at the time when the pH changed 0.15 from the time when the pH change reached a plateau, compared to the conditions for transplanting in the above range, The rise of cell growth in the main culture was slightly delayed.

[pH測定方法]
本発明において、pH測定方法は特に限定されず、公知の方法を用いることができる。pHの変化を経時的に測定するために、リアルタイムで測定できる装置を用いることが好ましい。培地のpHの測定は、公知の測定機器を用いることにより直接行えるため簡易である。例えば、メトラ―・トレド株式会社pH電極(製品番号:405-DPAS-SC-K8S)を用い、pH電極先端の液絡部が培地に浸かるように培養槽に取付けることで、pHの経時変化をオンラインでリアルタイム測定することが可能である。一方、培養液の菌体濃度を吸光度により測定する場合、菌体が高濃度になると吸光度の信頼性が低くなるため、菌体を含む培地をサンプリングして水で希釈してから吸光光度計を用いて測定する必要があり、煩雑である。
[PH measurement method]
In the present invention, the pH measurement method is not particularly limited, and a known method can be used. In order to measure the change in pH over time, it is preferable to use an apparatus capable of measuring in real time. The measurement of the pH of the medium is simple because it can be performed directly by using a known measuring instrument. For example, by using a pH electrode (product number: 405-DPAS-SC-K8S) from Metra-Toledo Co., Ltd. and attaching it to the culture tank so that the liquid junction at the tip of the pH electrode is immersed in the culture medium, Online real-time measurement is possible. On the other hand, when measuring the bacterial cell concentration in the culture solution by absorbance, the reliability of the absorbance is reduced when the bacterial cell concentration is high, so the medium containing the bacterial cells is sampled and diluted with water before using an absorptiometer. It is necessary to use and measure, and is complicated.

[初期菌体濃度]
シード培養の開始時において、菌体濃度は特に限定されず、培養ごとに目的、培養目標量などを考慮して適宜決定することができる。シード培養開始時の菌体濃度を低く設定することで、本培養までのシード培養の段階数を減らすことができるため、OD660が0.08〜0.71の状態で培養を開始するのが好ましく、0.18〜0.38の状態で培養を開始するのがより好ましい。
OD(Optical density)とは光学密度を示し、OD660は660nmの波長の光の吸光度であり、酵母菌体濃度の指標として一般的に用いられている。OD600も同様に600nmの波長の光の吸光度を示し、大腸菌等の菌体濃度の指標として一般的に用いられている。これらの測定方法は、例えば、株式会社日立製作所のU-1500形レシオビーム分光光度計(型式:118-0110)を用い、試料用プラスチックセル中に培養槽からサンプリングした培養液を入れOD660の値を測定することが可能である。培養液原液の菌体濃度が高い場合には、水で希釈し測定を行う。さらに、菌体濃度の測定方法は特に限定されず、上記以外の公知の方法を用いることができる。
[Initial cell concentration]
At the start of seed culture, the cell concentration is not particularly limited, and can be appropriately determined for each culture in consideration of the purpose, target culture amount, and the like. By setting the cell concentration at the start of seed culture low, the number of stages of seed culture until the main culture can be reduced. Therefore, the culture is started with OD 660 of 0.08 to 0.71. Preferably, it is more preferable to start the culture in a state of 0.18 to 0.38.
OD (Optical density) indicates optical density, and OD 660 is the absorbance of light having a wavelength of 660 nm, and is generally used as an indicator of yeast cell concentration. Similarly, OD 600 indicates the absorbance of light having a wavelength of 600 nm, and is generally used as an indicator of the concentration of cells such as Escherichia coli. These measuring methods are, for example, using a U-1500 type ratio beam spectrophotometer (model: 118-0110) manufactured by Hitachi, Ltd., and putting a culture solution sampled from a culture tank into a plastic cell for a sample, and having an OD 660 The value can be measured. If the cell concentration of the culture broth is high, dilute with water and measure. Furthermore, the measuring method of a microbial cell density | concentration is not specifically limited, Well-known methods other than the above can be used.

[植え継ぎ]
植え継ぎは、微生物を培養している培地の一部または全部を、未使用の別の培地に加えることである。植え継ぎ前の培地と植え継ぎ先の培地の組成は同じであってもよく、異なっていてもよい。また、植え継ぎ前の培養スケールと植え継ぎ後の培養スケールが同じであってもよく、異なっていてもよい。例えば、始めは少量の培地で培養を行い、植え継ぎを繰り返すことで段々とスケールアップしていくことができる。植え継ぎは、上記のように植え継ぎ後の培地のOD660が培養開始時点で0.08〜0.71になるように行うのが好ましく、0.18〜0.38になるように行うのがより好ましい。
[Planting]
Transplanting is the addition of some or all of the medium in which the microorganisms are cultured to another medium that is not used. The composition of the culture medium before planting and the culture medium of the planting destination may be the same or different. Moreover, the culture scale before planting and the culture scale after planting may be the same or different. For example, it can be scaled up gradually by first culturing with a small amount of medium and repeating planting. As described above, the planting is preferably performed so that the OD 660 of the medium after planting is 0.08 to 0.71 at the start of the culture, and is 0.18 to 0.38. Is more preferable.

