JP2013179114A - Substrate for flexible printed wiring, film for semiconductor carrier and semiconductor device - Google Patents

Substrate for flexible printed wiring, film for semiconductor carrier and semiconductor device Download PDF

Info

Publication number
JP2013179114A
JP2013179114A JP2012041079A JP2012041079A JP2013179114A JP 2013179114 A JP2013179114 A JP 2013179114A JP 2012041079 A JP2012041079 A JP 2012041079A JP 2012041079 A JP2012041079 A JP 2012041079A JP 2013179114 A JP2013179114 A JP 2013179114A
Authority
JP
Japan
Prior art keywords
layer
chromium
nickel
flexible printed
printed wiring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012041079A
Other languages
Japanese (ja)
Inventor
Isazumi Ueha
功純 上羽
Mikihiro Ogura
幹弘 小倉
Masayuki Matsubara
正幸 松原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Advanced Film Co Ltd
Original Assignee
Toray Advanced Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Advanced Film Co Ltd filed Critical Toray Advanced Film Co Ltd
Priority to JP2012041079A priority Critical patent/JP2013179114A/en
Publication of JP2013179114A publication Critical patent/JP2013179114A/en
Pending legal-status Critical Current

Links

Landscapes

  • Parts Printed On Printed Circuit Boards (AREA)
  • Laminated Bodies (AREA)
  • Wire Bonding (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a substrate for flexible printed wiring in which metal residue is suppressed after etching process while suppressing occurrence of migration, and to provide a film for semiconductor carrier and a semiconductor device using the substrate.SOLUTION: In the substrate for flexible printed wiring where a metal deposition layer is provided on one or both surfaces of a plastic film 7, and a conductive metal layer is laminated on the metal deposition layer by electric plating, the metal deposition layer consists of at least one layer containing nickel and chromium as main components and a layer (S layer) containing copper as a main component, and the summation of XY/100 is 0.9 or more and less than 5, where X (nm) is the thickness of each layer containing nickel and chromium as main components, and Y (wt.%) is the chromium content.

Description

本発明は、金属蒸着層/導電金属層積層フィルムによるフレキシブルプリント配線用基板、及び該基板上に回路パターンが形成された半導体キャリア用フィルム、及び該半導体キャリア用フィルム上にIC、コンデンサ等素子が実装された半導体装置に関するものである。   The present invention relates to a substrate for flexible printed wiring using a metal vapor deposition layer / conductive metal layer laminated film, a film for a semiconductor carrier having a circuit pattern formed on the substrate, and an element such as an IC or a capacitor on the film for the semiconductor carrier. The present invention relates to a mounted semiconductor device.

従来、フレキシブルプリント配線用基板として、接着剤層を介して支持体であるプラスチックフィルムと導体層である銅箔を貼り合せた3層構造のフレキシブルプリント配線用基板が知られている。この3層構造タイプのフレキシブルプリント配線用基板は、用いられる接着剤の耐熱性がプラスチックフィルムより劣るため、加工後の寸法変化が大きいという問題があり、また用いられる銅箔の厚さが通常10μm以上であるため、ピッチの狭い高密度配線用のパターニングが難しいという欠点もあった。一方、プラスチックフィルム上に接着剤を用いることなく、湿式めっき法や乾式めっき法(例えば、真空蒸着法、スパッタリング法、イオンプレーティング法など)により、導体層としての金属層を形成させた2層構造タイプのフレキシブルプリント配線用基板も知られている。この2層構造タイプのフレキシブルプリント配線用基板の金属層は、回路となる導体層である銅を主成分とする層と、支持体となるプラスチックフィルムとの間にニッケルとクロムを主成分とする層を設ける構成が広く用いられている。この2層構造タイプのフレキシブルプリント配線用基板は、導体層を10μmよりも薄くすることができるため高密度配線が可能であるが、過酷な熱負荷試験(例えば、温度85℃、湿度85%、1000時間)を行った場合に 高温高湿環境下で顕著となるマイグレーションと呼ばれる現象により、配線間の絶縁が損なわれ回路が短絡するという問題があった。マイグレーションとは、高温高湿度雰囲気下で金属に電界をかけた時に、金属原子がイオン化し、電界の向きに移動することである。   Conventionally, a flexible printed wiring board having a three-layer structure in which a plastic film as a support and a copper foil as a conductor layer are bonded via an adhesive layer is known as a flexible printed wiring board. This three-layer structure type flexible printed wiring board has a problem that the dimensional change after processing is large because the heat resistance of the adhesive used is inferior to that of a plastic film, and the thickness of the copper foil used is usually 10 μm. As described above, there is a drawback that patterning for high-density wiring with a narrow pitch is difficult. On the other hand, two layers in which a metal layer as a conductor layer is formed on a plastic film by a wet plating method or a dry plating method (for example, a vacuum deposition method, a sputtering method, an ion plating method, etc.) without using an adhesive. Structural type flexible printed wiring boards are also known. The metal layer of the flexible printed wiring board of this two-layer structure type has nickel and chromium as main components between a layer mainly composed of copper as a conductor layer serving as a circuit and a plastic film serving as a support. A structure in which a layer is provided is widely used. The flexible printed wiring board of this two-layer structure type allows a high-density wiring because the conductor layer can be made thinner than 10 μm, but a severe heat load test (for example, temperature 85 ° C., humidity 85%, 1000 hours), a phenomenon called migration that becomes prominent in a high-temperature and high-humidity environment causes a problem that insulation between wires is impaired and a circuit is short-circuited. Migration is that when an electric field is applied to a metal in a high temperature and high humidity atmosphere, the metal atoms are ionized and move in the direction of the electric field.

