JP2013179327A - Semiconductor device - Google Patents

Semiconductor device Download PDF

Info

Publication number
JP2013179327A
JP2013179327A JP2013090435A JP2013090435A JP2013179327A JP 2013179327 A JP2013179327 A JP 2013179327A JP 2013090435 A JP2013090435 A JP 2013090435A JP 2013090435 A JP2013090435 A JP 2013090435A JP 2013179327 A JP2013179327 A JP 2013179327A
Authority
JP
Japan
Prior art keywords
voltage
resistance element
electrode
gate
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2013090435A
Other languages
Japanese (ja)
Inventor
Shigeru Kusunoki
茂 楠
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2013090435A priority Critical patent/JP2013179327A/en
Publication of JP2013179327A publication Critical patent/JP2013179327A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Landscapes

  • Semiconductor Integrated Circuits (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a semiconductor device that maintains an effective breakdown voltage holding without widening a breakdown voltage holding region and obtains sufficient short circuit breaking capacity with no high resistivity of a power device.SOLUTION: A semiconductor device includes: a power device formed in a semiconductor substrate having a semiconductor layer; a plurality of guard rings formed so as to surround the power device in the semiconductor substrate; and voltage application means for applying a higher voltage to the guard ring closer to an outer peripheral side among the plurality of guard rings. The power device includes: a grounded emitter electrode on the front surface side of the semiconductor substrate; a gate electrode on the front surface side of the semiconductor substrate; and a collector electrode on the rear surface side of the semiconductor substrate. The voltage application means includes a plurality of resistive elements connected in series between the outer peripheral part of the plurality of guard rings of the semiconductor layer and the emitter electrode. The guard ring closer to the outer peripheral side is connected with the resistive element closer to the outer peripheral side among the plurality of resistive elements directly or via a conductor pattern.

Description

本発明は、IGBT(Insulated Gate Bipolar Transistor)やパワーMOSFETなどのパワーデバイスを有する半導体装置に関し、特に耐圧保持や短絡保護を行う機能を備える半導体装置に関する。   The present invention relates to a semiconductor device having a power device such as an IGBT (Insulated Gate Bipolar Transistor) or a power MOSFET, and more particularly to a semiconductor device having a function of holding a withstand voltage and protecting a short circuit.

主電極間に高電圧が印加されるパワーデバイスを有する半導体装置は、耐圧保持と短絡保護の必要がある。すなわち、パワーデバイスを有する半導体装置は、高い耐圧を有し、かつ主電極間が短絡した場合にも一定時間はパワーデバイスが劣化しないだけの短絡耐量を有することが求められる。   A semiconductor device having a power device to which a high voltage is applied between main electrodes needs to maintain a withstand voltage and short-circuit protection. That is, a semiconductor device having a power device is required to have a high withstand voltage and a short-circuit tolerance sufficient to prevent the power device from deteriorating for a certain time even when the main electrodes are short-circuited.

パワーデバイスを高耐圧化するために、半導体装置はガードリングやフィールドプレートと呼ばれる構造を備えることが一般的である。ガードリングとはパワーデバイスが形成された素子領域を囲むようにリング状に形成されたPN接合領域である。ガードリングは同心円状に複数設けられて耐圧保持領域を構成する。そしてガードリングの周知の働き(作用)によって半導体装置の半導体層における電界緩和を行う。   In order to increase the breakdown voltage of a power device, a semiconductor device generally has a structure called a guard ring or a field plate. A guard ring is a PN junction region formed in a ring shape so as to surround an element region where a power device is formed. A plurality of guard rings are provided concentrically to form a pressure resistant holding region. Then, the electric field relaxation in the semiconductor layer of the semiconductor device is performed by a known function (action) of the guard ring.

フィールドプレートとは、パワーデバイスのゲート電極−ドレイン電極間の基板表面上に絶縁膜を介して配置される電極のことである。フィールドプレートにはパワーデバイスのゲート電圧相当の電圧が印加されることが多い。フィールドプレートの周知の働き(作用)によって半導体装置の半導体層における電界緩和を行う。前述の通り、耐圧保持のためにガードリングやフィールドプレートが用いられる。   The field plate is an electrode disposed on the substrate surface between the gate electrode and the drain electrode of the power device via an insulating film. A voltage equivalent to the gate voltage of the power device is often applied to the field plate. Electric field relaxation in the semiconductor layer of the semiconductor device is performed by a known function (action) of the field plate. As described above, a guard ring or a field plate is used to maintain a pressure resistance.

一方、パワーデバイスの短絡耐量を向上させるためにはパワーデバイスのオン抵抗を高くすることが考えられ、これによりパワーデバイスの主電極間に高電圧が印加された場合にも大電流が流れることを抑制できる。他の耐圧保持や短絡保護に関する既知の技術については特許文献1−7に記載がある。   On the other hand, in order to improve the short-circuit tolerance of the power device, it is conceivable to increase the on-resistance of the power device, so that a large current flows even when a high voltage is applied between the main electrodes of the power device. Can be suppressed. Other known techniques relating to withstand voltage holding and short circuit protection are described in Patent Documents 1-7.

特開平04−212468号公報Japanese Patent Laid-Open No. 04-212468 特開平11−330456号公報JP-A-11-330456 特開平04−000768号公報Japanese Patent Laid-Open No. 04-000768 特開2006−173437号公報JP 2006-173437 A 特開平06−338512号公報Japanese Patent Laid-Open No. 06-338512 特開平04−332173号公報Japanese Patent Laid-Open No. 04-332173 特開2005−217152号公報JP-A-2005-217152

前述した(複数の)ガードリングは、通常電位が固定されていない(フローティング)ため、素子領域側(内側)で電界が強く、外周側で電界が緩くなる傾向がある。この場合、半導体層(素子側領域)で発生した空乏層を伸ばす効果が不十分であるために必要な耐圧が得られない問題があった。また、耐圧を高めるために耐圧保持領域を広く取らなければならない問題もあった。フィールドプレートを用いた場合も同様に耐圧保持(耐圧向上)が不十分であったりチップの微細化・小型化ができない問題があった。   Since the above-described guard rings are not normally fixed (floating), there is a tendency that the electric field is strong on the element region side (inside) and the electric field is loose on the outer periphery side. In this case, there is a problem that the required breakdown voltage cannot be obtained because the effect of extending the depletion layer generated in the semiconductor layer (element side region) is insufficient. In addition, there is a problem that a wide withstand voltage holding region has to be taken in order to increase the withstand voltage. Similarly, when the field plate is used, there is a problem that the withstand voltage (withstand voltage improvement) is insufficient and the chip cannot be miniaturized or miniaturized.

また、短絡耐量を向上させるためにパワーデバイスのオン抵抗を高くすることは、パワーデバイスの電気的特性の低下、すなわち性能低下に直結するものである。具体的には、パワーデバイスの低消費電力化や高出力化が困難となる問題があった。   Further, increasing the on-resistance of the power device in order to improve the short-circuit withstand capability directly leads to a decrease in electrical characteristics of the power device, that is, a decrease in performance. Specifically, there is a problem that it is difficult to reduce the power consumption and output of the power device.

本発明は、上述のような課題を解決するためになされたもので、特に耐圧保持領域を広げることなく有効な耐圧保持を行うことや、短絡耐量を高めることにより性能を向上させた半導体装置を提供することを目的とする。   The present invention has been made in order to solve the above-described problems. In particular, the present invention provides a semiconductor device having improved performance by performing effective withstand voltage maintenance without increasing the withstand voltage holding region and increasing short-circuit tolerance. The purpose is to provide.

本願の発明に係る半導体装置は、半導体層を有する半導体基板に形成されたパワーデバイスと、前記パワーデバイスを囲むように前記半導体基板に形成された複数のガードリングと、前記複数のガードリングのうち外周側のガードリングほど高電圧を印加する電圧印加手段とを備える。そして、前記パワーデバイスは、前記半導体基板表面に形成された接地されたエミッタ電極と、前記半導体基板表面に形成されたゲート電極と、前記半導体基板表面と反対の面である裏面に形成されたコレクタ電極と、を有し、前記電圧印加手段は、前記半導体層の前記複数のガードリングの外周部分と前記エミッタ電極との間に直列に接続された、複数の抵抗素子を有し、前記外周側のガードリングほど前記複数の抵抗素子のうち前記外周部分側の抵抗素子と直接又は導体パターンを介して接続されることを特徴とする。   A semiconductor device according to the invention of the present application includes a power device formed on a semiconductor substrate having a semiconductor layer, a plurality of guard rings formed on the semiconductor substrate so as to surround the power device, and the plurality of guard rings. Voltage guard means for applying a higher voltage to the guard ring on the outer peripheral side. The power device includes a grounded emitter electrode formed on the semiconductor substrate surface, a gate electrode formed on the semiconductor substrate surface, and a collector formed on a back surface opposite to the semiconductor substrate surface. The voltage applying means includes a plurality of resistance elements connected in series between the outer peripheral portion of the plurality of guard rings of the semiconductor layer and the emitter electrode, and the outer peripheral side. The guard ring is connected to the resistance element on the outer peripheral portion side among the plurality of resistance elements directly or via a conductor pattern.

本発明により半導体装置における性能向上を図ることができる。   According to the present invention, the performance of a semiconductor device can be improved.

実施形態1の半導体装置を説明する図である。1 is a diagram illustrating a semiconductor device of Embodiment 1. FIG. 渦巻状に形成された抵抗素子を説明する図である。It is a figure explaining the resistive element formed in the spiral. ガードリングのコンタクトについて説明する図である。It is a figure explaining the contact of a guard ring. 直線状に形成された抵抗素子を説明する図である。It is a figure explaining the resistive element formed in linear form. ジグザグに形成された抵抗素子を説明する図である。It is a figure explaining the resistive element formed in the zigzag. ガードリングにキャパシターを介して電圧印加を行う半導体装置の構成について説明する図である。It is a figure explaining the structure of the semiconductor device which applies a voltage to a guard ring via a capacitor. 一部にダイオードが形成された抵抗素子について説明する図である。It is a figure explaining the resistive element in which the diode was partially formed. 実施形態2の半導体装置を説明する図である。6 is a diagram illustrating a semiconductor device of Embodiment 2. FIG. 実施形態2の半導体装置の平面図である。FIG. 6 is a plan view of a semiconductor device according to a second embodiment. 絶縁膜内電極(フィールドプレート)のコンタクトを説明する図である。It is a figure explaining the contact of the electrode (field plate) in an insulating film. 絶縁膜内電極にキャパシターを介して電圧印加を行う半導体装置の構成について説明する図である。It is a figure explaining the structure of the semiconductor device which applies a voltage to the electrode in an insulating film via a capacitor. 実施形態3の半導体装置を説明する図である。FIG. 10 illustrates a semiconductor device according to a third embodiment. 抵抗素子がドレイン電極などと直接接続された構成を説明する図である。It is a figure explaining the structure by which the resistive element was directly connected with the drain electrode etc. 実施形態4の半導体装置を説明する図である。FIG. 10 illustrates a semiconductor device according to a fourth embodiment. ターンオンに要する時間であるt1を定義する波形を説明する図である。It is a figure explaining the waveform which defines t1 which is time required for turn-on. 測定回路を説明する図である。It is a figure explaining a measurement circuit. パワーデバイスが劣化(熱破壊)するまでの時間であるt2を定義する波形を説明する図である。It is a figure explaining the waveform which defines t2 which is time until a power device deteriorates (thermal destruction). 遅延回路がゲート駆動信号を遅延させる時間であるt3を定義する波形を説明する図である。It is a figure explaining the waveform which defines t3 which is time when a delay circuit delays a gate drive signal. 実施形態4の構成を簡略化して回路図で表した図である。FIG. 6 is a circuit diagram showing a simplified configuration of the fourth embodiment. 横型のパワーデバイスにおいて短絡保護を行う手段について説明する図である。It is a figure explaining the means to perform a short circuit protection in a horizontal type power device. 渦巻状に形成された抵抗素子を説明する図である。It is a figure explaining the resistive element formed in the spiral. 直線状に形成された抵抗素子を説明する図である。It is a figure explaining the resistive element formed in linear form. ジグザグに形成された抵抗素子を説明する図である。It is a figure explaining the resistive element formed in the zigzag. 図22の破線C部拡大平面などを説明する図である。It is a figure explaining the broken line C section enlarged plane of FIG. フリップフロップ回路をパワーデバイスとは別基板で形成した半導体装置を説明する図である。It is a diagram illustrating a semiconductor device in which a flip-flop circuit is formed on a substrate different from a power device. CMOSのラッチアップを抑制できる構成について説明する図である。It is a figure explaining the structure which can suppress the latchup of CMOS. CMOSのラッチアップを抑制できる構成について説明する図である。It is a figure explaining the structure which can suppress the latchup of CMOS. 実施形態5の半導体装置を説明する図である。FIG. 10 illustrates a semiconductor device according to a fifth embodiment. 実施形態5の半導体装置の変形例を説明する図である。FIG. 10 is a diagram illustrating a modification of the semiconductor device of Embodiment 5.