[培地]
本発明の培養方法において使用する培地は、微生物の増殖に用いられるものであれば、合成培地、半合成培地、天然培地などいずれの培地も使用することができる。好ましくは、炭素源、窒素源を含む培地である。炭素源としてはグルコース、スクロースが好ましい。窒素源としてはアミノ酸、アンモニウム塩が好ましい。また、微生物の増殖速度が高くなる為、富栄養培地がより好ましい。富栄養培地としては、酵母抽出物(イーストエクストラスト)、トリプトン、ペプトン、ポリペプトンなどのタンパク質分解物、麦芽汁等の天然成分由来のものを含むものが好ましい。富栄養培地の具体例としては、YPD培地、YEL培地、LB培地等が挙げられる。また、培地は、上記栄養分の他、ビタミン類、核酸類、金属塩類等、リン、微量元素など、微生物の生育を促進するための物質を含んでいてもよい。さらに、炭素源が代謝されて生成したエタノール、酢酸等を炭素源として微生物が消費する場合もある。
[Culture medium]
As the medium used in the culture method of the present invention, any medium such as a synthetic medium, a semi-synthetic medium, and a natural medium can be used as long as it is used for the growth of microorganisms. A medium containing a carbon source and a nitrogen source is preferable. As the carbon source, glucose and sucrose are preferable. As the nitrogen source, amino acids and ammonium salts are preferable. Moreover, since the growth rate of microorganisms becomes high, a rich medium is more preferable. As the eutrophic medium, those containing yeast extract (yeast extra), proteolysates such as tryptone, peptone and polypeptone, and those derived from natural components such as wort are preferable. Specific examples of the eutrophic medium include YPD medium, YEL medium, LB medium, and the like. In addition to the nutrients described above, the medium may contain substances for promoting the growth of microorganisms such as vitamins, nucleic acids, metal salts, phosphorus, trace elements and the like. Furthermore, there are cases where microorganisms consume ethanol, acetic acid, etc. produced by metabolizing the carbon source as a carbon source.

[培養]
本発明の培養方法において、微生物を培養する為の培養槽は特に制限はない。培養装置は、培養液の温度を一定に保ち、培養液を攪拌する機能を有していることが好ましい。最適な培養温度は、微生物の種類、培養目的等によって異なるため、培養温度は適宜決定することができるが、好ましくは20〜40℃であり、より好ましくは25〜37℃である。
[culture]
In the culture method of the present invention, the culture tank for culturing the microorganism is not particularly limited. The culture apparatus preferably has a function of keeping the temperature of the culture solution constant and stirring the culture solution. The optimal culture temperature varies depending on the type of microorganism, the purpose of culture, and the like, and thus the culture temperature can be appropriately determined, but is preferably 20 to 40 ° C, more preferably 25 to 37 ° C.

[微生物]
本発明の培養方法は、いずれの微生物にも適用することができる。本発明において微生物とは液体培地で培養が可能な単細胞生物を指す。好ましくは、サッカロミセス(Saccharomyces)属、シゾサッカロミセス(Shizosaccharomyces)属、ハンセヌラ(Hansenula)属、ピキア(Pichia)属、オガタエ(Ogataea)属、カンジダ(Candida)属などの酵母菌類、アスペルギルス(Aspergillus)属、トリコデルマ(Trichoderma)属などの糸状菌類、大腸菌(Escherichiacoli)といった、工業的に大量培養がなされている微生物である。また、本発明の培養方法は、本明細書中の微生物に異種タンパク質をコードする遺伝子が導入された形質転換体にも適用することができる。
[Microorganisms]
The culture method of the present invention can be applied to any microorganism. In the present invention, a microorganism refers to a unicellular organism that can be cultured in a liquid medium. Preferably, yeasts such as Saccharomyces genus, Shizosaccharomyces genus, Hansenula genus, Pichia genus, Ogataea genus, Candida genus, Aspergillus genus, etc. These are microorganisms that have been industrially mass-cultured, such as filamentous fungi such as the genus Trichoderma and Escherichiacoli. The culture method of the present invention can also be applied to a transformant in which a gene encoding a heterologous protein is introduced into the microorganisms in the present specification.

以下、参考例および実施例をもって本発明をさらに詳細に説明するが、本発明はこれらの参考例、実施例により制限されるものではない。   Hereinafter, the present invention will be described in more detail with reference examples and examples, but the present invention is not limited to these reference examples and examples.

[参考例1:pHとOD660の対応]
(シードI培養)
2L坂口フラスコに入ったYEL培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 5g/L、グルコース 30g/L)270mLに、分裂酵母S.pombe異種タンパク質発現株(ATCC38399変異株)冷凍セルストック5.4mLを入れ、100〜110rpmの速度で振とうしながら、30℃で24時間培養した。
[Reference Example 1: Correspondence between pH and OD 660 ]
(Seed I culture)
In 270 mL of YEL medium (Bacto Yeast Extract 5 g / L, glucose 30 g / L, manufactured by Becton Dickinson) in a 2 L Sakaguchi flask, 5.4 mL of frozen cell stock of a fission yeast S. pombe heterologous protein expression strain (ATCC38399 mutant strain) was added. The mixture was cultured at 30 ° C. for 24 hours while shaking at a speed of 100 to 110 rpm.

(シードII培養)
次に、上記の24時間培養後の分裂酵母を含む培地全量を、エイブル社製30L培養槽に入ったYEL培地13.23Lに加えて、250rpmで攪拌しながら、30℃で培養した。培養中のpH測定は、BROADLEY JAMES社複合型発酵用pH電極(製品番号:F-635-B-120-DH)を用い、pH電極先端の液絡部が培地に浸かるように培養槽に取付け、pHの経時変化をオンラインでリアルタイムに測定した。その際、経時的に培地のpH、溶存酸素濃度、排気CO、OD660、グルコース濃度を測定した。得られた結果を図1、図2に示す。
(Seed II culture)
Next, the total amount of the medium containing fission yeast after 24 hours of culture was added to 13.23 L of YEL medium in a 30 L culture tank manufactured by Able, and cultured at 30 ° C. with stirring at 250 rpm. PH measurement during culture is performed using a BROADLEY JAMES fermentation pH electrode (Product No .: F-635-B-120-DH) and attached to the culture tank so that the liquid junction at the tip of the pH electrode is immersed in the medium. The time course of pH was measured online in real time. At that time, the pH of the medium, dissolved oxygen concentration, exhaust CO 2 , OD 660 , and glucose concentration were measured over time. The obtained results are shown in FIGS.

