JP2013178013A - Radiant tube burner - Google Patents

Radiant tube burner Download PDF

Info

Publication number
JP2013178013A
JP2013178013A JP2012041779A JP2012041779A JP2013178013A JP 2013178013 A JP2013178013 A JP 2013178013A JP 2012041779 A JP2012041779 A JP 2012041779A JP 2012041779 A JP2012041779 A JP 2012041779A JP 2013178013 A JP2013178013 A JP 2013178013A
Authority
JP
Japan
Prior art keywords
radiant tube
heat
exhaust
burner
furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012041779A
Other languages
Japanese (ja)
Other versions
JP5966431B2 (en
Inventor
Masahito Kuwabara
雅人 桑原
Mikio Ochi
幹夫 越智
Kenta Karibe
建太 苅部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2012041779A priority Critical patent/JP5966431B2/en
Publication of JP2013178013A publication Critical patent/JP2013178013A/en
Application granted granted Critical
Publication of JP5966431B2 publication Critical patent/JP5966431B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a radiant tube with a configuration to simultaneously achieve reduction of heat discharged outside a radiant tube system as much as possible, and suppression of NOx generation by lowering a flame temperature of a burner by lowering a preheated air temperature after heat exchange.SOLUTION: A radiant tube burner provided with a tube body that projects from an inner wall of a furnace to the inside of the furnace has a burner on one end side of the tube body, and a heat exchanger on the other end side. A porous air permeable solid in which exhaust air can be distributed is disposed on an exhaust air introduction side of the heat exchanger. The air permeable solid is disposed downstream of the exhaust air relative to the inner wall of the furnace.

Description

本発明は、熱処理炉などにおいて鋼板や鋼材などの対象物を間接的に加熱するのに用いる、ラジアントチューブバーナ、特に、燃料を空気によって燃焼させるバーナからの燃焼気を加熱に用いた後の排気と、前記バーナに導入する空気とを熱交換することにより、該排気の持つ熱を回収する熱交換器を備える、ラジアントチューブバーナに関する。   The present invention relates to a radiant tube burner used for indirectly heating an object such as a steel plate or steel material in a heat treatment furnace or the like, and in particular, an exhaust gas after combustion gas from a burner that burns fuel with air is used for heating. Further, the present invention relates to a radiant tube burner including a heat exchanger that recovers the heat of the exhaust gas by exchanging heat with air introduced into the burner.

ラジアントチューブバーナは、対象物を間接的に加熱するため、燃焼熱が有効に利用され難く、多くの熱が系外へ排出されている。そのため、熱交換器を介して排熱の回収を行うのが一般的である。
例えば、特許文献1には、通気性固体からなる仕切り壁を設けて、該仕切り壁を通過するガス顕熱を放射熱に変換し、ラジアントチューブおよび熱交換器に放射熱を付加することにより、ラジアントチューブの伝熱性能と熱交換器の熱回収率の向上を図ることが記載されている。
Since the radiant tube burner indirectly heats the object, it is difficult to effectively use the combustion heat, and a lot of heat is discharged to the outside of the system. Therefore, it is common to collect exhaust heat via a heat exchanger.
For example, Patent Document 1 provides a partition wall made of a breathable solid, converts gas sensible heat passing through the partition wall into radiant heat, and adds radiant heat to the radiant tube and the heat exchanger, It is described that the heat transfer performance of the radiant tube and the heat recovery rate of the heat exchanger are improved.

また、特許文献2には、熱交換チューブを設けて複数の排気通路を形成することによって、排気による2段階の空気予熱を可能とし、排熱回収率を向上させることが記載されている。   Patent Document 2 describes that by providing a heat exchange tube and forming a plurality of exhaust passages, two-stage air preheating by exhaust is possible, and the exhaust heat recovery rate is improved.

特公昭62−35013号公報Japanese Patent Publication No.62-35013 特開2006−29638号公報JP 2006-29638 A

特許文献1に記載のラジアントチューブは、仕切り壁および熱交換器が炉壁より炉内側に配置されているため、炉系内のチューブ部分に付加されるべきバーナの燃焼気の熱(有効熱)を仕切り壁および熱交換器にて部分的に抜き取ることになり、ラジアントチューブにおける熱効率を結局は低下させることになる。   In the radiant tube described in Patent Document 1, since the partition wall and the heat exchanger are arranged inside the furnace from the furnace wall, the heat of the burner combustion gas (effective heat) to be added to the tube portion in the furnace system Is partially extracted by the partition wall and the heat exchanger, and the thermal efficiency of the radiant tube is eventually lowered.