実施の形態1
本実施形態はガードリングが形成された半導体装置に関する。以後、図1〜図6を参照して本実施形態について詳細を説明する。まず図1は本実施形態の半導体装置10の断面図(一部模式図)である。この半導体装置10は、一つのチップをなす半導体基板にあって、パワーデバイスの形成される素子領域12と、その周囲に位置する耐圧保持領域14とを備える。なお、本実施形態においてパワーデバイスとは縦型IGBTのことをいい、複数のセルが集積されることにより構成されている。またこの例では、IGBTのセルにトレンチ型を使用しているが、プレーナ型であっても良い。
Embodiment 1
The present embodiment relates to a semiconductor device in which a guard ring is formed. Hereinafter, this embodiment will be described in detail with reference to FIGS. First, FIG. 1 is a cross-sectional view (partially schematic diagram) of a semiconductor device 10 of this embodiment. The semiconductor device 10 is on a semiconductor substrate forming one chip, and includes an element region 12 in which a power device is formed, and a breakdown voltage holding region 14 positioned around the element region 12. In the present embodiment, the power device refers to a vertical IGBT, and is configured by integrating a plurality of cells. In this example, the trench type is used for the IGBT cell, but a planar type may be used.

素子領域12と耐圧保持領域14とは共通する半導体層18に形成されている。半導体層18はn-層であって、素子領域12のIGBTがオン状態のときには後述のコレクタ側とエミッタ側からキャリアの供給を受けて伝導度変調が起こる部分である。   The element region 12 and the breakdown voltage holding region 14 are formed in a common semiconductor layer 18. The semiconductor layer 18 is an n− layer, and is a portion in which conductivity modulation occurs when carriers are supplied from a collector side and an emitter side, which will be described later, when the IGBT of the element region 12 is in an on state.

このような半導体層18に形成された素子領域12について説明する。素子領域12における半導体層18の表面にはpベース層19が設けられ、その表面からn-層(半導体層18)に達するトレンチ(溝)が複数形成、配置されている。各トレンチ内には、ゲート絶縁膜15を介してゲート電極20となる多結晶シリコンが埋め込まれ、その上部に絶縁膜23が設けられている。この複数のゲート電極20は、ゲート配線31によってゲート端子(ゲートボンディングパッド)32と接続されており、ゲート端子32からゲート駆動信号が伝送される。   The element region 12 formed in the semiconductor layer 18 will be described. A p base layer 19 is provided on the surface of the semiconductor layer 18 in the element region 12, and a plurality of trenches (grooves) reaching from the surface to the n − layer (semiconductor layer 18) are formed and arranged. In each trench, polycrystalline silicon that becomes the gate electrode 20 is buried via the gate insulating film 15, and an insulating film 23 is provided thereon. The plurality of gate electrodes 20 are connected to a gate terminal (gate bonding pad) 32 by a gate wiring 31, and a gate drive signal is transmitted from the gate terminal 32.

さらに、ゲート絶縁膜15に接するpベース層19の表面にはn+エミッタ領域21が形成される。そして、このn+エミッタ領域21とpベース層19と接して、それら上面側にアルミニウムなどからなるエミッタ電極30が素子領域12の表面を覆うように形成される。従って、図1から明らかな通り、ゲート電極20にIGBTをオン状態とすべきゲート駆動信号の入力があると、pベース層19のゲート絶縁膜との接触面の導電型が反転する。これにより半導体層18とエミッタ電極30(エミッタ領域21)との間にキャリアのパス(チャネル)ができる。これは一般的なIGBTの動作と同様である。   Further, an n + emitter region 21 is formed on the surface of the p base layer 19 in contact with the gate insulating film 15. An emitter electrode 30 made of aluminum or the like is formed on the upper surface of the n + emitter region 21 and the p base layer 19 so as to cover the surface of the element region 12. Therefore, as apparent from FIG. 1, when a gate drive signal for turning on the IGBT is input to the gate electrode 20, the conductivity type of the contact surface of the p base layer 19 with the gate insulating film is reversed. As a result, a carrier path (channel) is formed between the semiconductor layer 18 and the emitter electrode 30 (emitter region 21). This is the same as the operation of a general IGBT.

さらに、半導体層18の裏面にはコレクタ電極16が形成される。コレクタ電極16と半導体層18はコレクタとなるp+コレクタ層17を介している。本実施形態ではコレクタ電極16は素子領域12だけでなく耐圧保持領域14にも及んでいる。   Further, the collector electrode 16 is formed on the back surface of the semiconductor layer 18. The collector electrode 16 and the semiconductor layer 18 are connected via a p + collector layer 17 serving as a collector. In the present embodiment, the collector electrode 16 extends not only to the element region 12 but also to the breakdown voltage holding region 14.

次いで、本実施形態の半導体装置10が備える耐圧保持領域14について説明する。耐圧保持領域14にはガードリング22が形成される。ガードリング22は複数形成されており、半導体層18とは異なる導電型、本実施形態の場合、p+領域からなる。前述したガードリング22はそれぞれ素子領域12の外周を囲むように同心円を形成するようにして配置される。   Next, the breakdown voltage holding region 14 included in the semiconductor device 10 of this embodiment will be described. A guard ring 22 is formed in the breakdown voltage holding region 14. A plurality of guard rings 22 are formed and have a conductivity type different from that of the semiconductor layer 18, which is a p + region in the present embodiment. The guard rings 22 described above are arranged so as to form concentric circles so as to surround the outer periphery of the element region 12.

そして、半導体層18のうちガードリング22よりも外周の領域である外周部分34と、エミッタ電極30とが高抵抗素子(配線)28を介して接続される。なお、前述した外周部分34には通常、半導体層18と同じ導電型であるn+のチャネルストッパ領域29が形成されており、高抵抗素子28はこれと接続される。   Then, the outer peripheral portion 34, which is a region on the outer periphery of the guard ring 22, of the semiconductor layer 18 and the emitter electrode 30 are connected via a high resistance element (wiring) 28. Note that an n + channel stopper region 29 having the same conductivity type as that of the semiconductor layer 18 is usually formed in the outer peripheral portion 34 described above, and the high resistance element 28 is connected thereto.

高抵抗素子28は、所望の電圧を取り出すために電気的に複数の抵抗素子部に分割され、この例では、直列接続された抵抗素子25、抵抗素子26、抵抗素子27を備えるものとして扱われる。最も外周側に配置される抵抗素子27は一端が外周部分34と接続され、他端が抵抗素子26の一端と接続される。抵抗素子26の他端は抵抗素子25の一端と接続される。そして、抵抗素子25の他端はエミッタ電極30と接続される。高抵抗素子の抵抗値は半導体装置におけるコレクタ−エミッタ間の耐圧やリーク電流に関する仕様によって決定すればよく、例えば、耐圧が600Vの場合であれば、600M(メガ)Ω程度の設定が適当といえる。   The high resistance element 28 is electrically divided into a plurality of resistance element portions in order to extract a desired voltage. In this example, the high resistance element 28 is treated as including a resistance element 25, a resistance element 26, and a resistance element 27 connected in series. . One end of the resistance element 27 arranged on the outermost side is connected to the outer peripheral portion 34, and the other end is connected to one end of the resistance element 26. The other end of the resistance element 26 is connected to one end of the resistance element 25. The other end of the resistance element 25 is connected to the emitter electrode 30. The resistance value of the high resistance element may be determined by the specifications regarding the collector-emitter breakdown voltage and leakage current in the semiconductor device. For example, when the breakdown voltage is 600 V, a setting of about 600 M (mega) Ω is appropriate. .

本実施形態では、抵抗素子27と抵抗素子26とを接続する配線(あるいは接続点)から分岐する配線が外周部分34に近いほうのガードリングと接続される。また抵抗素子26と抵抗素子25とを接続する配線(あるいは接続点)から分岐する配線が外周部分34から遠いほうのガードリングと接続される。   In the present embodiment, the wiring branched from the wiring (or connection point) connecting the resistance element 27 and the resistance element 26 is connected to the guard ring closer to the outer peripheral portion 34. In addition, a wiring branched from a wiring (or connection point) connecting the resistance element 26 and the resistance element 25 is connected to a guard ring far from the outer peripheral portion 34.

ところで、半導体層18はコレクタ電極16に印加される電圧とほぼ同電位となる。よって、エミッタ電極30を0Vとして、例えばコレクタ電極16に600Vの高電圧が印加されているときには、外周部分34にも同程度(600V)の高電圧が印加されていることになる。そして、前述のようにエミッタ電極30と外周部分34のチャネルストッパ領域29との間に接続される高抵抗素子28は、外周部分34の電圧を抵抗素子27、抵抗素子26、抵抗素子25で漸減させ、外周部分34に近いほうのガードリング22ほど高い電圧を印加するように接続される。このように高抵抗素子28はガードリング22へ電圧を印加する電圧印加手段である。なお、電圧印加手段の語意はガードリングに電圧を印加する手段に限定されず、広く耐圧保持のための構成に電圧を供給する手段のことをいう。   By the way, the semiconductor layer 18 has substantially the same potential as the voltage applied to the collector electrode 16. Therefore, when the emitter electrode 30 is set to 0 V, for example, when a high voltage of 600 V is applied to the collector electrode 16, the same high voltage (600 V) is also applied to the outer peripheral portion 34. As described above, the high resistance element 28 connected between the emitter electrode 30 and the channel stopper region 29 of the outer peripheral portion 34 gradually reduces the voltage of the outer peripheral portion 34 by the resistance element 27, the resistance element 26, and the resistance element 25. The guard ring 22 closer to the outer peripheral portion 34 is connected so as to apply a higher voltage. Thus, the high resistance element 28 is a voltage applying means for applying a voltage to the guard ring 22. The meaning of the voltage applying means is not limited to the means for applying a voltage to the guard ring, but means means for supplying a voltage widely to a structure for maintaining a withstand voltage.