この問題を解決するために、ニッケルとクロムを主成分とする層に関する発明が実施されている(特許文献1)。   In order to solve this problem, an invention relating to a layer mainly composed of nickel and chromium has been implemented (Patent Document 1).

特許第4550080号公報Japanese Patent No. 455080

特許文献1の発明はニッケルとクロムを主成分とする層において、クロムの含有量を高くすることでマイグレーションの発生を抑制するものである。クロムの分率を高くした場合には、フレキシブルプリント配線用基板に回路を形成するためのエッチング工程において形成された配線間に金属残渣が多くなり、この残渣が起因で配線間の絶縁が損なわれ、回路が短絡する可能性が高くなるという問題があった。   The invention of Patent Document 1 suppresses the occurrence of migration by increasing the chromium content in a layer mainly composed of nickel and chromium. When the chromium fraction is increased, metal residue increases between the wirings formed in the etching process for forming a circuit on the flexible printed wiring board, and the insulation between the wirings is impaired due to this residue. There was a problem that the possibility of a short circuit was increased.

本発明は、回路を形成するためのエッチング工程後の金属残渣を抑制し、かつ、マイグレーションの発生を抑制することのできるフレキシブルプリント配線用基板及び該基板を使用した半導体キャリア用フィルムおよび半導体装置を提供する。   The present invention relates to a flexible printed wiring board capable of suppressing metal residues after an etching process for forming a circuit and suppressing occurrence of migration, a film for a semiconductor carrier using the substrate, and a semiconductor device. provide.

本発明のフレキシブルプリント配線用基板は、プラスチックフィルムの片面または両面に、金属蒸着層を設け、該金属蒸着層上に電気めっき法で銅を主成分とする層(M層)を積層してなるフレキシブルプリント配線用基板において、該金属蒸着層がニッケルとクロムを主成分とする層が1層以上と銅を主成分とする層(S層)からなり、1層以上のニッケルとクロムを主成分とする層について膜厚をX(nm)、クロム含有率をY(重量%)(wt%と記載する場合がある。)としたとき、XY/100の総和が0.9以上5未満であることを特徴とする。   The flexible printed wiring board of the present invention is formed by providing a metal vapor deposition layer on one or both sides of a plastic film, and laminating a layer (M layer) containing copper as a main component by electroplating on the metal vapor deposition layer. In a flexible printed wiring board, the metal vapor deposition layer is composed of one or more layers containing nickel and chromium as main components and a layer containing copper as a main component (S layer). When the film thickness is X (nm) and the chromium content is Y (wt%) (may be described as wt%), the sum of XY / 100 is 0.9 or more and less than 5. It is characterized by that.

本発明のフレキシブルプリント配線用基板は、ニッケルとクロムを主成分とする層の膜厚とクロム含有率を規定することで金属残渣の抑制とマイグレーション発生の抑制を両立させることができる。そして、本発明のフレキシブルプリント配線用基板を用いることで半導体キャリア用フィルムおよび半導体装置の信頼性を高めることができる。   The flexible printed wiring board of the present invention can achieve both suppression of metal residues and suppression of migration by regulating the film thickness and chromium content of a layer mainly composed of nickel and chromium. And the reliability of the film for semiconductor carriers and a semiconductor device can be improved by using the board | substrate for flexible printed wirings of this invention.

マイグレーションの有無を確認するテストで使用する回路パターンの一例である。It is an example of the circuit pattern used in the test which confirms the presence or absence of migration. マイグレーションの発生状態の一例を示す顕微鏡写真である。It is a microscope picture which shows an example of the generation | occurrence | production state of migration.

本発明で用いられる基材としてのプラスチックフィルムを例示すると、ポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレート、ポリエチレン−α,β−ビス(2−クロルフェノキシエタン−4,4′−ジカルボキシレート)などのポリエステル、ポリフェニレンサルファイド、ポリエーテルスルホン、ポリエーテルエーテルケトン、芳香族ポリアミド、ポリアリレート、ポリイミド、ポリアミドイミド、ポリエーテルイミド、ポリパラジン酸、ポリオキサジアゾールおよびこれらのハロゲン基置換体あるいはメチル基置換体からなるフィルム等が挙げられる。なかでも、ポリイミドフィルムは耐熱性が高く、回路パターンを形成するウェットエッチング工程での寸法変化が小さいので、もっとも好ましく用いられる。また、上記のプラスチックフィルムは、これらの共重合体や、他の有機重合体を含有するものであっても良い。これらのプラスチックフィルムに公知の添加剤、たとえば、滑剤や可塑剤などが添加されていても良い。   Examples of the plastic film as the substrate used in the present invention include polyethylene terephthalate, polyethylene-2,6-naphthalate, polyethylene-α, β-bis (2-chlorophenoxyethane-4,4′-dicarboxylate) and the like. Polyester, polyphenylene sulfide, polyethersulfone, polyetheretherketone, aromatic polyamide, polyarylate, polyimide, polyamideimide, polyetherimide, polyparazic acid, polyoxadiazole, and halogen-substituted or methyl-substituted products thereof The film which consists of, etc. are mentioned. Among them, the polyimide film is most preferably used because of its high heat resistance and small dimensional change in the wet etching process for forming a circuit pattern. Moreover, said plastic film may contain these copolymers and another organic polymer. Known additives such as lubricants and plasticizers may be added to these plastic films.