特許文献2に記載の技術は、炉系外へ排出された熱の回収率を向上させることに主眼があり、上記有効熱の炉系外への流出を低減することはできない。一方で、排熱の回収効率は向上するが、それに伴ってバーナに供給される燃焼用の予熱空気温度が上昇するため、この予熱空気を用いて燃焼するバーナの火炎温度も上昇することになる。この火炎温度の上昇は、NOxの発生量の上昇をまねくことになる。   The technique described in Patent Document 2 is focused on improving the recovery rate of the heat discharged to the outside of the furnace system and cannot reduce the outflow of the effective heat to the outside of the furnace system. On the other hand, although the exhaust heat recovery efficiency is improved, the combustion preheated air temperature supplied to the burner rises accordingly, so the flame temperature of the burner that burns using this preheated air also rises. . This increase in flame temperature leads to an increase in the amount of NOx generated.

そこで、本発明の目的は、ラジアントチューブの系外へ放出される熱を極力低減すること、熱交換後の予熱空気温度を低くしてバーナの火炎温度を低下させてNOxの発生を抑えること、を同時に実現するための構成を有する、ラジアントチューブを提供することにある。   Therefore, the object of the present invention is to reduce the heat released to the outside of the radiant tube as much as possible, to lower the preheated air temperature after heat exchange and lower the flame temperature of the burner to suppress the generation of NOx, It is providing the radiant tube which has the structure for implement | achieving simultaneously.

発明者らは、上記した課題を解決するための手段について鋭意究明したところ、ラジアントチューブ系内からの輻射熱並びに排気中の顕熱を遮蔽する通気性固体を適正に設置することが有効であることを見出し、本発明を完成するに至った。   The inventors diligently investigated the means for solving the above-mentioned problems, and found that it is effective to appropriately install a breathable solid that shields radiant heat from the radiant tube system and sensible heat in the exhaust. As a result, the present invention has been completed.

すなわち、本発明の要旨構成は、次の通りである。
(1)炉の内壁から該炉内に突き出るチューブ本体をそなえるラジアントチューブバーナであり、該チューブ本体の一端側にバーナを有し、かつ他端側に熱交換器を有し、該熱交換器の前記排気の導入側に、多孔質でかつ排気の流通が可能の通気性固体を配置し、該通気性固体は、前記炉内壁より前記排気の下流側に配置することを特徴とするラジアントチューブバーナ。
That is, the gist configuration of the present invention is as follows.
(1) A radiant tube burner having a tube body protruding from the inner wall of the furnace into the furnace, having a burner on one end side of the tube body and a heat exchanger on the other end side, the heat exchanger A permeable tube that is porous and capable of circulating an exhaust gas is disposed on the exhaust introduction side of the exhaust gas, and the air permeable solid is disposed on the downstream side of the exhaust gas from the inner wall of the furnace. Burner.

(2)前記通気性固体は、前記ラジアントチューブの軸方向と直交する断面と同じ端面形状を有することを特徴とする前記(1)に記載のラジアントチューブバーナ。 (2) The radiant tube burner according to (1), wherein the breathable solid has the same end surface shape as a cross section orthogonal to the axial direction of the radiant tube.

(3)前記通気性固体を複数配置することを特徴とする前記(1)または(2)に記載のラジアントチューブバーナ。 (3) The radiant tube burner according to (1) or (2), wherein a plurality of the air-permeable solids are arranged.

(4)前記複数配置した通気性固体のうち、排気上流側に配置した通気性固体は、排気下流側に配置した通気性固体よりも密度が小さいことを特徴とする前記(3)に記載のラジアントチューブバーナ。 (4) The breathable solid disposed on the exhaust upstream side among the plurality of breathable solids disposed has a lower density than the breathable solid disposed on the exhaust downstream side. Radiant tube burner.

(5)前記通気性固体がセラミックスからなること特徴とする前記(1)乃至(4)のいずれかに記載のラジアントチューブバーナ。 (5) The radiant tube burner according to any one of (1) to (4), wherein the breathable solid is made of ceramics.