次いで、半導体装置10の平面図である図2について説明する。なお、図2において図1と同一の符号が付されたものは図1と同様であるから説明を省略する。また、高抵抗素子28について図1においては回路図的に示したが図2においては実際のレイアウトに即して示す。なお、それぞれのガードリング22およびチャネルストッパ領域29の電位を安定なものとするために、多くの場合、それら上部にアルミニウムなどの導体パターンが並行に設けられ、そして、それぞれのガードリングやチャネルストッパ領域と導体パターンとは電気的に接続されているが、図2では便宜上これを省略している。   Next, FIG. 2 which is a plan view of the semiconductor device 10 will be described. 2 that are denoted by the same reference numerals as those in FIG. 1 are the same as those in FIG. Further, although the high resistance element 28 is shown in a circuit diagram in FIG. 1, it is shown in accordance with an actual layout in FIG. In order to stabilize the potentials of the respective guard rings 22 and channel stopper regions 29, conductor patterns such as aluminum are often provided in parallel on the upper portions thereof, and the respective guard rings and channel stoppers are provided. Although the region and the conductor pattern are electrically connected, this is omitted in FIG. 2 for convenience.

本実施形態の高抵抗素子28は、図2に示されるように外周部分34とエミッタ電極30とを結ぶ渦巻状に形成された一本の多結晶シリコンである。高抵抗素子28はコンタクト33によって外周部分34のチャネルストッパ領域29と接続され、コンタクト35によりガードリング22と接続される。なお、このコンタクト33およびコンタクト35の構造に関しての理解を助けるため、図3に拡大断面図を示す。先にも述べたが、ガードリングおよびチャネルストッパ上には、アルミニウムなどの導体パターン40、42が設けられ、この導体パターン40、42とガードリングおよびチャネルストッパ領域とはコンタクト33、35を介して電気的に接続されていることによって、ガードリングおよびチャネルストッパの電位の安定化を図っている。そしてこの図では、高抵抗素子28は導体パターン40,42を介してガードリング22やチャネルストッパ領域29との電気的接続を実現しているが、直接的に接続を行っても良い。また、図2に示されるコンタクト37は高抵抗素子28とエミッタ電極30を接続する。   The high resistance element 28 of the present embodiment is a single polycrystalline silicon formed in a spiral shape connecting the outer peripheral portion 34 and the emitter electrode 30 as shown in FIG. The high resistance element 28 is connected to the channel stopper region 29 of the outer peripheral portion 34 by the contact 33 and is connected to the guard ring 22 by the contact 35. In order to help understanding the structure of the contact 33 and the contact 35, FIG. As described above, conductor patterns 40 and 42 such as aluminum are provided on the guard ring and channel stopper, and the conductor patterns 40 and 42 and the guard ring and channel stopper region are connected via contacts 33 and 35. By being electrically connected, the potential of the guard ring and the channel stopper is stabilized. In this figure, the high resistance element 28 achieves electrical connection with the guard ring 22 and the channel stopper region 29 via the conductor patterns 40 and 42, but may be directly connected. A contact 37 shown in FIG. 2 connects the high resistance element 28 and the emitter electrode 30.

本実施形態の半導体装置10の構成は上述の通りである。本実施形態の構成によればコレクタ電極16に電圧が印加されたときに、複数のガードリング22に対して「外周側のガードリング22ほど高電圧を印加する」ことができる。ゆえに、半導体層18の素子領域12において発生した空乏層を、ガードリングの外周方向に伸ばすことができるため半導体層18における電界強度の均一化に寄与する。よって耐圧保持(耐圧向上)が可能である。   The configuration of the semiconductor device 10 of the present embodiment is as described above. According to the configuration of this embodiment, when a voltage is applied to the collector electrode 16, “a higher voltage can be applied to the guard ring 22 on the outer peripheral side” with respect to the plurality of guard rings 22. Therefore, the depletion layer generated in the element region 12 of the semiconductor layer 18 can be extended in the outer peripheral direction of the guard ring, which contributes to uniform electric field strength in the semiconductor layer 18. Therefore, it is possible to maintain the withstand voltage (improve the withstand voltage).

また、高抵抗素子28の抵抗値や抵抗分割比を変えることで各ガードリング22へ印加する電圧を調節できる(以後、各ガードリング22に印加される電圧を中間電位と称することがある。中間電位とはコレクタ電極16の電位とエミッタ電極30の電位の中間の電位という意である)。素子領域12の空乏層を伸ばすように高抵抗素子28の抵抗値を調整し、各ガードリング22に対して(耐圧保持のための)最適な中間電位を与えることにより耐圧保持領域における電界を略均一化して半導体装置10の耐圧の向上ができる。よって耐圧保持領域14を広く形成する必要がないので耐圧保持領域14の縮小が可能である。   In addition, the voltage applied to each guard ring 22 can be adjusted by changing the resistance value or resistance division ratio of the high resistance element 28 (hereinafter, the voltage applied to each guard ring 22 may be referred to as an intermediate potential). The potential means an intermediate potential between the potential of the collector electrode 16 and the potential of the emitter electrode 30). The resistance value of the high resistance element 28 is adjusted so as to extend the depletion layer in the element region 12, and an optimum intermediate potential (for holding the withstand voltage) is applied to each guard ring 22, thereby substantially reducing the electric field in the withstand voltage holding region. The breakdown voltage of the semiconductor device 10 can be improved by making it uniform. Therefore, since it is not necessary to form the breakdown voltage holding region 14 widely, the breakdown voltage holding region 14 can be reduced.

また、図2を参照して説明したとおり高抵抗素子28は渦巻状に形成されているため、高抵抗素子28の長さを長くすることができる。高抵抗素子28を長く形成できるため、低い抵抗率の設定が可能となり、多結晶シリコンの不純物濃度を高くできることから、抵抗値のばらつきも抑えられ、各ガードリング22に対して精度よく安定した電圧を供給できる。さらに渦巻状に形成された高抵抗素子28の任意の場所からそれぞれのガードリングへ接続を行うことができるためガードリング22へ印加する電圧調整の自由度が高い。   Moreover, since the high resistance element 28 is formed in a spiral shape as described with reference to FIG. 2, the length of the high resistance element 28 can be increased. Since the high resistance element 28 can be formed long, a low resistivity can be set, and the impurity concentration of the polycrystalline silicon can be increased. Therefore, variations in resistance value can be suppressed, and a stable voltage can be accurately and stably applied to each guard ring 22. Can supply. Furthermore, since the high resistance element 28 formed in a spiral shape can be connected to each guard ring, the degree of freedom in adjusting the voltage applied to the guard ring 22 is high.

本実施形態の高抵抗素子28は図2に示す渦巻状の形状であるが、本発明はこれに限定されない。抵抗素子は例えば図4、5に示すような形状であっても良い。図4に示す抵抗素子50は直線的に半導体層の外周部分34とエミッタ電極30とを結ぶ。そして抵抗素子50を等間隔に分割するようにガードリング22とのコンタクト52を形成することにより各ガードリング22に与えられる電圧は、外周部分34からエミッタ電極30へ向かって一次関数的に減少する。よって半導体層中の電界を均一化できる。また、各ガードリング22に対して耐圧保持(耐圧向上)のための理想的な電圧印加ができるから耐圧保持領域14の面積を縮小できる。   The high resistance element 28 of the present embodiment has a spiral shape shown in FIG. 2, but the present invention is not limited to this. For example, the resistance element may have a shape as shown in FIGS. The resistance element 50 shown in FIG. 4 linearly connects the outer peripheral portion 34 of the semiconductor layer and the emitter electrode 30. Then, by forming the contact 52 with the guard ring 22 so as to divide the resistance element 50 at equal intervals, the voltage applied to each guard ring 22 decreases from the outer peripheral portion 34 toward the emitter electrode 30 in a linear function. . Therefore, the electric field in the semiconductor layer can be made uniform. Further, since an ideal voltage can be applied to each guard ring 22 for holding a withstand voltage (withstanding voltage improvement), the area of the withstand voltage holding region 14 can be reduced.

また、図5に示す抵抗素子60のように階段状(ジグザグ)にすると各ガードリング22に与えられる電圧を、外周部分34からエミッタ電極30へ向かって一次関数的に減少させることができる。さらに抵抗素子60を階段状(ジグザグ)にすると抵抗素子60の長さを長く形成できるため比較的抵抗の低い多結晶シリコンを用いることができ、ガードリング22に与える電圧を安定化させることができる。   In addition, when stepped (zigzag) like the resistance element 60 shown in FIG. 5, the voltage applied to each guard ring 22 can be reduced linearly from the outer peripheral portion 34 toward the emitter electrode 30. Furthermore, when the resistance element 60 is stepped (zigzag), the resistance element 60 can be formed long, so that polycrystalline silicon having a relatively low resistance can be used, and the voltage applied to the guard ring 22 can be stabilized. .

本実施形態では、高抵抗素子28(分割された抵抗素子27と抵抗素子26と抵抗素子25)とガードリング22とは、コンタクト35により電気的には直接接続されるが本発明はこれに限定されない。すなわち、図6に示すように、抵抗素子とガードリングとの接続部にキャパシター24を介して接続されるようにしてもよく、この場合でも複数のガードリング22に対して「外周側のガードリング22ほど高電圧を印加する」ことができるから本発明の効果を失わない。なお、キャパシター24はコンタクト部にキャパシター構造を形成する場合に限らず、寄生容量を利用してもよい。   In the present embodiment, the high resistance element 28 (the divided resistance element 27, the resistance element 26, and the resistance element 25) and the guard ring 22 are electrically connected directly by the contact 35, but the present invention is limited to this. Not. That is, as shown in FIG. 6, it may be connected via a capacitor 24 to the connection portion between the resistance element and the guard ring. Therefore, the effect of the present invention is not lost. The capacitor 24 is not limited to the case where the capacitor structure is formed in the contact portion, and parasitic capacitance may be used.

上述の通り、高抵抗素子28の形状や配置、材料については本発明の範囲内でさまざまな変形例が考えられる。他の変形例について図7を参照して説明する。図7は、図4における破線A−Aに沿った断面図である。図7に示されるとおり、高抵抗素子28内部にはN型半導体領域54とP型半導体領域56とが隣接して形成されている。N型半導体領域54とP型半導体領域56は比較的耐圧の低いダイオードを形成しており、ダイオードのピッチを変化させることで、ガードリング22に対して印加する電圧を調整できる。すなわち、高抵抗素子28にダイオードを形成することで、前述した抵抗素子の長さによる抵抗値の調整に加えて、ダイオードのピッチ変化によってもガードリング22に対して印加する電圧を調整できるため電圧の設定自由度を高めることができる。   As described above, various modifications of the shape, arrangement, and material of the high resistance element 28 are conceivable within the scope of the present invention. Another modification will be described with reference to FIG. 7 is a cross-sectional view taken along the broken line AA in FIG. As shown in FIG. 7, an N-type semiconductor region 54 and a P-type semiconductor region 56 are formed adjacent to each other inside the high resistance element 28. The N-type semiconductor region 54 and the P-type semiconductor region 56 form a diode having a relatively low breakdown voltage, and the voltage applied to the guard ring 22 can be adjusted by changing the diode pitch. That is, by forming a diode in the high resistance element 28, in addition to the adjustment of the resistance value by the length of the resistance element described above, the voltage applied to the guard ring 22 can be adjusted by the change in the diode pitch. The degree of freedom of setting can be increased.