さらに、上記のプラスチックフィルムについて、熱可塑性ポリマーを溶融押出しして得られる未延伸フィルム、もしくは溶液キャストによって得られる未延伸フィルムを延伸配向せしめたフィルムは機械特性が向上するため好ましく使用される。   Further, regarding the plastic film, an unstretched film obtained by melt-extruding a thermoplastic polymer, or a film obtained by stretching and orienting an unstretched film obtained by solution casting is preferably used because the mechanical properties are improved.

基材であるプラスチックフィルムの厚さは、好ましくは6〜125μm程度のものが用いられ、特に12〜50μmの厚さが好適である。プラスチックフィルムが薄すぎると、機械強度が小さいために金属蒸着や配線加工が困難となり、補強フィルムを必要とする問題が起こりやすく、また、厚すぎるとフレキシブルプリント配線用基板の特長である折り曲げ性が損なわれるので好ましくない。   The thickness of the plastic film as the substrate is preferably about 6 to 125 μm, and particularly preferably 12 to 50 μm. If the plastic film is too thin, the metal strength and wiring processing become difficult due to low mechanical strength, and problems that require a reinforcing film are likely to occur, and if it is too thick, the bendability that is a feature of flexible printed wiring boards is likely to occur. It is not preferable because it is damaged.

本発明では、電気めっき法等で導電性金属層を形成するに先立って、プラスチックフィルムの片面または両面に、真空蒸着またはスパッタ法等により金属蒸着層を形成する。この金属蒸着層は、ニッケルとクロムを主成分とする層を1層以上と、銅を主成分とする層(S層)からなる。ここで、ニッケルとクロムを主成分とする層の膜厚をX(nm)、クロム含有率をY(重量%)としたとき、XY/100の総和が0.9以上5未満であることが必要である。0.9未満の場合、マイグレーションが発生するので半導体キャリア用フィルムや半導体装置に用いることができない。5以上の場合には、回路を形成するためのエッチング工程において形成された配線間に金属残渣が多くなり、この残渣が起因で回路が短絡するので半導体キャリア用フィルムや半導体装置に用いることができない。ニッケルとクロムを主成分とする層はクロム含有率が一定の1層に限るものではなく、クロム含有率の異なる複数の層とすることができる。この場合XY/100の総和が0.9以上5未満であれば本発明の効果を達成することができる。   In the present invention, prior to forming the conductive metal layer by electroplating or the like, a metal vapor deposition layer is formed on one or both surfaces of the plastic film by vacuum vapor deposition or sputtering. This metal vapor deposition layer is composed of one or more layers containing nickel and chromium as main components and a layer containing copper as a main component (S layer). Here, when the film thickness of the layer mainly composed of nickel and chromium is X (nm) and the chromium content is Y (wt%), the sum of XY / 100 may be 0.9 or more and less than 5. is necessary. If it is less than 0.9, migration occurs, so it cannot be used for a film for a semiconductor carrier or a semiconductor device. In the case of 5 or more, a metal residue increases between the wirings formed in the etching process for forming a circuit, and the circuit is short-circuited due to this residue, so it cannot be used for a film for a semiconductor carrier or a semiconductor device. . The layer mainly composed of nickel and chromium is not limited to a single layer having a constant chromium content, and may be a plurality of layers having different chromium contents. In this case, if the sum of XY / 100 is 0.9 or more and less than 5, the effect of the present invention can be achieved.

ニッケルとクロムを主成分とする層が1層の場合に、発明の効果をより高めるためには、上述のXY/100が0.9以上5未満であることに加えて、クロム含有率が3重量%以上15重量%未満とすることが好ましい。クロム含有率が3重量%以上の場合、クロムによるマイグレーションの抑制効果が高くなるので好ましい。またクロム含有率が15重量%未満の場合、回路を形成するためのエッチング工程において形成された配線間に金属残渣が少なくなるので好ましい。   In order to further enhance the effect of the invention when the layer mainly composed of nickel and chromium is one layer, in addition to the above XY / 100 being 0.9 or more and less than 5, the chromium content is 3 It is preferable to set the weight to 15% by weight or more. A chromium content of 3% by weight or more is preferable because the effect of suppressing migration by chromium is increased. Further, it is preferable that the chromium content is less than 15% by weight because metal residues are reduced between the wirings formed in the etching process for forming a circuit.

ニッケルとクロムを主成分とする層が2層からなる場合、一方の層のクロム含有率が15%重量以上30重量%以下、該層の膜厚を5nm以上7nm未満とし、かつ、他方の層のクロム含有率を3重量%以上10重量%以下、XY/100の総和が0.9以上5未満となるようにすることが好ましい。   When the layer mainly composed of nickel and chromium is composed of two layers, the chromium content of one layer is 15% by weight to 30% by weight, the thickness of the layer is 5 nm to less than 7 nm, and the other layer It is preferable that the chromium content of the composition is 3 wt% or more and 10 wt% or less, and the total of XY / 100 is 0.9 or more and less than 5.

この2つの層はどちらをプラスチックフィルムと接する層としてもよい。どちらの場合も、エッチング工程後の金属残渣量を減らし、かつマイグレーション発生を抑制することができる。   Either of these two layers may be a layer in contact with the plastic film. In either case, the amount of metal residue after the etching process can be reduced and the occurrence of migration can be suppressed.