図1から明らかなように、培地中のpHは培養開始時から下がり続けるが、培養開始から10数時間経過後に下降が緩やかになり、pH変化がプラトーになった後に、上昇に転じた。また、図2から明らかなように、pH変化がプラトーになる時点は、菌体の増殖フェーズが指数増殖期の後期に当たる時点に対応していた(ポイントA)。また、溶存酸素濃度のオンラインの測定値は、pHの測定値と比較して値の上昇と下降が短い時間で繰り返される測定のブレが大きいため、菌体の増殖フェーズの指標とすることが難しいと考えられる。   As apparent from FIG. 1, the pH in the medium continued to decrease from the beginning of the culture, but gradually decreased after a lapse of 10 hours from the start of the culture, and began to increase after the pH change reached a plateau. As is clear from FIG. 2, the time when the pH change reached a plateau corresponded to the time when the growth phase of the cells hit the latter half of the exponential growth phase (point A). In addition, the online measurement of dissolved oxygen concentration is difficult to use as an indicator of the growth phase of bacterial cells because of the large fluctuations in the measurement in which the rise and fall of the value are repeated in a short time compared to the measurement value of pH. it is conceivable that.

[参考例2:植え継ぎ時期(OD660)と増殖速度立ち上がりの対応]
(シードI培養)
1L坂口フラスコに入ったYEL培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 5g/L、グルコース 30g/L)135mLに、分裂酵母S.pombe異種タンパク質発現株(ATCC38399変異株)の冷凍セルストック2.7mLを入れ、110〜120rpmの速度で振とうしながら、30℃で24時間培養した。
[Reference Example 2: Correspondence between planting time (OD 660 ) and growth rate rise]
(Seed I culture)
2.7 mL of frozen cell stock of fission yeast S. pombe heterologous protein expression strain (ATCC38399 mutant) in 135 mL of YEL medium (Bacto Yeast Extract 5 g / L, glucose 30 g / L, manufactured by Becton Dickinson) in a 1 L Sakaguchi flask And cultured at 30 ° C. for 24 hours while shaking at a speed of 110 to 120 rpm.

(シードII培養)
次に、上記の24時間培養後の分裂酵母を含む培地のうち30mLを、丸菱バイオエンジ社製2L培養槽に入ったYEL培地1470mLに加えて、700rpmで攪拌しながら、30℃で培養した。その際、経時的にOD660、グルコース濃度を測定した
(Seed II culture)
Next, 30 mL of the medium containing fission yeast after 24 hours of culture described above was added to 1470 mL of YEL medium in a 2 L culture tank manufactured by Maruhishi Bio-Engine, and cultured at 30 ° C. while stirring at 700 rpm. . At that time, OD 660 and glucose concentration were measured over time.

(植え継ぎ、本培養)
上記シードII培養において、図3に示す各時点(ポイントD、EおよびF)毎に分裂酵母を含む培地のうち150mLを採取し、それぞれ別の丸菱バイオエンジ社製3L培養槽に入った完全合成培地(SMF23培地+アミノ酸類+補填ビタミン類)1353mLに加えて、250〜800rpmで攪拌しながら30℃で培養し、OD660を測定して菌体の増殖を調べた。得られた結果を図4に示す。
(Planting, main culture)
In the seed II culture, 150 mL of a medium containing fission yeast was collected at each time point (points D, E, and F) shown in FIG. 3 and completely contained in a separate 3 L culture tank manufactured by Maruhishi Bioengine. in addition to the synthetic medium (SMF23 medium + amino acids + compensation vitamins) 1353mL, and incubated with stirring at 30 ° C. in 250~800Rpm, we investigated the growth of bacteria by measuring the OD 660. The obtained results are shown in FIG.

図3および図4から明らかなように、指数増殖期の後期に菌体の植え継ぎを行った場合(ポイントE)は、指数増殖期の中期に植え継ぎを行った場合(ポイントD)、および、シードII培養開始後24時間経過後に植え継ぎをした場合(ポイントF)に比較して、植え継ぎ後の菌体増殖速度の立ち上がりが早く、OD660が10に達する時間差は5時間以上あった。また、シードII培養開始後24時間経過後に植え継ぎをした場合(ポイントF)は、ポイントDよりも菌体増殖の立ち上がりが遅かった。これは、24時間経過後では菌体増殖が停止した静止期にあったためと考えられる。一方、ポイントEの立ち上がりがポイントDよりも速いのは、ポイントEの時点の方がシードII培養の菌体濃度が高いためと考えられる。 As apparent from FIG. 3 and FIG. 4, when the cells are transplanted at the later stage of the exponential growth phase (Point E), when the transplantation is performed at the middle stage of the exponential growth phase (Point D), and , Compared to the case of transplanting 24 hours after the start of seed II culture (point F), the growth rate of the cell growth rate after transplanting was faster, and the time difference at which OD 660 reached 10 was more than 5 hours . In addition, when planting was carried out 24 hours after the start of seed II culture (point F), the start of cell growth was slower than point D. This is considered to be because it was in the stationary phase when the cell growth stopped after 24 hours. On the other hand, the rise of point E is faster than point D because the cell concentration of seed II culture is higher at the point E.

[参考例3:分裂酵母野生株を用いた場合のpHとOD660の対応]
(シードI培養)
L字型試験管に入ったYEL培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 5g/L、グルコース 30g/L)5.6mLに、分裂酵母S.pombe 野生株(JY1株)の冷凍セルストック224μLを入れ、95〜105rpmの速度で振とうしながら、30℃で24時間培養した。
(シードI培養)
2L坂口フラスコに入ったYEL培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 5g/L、グルコース 30g/L)270mLに、上記の24時間培養後の分裂酵母を含む培地のうち5.4mLを加えて、95〜105rpmの速度で振とうしながら、30℃で24時間培養した。
[Reference Example 3: Correspondence between pH and OD 660 when using fission yeast wild type strain]
(Seed I culture)
Into 5.6 mL of YEL medium (Bacto Yeast Extract 5 g / L, glucose 30 g / L, manufactured by Becton Dickinson) in an L-shaped test tube, 224 μL of a frozen cell stock of fission yeast S. pombe wild strain (JY1 strain) was added. The mixture was cultured at 30 ° C. for 24 hours while shaking at a speed of 95 to 105 rpm.
(Seed I culture)
To 270 mL of YEL medium (Bacto Yeast Extract 5 g / L, glucose 30 g / L, manufactured by Becton Dickinson) in a 2 L Sakaguchi flask, 5.4 mL of the medium containing fission yeast after 24 hours of culture was added, The cells were cultured at 30 ° C. for 24 hours while shaking at a speed of 95 to 105 rpm.