本実施形態において高抵抗素子28は外周部分34から電圧を供給される構成としたが本発明はこれに限定されない。高抵抗素子28は外部電源などと接続されてもよい。   In the present embodiment, the high resistance element 28 is configured to be supplied with a voltage from the outer peripheral portion 34, but the present invention is not limited to this. The high resistance element 28 may be connected to an external power source or the like.

実施の形態2
本実施形態は横型MOSFETであるパワーデバイスを有する半導体装置に関する。以後、図8、9、10、11を参照して本実施形態の詳細について説明する。図8は本実施形態の半導体装置70の断面図(一部模式図)である。半導体基板上に形成される横型MOSFETの半導体装置70は半導体層72を備える。半導体層72はn-層であって、その表面にはn+のドレイン74が形成され、ドレイン74と電気的に接続されたアルミニウムなどからなるドレイン電極76が設けられている。さらに、半導体層72の表面には、n+ドレイン74から距離を置いてpベース領域80が形成され、pベース領域80内表面にn+のソース91とp+領域93が形成されている。そして、ソース91及びp+領域93と電気的に接続されたアルミニウムなどからなるソース電極78が設けられている。ソース電極78は接地されている。
Embodiment 2
The present embodiment relates to a semiconductor device having a power device that is a lateral MOSFET. Hereinafter, the details of the present embodiment will be described with reference to FIGS. FIG. 8 is a cross-sectional view (partially schematic diagram) of the semiconductor device 70 of the present embodiment. A lateral MOSFET semiconductor device 70 formed on a semiconductor substrate includes a semiconductor layer 72. The semiconductor layer 72 is an n− layer, on the surface of which an n + drain 74 is formed, and a drain electrode 76 made of aluminum or the like electrically connected to the drain 74 is provided. Further, a p base region 80 is formed on the surface of the semiconductor layer 72 at a distance from the n + drain 74, and an n + source 91 and a p + region 93 are formed on the inner surface of the p base region 80. A source electrode 78 made of aluminum or the like electrically connected to the source 91 and the p + region 93 is provided. The source electrode 78 is grounded.

ソース電極78(n+ソース91)とドレイン電極76(n+ドレイン74)との間の半導体基板表面には絶縁膜84が形成されている。なお、絶縁膜84は本来複数の絶縁膜の層から構成されているが、便宜的理由により省略している。この絶縁膜84中のpベース領域80の上には、多結晶シリコンからなるゲート電極82が形成される。ゲート電極82は、ゲート配線81によってゲート端子100と接続され、ゲート端子100からゲート駆動信号の供給を受ける。そして、ゲート電極82にMOSFETをオン状態とすべきゲート駆動信号の入力があると、ゲート電極82に対向するpベース領域80の表面部分にチャネルができる。   An insulating film 84 is formed on the surface of the semiconductor substrate between the source electrode 78 (n + source 91) and the drain electrode 76 (n + drain 74). Although the insulating film 84 is originally composed of a plurality of insulating film layers, it is omitted for convenience. A gate electrode 82 made of polycrystalline silicon is formed on the p base region 80 in the insulating film 84. The gate electrode 82 is connected to the gate terminal 100 by a gate wiring 81 and receives a gate drive signal from the gate terminal 100. When a gate drive signal for turning on the MOSFET is input to the gate electrode 82, a channel is formed on the surface portion of the p base region 80 facing the gate electrode 82.

高耐圧が求められる横型MOSFETでは、上述の構成に加えて絶縁膜84中にゲート電極82と同じ多結晶シリコンからなる絶縁膜内電極86が複数形成されている。絶縁膜内電極86はフィールドプレートと称される場合もあり、周知のとおり、横型MOSFETを構成する半導体層72における電界を緩和するものである。さらに、本実施形態の半導体装置70は一端がドレイン電極76と接続され他端がソース電極78と接続される高抵抗素子98を備える。高抵抗素子98は、電気的に複数の抵抗素子に分割され、この例では、直列接続された抵抗素子90、92、94、96を備えるものとして扱われる。抵抗素子90の一端はドレイン電極76と接続される。抵抗素子90の他端は抵抗素子92の一端と接続され、抵抗素子92の他端は抵抗素子94の一端と接続され、抵抗素子94の他端は抵抗素子96の一端と接続され、抵抗素子96の他端はソース電極78と接続される。これらの抵抗素子は図8に示すようにドレイン電極76側の絶縁膜内電極86ほどドレイン電極76側の抵抗素子と接続される。
次いで、半導体装置70の平面図である図9について説明する。図9において図8と同一符号が付されたものは図8と同様であるから説明を省略する。なお、前述した図8は図9における破線B−Bに沿った断面図である。また、高抵抗素子98について図8においては回路図的に示したが、図9においては実際のレイアウトに即して示す。そして、この図9から明らかなように、図8に示した横型MOSFETはドレイン電極76を中心にして、各絶縁膜内電極86(ゲート電極も同じ)とソース電極78が同心円状に配置、形成されたものである。
図9に示されるとおり、本実施形態の高抵抗素子98は、ソース電極78とドレイン電極76とを結ぶ渦巻状に形成された一本の多結晶シリコンである。高抵抗素子98はコンタクト99によってソース電極78と接続され、コンタクト97により絶縁膜内電極86と接続される。なお、コンタクト99およびコンタクト97の構造に関しての理解を助けるため、図10に拡大断面図を示す。また、コンタクト95は高抵抗素子98とドレイン電極76を接続している。
In a lateral MOSFET that requires a high breakdown voltage, a plurality of insulating film electrodes 86 made of the same polycrystalline silicon as the gate electrode 82 are formed in the insulating film 84 in addition to the above-described configuration. The in-insulating-film electrode 86 is sometimes referred to as a field plate, and as is well known, it relieves an electric field in the semiconductor layer 72 constituting the lateral MOSFET. Furthermore, the semiconductor device 70 of this embodiment includes a high resistance element 98 having one end connected to the drain electrode 76 and the other end connected to the source electrode 78. The high resistance element 98 is electrically divided into a plurality of resistance elements. In this example, the high resistance element 98 is treated as including the resistance elements 90, 92, 94, and 96 connected in series. One end of the resistance element 90 is connected to the drain electrode 76. The other end of the resistance element 90 is connected to one end of the resistance element 92, the other end of the resistance element 92 is connected to one end of the resistance element 94, and the other end of the resistance element 94 is connected to one end of the resistance element 96. The other end of 96 is connected to the source electrode 78. As shown in FIG. 8, the insulating film inner electrode 86 on the drain electrode 76 side is connected to the resistance element on the drain electrode 76 side.
Next, FIG. 9 which is a plan view of the semiconductor device 70 will be described. 9, since the same reference numerals as those in FIG. 8 are the same as those in FIG. 8, the description thereof is omitted. 8 described above is a cross-sectional view taken along the broken line BB in FIG. Further, although the high resistance element 98 is shown in a circuit diagram in FIG. 8, it is shown in accordance with an actual layout in FIG. As is apparent from FIG. 9, the lateral MOSFET shown in FIG. 8 has the insulating electrode 86 (the same gate electrode) and the source electrode 78 arranged and formed concentrically around the drain electrode 76. It has been done.
As shown in FIG. 9, the high resistance element 98 of the present embodiment is a single polycrystalline silicon formed in a spiral shape connecting the source electrode 78 and the drain electrode 76. The high resistance element 98 is connected to the source electrode 78 by the contact 99 and is connected to the in-insulating-film electrode 86 by the contact 97. In order to facilitate understanding of the structure of the contact 99 and the contact 97, an enlarged cross-sectional view is shown in FIG. The contact 95 connects the high resistance element 98 and the drain electrode 76.

このような構成の半導体装置70はドレイン電極76に電圧が印加されると高抵抗素子98によって複数の絶縁膜内電極86にもそれぞれ異なる電圧が印加される。すなわち、絶縁膜内電極86のうちドレイン電極76に近いものほど高い電圧が印加される。よって絶縁膜84の下層における半導体層72に対して、ゲート電極82近傍で生じた空乏層を伸ばすように電圧を印加できるから半導体装置70の耐圧保持(耐圧向上)ができる。   In the semiconductor device 70 having such a configuration, when a voltage is applied to the drain electrode 76, different voltages are applied to the plurality of insulating film electrodes 86 by the high resistance element 98. That is, the closer to the drain electrode 76 of the in-insulating electrode 86, the higher the voltage is applied. Therefore, since a voltage can be applied to the semiconductor layer 72 below the insulating film 84 so as to extend a depletion layer generated in the vicinity of the gate electrode 82, the breakdown voltage of the semiconductor device 70 can be maintained (withstand voltage improvement).

なお、本実施形態は実施形態1の技術を横型のパワーデバイスに応用したものである。従って、高抵抗素子98の形状や材料についての変形例、高抵抗素子98へ電圧を印加する手段はドレイン電極76と接続されることに限らないことなどは実施形態1と同じである。   In this embodiment, the technique of Embodiment 1 is applied to a horizontal power device. Therefore, the modification of the shape and material of the high-resistance element 98 and the means for applying a voltage to the high-resistance element 98 are not limited to being connected to the drain electrode 76.

また、本実施形態では図8に示すように高抵抗素子98と絶縁膜内電極86との間は、電気的には直接接続されているが本発明はこれに限定されない。例えば、図11のように同箇所について実施形態1と同様に、キャパシター88を介して接続された構成であっても本発明の効果を失わない。   In the present embodiment, as shown in FIG. 8, the high resistance element 98 and the insulating film electrode 86 are electrically connected directly, but the present invention is not limited to this. For example, as shown in FIG. 11, the effect of the present invention is not lost even in a configuration in which the same portion is connected via the capacitor 88 as in the first embodiment.

実施の形態3
本実施形態は半導体層内部に半導体層の電界を緩和する手段を有する半導体装置に関する。以後、図12を参照して本実施形態の構成について説明する。図12は本実施形態の半導体装置110の断面図(一部模式図)である。半導体装置110は実施形態2で図8を用いて説明した半導体装置70と以下の点を除き同様の構成である。
Embodiment 3
The present embodiment relates to a semiconductor device having means for relaxing an electric field of a semiconductor layer inside the semiconductor layer. Hereinafter, the configuration of the present embodiment will be described with reference to FIG. FIG. 12 is a cross-sectional view (partially schematic diagram) of the semiconductor device 110 of this embodiment. The semiconductor device 110 has the same configuration as the semiconductor device 70 described in the second embodiment with reference to FIG. 8 except for the following points.