このように構成された金属蒸着層の上に電気めっき法により銅を主成分とする層(M層)を積層する。電子回路を形成し半導体装置として機能するためには銅を主成分とする層(M層)の膜厚は5μm〜20μmが好適であり、この膜厚の銅層を形成する為には電気めっき法を用いるのが好ましい。電気めっき法で用いるめっき浴には 硫酸銅浴、ピロリン酸銅浴、シアン化銅浴、などがあるが、配線用基板用途には、めっき膜の平滑度を高くできる硫酸銅浴が好ましく用いられる。   On the metal vapor deposition layer thus configured, a layer (M layer) containing copper as a main component is laminated by electroplating. In order to form an electronic circuit and function as a semiconductor device, the film thickness of the copper-based layer (M layer) is preferably 5 μm to 20 μm, and electroplating is necessary to form a copper layer of this film thickness. The method is preferably used. There are copper sulfate bath, copper pyrophosphate bath, copper cyanide bath, etc. as plating baths used in the electroplating method, but copper sulfate baths that can increase the smoothness of the plating film are preferably used for wiring board applications. .

本発明のフレキシブルプリント配線用基板から半導体キャリア用フィルムを製造する方法は公知の方法を用いることができる。フォトリソ法を用いて配線回路をパターニングし、無電解スズメッキにより純スズを0.15〜0.25μm形成する。その後、必要な部分にソルダーレジストを形成して半導体キャリア用フィルムとする。その後、ICを表面実装し半導体装置とする。必要あれば抵抗やコンデンサを表面実装する場合もある。さらに、接続信頼性を確保するためにアンダーフィルを用いることも可能である。   A known method can be used as a method for producing a film for a semiconductor carrier from the flexible printed wiring board of the present invention. The wiring circuit is patterned using a photolithographic method, and pure tin is formed in a thickness of 0.15 to 0.25 μm by electroless tin plating. Then, a solder resist is formed in a required part and it is set as the film for semiconductor carriers. Thereafter, the IC is surface-mounted to obtain a semiconductor device. If necessary, resistors and capacitors may be surface mounted. Furthermore, it is possible to use underfill in order to ensure connection reliability.

各特性の評価は以下に述べる方法で行った。   Each characteristic was evaluated by the method described below.

(1)マイグレーションの有無
フレキシブルプリント配線用基板にウェットエッチングによって図1に示すような櫛状電極1、2を作製した。櫛状電極1、2が隣り合う部分では、櫛状電極の幅3を15μm、電極間のスペース4を15μmとした。櫛状電極1では5の部分、櫛状電極2では6の部分から電源に接続した。
温度85℃、湿度85%に設定した恒温恒湿で櫛状電極1と2の間に60Vの電圧を印加し、熱負荷試験を実施した。1000時間経過後サンプルを取り出し、透過光による光学顕微鏡観察(倍率200倍)を行った。図2にマイグレーションの発生状態を示した。1000時間の負荷時間でマイグレーションの発生がなければ、実用上問題は生じないが、抑制効果を比較するため負荷時間を2000時間とした試験も実施した。
(1) Presence / absence of migration Comb-like electrodes 1 and 2 as shown in FIG. 1 were produced on a flexible printed wiring board by wet etching. In the part where the comb-shaped electrodes 1 and 2 are adjacent, the width 3 of the comb-shaped electrode is 15 μm, and the space 4 between the electrodes is 15 μm. The comb electrode 1 was connected to the power source from the portion 5 and the comb electrode 2 was connected to the power source from the portion 6.
A voltage of 60 V was applied between the comb electrodes 1 and 2 at a constant temperature and humidity set to a temperature of 85 ° C. and a humidity of 85%, and a thermal load test was performed. After 1000 hours, the sample was taken out and observed with an optical microscope using transmitted light (magnification 200 times). FIG. 2 shows the state of occurrence of migration. If there was no migration at a load time of 1000 hours, no problem occurred in practice, but a test with a load time of 2000 hours was also conducted to compare the suppression effect.

(2)配線間の金属残渣
塩化第二鉄水溶液(37重量%)を用いて液温30℃、処理時間35秒でフレキシブルプリント配線用基板の銅層(M層)と金属蒸着層を全面エッチングしたものを試料とし、以下の方法で配線間の金属残渣量を評価した。
試料を加熱した王水(35%塩酸と60%硝酸を体積比3:1で混合した液体)に浸けて金属層を溶解した。放冷後の溶液をICP発光分析装置(パーキンエルマー製OPTIMA4300DV)に導入し、ニッケルとクロムの定量を行った。ニッケルが5μg/cm未満、かつクロムが1μg/cm未満であれば「良」、その他は「不良」とした。
(2) Metal residues between wiring Etching the copper layer (M layer) and metal deposition layer of the flexible printed wiring board using a ferric chloride aqueous solution (37% by weight) at a liquid temperature of 30 ° C. and a processing time of 35 seconds. The amount of the metal residue between the wirings was evaluated by the following method.
The sample was immersed in heated aqua regia (a liquid in which 35% hydrochloric acid and 60% nitric acid were mixed at a volume ratio of 3: 1) to dissolve the metal layer. The solution after standing to cool was introduced into an ICP emission analyzer (OPTIMA4300DV manufactured by PerkinElmer), and nickel and chromium were quantified. If nickel was less than 5 μg / cm 2 and chromium was less than 1 μg / cm 2 , it was judged as “good” and the others were judged as “bad”.