(シードIII培養)
次に、上記の24時間培養後の分裂酵母を含む培地全量を、エイブル社製30L培養槽に入ったYEL培地13.23mLに加えて、250rpmで攪拌しながら、30℃で培養した。培養中のpH測定は、BROADLEY JAMES社複合型発酵用pH電極(製品番号:F-635-B-120-DH)を用い、pH電極先端の液絡部が培地に浸かるように培養槽に取付け、pHの経時変化をオンラインでリアルタイムに測定した。その際、経時的に培地のpH、溶存酸素濃度、OD660、グルコース濃度を測定した。得られた結果を図5、図6に示す。
(Seed III culture)
Next, the total amount of the medium containing fission yeast after 24 hours of culture was added to 13.23 mL of YEL medium in a 30 L culture tank manufactured by Able, and cultured at 30 ° C. with stirring at 250 rpm. PH measurement during culture is performed using a BROADLEY JAMES fermentation pH electrode (Product No .: F-635-B-120-DH) and attached to the culture tank so that the liquid junction at the tip of the pH electrode is immersed in the medium. The time course of pH was measured online in real time. At that time, the pH, dissolved oxygen concentration, OD 660 , and glucose concentration of the medium were measured over time. The obtained results are shown in FIGS.

図5から明らかなように、培地中のpHは培養開始時から下がり続けるが、培養開始から10数時間経過後に下降が緩やかになり、pH変化がプラトーになった後に、上昇に転じた。また、図6から明らかなように、pH変化がプラトーになる時点は、菌体の増殖フェーズが指数増殖期の後期に当たる時点に対応していた(矢印で示されるポイント)。   As is clear from FIG. 5, the pH in the medium continued to decrease from the beginning of the culture, but gradually decreased after a lapse of 10 hours from the start of the culture, and began to increase after the pH change reached a plateau. As is clear from FIG. 6, the time when the pH change reached a plateau corresponded to the time when the growth phase of the cells hit the latter half of the exponential growth phase (point indicated by an arrow).

[参考例4:異種タンパク質発現酵母株を用いた場合のpHとOD660の対応]
(シードI培養)
L字型試験管2本にそれぞれ入ったYEL+G10培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 5g/L、グルコース 30g/L、G418 10mg/L)各5mLに、分裂酵母S.pombeの異種タンパク質発現・プロテアーゼ破壊株(ATCC38399変異株)の冷凍セルストック各200μLを入れ、95〜105rpmの速度で振とうしながら、30℃で24時間培養した。
(シードII培養)
2L坂口フラスコに入ったYEL+G10培地400mLに、上記の24時間培養後の分裂酵母を含む培地のうち8mL(4mL×2本分)を加えて、95〜105rpmの速度で振とうしながら、30℃で24時間培養した。
[Reference Example 4: Correspondence between pH and OD 660 when using a heterologous protein-expressing yeast strain]
(Seed I culture)
Expression of heterologous protein of fission yeast S. pombe in 5 mL each of YEL + G10 medium (Bacto Deast, Bacto Yeast Extract 5 g / L, glucose 30 g / L, G418 10 mg / L) contained in two L-shaped test tubes 200 μL of each frozen cell stock of a protease-disrupted strain (ATCC38399 mutant strain) was added and cultured at 30 ° C. for 24 hours while shaking at a speed of 95 to 105 rpm.
(Seed II culture)
To 400 mL of YEL + G10 medium in a 2 L Sakaguchi flask, add 8 mL (4 mL × 2) of the medium containing fission yeast after 24 hours of culture, and shake at 30 ° C. while shaking at a speed of 95 to 105 rpm. For 24 hours.

(シードIII培養)
次に、上記の24時間培養後の分裂酵母を含む培地全量を、エイブル社製30L培養槽に入ったYPD+G100培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 10g/L、Bacto Tryptone 20g/L、グルコース 20g/L、G418 100 mg/L)19.6Lに加えて、300rpmで攪拌しながら、30℃で培養した。培養中のpH測定は、BROADLEY JAMES社複合型発酵用pH電極(製品番号:F-635-B-120-DH)を用い、pH電極先端の液絡部が培地に浸かるように培養槽に取付け、pHの経時変化をオンラインでリアルタイムに測定した。その際、経時的に培地のpH、溶存酸素濃度、OD660、グルコース濃度を測定した。得られた結果を図7、図8に示す。
(Seed III culture)
Next, the total amount of the medium containing fission yeast after 24 hours of culture was added to YPD + G100 medium (Bacto Yeast Extract 10 g / L, Bacto Tryptone 20 g / L, Bacto Tryptone 20 g / L, glucose 20 g) in a 30 L culture tank manufactured by Able. / L, G418 100 mg / L) In addition to 19.6 L, the mixture was cultured at 30 ° C. with stirring at 300 rpm. PH measurement during culture is performed using a BROADLEY JAMES fermentation pH electrode (Product No .: F-635-B-120-DH) and attached to the culture tank so that the liquid junction at the tip of the pH electrode is immersed in the medium. The time course of pH was measured online in real time. At that time, the pH, dissolved oxygen concentration, OD 660 , and glucose concentration of the medium were measured over time. The obtained results are shown in FIGS.