すなわち、本実施形態の半導体装置110は半導体層72の表面でも裏面でもない内部に埋め込み絶縁膜112を備える。埋め込み絶縁膜112内部には埋め込み絶縁膜内電極114が複数形成されている。さらに、一端がドレイン74の電位と容量結合し、他端がpベース領域80の電位と容量結合した抵抗素子120を備える。図12において、この容量結合の構成については抵抗素子120の両端に接続されているキャパシター116、キャパシター118で表されている。
抵抗素子120は所望の電圧を取り出すために電気的に複数の抵抗素子部に分割され、直列に接続された抵抗素子122、124、126、128を備える。そして各埋め込み絶縁膜内電極114は、ドレイン74側の埋め込み絶縁膜内電極114から順番に、抵抗素子122、124、126、128(具体的には隣り合う抵抗素子の間の分岐部分)と接続される。そうすることによって、ドレイン電極76に電圧が印加されるとドレイン74側の埋め込み絶縁膜内電極114ほど高電圧が印加される。
That is, the semiconductor device 110 according to the present embodiment includes the embedded insulating film 112 inside the semiconductor layer 72 that is neither the front surface nor the back surface. A plurality of buried insulating film inner electrodes 114 are formed inside the buried insulating film 112. Further, a resistance element 120 having one end capacitively coupled to the potential of the drain 74 and the other end capacitively coupled to the potential of the p base region 80 is provided. In FIG. 12, this capacitive coupling configuration is represented by a capacitor 116 and a capacitor 118 connected to both ends of the resistance element 120.
The resistive element 120 includes electrically resistive elements 122, 124, 126, and 128 that are electrically divided into a plurality of resistive element portions to extract a desired voltage. Each buried insulating film electrode 114 is connected to the resistance elements 122, 124, 126, and 128 (specifically, a branch portion between adjacent resistance elements) in order from the buried insulating film electrode 114 on the drain 74 side. Is done. By doing so, when a voltage is applied to the drain electrode 76, a higher voltage is applied to the buried insulating film electrode 114 on the drain 74 side.

上述した以外の構成については実施形態2と同様であるから、図8に付した符号と同一の符号を付して説明を省略する。   Since the configuration other than that described above is the same as that of the second embodiment, the same reference numerals as those in FIG.

本実施形態の構成によれば、ゲート電極82からドレイン電極76にかけて電圧が漸増するように配置された埋め込み絶縁膜内電極114により、半導体層72の電界緩和ができるから耐圧保持ができる。   According to the configuration of this embodiment, the electric field of the semiconductor layer 72 can be relaxed by the buried insulating film electrode 114 arranged so that the voltage gradually increases from the gate electrode 82 to the drain electrode 76, so that the withstand voltage can be maintained.

図12においては実施形態2の構成である図8の構成に埋め込み絶縁膜内電極114等を追加する構成としたが、絶縁膜内電極86がない構成であっても本発明の効果を得ることができる。また、本実施形態では抵抗素子120がドレイン74などに「容量結合」するものとしたが本発明はこれに限定されない。すなわち、図13に示すように、抵抗素子134が、ドレイン電極76と接する導体136と、ソース電極78と接する導体138とに接続される構成としても本発明の効果を得ることができる。   In FIG. 12, the embedded insulating film inner electrode 114 and the like are added to the structure of FIG. 8 which is the structure of the second embodiment. However, the effect of the present invention can be obtained even when the insulating film inner electrode 86 is not provided. Can do. In the present embodiment, the resistance element 120 is “capacitively coupled” to the drain 74 and the like, but the present invention is not limited to this. That is, as shown in FIG. 13, the effect of the present invention can be obtained even when the resistance element 134 is connected to the conductor 136 in contact with the drain electrode 76 and the conductor 138 in contact with the source electrode 78.

なお、図13のように抵抗素子134をドレイン電極およびソース電極に「直接接続」する場合は、抵抗素子134の典型的な抵抗値は600Mオーム程度であるがこの値に特に限定されない。なお、図中の130は埋め込み絶縁膜、132は埋め込み絶縁膜内に形成された複数の埋め込み絶縁膜内電極である。一方図12のように「容量結合」させる場合の抵抗素子120の典型的な抵抗値は1kオーム程度であるがこの値に特に限定されない。   When the resistance element 134 is “directly connected” to the drain electrode and the source electrode as shown in FIG. 13, the typical resistance value of the resistance element 134 is about 600 MΩ, but is not particularly limited to this value. In the drawing, 130 is a buried insulating film, and 132 is a plurality of buried insulating film electrodes formed in the buried insulating film. On the other hand, a typical resistance value of the resistance element 120 in the case of “capacitive coupling” as shown in FIG. 12 is about 1 k ohm, but is not particularly limited to this value.

実施の形態4
本実施形態は、前述までの実施形態にあって、その特徴的な構成でもある高抵抗素子を使用して、さらに短絡保護機能を設けるようにした半導体装置に関する。以後、図14〜図27を参照して本実施形態の半導体装置210の詳細を説明する。本実施形態は、前述の実施形態における特徴に加え、ゲート電極の制御手段に特徴がある。従ってゲート電極があればパワーデバイスの種類は限定されないがここでは一例として縦型IGBTを挙げる。図14に示すように、本実施形態における半導体装置は、短絡保護回路501を除けば実施形態1と実質的に共通であるので、個々の構成の説明を省略するが、半導体層218、ゲート絶縁膜215、ゲート電極220、絶縁膜223、pベース層219、n+エミッタ層221、エミッタ電極230、コレクタ電極216、p+コレクタ層217、外周部234のn+チャネルストッパ領域229、ガードリング222、高抵抗素子530,532、ゲート配線231、ゲート端子(ゲートボンディングパット)232とを備える。
Embodiment 4
The present embodiment relates to a semiconductor device which uses the high resistance element which is the characteristic configuration in the above-described embodiments and further provides a short-circuit protection function. Hereinafter, the semiconductor device 210 according to the present embodiment will be described in detail with reference to FIGS. This embodiment is characterized by the gate electrode control means in addition to the features of the above-described embodiments. Accordingly, the type of power device is not limited as long as the gate electrode is provided, but a vertical IGBT is taken as an example here. As shown in FIG. 14, the semiconductor device in the present embodiment is substantially the same as that in the first embodiment except for the short circuit protection circuit 501, and thus the description of the individual configurations is omitted. The film 215, the gate electrode 220, the insulating film 223, the p base layer 219, the n + emitter layer 221, the emitter electrode 230, the collector electrode 216, the p + collector layer 217, the n + channel stopper region 229 in the outer peripheral portion 234, and the guard ring 222 , High resistance elements 530 and 532, a gate wiring 231, and a gate terminal (gate bonding pad) 232.

短絡保護回路501はゲート端子232とゲート配線231との間に設けられたゲート抵抗505、遅延回路部510、短絡判別回路部520、遮断回路部550とを備える。さらに、この短絡保護回路501とは別に、実施形態1で説明した高抵抗素子28と同一の抵抗素子からなる高抵抗素子530、532を利用したコレクタ−エミッタ間電圧検出(レベル変換)部528を備える。   The short circuit protection circuit 501 includes a gate resistor 505, a delay circuit unit 510, a short circuit determination circuit unit 520, and a cutoff circuit unit 550 provided between the gate terminal 232 and the gate wiring 231. In addition to the short-circuit protection circuit 501, a collector-emitter voltage detection (level conversion) unit 528 using high resistance elements 530 and 532 made of the same resistance element as the high resistance element 28 described in the first embodiment is provided. Prepare.

遅延回路部510は、ゲート端子232に入力されるゲート駆動信号を後述する所定時間遅延させて出力するものであり、実回路としては2つのNOT(インバータ)回路と、抵抗、キャパシターを組み合わせた周知技術で実現される(図14参照)。遅延回路部510の出力は短絡判別回路部520の一方の入力となる。コレクタ−エミッタ間電圧検出(レベル変換)部528はIGBTのコレクタ−エミッタ間電圧に比例した信号を出力するものである。具体的には、コレクタ−エミッタ間電圧検出(レベル変換)部528では、外周部234のチャネルストッパ領域229とエミッタ電極230との間に接続された高抵抗素子530、532を利用する。つまり、所望レベルの検出電圧(分圧電圧)が得られるように抵抗分割されている。
なお、所望レベルの出力電圧は、短絡保護回路内における信号の論理レベルに適合させることが必要であり、高抵抗素子530、532の両端に、例えば600Vの高電圧が印加されている状態において、ゲート駆動信号と同程度の15Vが出力されるように設定される。
そして、コレクタ−エミッタ間電圧検出(レベル変換)部528の出力は、短絡判別回路部520の他方の入力となる。短絡判別回路部520は遅延回路部510の出力とコレクタ−エミッタ間電圧検出(レベル変換)部528の出力を受け、この2つの信号レベルの組み合わせに応じて、正常動作状態か短絡状態であるかを判別する制御信号を出力する。
具体的には、遅延回路部510の出力とコレクタ−エミッタ間電圧検出(レベル変換)部528の出力、すなわち遅延されたゲート駆動信号と抵抗分割されたコレクタ−エミッタ間の信号(電圧)レベルがいずれもハイレベルである場合、短絡判別回路520からはハイレベルの信号が出力される。これは所謂2入力のAND論理をなすものであり、実回路としてはNOT回路540とNAND回路541で実現されている。遮断回路部550は短絡判別回路部520の出力を受け、ゲート配線231(ゲート電極220)とエミッタ電極230との間の電気的接続関係をオンオフすることにより切り替えるものである。この例ではN型MOSトランジスタを使用して、短絡判別回路部520の出力がハイレベルの場合、ゲート配線231(ゲート電極220)がエミッタ電極230と短絡され同電位(ゲート電圧が0V)とされる。
また、ゲート端子232とゲート配線231との間に設けられたゲート抵抗505は遮断回路部550によってゲート電圧が0Vとされた時に、ゲート端子232、すなわち遅延回路部510の入力信号レベルがローレベルにならないようにするものである。
The delay circuit unit 510 outputs a gate drive signal input to the gate terminal 232 with a predetermined time delay, which will be described later, and is a well-known combination of two NOT (inverter) circuits, a resistor, and a capacitor as an actual circuit. Realized by technology (see FIG. 14). The output of the delay circuit unit 510 becomes one input of the short circuit determination circuit unit 520. The collector-emitter voltage detection (level conversion) unit 528 outputs a signal proportional to the IGBT collector-emitter voltage. Specifically, the collector-emitter voltage detection (level conversion) unit 528 uses high resistance elements 530 and 532 connected between the channel stopper region 229 of the outer peripheral part 234 and the emitter electrode 230. That is, the resistors are divided so that a desired level of detection voltage (divided voltage) is obtained.
Note that the output voltage of a desired level needs to be adapted to the logic level of the signal in the short circuit protection circuit, and in a state where a high voltage of, for example, 600 V is applied to both ends of the high resistance elements 530 and 532, It is set so that 15V, which is about the same as the gate drive signal, is output.
The output of the collector-emitter voltage detection (level conversion) unit 528 becomes the other input of the short circuit determination circuit unit 520. The short circuit determination circuit unit 520 receives the output of the delay circuit unit 510 and the output of the collector-emitter voltage detection (level conversion) unit 528, and is in a normal operation state or a short circuit state depending on the combination of these two signal levels. A control signal for discriminating is output.
Specifically, the output of the delay circuit unit 510 and the output of the collector-emitter voltage detection (level conversion) unit 528, that is, the delayed gate drive signal and the resistance-divided collector-emitter signal (voltage) level. When both are at the high level, the short circuit determination circuit 520 outputs a high level signal. This is a so-called 2-input AND logic, and is realized by a NOT circuit 540 and a NAND circuit 541 as an actual circuit. The cutoff circuit unit 550 receives the output of the short circuit determination circuit unit 520 and switches the electrical connection relationship between the gate wiring 231 (gate electrode 220) and the emitter electrode 230 by turning on and off. In this example, an N-type MOS transistor is used, and when the output of the short-circuit determination circuit unit 520 is at a high level, the gate wiring 231 (gate electrode 220) is short-circuited with the emitter electrode 230 to have the same potential (gate voltage is 0V). The
The gate resistor 505 provided between the gate terminal 232 and the gate wiring 231 has a low input signal level of the gate terminal 232, that is, the delay circuit unit 510 when the gate voltage is set to 0 V by the cutoff circuit unit 550. It is to prevent it from becoming.