(3)ニクロム層の膜厚と構成元素比
フレキシブルプリント配線用基板の支持体であるプラスチックフィルムを溶解除去し、ニッケルとクロムを主成分とする金属蒸着層のプラスチックフィルム側界面を露出させた。たとえば、プラスチックフィルムとしてポリイミドフィルムを使用したフレキシブル配線用基板の場合には加熱したエチレンジアミン/ヒドラジン混合溶液でポリイミドフィルムを除去することができる。
このようにして露出させたニッケルとクロムを主成分とする金属表面の構成元素比をオージェ電子分光法に測定した。
測定装置はパーキンエルマー製PHI−670で行った。測定条件は、加速電圧10kV、試料電流20nA、ビーム径80nmφ、試料傾斜角度30度で行った。また、深さ方向の分析を行うためのイオンエッチング条件は、アルゴンイオンを使用し、加速電圧2kV、試料角度30度で行った。測定結果はスパッタリング時間に対して対象元素に帰属されるエネルギーを持つ電子数をプロットしたグラフとなる。測定する蒸着層と同じ組成の試料でエッチングレートを求めておき、スパッタリング時間とエッチングレートから金属蒸着層の膜厚を求めた。
(3) Thickness of Nichrome Layer and Ratio of Constituent Elements The plastic film, which is a support for the flexible printed wiring board, was dissolved and removed to expose the plastic film side interface of the metal vapor deposition layer mainly composed of nickel and chromium. For example, in the case of a substrate for flexible wiring using a polyimide film as a plastic film, the polyimide film can be removed with a heated ethylenediamine / hydrazine mixed solution.
The constituent element ratio of the metal surface mainly composed of nickel and chromium thus exposed was measured by Auger electron spectroscopy.
The measuring device was PHI-670 manufactured by PerkinElmer. The measurement conditions were an acceleration voltage of 10 kV, a sample current of 20 nA, a beam diameter of 80 nmφ, and a sample tilt angle of 30 degrees. Moreover, the ion etching conditions for performing the analysis of a depth direction used argon ion, and performed it with the acceleration voltage of 2 kV and the sample angle of 30 degree | times. The measurement result is a graph in which the number of electrons having energy attributed to the target element is plotted against the sputtering time. The etching rate was calculated | required with the sample of the same composition as the vapor deposition layer to measure, and the film thickness of the metal vapor deposition layer was calculated | required from sputtering time and the etching rate.

(実施例1)
厚さ38μm、幅524mmのポリイミドフィルム“カプトン”EN(米国デュポン社の登録商標)の片面に、プラズマ処理を実施した。プラズマ処理は、2×10−3Paの真空度にした真空チャンバー中で、窒素ガスを0.3Paまで導入し、2.0kWのRF電力で行った。次いで、クロム5重量%ニッケル95重量%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し、膜厚25nmのニッケルクロム蒸着層を形成し、ニッケルとクロムを主成分とする層とした。さらに、純度99.99重量%の銅を、ニッケルとクロムを主成分とする層の上にスパッタ蒸着し、膜厚80nmの銅層を形成、金属蒸着層とした。その後、電気めっきを行い、金属蒸着層上に厚さ8μmの銅層を形成、フレキシブルプリント配線用基板を作製した。
このフレキシブルプリント配線用基板の金属層をエッチングし、30μmピッチ(幅15μm、スペース15μm)の配線パターンを作製、マイグレーション観察用サンプルとした。エッチング液は塩化第二鉄水溶液(37重量%)を用いて液温30℃、処理時間35秒でエッチングを行った。金属残渣定量用サンプルは配線パターンを作製せずに同条件でエッチングを行いサンプルとした。
Example 1
Plasma treatment was performed on one side of a polyimide film “Kapton” EN (registered trademark of DuPont, USA) having a thickness of 38 μm and a width of 524 mm. The plasma treatment was performed with a RF power of 2.0 kW by introducing nitrogen gas to 0.3 Pa in a vacuum chamber having a vacuum degree of 2 × 10 −3 Pa. Next, using a target of 5% by weight of chromium and 95% by weight of nickel, sputtering deposition is performed on the plasma-treated surface of the polyimide film to form a nickel chromium deposited layer having a film thickness of 25 nm. did. Furthermore, copper having a purity of 99.99% by weight was sputter-deposited on a layer containing nickel and chromium as main components to form a copper layer having a thickness of 80 nm, thereby forming a metal vapor-deposited layer. Thereafter, electroplating was performed to form a copper layer having a thickness of 8 μm on the metal vapor-deposited layer, and a flexible printed wiring board was produced.
The metal layer of this flexible printed wiring board was etched to produce a wiring pattern with a pitch of 30 μm (width 15 μm, space 15 μm), which was used as a migration observation sample. Etching was performed using a ferric chloride aqueous solution (37% by weight) as the etching solution at a liquid temperature of 30 ° C. and a treatment time of 35 seconds. The metal residue quantification sample was etched under the same conditions without producing a wiring pattern.

(実施例2)
実施例1同様のプラズマ処理を行い、次いで、クロム20重量%ニッケル80重量%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し、膜厚6nmのニッケルクロム蒸着層を形成した。このニッケルクロム蒸着層の上に連続してクロム5重量%ニッケル95重量%のターゲットを用いてスパッタ蒸着し、膜厚11nmのニッケルクロム蒸着層を形成し、さらに、純度99.99重量%の銅を、ニッケルとクロムを主成分とする金属蒸着層の上にスパッタ蒸着し膜厚80nmの銅蒸着層を形成した。その後、実施例1同様に、厚さ8μmの電気めっきを行い、金属蒸着層上に銅層を形成、フレキシブルプリント配線用基板を作製した。
(Example 2)
The same plasma treatment as in Example 1 was performed, and then, using a 20 wt% chromium 80 wt% target, sputtering deposition was performed on the plasma treated surface of the polyimide film to form a 6 nm thick nickel chromium vapor deposition layer. On this nickel chromium vapor deposition layer, sputter deposition was continuously performed using a target of 5 wt% chromium and 95 wt% nickel to form a nickel chromium vapor deposition layer having a film thickness of 11 nm, and further copper having a purity of 99.99 wt%. Was sputter-deposited on a metal vapor deposition layer mainly composed of nickel and chromium to form a copper vapor deposition layer having a thickness of 80 nm. Thereafter, similarly to Example 1, electroplating with a thickness of 8 μm was performed, a copper layer was formed on the metal vapor-deposited layer, and a flexible printed wiring board was produced.