図7から明らかなように、培地中のpHは培養開始時から下がり続けるが、培養開始から30数時間経過後に下降が緩やかになり、pH変化がプラトーになった。また、図8から明らかなように、pH変化がプラトーになる時点は、菌体の増殖フェーズが指数増殖期の後期に当たる時点に対応していた(矢印で示されるポイント)。また、溶存酸素濃度のオンラインの測定値は、pHの測定値と比較して値の上昇と下降が短い時間で繰り返される測定のブレが大きいため、菌体の増殖フェーズの指標とすることが難しいと考えられる。   As is clear from FIG. 7, the pH in the medium continued to decrease from the beginning of the culture, but after 30 hours had elapsed since the start of the culture, the decrease became gentle and the pH change reached a plateau. Further, as is clear from FIG. 8, the time point at which the pH change reached a plateau corresponded to the time point when the growth phase of the cells hit the latter stage of the exponential growth phase (point indicated by an arrow). In addition, the online measurement of dissolved oxygen concentration is difficult to use as an indicator of the growth phase of bacterial cells because of the large fluctuations in the measurement in which the rise and fall of the value are repeated in a short time compared to the measurement value of pH. it is conceivable that.

[参考例5:有機酸産生酵母株を用いた場合のpHとOD660の対応]
(シードI培養)
試験管2本にそれぞれ入ったYES培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 5g/L、アデニン硫酸塩 50mg/L、ウラシル 50mg/L、L−ロイシン 50mg/L、L−ヒスチジン塩酸塩一水和物 50mg/L、L−リシン一水和物 50mg/L、グルコース 30g/L)各5 mLに、寒天プレートから分裂酵母S.pombeの有機酸産生株(ATCC38399変異株)の1つのコロニーをそれぞれ植菌し、110〜120rpmの速度で振とうしながら、32℃で24時間培養した。
[Reference Example 5: Correspondence between pH and OD 660 when using an organic acid-producing yeast strain]
(Seed I culture)
YES medium (Bacto Yeast Extract 5 g / L, adenine sulfate 50 mg / L, uracil 50 mg / L, L-leucine 50 mg / L, L-histidine hydrochloride monohydrate each contained in two test tubes 50 mg / L, L-lysine monohydrate 50 mg / L, glucose 30 g / L) In each 5 mL, one colony of an organic acid producing strain (ATCC38399 mutant) of fission yeast S. pombe from an agar plate The cells were inoculated and cultured at 32 ° C. for 24 hours while shaking at a speed of 110 to 120 rpm.

(シードII培養)
1L坂口フラスコに入ったYES培地350 mLに、上記の24時間培養後の分裂酵母を含む培地のうち7mLを加えて、110〜120 rpmの速度で振とうしながら、32℃で24時間培養した。
(Seed II culture)
7 mL of the medium containing fission yeast after 24 hours of culture was added to 350 mL of YES medium in a 1 L Sakaguchi flask, and cultured at 32 ° C. for 24 hours while shaking at a speed of 110 to 120 rpm. .

(シードIII培養)
次に、上記の24時間培養後の分裂酵母を含む培地全量を、エイブル社製5L培養槽に入ったYAD12培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 10g/L、CSL-AST 20g/L、グルコース 120g/L)3500 mLに加えて、溶存酸素濃度下限値を1ppmで維持できるように攪拌回転数をカスケード制御しながら、30℃で培養した。培養中のpH測定は、BROADLEY JAMES社複合型発酵用pH電極(製品番号:F-635-B-120-DH)を用い、pH電極先端の液絡部が培地に浸かるように培養槽に取付け、pHの経時変化をオンラインでリアルタイムに測定した。その際、経時的に培地のpH、溶存酸素濃度、OD660、グルコース濃度を測定した。得られた結果を図9、図10に示す。
(Seed III culture)
Next, the total amount of the medium containing fission yeast after 24 hours of culturing was added to YAD12 medium (Bacto Yeast Extract 10 g / L, CSL-AST 20 g / L, glucose, Bacton Dickinson) in a 5 L culture tank manufactured by Able. In addition to 3500 mL of 120 g / L), the cells were cultured at 30 ° C. while cascade-controlling the number of revolutions of stirring so that the lower limit value of the dissolved oxygen concentration could be maintained at 1 ppm. PH measurement during culture is performed using a BROADLEY JAMES fermentation pH electrode (Product No .: F-635-B-120-DH) and attached to the culture tank so that the liquid junction at the tip of the pH electrode is immersed in the medium. The time course of pH was measured online in real time. At that time, the pH, dissolved oxygen concentration, OD 660 , and glucose concentration of the medium were measured over time. The obtained results are shown in FIGS.

図9から明らかなように、培地中のpHは培養開始時から下がり続けるが、培養開始から30数時間経過後に下降が緩やかになり、pH変化がプラトーになり、その後上昇に転じた。また、図10から明らかなように、pH変化がプラトーになる時点は、菌体の増殖フェーズが指数増殖期の後期に当たる時点に対応していた(矢印で示されるポイント)。   As apparent from FIG. 9, the pH in the medium continued to decrease from the beginning of the culture, but after 30 hours passed from the start of the culture, the decrease gradually decreased, the pH change reached a plateau, and then began to increase. Further, as is clear from FIG. 10, the time when the pH change reached a plateau corresponded to the time when the growth phase of the cells hit the latter half of the exponential growth phase (point indicated by an arrow).

[参考例6:異種タンパク質発現大腸菌株を用いた場合のpHとOD660の対応]
(シードI培養)
0.5L坂口フラスコに入ったLB培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 10g/L、Bacto Tryptone 10g/L、NaCl 5g/L、グルコース 1g/L、トリプトファン 100mg/L)100mLに、大腸菌E.coliの異種タンパク質発現株(K12変異株)の冷凍セルストック75μLを入れ、120〜130rpmの速度で振とうしながら、37℃で22時間培養した。
[Reference Example 6: Correspondence between pH and OD 660 when using E. coli strain expressing heterologous protein]
(Seed I culture)
To 100 mL of LB medium (Bacton Yeast Extract 10 g / L, Bacto Tryptone 10 g / L, NaCl 5 g / L, glucose 1 g / L, tryptophan 100 mg / L) in a 0.5 L Sakaguchi flask. 75 μL of a frozen cell stock of a heterologous protein expression strain of Escherichia coli (K12 mutant) was added and cultured at 37 ° C. for 22 hours while shaking at a speed of 120 to 130 rpm.