以後、本実施形態の半導体装置210の動作について説明する。ゲート端子232からのゲート駆動信号はゲート抵抗505を介してゲート電極220へ伝送される。一方ゲート駆動信号は遅延回路部510にも入力される。遅延回路部510は所定時間だけゲート駆動信号を遅延してNAND回路541へ出力される。   Hereinafter, the operation of the semiconductor device 210 of this embodiment will be described. A gate drive signal from the gate terminal 232 is transmitted to the gate electrode 220 via the gate resistor 505. On the other hand, the gate drive signal is also input to the delay circuit unit 510. The delay circuit unit 510 delays the gate drive signal by a predetermined time and outputs it to the NAND circuit 541.

NAND回路541は遅延されたゲート駆動信号と外周部分234からの入力がともにハイレベルである場合にローレベル(0)の信号をNOT回路540へ伝送する。NOT回路540はローレベルの信号をハイレベルの信号へ変換し、遮断回路部550をオン状態とする出力を行う。この場合、ゲート配線231は接地されるからゲート電極220へのIGBTをオン状態とするゲート駆動信号は伝送されない。   The NAND circuit 541 transmits a low level (0) signal to the NOT circuit 540 when both the delayed gate drive signal and the input from the outer peripheral portion 234 are at a high level. The NOT circuit 540 converts a low level signal into a high level signal, and outputs the shut-off circuit unit 550 in an on state. In this case, since the gate wiring 231 is grounded, a gate drive signal for turning on the IGBT to the gate electrode 220 is not transmitted.

ここで、NAND回路541はパワーデバイスをオン状態とするゲート駆動信号をハイレベルの信号とみなす。そして、外周部分234からの入力は、外周部分234に配置されるn+チャネルストッパ領域229にパワーデバイスのターンオン時相当の電圧(高電圧)がかかっている場合にハイレベルの信号であるとみなす。したがって、NAND回路541はパワーデバイスの主電極が短絡しているときにゲート配線231を接地するように出力を行うことができるから、半導体装置210の短絡保護を行うことができる。このように、遅延回路510の出力とチャネルストッパ領域229からの出力を入力として、短絡判別回路部520および遮断回路部550を用いてゲート配線231の接地を行うため短絡判別回路部520および遮断回路部550はゲート配線231の接地手段である。なお、接地手段の語意は本実施形態の構成に限定されず、ゲート駆動信号の情報と半導体層の電圧とから短絡保護のためにゲート配線の接地を行う手段のことをいう。   Here, the NAND circuit 541 regards the gate drive signal for turning on the power device as a high level signal. The input from the outer peripheral portion 234 is regarded as a high-level signal when a voltage (high voltage) corresponding to the turn-on of the power device is applied to the n + channel stopper region 229 arranged in the outer peripheral portion 234. . Therefore, since the NAND circuit 541 can perform output so that the gate wiring 231 is grounded when the main electrode of the power device is short-circuited, the semiconductor device 210 can be short-circuit protected. As described above, since the output of the delay circuit 510 and the output from the channel stopper region 229 are used as inputs, the short-circuit determination circuit unit 520 and the cutoff circuit unit 550 are used to ground the gate wiring 231. The unit 550 is a grounding unit for the gate wiring 231. The meaning of the grounding means is not limited to the configuration of the present embodiment, and means means for grounding the gate wiring for short-circuit protection from the information of the gate drive signal and the voltage of the semiconductor layer.

ここで本実施形態の遅延回路部510によって設定するべきゲート駆動信号の最適な遅延時間について説明する。図15は図16の測定回路を使っての正常動作時におけるIGBTの各動作信号波形を示したものである。まず、この図15を参照してIGBTのターンオン時間t1について説明する。今日広く使用されている一般的なIGBTはオフ状態でそのコレクタ−エミッタ間に数百ボルトのDC電圧(以降、コレクタ電圧と称し、Vceと表記する)が印加される。その状態で、ゲート−エミッタ間(以降、ゲート−エミッタ間に印加される電圧をゲート電圧と称し、Vgeと表記する)にハイレベル信号として十数ボルト、一般には15V程度の電圧が印加されるとIGBTのコレクタからエミッタへ電流が流れる(以降、この電流をコレクタ電流と称し、Icと表記する)。これによりIGBTはオフ状態からオン状態へターンオンする。逆にゲート電圧をローレベルである0ボルト又はマイナス数ボルトにするとコレクタ電流は遮断される。そして、ターンオン時間t1とは、Vgeの(ハイレベルへの)上昇が始まってからVceが低下するまでの時間とする。   Here, the optimum delay time of the gate drive signal to be set by the delay circuit unit 510 of the present embodiment will be described. FIG. 15 shows each operation signal waveform of the IGBT during normal operation using the measurement circuit of FIG. First, the turn-on time t1 of the IGBT will be described with reference to FIG. In a general IGBT widely used today, a DC voltage of several hundred volts (hereinafter referred to as collector voltage, expressed as Vce) is applied between its collector and emitter in an off state. In this state, a voltage of about a dozen volts, generally about 15 V, is applied as a high-level signal between the gate and the emitter (hereinafter, a voltage applied between the gate and the emitter is referred to as a gate voltage and is expressed as Vge). A current flows from the collector to the emitter of the IGBT (hereinafter, this current is referred to as a collector current and expressed as Ic). As a result, the IGBT is turned on from the off state to the on state. On the other hand, when the gate voltage is set to a low level of 0 volts or minus several volts, the collector current is cut off. The turn-on time t1 is the time from when Vge starts to rise (to the high level) until Vce drops.

次いで、図17は短絡を生じた回路、つまりは図16の測定回路中の負荷(L)を短絡させた場合(図中SWオン)におけるIGBTの各動作信号波形を示したものである。この図17を参照してIGBTが劣化(熱破壊)する時間であるt2について説明する。例えば、応用装置の負荷短絡や誤動作による電源短絡時(この例では負荷を短絡)においてはVgeをハイレベルにしても、Vceが低下することなく高電圧を維持する。このような場合、図17に示すとおりコレクタ電流Icは過大となり、IGBTが熱破壊するなどの劣化を起こす。ここではVgeの(ハイレベルへの)上昇が始まってからVceがハイレベルを維持してIGBTが熱破壊などの劣化を起こすまでの時間をt2と定義する。   Next, FIG. 17 shows each operation signal waveform of the IGBT when the short circuit is caused, that is, when the load (L) in the measurement circuit of FIG. 16 is short-circuited (SW on in the figure). With reference to this FIG. 17, t2 which is time for IGBT to deteriorate (thermal destruction) is demonstrated. For example, when the power supply is short-circuited due to a load short-circuit or malfunction of the application device (in this example, the load is short-circuited), even if Vge is set to the high level, the high voltage is maintained without lowering Vce. In such a case, the collector current Ic becomes excessive as shown in FIG. 17, causing deterioration such as thermal breakdown of the IGBT. Here, the time from when Vge starts to rise (to the high level) until Vce maintains the high level and the IGBT causes deterioration such as thermal breakdown is defined as t2.

以上をふまえ、遅延回路部510がゲート駆動信号を遅延する時間はt1より長く、t2より短い時間であるt3に設定される。t3については図18を参照して説明する。図18は短絡を生じた回路にあって本実施形態によるIGBTの各動作信号波形である。この波形で示すとおり、t3はt1より長い時間であるからIGBTが通常のターンオン動作を行う場合に、遮断回路部550によってゲート配線231(ゲート電極220)とエミッタ電極230とを同電位(ゲート電圧が0V)にすることはない。一方、t3はt2より短い時間であるから、パワーデバイスが短絡しコレクタ電流Icが大電流となった場合にIGBTが劣化(熱破壊)を起こす前にゲート配線231(ゲート電極220)とエミッタ電極230とを同電位(ゲート電圧が0V)にし、IGBTをオフ状態にする。よって本実施形態の構成によればIGBTの劣化を回避する短絡保護ができる。   Based on the above, the time for which the delay circuit unit 510 delays the gate drive signal is set to t3 which is longer than t1 and shorter than t2. t3 will be described with reference to FIG. FIG. 18 shows waveforms of operation signals of the IGBT according to the present embodiment in the circuit in which a short circuit has occurred. As shown in this waveform, since t3 is longer than t1, when the IGBT performs a normal turn-on operation, the gate wiring 231 (gate electrode 220) and the emitter electrode 230 are set to the same potential (gate voltage) by the cutoff circuit unit 550. Is not 0V). On the other hand, since t3 is shorter than t2, when the power device is short-circuited and the collector current Ic becomes a large current, the gate wiring 231 (gate electrode 220) and the emitter electrode before the IGBT deteriorates (thermal destruction). 230 is set to the same potential (gate voltage is 0 V), and the IGBT is turned off. Therefore, according to the configuration of the present embodiment, short circuit protection that avoids the deterioration of the IGBT can be performed.

なお、本実施形態の半導体装置231を簡略化して表した回路図を図19に示す。   FIG. 19 shows a simplified circuit diagram of the semiconductor device 231 of this embodiment.

本実施形態における短絡保護回路501については様々な変形が考えられる。例えば短絡判別回路部520への入力として、抵抗素子530を介した外周部分234の電圧を用いたが、短絡判別回路部520にはVce電圧に比例する入力があれば本発明の効果を得られるからこれに限定されない。また短絡判別回路部520はエミッタ電極230とゲート配線231を接続させることで接地を行うこととしたが、別の方法でゲート配線231を接地してもよい。   Various modifications can be considered for the short circuit protection circuit 501 in the present embodiment. For example, although the voltage of the outer peripheral portion 234 via the resistance element 530 is used as an input to the short circuit determination circuit unit 520, the effect of the present invention can be obtained if the short circuit determination circuit unit 520 has an input proportional to the Vce voltage. It is not limited to this. In addition, although the short circuit determination circuit unit 520 performs the grounding by connecting the emitter electrode 230 and the gate wiring 231, the gate wiring 231 may be grounded by another method.

また、短絡保護回路501を構成する遅延回路部510や短絡判別回路部520などの電源電圧は、専用の電源端子を介して供給する以外に、ゲート端子232のゲート駆動信号による電圧や、高抵抗素子530、532を利用した抵抗分割による電圧を用いていても良い。このようにすると、専用の電源を設ける場合と比較して、電源用ボンディングパッドが必要なくなる分、半導体装置を小型化できる。   The power supply voltages of the delay circuit unit 510 and the short circuit determination circuit unit 520 constituting the short circuit protection circuit 501 are not only supplied via a dedicated power supply terminal, but also a voltage generated by the gate drive signal of the gate terminal 232, a high resistance A voltage obtained by resistance division using the elements 530 and 532 may be used. In this way, the semiconductor device can be miniaturized as much as no power supply bonding pad is required, as compared with the case where a dedicated power supply is provided.