(実施例3)
実施例1同様のプラズマ処理を行い、次いで、クロム5重量%ニッケル95重量%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し膜厚11nmのニッケルクロム蒸着層を形成した。このニッケルクロム蒸着層の上に連続してクロム20重量%ニッケル80重量%のターゲットを用いてスパッタ蒸着し、膜厚6nmのニッケルクロム蒸着層を形成し、さらに、純度99.99重量%の銅を、ニッケルとクロムを主成分とする金属蒸着層の上にスパッタ蒸着し膜厚80nmの銅蒸着層を形成した。その後、実施例1同様に、膜厚8μmの電気めっきを行い、金属蒸着層上に銅層を形成、フレキシブルプリント配線用基板を作製した。
(Example 3)
The same plasma treatment as in Example 1 was performed, and then a nickel chromium vapor deposition layer having a thickness of 11 nm was formed by sputtering deposition on the plasma treatment surface of the polyimide film using a target of 5 wt% chromium and 95 wt% nickel. On this nickel chromium vapor deposition layer, sputter deposition was continuously performed using a target of 20 wt% chromium and 80 wt% nickel to form a nickel chromium vapor deposition layer having a film thickness of 6 nm, and further copper having a purity of 99.99 wt%. Was sputter-deposited on a metal vapor deposition layer mainly composed of nickel and chromium to form a copper vapor deposition layer having a thickness of 80 nm. Thereafter, similarly to Example 1, electroplating with a film thickness of 8 μm was performed, a copper layer was formed on the metal vapor-deposited layer, and a flexible printed wiring board was produced.

(実施例4)
実施例1同様のプラズマ処理を行い、次いで、クロム5重量%ニッケル95重量%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し膜厚22nmのニッケルクロム蒸着層を形成した。この後は実施例3同様の工程により、膜厚6nmのニッケルクロム蒸着層、膜厚80nmの銅蒸着層、膜厚8μmの銅めっき層をこの順で形成し、フレキシブルプリント配線用基板を作製した。
Example 4
The same plasma treatment as in Example 1 was performed, and then a nickel chromium vapor deposition layer having a film thickness of 22 nm was formed by sputtering deposition on the plasma treatment surface of the polyimide film using a target of 5 wt% chromium and 95 wt% nickel. Thereafter, a nickel chromium vapor deposition layer having a film thickness of 6 nm, a copper vapor deposition layer having a film thickness of 80 nm, and a copper plating layer having a film thickness of 8 μm were formed in this order in the same manner as in Example 3 to produce a flexible printed wiring board. .

(実施例5)
実施例1同様のプラズマ処理を行い、次いで、クロム20重量%ニッケル80重量%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し膜厚6nmのニッケルクロム蒸着層を形成した。さらに、純度99.99重量%の銅を、ニッケルとクロムを主成分とする金属蒸着層の上にスパッタ蒸着し膜厚80nmの銅蒸着層を形成した。その後、実施例1同様に、膜厚8μmの電気めっきを行い、金属蒸着層上に銅層を形成、フレキシブルプリント配線用基板を作製した。
(Example 5)
The same plasma treatment as in Example 1 was performed, and then a nickel chromium vapor deposition layer having a film thickness of 6 nm was formed by sputtering deposition on the plasma treatment surface of the polyimide film using a target of chromium 20 wt% nickel 80 wt%. Furthermore, copper having a purity of 99.99% by weight was sputter-deposited on a metal vapor deposition layer mainly composed of nickel and chromium to form a copper vapor deposition layer having a thickness of 80 nm. Thereafter, similarly to Example 1, electroplating with a film thickness of 8 μm was performed, a copper layer was formed on the metal vapor-deposited layer, and a flexible printed wiring board was produced.

(実施例6)
実施例1同様のプラズマ処理を行い、次いで、クロム14重量%ニッケル86重量%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し膜厚25nmのニッケルクロム蒸着層を形成した。さらに、純度99.99重量%の銅を、ニッケルとクロムを主成分とする金属蒸着層の上にスパッタ蒸着し膜厚80nmの銅蒸着層を形成した。その後、実施例1同様に、膜厚8μmの電気めっきを行い、金属蒸着層上に銅層を形成、フレキシブルプリント配線用基板を作製した。
(実施例7)
実施例1同様のプラズマ処理を行い、次いで、クロム2重量%ニッケル98重量%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し膜厚50nmのニッケルクロム蒸着層を形成した。さらに、純度99.99重量%の銅を、ニッケルとクロムを主成分とする金属蒸着層の上にスパッタ蒸着し膜厚80nmの銅蒸着層を形成した。その後、実施例1同様に、膜厚8μmの電気めっきを行い、金属蒸着層上に銅層を形成、フレキシブルプリント配線用基板を作製した。
(Example 6)
The same plasma treatment as in Example 1 was performed, and then a nickel chromium vapor deposition layer having a thickness of 25 nm was formed by sputtering deposition on the plasma treatment surface of the polyimide film using a target of 14 wt% chromium and 86 wt% nickel. Furthermore, copper having a purity of 99.99% by weight was sputter-deposited on a metal vapor deposition layer mainly composed of nickel and chromium to form a copper vapor deposition layer having a thickness of 80 nm. Thereafter, similarly to Example 1, electroplating with a film thickness of 8 μm was performed, a copper layer was formed on the metal vapor-deposited layer, and a flexible printed wiring board was produced.
(Example 7)
The same plasma treatment as in Example 1 was performed, and then a nickel chromium vapor deposition layer having a thickness of 50 nm was formed by sputtering deposition on the plasma treatment surface of the polyimide film using a target of 2 wt% chromium and 98 wt% nickel. Furthermore, copper having a purity of 99.99% by weight was sputter-deposited on a metal vapor deposition layer mainly composed of nickel and chromium to form a copper vapor deposition layer having a thickness of 80 nm. Thereafter, similarly to Example 1, electroplating with a film thickness of 8 μm was performed, a copper layer was formed on the metal vapor-deposited layer, and a flexible printed wiring board was produced.