本発明によれば、炉の内壁面より排気下流側に通気性固体次いで熱交換器が配置されることになるため、炉系外へ排出される有効熱の炉内への還元を可能とし、また熱交換器が有効熱を持ち去ることを回避できる。従って、ラジアントチューブのバーナからの熱を系内で有効活用できるとともに、熱交換後の予熱空気温度を低くしてバーナの火炎温度を低下させてNOxの発生を抑制することができる。   According to the present invention, since the air-permeable solid and then the heat exchanger are arranged downstream of the inner wall surface of the furnace, it is possible to reduce the effective heat discharged outside the furnace system into the furnace, Further, it is possible to avoid the heat exchanger taking away effective heat. Therefore, the heat from the burner of the radiant tube can be effectively utilized in the system, and the preheated air temperature after heat exchange can be lowered to lower the flame temperature of the burner, thereby suppressing the generation of NOx.

本発明のラジアントチューブバーナの構成を示す図である。It is a figure which shows the structure of the radiant tube burner of this invention. 排気経路に設ける通気性固体における輻射状態を示す図である。It is a figure which shows the radiation state in the air permeable solid provided in an exhaust path.

本発明のラジアントチューブバーナについて、図面を参照して詳しく説明する。
図1は、本発明のラジアントチューブバーナの構成を示す図である。
同図において、符号1はラジアントチューブ2のバーナであり、このバーナ1では空気が導入されて燃料を燃焼させて形成される、火炎を火炎ノズル1aから吐出する。この火炎の形成に伴う燃焼気は、ラジアントチューブ2のチューブ本体2aを介して熱処理炉内の加熱に供され、その後排気3としてチューブ本体2aから熱交換器4へと導入される。
The radiant tube burner of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a diagram showing a configuration of a radiant tube burner according to the present invention.
In the figure, reference numeral 1 denotes a burner of the radiant tube 2. In the burner 1, a flame formed by introducing air and burning fuel is discharged from the flame nozzle 1 a. Combustion gas accompanying the formation of the flame is supplied to the heat treatment furnace through the tube body 2a of the radiant tube 2 and then introduced into the heat exchanger 4 from the tube body 2a as the exhaust 3.

熱交換器4へと導入された排気3は、該排気3とは別に熱交換器4へ導入される空気6との間で熱交換器4において熱交換される。この熱交換器4における熱交換後の抜熱排気は、適宜の配管を介して系外へ放出される。一方、熱交換器4における熱交換後の予熱空気6aはバーナ1に供給され、ここで燃料の燃焼に寄与することになる。   The exhaust gas 3 introduced into the heat exchanger 4 is heat-exchanged in the heat exchanger 4 with the air 6 introduced into the heat exchanger 4 separately from the exhaust gas 3. The heat removal exhaust after the heat exchange in the heat exchanger 4 is discharged out of the system through an appropriate pipe. On the other hand, the preheated air 6a after heat exchange in the heat exchanger 4 is supplied to the burner 1 and contributes to combustion of fuel here.

以上のラジアントチューブバーナにおいて、熱交換器4へ至る排気3の導入経路5に、多孔質でかつ排気の流通が可能の通気性固体5aを設置する。該通気性固体5aは、ラジアントチューブのバーナ1からの熱を熱交換器4に至る前に吸収し、ラジアントチューブのバーナ1からの輻射熱が直接熱交換器4に到達するのを回避し、逆にラジアントチューブ内に還流させることにより、炉内への有効熱を増大せしめるためのものである。   In the radiant tube burner described above, the air-permeable solid 5 a that is porous and capable of circulating the exhaust gas is installed in the introduction path 5 of the exhaust gas 3 leading to the heat exchanger 4. The breathable solid 5a absorbs the heat from the burner 1 of the radiant tube before reaching the heat exchanger 4, and prevents the radiant heat from the burner 1 of the radiant tube from reaching the heat exchanger 4 directly. In order to increase the effective heat into the furnace by refluxing into the radiant tube.