(シードII培養)
次に、上記の22時間培養後の大腸菌を含む培地のうち30mLを、丸菱バイオエンジ社製2L培養槽に入ったLB培地600mLに加えて、420rpmで攪拌しながら、37℃で培養した。培養中のpH測定は、メトラ―・トレド株式会社pH電極(製品番号:405-DPAS-SC-K8S)を用い、pH電極先端の液絡部が培地に浸かるように培養槽に取付け、pHの経時変化をオンラインでリアルタイムに測定した。その際、経時的に培地のpH、溶存酸素濃度、OD600、グルコース濃度を測定した。得られた結果を図11、図12に示す。
(Seed II culture)
Next, 30 mL of the medium containing Escherichia coli after culturing for 22 hours was added to 600 mL of LB medium contained in a 2 L culture tank manufactured by Maruhishi Bioengine, and cultured at 37 ° C. while stirring at 420 rpm. For pH measurement during culture, use a METTLER TOLEDO pH electrode (product number: 405-DPAS-SC-K8S) and attach it to the culture tank so that the liquid junction at the tip of the pH electrode is immersed in the medium. The time course was measured in real time online. At that time, the pH, dissolved oxygen concentration, OD 600 and glucose concentration of the medium were measured over time. The obtained results are shown in FIGS.

図11から明らかなように、培地中のpHは培養開始時から下がり続けるが、培養開始から3時間強経過後に、pH変化が上昇に転じた。また、図12から明らかなように、pH変化が上昇に転じた時点は、菌体の増殖フェーズが指数増殖期の後期に当たる時点に対応していた(矢印で示されるポイント)。また、溶存酸素濃度のオンラインの測定値は、pHの測定値と比較して値の上昇と下降が短い時間で繰り返される測定のブレが大きいため、菌体の増殖フェーズの指標とすることが難しいと考えられる。   As is clear from FIG. 11, the pH in the medium continued to decrease from the beginning of the culture, but the pH change began to increase after 3 hours had elapsed since the start of the culture. Further, as is clear from FIG. 12, the time when the pH change started to increase corresponded to the time when the growth phase of the cells hit the latter half of the exponential growth phase (point indicated by an arrow). In addition, the online measurement of dissolved oxygen concentration is difficult to use as an indicator of the growth phase of bacterial cells because of the large fluctuations in the measurement in which the rise and fall of the value are repeated in a short time compared to the measurement value of pH. it is conceivable that.

[実施例1]
(シードI培養)
1L坂口フラスコに入ったYEL培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 5g/L、グルコース 30g/L)135mLに、分裂酵母S.pombe異種タンパク質発現株(ATCC38399変異株)の冷凍セルストック2.7mLを入れ、110〜120rpmの速度で振とうしながら、30℃で12時間培養した。シードI培養は、同様の条件のものを2本用意した。それぞれ、ロット1−1およびロット1−2と称する。なお、シードI培養開始直後のロット1−1のOD660は、0.381、ロット1−2のOD660は0.336であり、培養開始後12時間経過時点でのロット1−1のOD660は7.7であり、ロット1−2のOD660は7.3であった。
[Example 1]
(Seed I culture)
2.7 mL of frozen cell stock of fission yeast S. pombe heterologous protein expression strain (ATCC38399 mutant) in 135 mL of YEL medium (Bacto Yeast Extract 5 g / L, glucose 30 g / L, manufactured by Becton Dickinson) in a 1 L Sakaguchi flask And cultured at 30 ° C. for 12 hours while shaking at a speed of 110 to 120 rpm. Two seed I cultures were prepared under the same conditions. They are called lot 1-1 and lot 1-2, respectively. The OD 660 of lot 1-1 immediately after the start of seed I culture is 0.381, and the OD 660 of lot 1-2 is 0.336, and the OD of lot 1-1 at 12 hours after the start of culture. 660 was 7.7, and the OD 660 of lot 1-2 was 7.3.

(シードII培養)
次に、上記の12時間培養後の分裂酵母を含む培地のうち30mLを、それぞれ丸菱バイオエンジ社製2L培養槽に入ったYEL培地1470mLに加えて、700rpmで攪拌しながら、30℃で培養した。その際、経時的に培地のpH、グルコース濃度、OD660を測定した。結果を図13(ロット1−1)、図14(ロット1−2)に示す。
(Seed II culture)
Next, 30 mL of the medium containing fission yeast after culturing for 12 hours is added to 1470 mL of YEL medium in a 2 L culture tank manufactured by Maruhishi Bioengineer, and cultured at 30 ° C. while stirring at 700 rpm. did. At that time, the pH, glucose concentration, and OD 660 of the medium were measured over time. The results are shown in FIG. 13 (Lot 1-1) and FIG. 14 (Lot 1-2).

(植え継ぎ、本培養)
上記シードII培養において、図13または図14に示す各時点(ポイントG、H)において、分裂酵母を含む培地のうち150mLを採取し、それぞれ別の丸菱バイオエンジ社製3L培養槽に入った完全合成培地(SMF23培地+アミノ酸類+補填ビタミン類)1353mLに加えて、250〜800rpmで攪拌しながら30℃で培養し、OD660を測定して菌体の増殖を調べた。得られた結果を図15に示す。
(Planting, main culture)
In the seed II culture, 150 mL of the medium containing fission yeast was collected at each time point (points G and H) shown in FIG. 13 or FIG. 14 and entered into a separate 3 L culture tank manufactured by Maruhishi Bioengine. in addition to the full-synthetic medium (SMF23 medium + amino acids + compensation vitamins) 1353mL, and incubated with stirring at 30 ° C. in 250~800Rpm, we investigated the growth of bacteria by measuring the OD 660. The obtained result is shown in FIG.

図15から明らかなように、pH変化がプラトーになった時点(ポイントH)で植え継ぎを行った場合の方が、シードII培養開始後24時間経過(ポイントG)で植え継ぎを行った場合よりも菌体増殖の立ち上がりが早く、両条件の間でOD660が10に達するまで時間の差は10時間であった。 As is clear from FIG. 15, when transplanting is performed when the pH change reaches a plateau (point H), transplanting is performed 24 hours after the start of seed II culture (point G). The rise of the cell growth was faster than that, and the time difference between the two conditions until the OD 660 reached 10 was 10 hours.