(比較例1)
実施例1同様のプラズマ処理を行い、次いで、クロム5重量%ニッケル95重量%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し膜厚12nmのニッケルクロム蒸着層を形成し、ニッケルとクロムを主成分とする金属蒸着層とした。さらに、純度99.99重量%の銅を、ニッケルとクロムを主成分とする金属蒸着層の上にスパッタ蒸着し膜厚80nmの銅蒸着層を形成した。その後は実施例1同様、膜厚8μmの電気めっきを行い、金属蒸着層上に導電性金属層を形成、フレキシブルプリント配線用基板を作製した。
(Comparative Example 1)
The same plasma treatment as in Example 1 was performed, and then a nickel chromium vapor deposition layer having a film thickness of 12 nm was formed by sputtering deposition on the plasma treatment surface of the polyimide film using a 5 wt% chromium 95 wt% target. And a metal vapor deposition layer mainly composed of chromium. Furthermore, copper having a purity of 99.99% by weight was sputter-deposited on a metal vapor deposition layer mainly composed of nickel and chromium to form a copper vapor deposition layer having a thickness of 80 nm. Thereafter, similarly to Example 1, electroplating with a film thickness of 8 μm was performed, a conductive metal layer was formed on the metal vapor-deposited layer, and a flexible printed wiring board was produced.

(比較例2)
実施例1同様のプラズマ処理を行い、次いで、クロム20重量%ニッケル80重量%のターゲットを用いて、ポリイミドフィルムのプラズマ処理面上にスパッタ蒸着し膜厚25nmのニッケルクロム蒸着層を形成し、ニッケルとクロムを主成分とする金属蒸着層とした。さらに、純度99.99重量%の銅を、ニッケルとクロムを主成分とする金属蒸着層の上にスパッタ蒸着し膜厚80nmの銅蒸着層を形成した。その後は実施例1同様、膜厚8μmの電気めっきを行い、金属蒸着層上に導電性金属層を形成、フレキシブルプリント配線用基板を作製した。
(Comparative Example 2)
The same plasma treatment as in Example 1 was performed, and then a nickel chromium vapor deposition layer having a film thickness of 25 nm was formed by sputtering deposition on the plasma treatment surface of the polyimide film using a target of 20 wt% chromium and 80 wt% nickel. And a metal vapor deposition layer mainly composed of chromium. Furthermore, copper having a purity of 99.99% by weight was sputter-deposited on a metal vapor deposition layer mainly composed of nickel and chromium to form a copper vapor deposition layer having a thickness of 80 nm. Thereafter, similarly to Example 1, electroplating with a film thickness of 8 μm was performed, a conductive metal layer was formed on the metal vapor-deposited layer, and a flexible printed wiring board was produced.

1、2 櫛状電極.
3 電極の幅
4 電極間のスペース
5、6 電源と接続する部分
7 プラスチックフィルム
8 マイグレーション
1, 2 Comb electrodes.
3 Width of electrode 4 Space between electrodes 5 and 6 Portion connected to power supply
7 Plastic film 8 Migration

Claims (6)