通気性固体5aは、所定の厚みを有する多孔質の通気性固体であり、ラジアントチューブのバーナ1から排気下流側に放出される輻射熱および排気の顕熱は、通気性固体5aにて遮蔽され、熱交換器4に直接達することを回避できる。上記輻射熱および排気顕熱を受けた通気性固体5aでは、その遮蔽効果により、図2に二点鎖線で示すような温度勾配を生じることになる。すなわち、上記輻射熱および排気顕熱は、通気性固体5aにおいて輻射熱に変換され、排気上流側および排気下流側へと、それぞれ放出されるが、排気下流側への輻射熱は、通気性固体5aの厚みに応じて遮蔽されて減衰するため、大部分は排気上流側へ放出される。かように、バーナ1からの排気は通気性固体5aにおいて大幅な温度降下を伴って通過し、熱交換器4側へと流れることになる。従って、熱交換器4へ供給される排気は低温度になり、熱交換器4の使用環境が改善される結果、熱回収性能を長期にわたって維持することができる。一方、熱交換器4にて排気からの熱を回収した予熱空気は、従前に比較してより低温になるため、上記バーナ1での火炎の温度が低下し、NOxの生成抑制が可能となる。さらに、排気が多孔質の通気性固体5aを通過することにより整流効果が得られて、熱交換器4へ均一な流れの排気が導かれるため、熱交換効率を高めることができる。   The breathable solid 5a is a porous breathable solid having a predetermined thickness, and the radiant heat released from the burner 1 of the radiant tube and the sensible heat of the exhaust are shielded by the breathable solid 5a. Directly reaching the heat exchanger 4 can be avoided. In the air-permeable solid 5a that has received the radiant heat and the exhaust sensible heat, a temperature gradient as shown by a two-dot chain line in FIG. 2 is generated due to the shielding effect. That is, the radiant heat and exhaust sensible heat are converted to radiant heat in the breathable solid 5a and released to the exhaust upstream side and the exhaust downstream side, respectively, but the radiant heat to the exhaust downstream side is the thickness of the breathable solid 5a. Since it is shielded and attenuated accordingly, most of it is discharged upstream of the exhaust. Thus, the exhaust from the burner 1 passes through the air-permeable solid 5a with a significant temperature drop and flows toward the heat exchanger 4 side. Therefore, the exhaust gas supplied to the heat exchanger 4 has a low temperature, and the usage environment of the heat exchanger 4 is improved. As a result, the heat recovery performance can be maintained for a long time. On the other hand, the preheated air that has recovered the heat from the exhaust gas in the heat exchanger 4 has a lower temperature than before, so the temperature of the flame in the burner 1 is reduced and NOx generation can be suppressed. . Further, since the exhaust gas passes through the porous air-permeable solid 5a, a rectifying effect is obtained, and a uniform flow of exhaust gas is guided to the heat exchanger 4, so that the heat exchange efficiency can be improved.

ここで、通気性固体5aは、図1に示すように、ラジアントチューブ2が設置される熱処理炉の内壁、すなわち炉壁7の内面より排気下流側に配置することが必須である。すなわち、炉の内壁より排気下流側に通気性固体5a次いで熱交換器4が配置されることになるため、チューブ本体2aからの輻射熱並びに排気の顕熱を炉内において十分に消費し、その後、炉の内壁またはそれより炉系外において通気性固体5aにて熱が遮蔽され、次いで熱交換器4での熱交換が行われることになる。従って、従来は熱処理炉系外へ排出されていた有効熱の還元を可能とし、また熱交換器4が有効熱を必要以上に持ち去ることを回避できるからである。   Here, as shown in FIG. 1, it is essential that the breathable solid 5 a be disposed on the exhaust downstream side of the inner wall of the heat treatment furnace in which the radiant tube 2 is installed, that is, the inner surface of the furnace wall 7. That is, since the breathable solid 5a and then the heat exchanger 4 are disposed downstream of the inner wall of the furnace, the radiant heat from the tube body 2a and the sensible heat of the exhaust are sufficiently consumed in the furnace, Heat is shielded by the air-permeable solid 5a on the inner wall of the furnace or outside the furnace system, and then heat exchange is performed in the heat exchanger 4. Therefore, it is possible to reduce the effective heat that has been exhausted outside the heat treatment furnace system in the past, and it is possible to prevent the heat exchanger 4 from taking away the effective heat more than necessary.

さらに、排気3が多孔質の通気性固体5aを通過した際に、排気中のダストが除去され、熱交換器4におけるダストの付着が防止されるため、熱交換器4のダストによる効率低下を抑制することができる。   Further, when the exhaust gas 3 passes through the porous air-permeable solid 5a, dust in the exhaust gas is removed, and dust adherence in the heat exchanger 4 is prevented. Can be suppressed.