ところで、本実施形態の技術思想は例えば半導体層表面にゲート、ソース、ドレインが形成される横型のパワーデバイスにも応用できる。図20はそのような例を示す図である。図20では前述の実施形態2にあって、その特徴的な構成(図8)でもある高抵抗素子を使用して、さらに短絡保護機能を設けるようにした半導体装置である。図20に記載の構成は短絡保護回路501を除けば実施形態2と実質的に共通し、短絡保護回路については本実施形態において前述したものと同等である。
すなわち、図20に記載のパワーデバイスの構成はn-層の半導体層272、n+のドレイン274、ドレイン電極276、pベース領域280、n+のソース291、p+領域293、ソース電極278、絶縁膜284、ゲート電極282、絶縁膜内電極286、高抵抗素子530、高抵抗素子532、ゲート配線281、ゲート端子283を備える点において実施形態2と一致する。そして、図20に記載のパワーデバイスの構成はゲート端子283とゲート配線281との間に設けられたゲート抵抗505、遅延回路部510、短絡判別回路部520、遮断回路部550、高抵抗素子530、532を利用したドレイン−ソース間電圧検出(レベル変換)部598とを備える。接地手段を含み、これらは前述の記載から把握できるため詳細な説明を省略する。
By the way, the technical idea of this embodiment can be applied to a horizontal power device in which a gate, a source, and a drain are formed on the surface of a semiconductor layer, for example. FIG. 20 is a diagram showing such an example. FIG. 20 shows a semiconductor device in which the high-resistance element which is the characteristic configuration (FIG. 8) in the above-described second embodiment is further provided with a short-circuit protection function. The configuration shown in FIG. 20 is substantially the same as that of the second embodiment except for the short-circuit protection circuit 501, and the short-circuit protection circuit is the same as that described above in the present embodiment.
That is, the configuration of the power device shown in FIG. 20 includes an n− layer semiconductor layer 272, an n + drain 274, a drain electrode 276, a p base region 280, an n + source 291, a p + region 293, a source electrode 278, This embodiment is the same as Embodiment 2 in that an insulating film 284, a gate electrode 282, an in-insulating film electrode 286, a high resistance element 530, a high resistance element 532, a gate wiring 281 and a gate terminal 283 are provided. 20 includes a gate resistor 505, a delay circuit unit 510, a short circuit determination circuit unit 520, a cutoff circuit unit 550, and a high resistance element 530 provided between the gate terminal 283 and the gate wiring 281. And a drain-source voltage detection (level conversion) unit 598 using 532. Including the grounding means, which can be understood from the above description, will not be described in detail.

また、本実施形態で説明した短絡保護の発明と、実施形態1又は2で説明した耐圧保持の技術を併用するとさらなる半導体装置の性能向上が可能である。ここで、耐圧保持のために用いる抵抗素子(図1における高抵抗素子28のことをいう)と、短絡保護のために用いられる抵抗素子(図14における抵抗素子530、532のことをいう)とは1の抵抗素子で形成できる。ここで、そのような半導体装置の平面図を図21に示す。図21において図14と同一の符号が付されたものは図14と同様であるから説明を省略すると共に、その両者の関係は図1と図2との関係に同じである。図21のように一本の渦巻状に形成されたコレクタ−エミッタ間電圧検出(レベル変換)部528はチャネルストッパ領域229とエミッタ電極230とを接続する。また短絡保護回路501はレイアウト的に適しているといえるゲート端子(ボンディングパッド)232に近接した領域に形成されている。   Further, when the invention of short circuit protection described in the present embodiment is combined with the withstand voltage holding technology described in Embodiment 1 or 2, the performance of the semiconductor device can be further improved. Here, a resistance element used for holding a withstand voltage (referring to the high resistance element 28 in FIG. 1) and a resistance element used for short circuit protection (referring to the resistance elements 530 and 532 in FIG. 14) Can be formed by one resistive element. A plan view of such a semiconductor device is shown in FIG. 21 with the same reference numerals as those in FIG. 14 are the same as those in FIG. 14 and thus will not be described. The relationship between the two is the same as the relationship between FIG. 1 and FIG. As shown in FIG. 21, a collector-emitter voltage detection (level conversion) unit 528 formed in a single spiral shape connects the channel stopper region 229 and the emitter electrode 230. The short-circuit protection circuit 501 is formed in a region close to the gate terminal (bonding pad) 232 that can be said to be suitable for layout.

コレクタ−エミッタ間電圧検出(レベル変換)部528はその途中でガードリング222とコンタクト258により接続されて、図1における高抵抗素子28に相当する抵抗素子を形成する。またコレクタ−エミッタ間電圧検出(レベル変換)部528を抵抗分割した抵抗素子530と抵抗素子532の間から分岐された電圧が、短絡保護回路501における短絡判別回路520の一入力に接続されている。このようなコレクタ−エミッタ間電圧検出(レベル変換)部528を用いることにより、簡素な構成で半導体装置の短絡保護と耐圧保持が可能となる。   The collector-emitter voltage detection (level conversion) unit 528 is connected to the guard ring 222 and the contact 258 in the middle thereof to form a resistance element corresponding to the high resistance element 28 in FIG. In addition, a voltage branched from between the resistance element 530 and the resistance element 532 obtained by resistance-dividing the collector-emitter voltage detection (level conversion) unit 528 is connected to one input of the short-circuit determination circuit 520 in the short-circuit protection circuit 501. . By using such a collector-emitter voltage detection (level conversion) unit 528, it is possible to protect the semiconductor device from short circuit and maintain a withstand voltage with a simple configuration.

前述した渦巻状のコレクタ−エミッタ間電圧検出(レベル変換)部528の他の例としては様々考えられるが、実施形態1の場合と同様、例えば図22に示す直線状の高抵抗素子270を用いても良いし、図23に示す階段状の高抵抗素子279を用いてもよい。このような形状の抵抗素子を用いる効果は前述の通りである。なお、図22や図23の場合、高抵抗素子が複数形成されているので、それぞれ高抵抗素子を抵抗分割して得られる電圧は、ガードリング用であれ、Vce検出用であれ、多少のバラツキを生じることがある。そのため設計上同電位になる部分は、アルミ配線などによる電気的な接続を強化してもよく、例えば図24(a)に示す図22の破線Cで囲まれた領域の拡大平面図、図24(b)に示す図24(a)の破線D−Dに沿った断面図のようにして実現される。図24における601、602はアルミニウムなどの導体パターン(配線)であり、603は高抵抗素子と導体パターンを接続するコンタクトであり、604はガードリングと導体パターンを接続するコンタクトである。   Various other examples of the above-described spiral collector-emitter voltage detection (level conversion) unit 528 are conceivable. For example, a linear high resistance element 270 shown in FIG. Alternatively, a step-like high resistance element 279 shown in FIG. 23 may be used. The effect of using such a resistance element is as described above. In the case of FIGS. 22 and 23, since a plurality of high resistance elements are formed, the voltage obtained by dividing each of the high resistance elements by resistance is somewhat varied regardless of whether it is for guard rings or for Vce detection. May occur. For this reason, a portion having the same potential in the design may reinforce electrical connection by aluminum wiring or the like. For example, an enlarged plan view of a region surrounded by a broken line C in FIG. 22 shown in FIG. This is realized as shown in a cross-sectional view along broken line DD in FIG. In FIG. 24, reference numerals 601 and 602 denote conductor patterns (wirings) such as aluminum, 603 denotes a contact connecting the high resistance element and the conductor pattern, and 604 denotes a contact connecting the guard ring and the conductor pattern.

ところで、一般に縦型パワーデバイスでは寄生容量を抑制するために、本実施形態で説明した短絡保護回路501を構成する素子は、SOI上に形成することが望ましい。また、本実施形態で説明した短絡保護回路501をパワーデバイスを形成するチップとは別チップとして形成(用意)することで、遅延回路部510の時定数などの調整を容易化することも有益である。   By the way, in general, in a vertical power device, in order to suppress parasitic capacitance, it is desirable that the elements constituting the short circuit protection circuit 501 described in this embodiment be formed on an SOI. It is also beneficial to facilitate adjustment of the time constant of the delay circuit unit 510 by forming (preparing) the short-circuit protection circuit 501 described in this embodiment as a chip separate from the chip that forms the power device. is there.

そこで、パワーデバイスを形成する基板と、遅延回路部510や短絡判別回路部520を形成する基板とを別基板とすることが考えられる。そのような場合、例えば、図25のような構成とすることができる。図25では、図14におけるNOT回路540が、状態を維持する回路であるフリップフロップ回路を介して出力を行う場合の構成が示されている。フリップフロップ回路を用いるとゲート抵抗の有無やその抵抗値さらには配置位置を自由に設定できる。   Therefore, it is conceivable that the substrate on which the power device is formed and the substrate on which the delay circuit unit 510 and the short circuit determination circuit unit 520 are formed are separate substrates. In such a case, for example, the configuration shown in FIG. FIG. 25 shows a configuration in the case where the NOT circuit 540 in FIG. 14 performs output via a flip-flop circuit that is a circuit that maintains the state. When a flip-flop circuit is used, the presence / absence of a gate resistor, its resistance value, and the arrangement position can be set freely.

図25に示すように、エミッタ電極230上に半田等の導電性接合剤318を介して半導体基板320が形成される。半導体基板320上には前述のフリップフロップ回路を構成するCMOSのためのPウェル領域322とNウェル領域324が形成される。半導体基板320にはフリップフロップ回路だけでなく遅延回路510や短絡判別回路部520が形成される。このようにパワーデバイスが形成される基板とは別の基板にフリップフロップ回路(遅延回路部510や短絡判別回路部520も含む)を形成することにより、パワーデバイスなどの設計変更に対して、部品の一部変更で対応できる。   As shown in FIG. 25, a semiconductor substrate 320 is formed on the emitter electrode 230 via a conductive bonding agent 318 such as solder. On the semiconductor substrate 320, a P-well region 322 and an N-well region 324 for the CMOS constituting the above-described flip-flop circuit are formed. In addition to the flip-flop circuit, a delay circuit 510 and a short circuit determination circuit unit 520 are formed on the semiconductor substrate 320. In this way, by forming a flip-flop circuit (including the delay circuit unit 510 and the short circuit determination circuit unit 520) on a substrate different from the substrate on which the power device is formed, it is possible to cope with design changes such as power devices. Can be handled with some changes.

さらに、図25のようにCMOSを形成する場合には寄生素子の形成に伴うラッチアップに対する十分な耐量を有することが望ましい。そこで、図26のようにNMOS350のドレイン352と、PMOS351のドレイン354の直下に絶縁膜356を形成しておくとラッチアップを抑制できる。また、図27のようにT字型の絶縁膜340によりPウェル領域322とNウェル領域324を分離することによってより効果的なラッチアップの抑制ができる。これらの絶縁膜を設けることによりラッチアップを抑制してチップの小型化が可能となる。   Furthermore, when a CMOS is formed as shown in FIG. 25, it is desirable to have a sufficient tolerance against latch-up associated with the formation of parasitic elements. Therefore, latch-up can be suppressed by forming an insulating film 356 immediately below the drain 352 of the NMOS 350 and the drain 354 of the PMOS 351 as shown in FIG. Further, by separating the P well region 322 and the N well region 324 by the T-shaped insulating film 340 as shown in FIG. 27, more effective latch-up can be suppressed. By providing these insulating films, latch-up can be suppressed and the chip can be downsized.