プラスチックフィルムの片面または両面に、金属蒸着層を設け、該金属蒸着層上に電気めっき法で銅を主成分とする層(M層)を積層してなるフレキシブルプリント配線用基板において、該金属蒸着層がニッケルとクロムを主成分とする層が1層以上と銅を主成分とする層(S層)からなり、1層以上のニッケルとクロムを主成分とする層について膜厚をX(nm)、クロム含有率をY(重量%)としたとき、XY/100の総和が0.9以上5未満であることを特徴とするフレキシブルプリント配線用基板。 In a substrate for flexible printed wiring, in which a metal vapor deposition layer is provided on one or both sides of a plastic film, and a layer mainly composed of copper (M layer) is laminated on the metal vapor deposition layer by electroplating. The layer is composed of one or more layers containing nickel and chromium as main components and a layer (S layer) containing copper as a main component (S layer). ), A flexible printed wiring board, wherein the total of XY / 100 is 0.9 or more and less than 5 when the chromium content is Y (% by weight). 金属蒸着層のニッケルとクロムを主成分とする層が1層からなり、ニッケルとクロムを主成分とする層のクロム含有率が3重量%以上15重量%未満であることを特徴とする請求項1に記載のフレキシブルプリント配線用基板。 The layer of nickel and chromium as main components of the metal vapor deposition layer is composed of one layer, and the chromium content of the layer of nickel and chromium as main components is 3 wt% or more and less than 15 wt%. 2. The flexible printed wiring board according to 1. 金属蒸着層のニッケルとクロムを主成分とする層が2層からなり、プラスチックフィルムと接するニッケルとクロムを主成分とする層(N1層)のクロム含有率が15重量%以上30重量%以下、N1層の膜厚が5nm以上7nm未満であり、かつ、銅を主成分とする層(S層)と接するニッケルとクロムを主成分とする層(N2層)のクロム含有率が3重量%以上10重量%以下であって、プラスチックフィルムと接する層からN1層、N2層、S層、M層の順に積層されていることを特徴とする請求項1に記載のフレキシブルプリント配線用基板。 The metal-deposited layer composed mainly of nickel and chromium consists of two layers, and the chromium content of the layer composed mainly of nickel and chromium in contact with the plastic film (N1 layer) is 15 wt% or more and 30 wt% or less, The N1 layer has a film thickness of 5 nm or more and less than 7 nm, and the chromium content of the layer mainly composed of nickel and chromium (N2 layer) in contact with the layer mainly composed of copper (S layer) is 3% by weight or more. The flexible printed wiring board according to claim 1, wherein the substrate is 10% by weight or less, and is laminated in the order of N1, N2, S, and M layers from the layer in contact with the plastic film. 金属蒸着層のニッケルとクロムを主成分とする層が2層からなり、プラスチックフィルムと接するニッケルとクロムを主成分とする層(N1層)のクロム含有率が3重量%以上10重量%以下であり、かつ、銅を主成分とする層(S層)と接するニッケルとクロムを主成分とする層(N2層)のクロム含有率が15重量%以上30重量%以下、N2層の膜厚が5nm以上7nm未満であって、プラスチックフィルムと接する層からN1層、N2層、S層、M層の順に積層されていることを特徴とする請求項1に記載のフレキシブルプリント配線用基板。 The metal vapor deposition layer is composed of two layers composed mainly of nickel and chromium, and the chromium content of the layer composed mainly of nickel and chromium (N1 layer) in contact with the plastic film is 3 wt% or more and 10 wt% or less. And the chromium content of the layer mainly composed of nickel and chromium (N2 layer) in contact with the layer mainly composed of copper (S layer) is 15 wt% or more and 30 wt% or less, and the film thickness of the N2 layer is The flexible printed wiring board according to claim 1, wherein the substrate is laminated in the order of N1 layer, N2 layer, S layer, and M layer from a layer that is 5 nm or more and less than 7 nm in contact with the plastic film. 請求項1〜4のいずれかに記載のフレキシブルプリント配線用基板を用いてなる半導体キャリア用フィルム。 The film for semiconductor carriers formed using the board | substrate for flexible printed wiring in any one of Claims 1-4. 請求項5に記載の半導体キャリア用フィルムを用いてなる半導体装置。 A semiconductor device using the semiconductor carrier film according to claim 5.
JP2012041079A 2012-02-28 2012-02-28 Substrate for flexible printed wiring, film for semiconductor carrier and semiconductor device Pending JP2013179114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041079A JP2013179114A (en) 2012-02-28 2012-02-28 Substrate for flexible printed wiring, film for semiconductor carrier and semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041079A JP2013179114A (en) 2012-02-28 2012-02-28 Substrate for flexible printed wiring, film for semiconductor carrier and semiconductor device

Publications (1)

Publication Number Publication Date
JP2013179114A true JP2013179114A (en) 2013-09-09

Family

ID=49270512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041079A Pending JP2013179114A (en) 2012-02-28 2012-02-28 Substrate for flexible printed wiring, film for semiconductor carrier and semiconductor device

Country Status (1)

Country Link
JP (1) JP2013179114A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066089A (en) * 2019-10-24 2021-04-30 住友金属鉱山株式会社 Manufacturing method of flexible substrate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021066089A (en) * 2019-10-24 2021-04-30 住友金属鉱山株式会社 Manufacturing method of flexible substrate

Similar Documents

Publication Publication Date Title
JP5746866B2 (en) Copper-clad laminate and manufacturing method thereof
JP3631992B2 (en) Printed circuit board
KR20130126997A (en) Liquid crystal polymer film based copper-clad laminate, and method for producing same
JP2008162245A (en) Plating-method two-layer copper polyimide laminated film, and method for manufacturing the same
JP4341023B2 (en) Method for producing metal-coated liquid crystal polymer film
KR20100095658A (en) Adhesive-free flexible laminate
JP2010005800A (en) Two-layered flexible substrate, its method of manufacturing, printed-wiring board using the two-layered flexible substrate, and its method of manufacturing
KR101363771B1 (en) Two-layer flexible substrate and process for producing same
JP2006306009A (en) Two-layer film, method for producing two-layer film and method for manufacturing printed wiring board
JP2013179114A (en) Substrate for flexible printed wiring, film for semiconductor carrier and semiconductor device
JP2004031588A (en) Flexible printed wiring board
KR20200060228A (en) Flexible substrate
JP2014222689A (en) Method and apparatus for manufacturing double-side metal laminated film, and manufacturing method of flexible double-side printed wiring board
JP2021041637A (en) Copper-clad laminate and method for producing copper-clad laminate
JP4588621B2 (en) Laminated body for flexible printed wiring board and Cu alloy sputtering target used for forming copper alloy layer of the laminated body
WO2010074056A1 (en) Flexible laminate and flexible electronic circuit substrate formed using the same
JP2006310359A (en) Substrate for flexible printed circuit
JP6477364B2 (en) Method for producing metal-clad laminate for flexible multilayer circuit board
JP3286467B2 (en) Method for producing composite film of polyimide film and metal thin film
KR20140072409A (en) Method for processing a flexible cupper clad laminated film
JP5671902B2 (en) Method for manufacturing resistive thin film element with copper conductor layer
KR101357141B1 (en) Flexible circuit clad laminate, printed circuit board using it, and method of manufacturing the same
JP7043731B2 (en) Copper-clad laminated board and its manufacturing method, as well as wiring board
JP2011082848A (en) Metal layered resin film for plane antenna
KR20160078758A (en) Flexible Copper Clad Laminate