通気性固体5aおよび熱交換器4の配置について、図1に示すように、通気性固体5aは、ラジアントチューブ2が設置される熱処理炉の内壁7と面一となるように配置し、熱交換器4は炉壁部もしくは炉壁外に配置することが、熱効率向上の観点から推奨される。   As for the arrangement of the breathable solid 5a and the heat exchanger 4, as shown in FIG. 1, the breathable solid 5a is arranged so as to be flush with the inner wall 7 of the heat treatment furnace in which the radiant tube 2 is installed. It is recommended that the vessel 4 be disposed outside or outside the furnace wall from the viewpoint of improving thermal efficiency.

なお、上記した通気性固体5aに与える所定の厚みとは、光学的に遮蔽できる十分な厚みであり、具体的には10mm以上、好ましくは20〜60mmである。   The predetermined thickness given to the air-permeable solid 5a is a thickness that can be optically shielded, specifically 10 mm or more, preferably 20 to 60 mm.

また、通気性固体5aは、ラジアントチューブの軸方向と直交する断面と同じ端面形状を有することが有利である。すなわち、通気性固体5aを排気3の導入経路5内に配置した際に、ラジアントチューブ内周面との間に隙間が生じることがなく、排気3の全てが通気性固体5aを通過し、排気3の顕熱が通気性固体5aを介して炉系内へ確実に還元される。   Moreover, it is advantageous that the air-permeable solid 5a has the same end surface shape as the cross section orthogonal to the axial direction of the radiant tube. That is, when the air-permeable solid 5a is disposed in the introduction path 5 of the exhaust gas 3, there is no gap between the inner surface of the radiant tube and all of the exhaust gas 3 passes through the air-permeable solid 5a, 3 is reliably reduced into the furnace system through the breathable solid 5a.

さらに、図1において、通気性固体5aの2つを離間して配置してあるが、通気性固体5aは1つでもよいのは勿論である。なお、複数を配置することによって、上記した熱還元および整流の効果はより高めることができ、設置場所との関係において複数の増設を行うことが有効である。
例えば、複数の通気性固体5aを配置する際に、排気上流側に密度の小さい通気性固体5aを配置して熱遮蔽体とし、排気下流側に密度の大きい通気性固体5aを配置して上記フィルター機能を担保することによって、排気中にダストが多く含まれる場合には、排気下流側の通気性固体5aをフィルターとして交換することによって、メンテナンスをより容易にすることが可能である。
Further, in FIG. 1, two of the breathable solids 5a are arranged apart from each other, but it is needless to say that one breathable solid 5a may be provided. By arranging a plurality, the effects of the above-described thermal reduction and rectification can be further enhanced, and it is effective to perform a plurality of additions in relation to the installation location.
For example, when arranging a plurality of breathable solids 5a, a low-density breathable solid 5a is disposed on the exhaust upstream side to form a heat shield, and a high-density breathable solid 5a is disposed on the exhaust downstream side. By ensuring the filter function, when a large amount of dust is contained in the exhaust gas, it is possible to make maintenance easier by replacing the breathable solid 5a on the exhaust downstream side as a filter.

通気性固体5aは、炭化珪素や窒化珪素は勿論、窒化ホウ素、アルミナ、シリカ、マグネシア、ジルコニア、チタニア、ハフニア、イットリア、ランタナなどの他、それらを適切な割合で混合させてなるムライト、コージェライト、酸化希土類安定化ジルコニア等の耐久性の高いセラミックスからなることが、高温耐久性を確保する上で好ましい。
さらに、通気性固体5aの孔径は、遮蔽性と通気性とを兼ね備えることのできる、大きさであり、具体的には20mmφ以下であることが好ましく、さらに好ましくは0.5mmφ〜4mmφである。
The breathable solid 5a is not only silicon carbide and silicon nitride, but also boron nitride, alumina, silica, magnesia, zirconia, titania, hafnia, yttria, lantana, etc., and mullite and cordierite obtained by mixing them at an appropriate ratio. From the viewpoint of ensuring high-temperature durability, it is preferable to use ceramics having high durability such as rare earth oxide-stabilized zirconia.
Further, the pore diameter of the air-permeable solid 5a is a size that can have both shielding properties and air-permeability, and is specifically preferably 20 mmφ or less, more preferably 0.5 mmφ to 4 mmφ.