実施の形態5
本実施形態は短絡保護のために特定のゲート電極に対してオン状態(定常状態)にのみゲート駆動信号を印加する半導体装置に関する。本実施形態の構成は図28を参照して説明する。ガードリングを有するパワーデバイスは実施の形態1で説明したIGBTと同様である。実施形態1との相違点を説明する。まず、ゲート電極409がゲート配線431によりゲート抵抗430を介してゲート端子432と接続されている。一方ゲート電極408およびゲート電極411は、ゲート端子432とNOT回路428およびNOR回路420を介して接続される。
Embodiment 5
The present embodiment relates to a semiconductor device that applies a gate drive signal only to an on state (steady state) with respect to a specific gate electrode for short circuit protection. The configuration of this embodiment will be described with reference to FIG. A power device having a guard ring is the same as the IGBT described in the first embodiment. Differences from the first embodiment will be described. First, the gate electrode 409 is connected to the gate terminal 432 through the gate resistor 430 by the gate wiring 431. On the other hand, gate electrode 408 and gate electrode 411 are connected to gate terminal 432 via NOT circuit 428 and NOR circuit 420.

前述のNOR回路420はNOT回路428の出力と、抵抗素子418を介した外周部分34の電圧を入力とする。より詳細には、NOR回路420は、NOT回路の出力がローレベル(0)でかつ、外周部分34の電位がローレベルすなわち短絡時におけるVceより低い場合にゲート駆動信号をゲート電極408、411へ出力する。   The aforementioned NOR circuit 420 receives the output of the NOT circuit 428 and the voltage of the outer peripheral portion 34 via the resistance element 418 as inputs. More specifically, the NOR circuit 420 outputs a gate drive signal to the gate electrodes 408 and 411 when the output of the NOT circuit is low level (0) and the potential of the outer peripheral portion 34 is low level, that is, lower than Vce at the time of short circuit. Output.

従って、ゲート電極408、411に(パワーデバイスをオン状態とするべき)ゲート駆動信号が印加されるのは、ゲート端子432から伝送されるゲート駆動信号が(パワーデバイスをオン状態とするべき)ハイレベルであり、かつVce電圧が通常動作時相当に低い(ローレベル)場合に限られる。よって他の場合、例えばターンオン時や短絡状態のときにはゲート電極408、411にパワーデバイスをオン状態とするべきゲート駆動信号を印加しない。ゲート駆動信号を特定のゲート電極へは直接に伝送しない上述の構成を特にゲート駆動信号の供給手段と称する。   Therefore, the gate drive signal (to turn on the power device) is applied to the gate electrodes 408 and 411 because the gate drive signal transmitted from the gate terminal 432 is high (to turn on the power device). This is limited to the case where the voltage is Vce and the Vce voltage is considerably low during normal operation (low level). Therefore, in other cases, for example, at the time of turn-on or in a short circuit state, the gate drive signal for turning on the power device is not applied to the gate electrodes 408 and 411. The above-described configuration in which a gate drive signal is not directly transmitted to a specific gate electrode is particularly referred to as a gate drive signal supply unit.

このようなゲート駆動信号の供給手段によれば、Vceが高電圧となる短絡状態においてはゲート電極408、411はオン状態とすべきゲート駆動信号が与えられずオフ状態を維持するから半導体装置400の短絡耐量の向上ができる。また、Vceが低下している通常動作時にはゲート電極408、411にオン状態とすべきゲート駆動信号が印加されるから半導体装置400のオン状態における素子抵抗を低減でき、定常損失を低減できる。さらに、抵抗素子416、418をガードリング22と適宜接続して、上述の耐圧保持の機能を持たせることもできる。   According to such a gate drive signal supply means, in the short circuit state where Vce becomes a high voltage, the gate electrodes 408 and 411 are not supplied with the gate drive signal to be turned on and are maintained in the off state. Can improve the short circuit resistance. In addition, since a gate drive signal to be turned on is applied to the gate electrodes 408 and 411 during normal operation when Vce is lowered, the element resistance in the on state of the semiconductor device 400 can be reduced, and the steady loss can be reduced. Furthermore, the resistance elements 416 and 418 can be appropriately connected to the guard ring 22 to have the above-described function of maintaining the withstand voltage.

本実施形態の特徴は複数のゲート電極が、直接ゲート駆動信号が印加されるゲート電極と、定常状態にのみオン状態となるゲート電極とから構成される点にある。従ってこの発明の範囲を逸脱しない限りにおいて様々な変形が可能である。例えば、図29に示すようにNOT回路428からの入力と外周部分34からの入力を受けるOR回路450を備え、OR回路450のローレベルの出力(0)に対してオン状態となるPMOS460と、OR回路のハイレベルの出力(1)に対してオン状態となってゲート配線465を接地するNMOS462を備える構成としても本発明の効果を失わない。   The feature of this embodiment is that a plurality of gate electrodes are composed of a gate electrode to which a gate drive signal is directly applied and a gate electrode that is turned on only in a steady state. Accordingly, various modifications can be made without departing from the scope of the present invention. For example, as shown in FIG. 29, a PMOS 460 that includes an OR circuit 450 that receives an input from the NOT circuit 428 and an input from the outer peripheral portion 34 and is turned on with respect to a low level output (0) of the OR circuit 450; Even if the configuration includes the NMOS 462 that is turned on with respect to the high-level output (1) of the OR circuit and grounds the gate wiring 465, the effect of the present invention is not lost.

10 半導体装置、 18 半導体層、 20 ゲート電極、 22 ガードリング、 28 高抵抗素子、 29 チャネルストッパ領域、 30 エミッタ電極、 34 外周部分 DESCRIPTION OF SYMBOLS 10 Semiconductor device, 18 Semiconductor layer, 20 Gate electrode, 22 Guard ring, 28 High resistance element, 29 Channel stopper area | region, 30 Emitter electrode, 34 Outer peripheral part

Claims (5)

半導体層を有する半導体基板に形成されたパワーデバイスと、
前記パワーデバイスを囲むように前記半導体基板に形成された複数のガードリングと、
前記複数のガードリングのうち外周側のガードリングほど高電圧を印加する電圧印加手段とを備え、
前記パワーデバイスは、
前記半導体基板表面に形成された接地されたエミッタ電極と、
前記半導体基板表面に形成されたゲート電極と、
前記半導体基板表面と反対の面である裏面に形成されたコレクタ電極と、を有し、
前記電圧印加手段は、前記半導体層の前記複数のガードリングの外周部分と前記エミッタ電極との間に直列に接続された、複数の抵抗素子を有し、
前記外周側のガードリングほど前記複数の抵抗素子のうち前記外周部分側の抵抗素子と直接又は導体パターンを介して接続されることを特徴とする半導体装置。
A power device formed on a semiconductor substrate having a semiconductor layer;
A plurality of guard rings formed on the semiconductor substrate so as to surround the power device;
Voltage applying means for applying a higher voltage to the outer peripheral guard ring among the plurality of guard rings,
The power device is
A grounded emitter electrode formed on the surface of the semiconductor substrate;
A gate electrode formed on the surface of the semiconductor substrate;
A collector electrode formed on the back surface, which is the surface opposite to the semiconductor substrate surface,
The voltage application means has a plurality of resistance elements connected in series between the outer peripheral portions of the plurality of guard rings of the semiconductor layer and the emitter electrode,
The semiconductor device according to claim 1, wherein the guard ring on the outer peripheral side is connected to the resistor element on the outer peripheral portion side among the plurality of resistive elements directly or via a conductor pattern.
前記複数の抵抗素子は、前記複数のガードリングの上にあり、
前記複数の抵抗素子は、1本の多結晶シリコンで形成されたことを特徴とする請求項1に記載の半導体装置。
The plurality of resistance elements are on the plurality of guard rings,
The semiconductor device according to claim 1, wherein the plurality of resistance elements are formed of a single polycrystalline silicon.
前記1本の多結晶シリコンは前記複数のガードリング上に渦巻状に形成されたことを特徴とする請求項2に記載の半導体装置。   The semiconductor device according to claim 2, wherein the one polycrystalline silicon is formed in a spiral shape on the plurality of guard rings. 前記1本の多結晶シリコンは前記複数のガードリング上に直線的に形成されたことを特徴とする請求項2に記載の半導体装置。   3. The semiconductor device according to claim 2, wherein the single polycrystalline silicon is linearly formed on the plurality of guard rings. 前記1本の多結晶シリコンは前記複数のガードリング上にジグザグに形成されたことを特徴とする請求項2に記載の半導体装置。   3. The semiconductor device according to claim 2, wherein the single polycrystalline silicon is formed in a zigzag manner on the plurality of guard rings.
JP2013090435A 2013-04-23 2013-04-23 Semiconductor device Pending JP2013179327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013090435A JP2013179327A (en) 2013-04-23 2013-04-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013090435A JP2013179327A (en) 2013-04-23 2013-04-23 Semiconductor device

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008291327A Division JP2010118548A (en) 2008-11-13 2008-11-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JP2013179327A true JP2013179327A (en) 2013-09-09

Family

ID=49270639

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013090435A Pending JP2013179327A (en) 2013-04-23 2013-04-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JP2013179327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166827A1 (en) * 2022-03-04 2023-09-07 ローム株式会社 Semiconductor device and semiconductor module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294803A (en) * 1998-11-05 2000-10-20 Fuji Electric Co Ltd Semiconductor device
JP2006269633A (en) * 2005-03-23 2006-10-05 Toshiba Corp Semiconductor device for power
JP2007123926A (en) * 2006-12-18 2007-05-17 Renesas Technology Corp Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000294803A (en) * 1998-11-05 2000-10-20 Fuji Electric Co Ltd Semiconductor device
JP2006269633A (en) * 2005-03-23 2006-10-05 Toshiba Corp Semiconductor device for power
JP2007123926A (en) * 2006-12-18 2007-05-17 Renesas Technology Corp Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023166827A1 (en) * 2022-03-04 2023-09-07 ローム株式会社 Semiconductor device and semiconductor module

Similar Documents

Publication Publication Date Title
JP2010118548A (en) Semiconductor device
JP5340695B2 (en) Trench gate type insulated gate bipolar transistor
JP4973238B2 (en) Semiconductor device
US10367056B2 (en) Semiconductor device
JP2002305207A (en) Lateral semiconductor component by thin-film soi technology
WO2015001926A1 (en) Semiconductor device
US10396775B2 (en) Semiconductor device for high-voltage circuit
KR101742447B1 (en) Semiconductor device
US9711592B2 (en) Diode and signal output circuit including the same
US10217861B2 (en) High voltage integrated circuit with high voltage junction termination region
KR20180131722A (en) High Voltage Semiconductor Device
US9865586B2 (en) Semiconductor device and method for testing the semiconductor device
JP2007288774A (en) Power mos circuit which realizes both low switching loss and low noise
JP5991363B2 (en) Semiconductor device
JP2016162910A (en) Semiconductor device
TWI631707B (en) Semiconductor device
JP5660092B2 (en) Semiconductor device
WO2016132418A1 (en) Semiconductor integrated circuit
JPWO2011152253A1 (en) Semiconductor device and drive circuit
JP2013179327A (en) Semiconductor device
JP2012028451A (en) Semiconductor integrated circuit
JP2013187436A (en) Semiconductor device
JP2010212710A (en) Semiconductor device

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140422

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150224