[実施例2]
(シードI培養)
1L坂口フラスコに入ったYEL培地(ベクトン・ディッキンソン社製Bacto Yeast Extract 5g/L、グルコース 30g/L)135mLに、分裂酵母S.pombe 異種タンパク質発現株(ATCC38399変異株)の冷凍セルストック2.7mLを入れ、110〜120rpmの速度で振とうしながら、30℃で24時間培養した。シードI培養は、同様の条件のものを2本用意した。それぞれ、ロット2−1およびロット2−2と称する。なお、シードI培養開始直後のロット2−1のOD660は、0.348、ロット2−2のOD660は0.329であり、培養開始後24時間経過時点でのロット2−1のOD660は20.3であり、ロット2−2のOD660は19.7であった。
[Example 2]
(Seed I culture)
2.7 mL of frozen cell stock of fission yeast S. pombe heterologous protein expression strain (ATCC38399 mutant strain) in 135 mL of YEL medium (Bacto Yeast Extract 5 g / L, glucose 30 g / L, manufactured by Becton Dickinson) in a 1 L Sakaguchi flask And cultured at 30 ° C. for 24 hours while shaking at a speed of 110 to 120 rpm. Two seed I cultures were prepared under the same conditions. These are referred to as lot 2-1 and lot 2-2, respectively. Note that the OD 660 of lot 2-1 immediately after the start of seed I culture is 0.348, and the OD 660 of lot 2-2 is 0.329, and the OD of lot 2-1 at 24 hours after the start of culture. 660 was 20.3, and the OD 660 of lot 2-2 was 19.7.

(シードII培養)
次に、上記の24時間培養後の分裂酵母を含む培地のうち30mLを、それぞれ丸菱バイオエンジ社製2L培養槽に入ったYEL培地1470mLに加えて、700rpmで攪拌しながら、30℃で培養した。その際、経時的に培地のpH、グルコース濃度、OD660を測定した。結果を図16(ロット2−1)、図17(ロット2−2)に示す。
(Seed II culture)
Next, 30 mL of the medium containing fission yeast after culturing for 24 hours is added to 1470 mL of YEL medium in a 2 L culture tank manufactured by Maruhishi Bioengineer, and cultured at 30 ° C. while stirring at 700 rpm. did. At that time, the pH, glucose concentration, and OD 660 of the medium were measured over time. The results are shown in FIG. 16 (lot 2-1) and FIG. 17 (lot 2-2).

(植え継ぎ、本培養)
上記シードII培養において、図16または図17に示す各時点(ポイントI、J)において、分裂酵母を含む培地のうち150mLを採取し、それぞれ別の丸菱バイオエンジ社製3L培養槽に入った完全合成培地(SMF23培地+アミノ酸類+補填ビタミン類)1353mLに加えて、250〜800rpmで攪拌しながら30℃で培養し、OD660を測定して菌体の増殖を調べた。得られた結果を図18に示す。
(Planting, main culture)
In the seed II culture, 150 mL of the medium containing fission yeast was collected at each time point (points I and J) shown in FIG. 16 or FIG. 17 and entered into a separate 3 L culture tank manufactured by Maruhishi Bioengineering Co., Ltd. in addition to the full-synthetic medium (SMF23 medium + amino acids + compensation vitamins) 1353mL, and incubated with stirring at 30 ° C. in 250~800Rpm, we investigated the growth of bacteria by measuring the OD 660. The obtained result is shown in FIG.

図18から明らかなように、pH変化がプラトーになった時点(ポイントJ)で植え継ぎを行った場合の方が、シードII培養開始後24時間経過(ポイントI)で植え継ぎを行った場合よりも菌体増殖の立ち上がりが早く、両条件の間でOD660が10に達するまで時間の差は、8時間近くあった。 As is clear from FIG. 18, when transplanting is performed when the pH change reaches a plateau (point J), the transplanting is performed 24 hours after the start of seed II culture (point I). The rise of the cell growth was quicker than that, and the difference in time until the OD 660 reached 10 between both conditions was nearly 8 hours.

Claims (9)