1バーナ
1a 火炎ノズル
2 ラジアントチューブ
2a 未抜熱排気導入路
3 排気
4 熱交換器
5 経路
5a 通気性固体
6 空気
6a 予熱空気
7 炉壁
1 Burner 1a Flame nozzle 2 Radiant tube 2a Unheated exhaust introduction path 3 Exhaust 4 Heat exchanger 5 Path 5a Breathable solid 6 Air 6a Preheated air 7 Furnace wall

Claims (5)

炉の内壁から該炉内に突き出るチューブ本体をそなえるラジアントチューブバーナであり、該チューブ本体の一端側にバーナを有し、かつ他端側に熱交換器を有し、該熱交換器の前記排気の導入側に、多孔質でかつ排気の流通が可能の通気性固体を配置し、該通気性固体は、前記炉内壁より前記排気の下流側に配置することを特徴とするラジアントチューブバーナ。   A radiant tube burner having a tube main body protruding from the inner wall of the furnace into the furnace, having a burner on one end side of the tube main body, and a heat exchanger on the other end side, the exhaust of the heat exchanger A radiant tube burner characterized in that a porous air-permeable solid capable of circulating an exhaust gas is disposed on the inlet side of the exhaust gas, and the air-permeable solid is disposed downstream of the exhaust wall from the furnace inner wall. 前記通気性固体は、前記ラジアントチューブの軸方向と直交する断面と同じ端面形状を有することを特徴とする請求項1に記載のラジアントチューブバーナ。   2. The radiant tube burner according to claim 1, wherein the breathable solid has the same end surface shape as a cross section orthogonal to the axial direction of the radiant tube. 前記通気性固体を複数配置することを特徴とする請求項1または2に記載のラジアントチューブバーナ。   The radiant tube burner according to claim 1 or 2, wherein a plurality of the breathable solids are arranged. 前記複数配置した通気性固体のうち、排気上流側に配置した通気性固体は、排気下流側に配置した通気性固体よりも密度が小さいことを特徴とする請求項3に記載のラジアントチューブバーナ。   4. The radiant tube burner according to claim 3, wherein among the plurality of breathable solids arranged, the breathable solid arranged on the exhaust upstream side has a lower density than the breathable solid arranged on the exhaust downstream side. 前記通気性固体がセラミックスからなること特徴とする請求項1乃至4のいずれかに記載のラジアントチューブバーナ。   The radiant tube burner according to any one of claims 1 to 4, wherein the air-permeable solid is made of ceramics.
JP2012041779A 2012-02-28 2012-02-28 Radiant tube burner Expired - Fee Related JP5966431B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012041779A JP5966431B2 (en) 2012-02-28 2012-02-28 Radiant tube burner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012041779A JP5966431B2 (en) 2012-02-28 2012-02-28 Radiant tube burner

Publications (2)

Publication Number Publication Date
JP2013178013A true JP2013178013A (en) 2013-09-09
JP5966431B2 JP5966431B2 (en) 2016-08-10

Family

ID=49269816

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012041779A Expired - Fee Related JP5966431B2 (en) 2012-02-28 2012-02-28 Radiant tube burner

Country Status (1)

Country Link
JP (1) JP5966431B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212744A1 (en) * 2016-06-07 2017-12-14 中外炉工業株式会社 Radiant tube burner unit, and industrial furnace
CN113531528A (en) * 2021-07-23 2021-10-22 杭州中景科技有限公司 Diffusion type low-NOx self-preheating radiant tube burner with flue gas backflow and method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766319U (en) * 1980-10-04 1982-04-20
JPS57112694A (en) * 1980-12-27 1982-07-13 Nippon Steel Corp Heat transfer promoter for radiant tube
JPS62199717A (en) * 1986-02-26 1987-09-03 Sumitomo Metal Ind Ltd Radiant tube for heating furnace
JPS63173613U (en) * 1987-05-01 1988-11-10
JPH01150709A (en) * 1987-12-08 1989-06-13 Shinagawa Refract Co Ltd High speed exhaust burner
JPH0433825U (en) * 1990-06-29 1992-03-19
JPH0828821A (en) * 1994-07-12 1996-02-02 Tokyo Gas Co Ltd Radiant tube burner equipment producing little nitrogen oxide, and burning method thereof
JPH08247671A (en) * 1995-03-09 1996-09-27 Nkk Corp Heat accumulation body for regenerative burner
JPH10332286A (en) * 1998-05-18 1998-12-15 Nippon Furnace Kogyo Kaisha Ltd Preheating method for combustion air and honeycomb-form heat storage body
JPH11190515A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Regenerative combustion apparatus and radiant tube combustion apparatus using the same