液体培地中で微生物を培養する微生物の培養方法であって、経時的に培養液のpHを測定し、pH値の変化がプラトーになった時点以後に、微生物を別の液体培地に植え継ぐ工程を備えることを特徴とする微生物の培養方法。   A method of culturing microorganisms in a liquid medium, the step of measuring the pH of the culture solution over time and planting the microorganisms in another liquid medium after the pH value changes to a plateau A method for culturing microorganisms, comprising: 液体培地中で微生物を培養する微生物の培養方法であって、経時的に培養液のpHを測定し、縦軸をpH値、横軸を培養時間としてプロットしたpH変化曲線の傾きが負の値からゼロになった時点以後に、微生物を別の液体培地に植え継ぐ工程を備えることを特徴とする微生物の培養方法。   A method for culturing a microorganism in a liquid medium, wherein the pH of the culture solution is measured over time, and the slope of the pH change curve plotted with the pH value on the vertical axis and the culture time on the horizontal axis is a negative value A method for cultivating microorganisms, comprising a step of planting microorganisms in another liquid medium after the time point of zero. 液体培地中で微生物を培養する微生物の培養方法であって、経時的に培養液のpHを測定し、pH値の変化が変曲点を迎え、変化の方向が逆転した時点以後に、微生物を別の液体培地に植え継ぐ工程を備えることを特徴とする微生物の培養方法。   A method for culturing a microorganism in a liquid medium, wherein the pH of the culture solution is measured over time, the change in pH value reaches the inflection point, and the microorganism is removed after the direction of change is reversed. A method for culturing microorganisms comprising a step of planting in another liquid medium. 前記微生物を別の液体培地に植え継ぐ工程が、pH値の変化がプラトーになった時点からpHが0.05変化する時点までの間に行われる請求項1記載の微生物の培養方法。   The method for cultivating a microorganism according to claim 1, wherein the step of planting the microorganism in another liquid medium is performed from the time when the pH value changes to a plateau to the time when the pH changes to 0.05. 前記液体培地が富栄養培地である請求項1〜4のいずれか一項記載の微生物の培養方法。   The method for culturing microorganisms according to any one of claims 1 to 4, wherein the liquid medium is a rich medium. 培養温度が20〜40℃である請求項1〜5のいずれか一項記載の微生物の培養方法。   The culture method according to any one of claims 1 to 5, wherein the culture temperature is 20 to 40 ° C. 前記微生物が、サッカロミセス(Saccharomyces)属、シゾサッカロミセス(Shizosaccharomyces)属、ハンセヌラ(Hansenula)属、ピキア(Pichia)属、オガタエ(Ogataea)属およびカンジダ(Candida)属からなる群から選ばれるの酵母菌類、アスペルギルス(Aspergillus)属およびトリコデルマ(Trichoderma)属からなる群から選ばれる糸状菌類、または、大腸菌(Escherichiacoli)である請求項1〜6のいずれか一項記載の微生物の培養方法。   Yeast fungus selected from the group consisting of the genus Saccharomyces, Shizosaccharomyces, Hansenula, Pichia, Ogataea and Candida The method for culturing a microorganism according to any one of claims 1 to 6, which is a filamentous fungus selected from the group consisting of the genus Aspergillus and the genus Trichoderma, or Escherichiacoli. 前記微生物が、シゾサッカロミセス(Shizosaccharomyces)属酵母菌または大腸菌(Escherichiacoli)である請求項1〜7のいずれか一項記載の微生物の培養方法。   The method for culturing a microorganism according to any one of claims 1 to 7, wherein the microorganism is a yeast of the genus Shizosaccharomyces or Escherichiacoli. 前記微生物が、分裂酵母シゾサッカロミセス・ポンベ(Shizosaccharomyces pombe)である請求項1〜8のいずれか一項記載の微生物の培養方法。   The method for culturing a microorganism according to any one of claims 1 to 8, wherein the microorganism is fission yeast Shizosaccharomyces pombe.
JP2012044472A 2012-02-29 2012-02-29 Culture method of microorganism Pending JP2013179868A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012044472A JP2013179868A (en) 2012-02-29 2012-02-29 Culture method of microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012044472A JP2013179868A (en) 2012-02-29 2012-02-29 Culture method of microorganism

Publications (1)

Publication Number Publication Date
JP2013179868A true JP2013179868A (en) 2013-09-12

Family

ID=49270983

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012044472A Pending JP2013179868A (en) 2012-02-29 2012-02-29 Culture method of microorganism

Country Status (1)

Country Link
JP (1) JP2013179868A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109207397A (en) * 2018-09-18 2019-01-15 山东省滨州畜牧兽医研究院 A kind of haemophilus parasuis culture medium and high density fermentation culture method
CN112689669A (en) * 2018-09-14 2021-04-20 克亚诺斯生物技术公司 Method for cultivating a microorganism of interest and related apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112689669A (en) * 2018-09-14 2021-04-20 克亚诺斯生物技术公司 Method for cultivating a microorganism of interest and related apparatus
CN109207397A (en) * 2018-09-18 2019-01-15 山东省滨州畜牧兽医研究院 A kind of haemophilus parasuis culture medium and high density fermentation culture method
CN109207397B (en) * 2018-09-18 2020-07-28 山东省滨州畜牧兽医研究院 Haemophilus parasuis culture medium and high-density fermentation culture method

Similar Documents

Publication Publication Date Title
Andrade et al. Mixotrophic cultivation of microalga Spirulina platensis using molasses as organic substrate
KR102015829B1 (en) Coenzyme Q10 Fermentation Production Process Based on Integrated Control of Online Oxygen Consumption and Conductivity
CN103224965B (en) Method for producing pyrroloquinoline quinine through microbial fermentation and fermentation medium used in same
Moeller et al. Repeated fed-batch fermentation using biosensor online control for citric acid production by Yarrowia lipolytica
Qi et al. Achieving high strength vinegar fermentation via regulating cellular growth status and aeration strategy
CN102311920A (en) Culture method for chlorella
CN103882072B (en) A kind of method utilizing schizochytrium limacinum to produce docosahexenoic acid
Landi et al. High cell density culture with S. cerevisiae CEN. PK113-5D for IL-1β production: optimization, modeling, and physiological aspects
CN114196547B (en) Application of DCMU (dendritic cell activator-terminator) in improving chlorophyll yield or strong light tolerance during microalgae polyculture fermentation
CN102268402A (en) Serum free medium and culture method for high expression of erythropoietin in CHO (Chinese hamster ovary) cells
CN109652318B (en) Culture medium for rapidly culturing chlorella by stabilizing pH and application thereof
JP2013179868A (en) Culture method of microorganism
CN114196546B (en) Application of DCMU in stabilizing microalgae polyculture growth pH and improving microalgae polyculture growth speed
CN105385608A (en) Lentinus edodes liquid strain submerged fermentation technology
KR20200132835A (en) High productivity method for growing algae
CN105349592B (en) The method of the complementary plant cell miscegenation culture production secondary metabolite of metabolism
JP4149253B2 (en) Microbial culture method
CN1160467C (en) Method of producing adenosylmethionine
Kim et al. Control of intracellular ammonium level using specific oxygen uptake rate for overproduction of citric acid by Aspergillus niger
CN107699493B (en) Microalgae cultivation method
CN110982705A (en) Fermentation process of schizochytrium limacinum
CN104946586A (en) Pretreatment method of mesenchymal stem cells and preparation obtained from mesenchymal stem cells
Razooki et al. Effect of the aqueous carbon source on growth rate of the microalgae Coelastrella sp. MH923012
CN108660168A (en) A kind of zymotechnique improving L-Trp yield
CN104726508B (en) The method that a variety of chemical promoters improve microorganism heterotrophic fermentation production docosahexaenoic acid

Legal Events

Date Code Title Description
RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7425

Effective date: 20140220

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20140228