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5766319U (en) * 1980-10-04 1982-04-20
JPS57112694A (en) * 1980-12-27 1982-07-13 Nippon Steel Corp Heat transfer promoter for radiant tube
JPS62199717A (en) * 1986-02-26 1987-09-03 Sumitomo Metal Ind Ltd Radiant tube for heating furnace
JPS63173613U (en) * 1987-05-01 1988-11-10
JPH01150709A (en) * 1987-12-08 1989-06-13 Shinagawa Refract Co Ltd High speed exhaust burner
JPH0433825U (en) * 1990-06-29 1992-03-19
JPH0619941Y2 (en) * 1990-06-29 1994-05-25 日本ファーネス工業株式会社 Heat storage type radiant tube burner device
JPH0828821A (en) * 1994-07-12 1996-02-02 Tokyo Gas Co Ltd Radiant tube burner equipment producing little nitrogen oxide, and burning method thereof
JPH08247671A (en) * 1995-03-09 1996-09-27 Nkk Corp Heat accumulation body for regenerative burner
JPH11190515A (en) * 1997-12-26 1999-07-13 Tokyo Gas Co Ltd Regenerative combustion apparatus and radiant tube combustion apparatus using the same
JPH10332286A (en) * 1998-05-18 1998-12-15 Nippon Furnace Kogyo Kaisha Ltd Preheating method for combustion air and honeycomb-form heat storage body

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017212744A1 (en) * 2016-06-07 2017-12-14 中外炉工業株式会社 Radiant tube burner unit, and industrial furnace
CN113531528A (en) * 2021-07-23 2021-10-22 杭州中景科技有限公司 Diffusion type low-NOx self-preheating radiant tube burner with flue gas backflow and method
CN113531528B (en) * 2021-07-23 2024-04-12 杭州中景科技有限公司 Low-NOx self-preheating radiant tube burner with smoke backflow diffusion and method

Also Published As

Publication number Publication date
JP5966431B2 (en) 2016-08-10

Similar Documents

Publication Publication Date Title
US9650304B2 (en) Tunnel kiln for firing ceramic porous bodies
JP5817590B2 (en) Air preheating device and exhaust gas recirculation device
TWI415948B (en) Top burner hot air stove
CN106287758A (en) A kind of low-temperature catalyzed exhaust-gas treatment of high temperature incineration utilizes system
JP5966431B2 (en) Radiant tube burner
JP2011196615A (en) Waste heat recovery equipment of heating furnace, and method of utilizing waste heat
CN104764017A (en) Water-cooling type gas burner
CN106247354A (en) Recuperation of heat catalysis oxidation organic waste gas treatment device
JP2008231644A (en) Carbon fiber production apparatus and carbon fiber production method
JP6602864B2 (en) Radiant burner for toxic gas ashing
CN103542410B (en) Heat supply fume exhaust integrated device
KR100886190B1 (en) The burner for making deoxidizing atmosphere of exhaust gas in engine cogeneration plant with denox process
CN104964281A (en) Fuel-gas-catalyzed flameless near-infrared indirect heating porous medium burner
CN209763106U (en) Organic waste gas integration RTO ceramic regenerative thermal oxidizer
US20160230986A1 (en) Method for surface stabilized combustion (ssc) of gaseous fuel/oxidant mixtures and a burner design thereof
JP5320926B2 (en) Regenerative burner method for heating furnace burners
JP2011038741A (en) Direct injection type regenerative burner
CN102218526B (en) High-efficiency and energy-saving roasting device for steel ladles
JP4789154B2 (en) Cooling system
CN203628661U (en) Heat supplying and smoke exhausting integrated device
CN103341303B (en) Oxidation treatment system for combustible tail gas and application thereof
CN103017336B (en) Biological-waste-liquid-fired vertical molten salt furnace
JP2012189241A (en) Heat storage type burner furnace
CN209623382U (en) A kind of sintering of energy-saving efficient, pelletizing denitrating flue gas afterburning furnace
JP2018077025A (en) Multistage type boiler heat exchange device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150515

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160607

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160620

R150 Certificate of patent or registration of utility model

Ref document number: 5966431

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees