JP2013177126A - Control method for energy saving deceleration travelling - Google Patents

Control method for energy saving deceleration travelling Download PDF

Info

Publication number
JP2013177126A
JP2013177126A JP2013075470A JP2013075470A JP2013177126A JP 2013177126 A JP2013177126 A JP 2013177126A JP 2013075470 A JP2013075470 A JP 2013075470A JP 2013075470 A JP2013075470 A JP 2013075470A JP 2013177126 A JP2013177126 A JP 2013177126A
Authority
JP
Japan
Prior art keywords
traveling
inertial
distance
speed
braking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013075470A
Other languages
Japanese (ja)
Other versions
JP5382832B2 (en
Inventor
Masahiro Watanabe
雅弘 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2013075470A priority Critical patent/JP5382832B2/en
Publication of JP2013177126A publication Critical patent/JP2013177126A/en
Application granted granted Critical
Publication of JP5382832B2 publication Critical patent/JP5382832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Landscapes

  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Traffic Control Systems (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)
  • Controls For Constant Speed Travelling (AREA)
  • Regulating Braking Force (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a control method for energy saving deceleration using kinetic energy of a vehicle to the maximum for deceleration travelling consisting mainly of coasting travelling.SOLUTION: Problems in execution of energy saving deceleration travelling consisting mainly of coasting travelling in vehicle deceleration are solved as below. (1) For maximizing range capable of coasting travelling, a lower limit speed for coasting travelling (starting speed for braking travelling) and setting of braking travelling distance is set. (2) For complexity of calculation for capable range of coasting travelling, a tentative value for capable range of coasting travelling is set. (3) A braking starting speed for a difference between the tentative value for capable range for coasting travelling and a true value is changed, or a travelling at constant speed at the starting speed for braking travelling is corrected. A learning of the tentative value for capable range for coasting travelling is updated.

Description

本発明は、自動車の省エネルギー減速走行を自動車およびその走行環境の実態に合わせて簡易にかつ効果的に行うことを可能にした省エネルギー減速走行制御方法に関する。   The present invention relates to an energy-saving decelerating traveling control method that can easily and effectively perform energy-saving decelerating traveling of an automobile in accordance with the actual conditions of the automobile and its traveling environment.

自動車の省エネルギー運転のポイントは、自動車が加速走行によって獲得した運動エネルギーを如何に減速時に走行抵抗に打ち勝っての走行エネルギーとして有効活用するかである。このためには上記運動エネルギーを制動、特に摩擦制動、によって浪費しない走行、即ち惰性走行あるいは惰性走行に準じた走行が有効である(特許文献1、特許文献2)。
しかし、減速時惰性走行を車両の有する運動エネルギーの許す範囲で最大現行うためには、車両の状態あるいは走行環境に対応した正確な惰性走行減速度を知る必要があるが、これには煩瑣で複雑な計測および計算が必須であり、これを現状の車両において簡易に実行することができないことが、省エネルギー走行として惰性走行を有効活用できていない最大の理由である。
さらに、上記に加えてICV(エンジン車両)において惰性走行を行う場合、一般的にはエンジンと駆動輪間接続を遮断することが、エンジンに接続されているオルタネータあるいはコンプレッサ等の機器動作が不全となる恐れがある。
The point of energy-saving driving of a car is how to effectively use the kinetic energy acquired by the car by accelerated running as running energy that overcomes running resistance when decelerating. For this purpose, traveling in which the kinetic energy is not wasted by braking, particularly friction braking, that is, coasting or coasting according to coasting is effective (Patent Document 1, Patent Document 2).
However, in order to perform inertial running at the time of deceleration within the range allowed by the kinetic energy of the vehicle, it is necessary to know an accurate inertial deceleration that corresponds to the state of the vehicle or the running environment. Complicated measurement and calculation are essential, and the fact that this cannot be easily performed in the current vehicle is the biggest reason that inertial traveling cannot be effectively used as energy-saving traveling.
Furthermore, in addition to the above, when performing inertial running in an ICV (engine vehicle), generally, disconnecting the connection between the engine and the drive wheels may result in failure of operation of an alternator or a compressor connected to the engine. There is a fear.

特開2011−046272JP2011-046272A 特願2012−075650Japanese Patent Application No. 2012-075650

本願発明は上記問題を解決し、現行車両においても車両運転者が簡易に実行可能な惰性走行による省エネルギー減速走行支援方法を提供しようとするものである。
ここで、惰性走行とは、車両の安全走行上あるいは車両動作の信頼性上の支障をきたさない範囲内で、エンジン、モータ等の車両駆動体の駆動力発生動作を停止する、あるいはエンジン、モータ等の駆動力の駆動輪への伝達を停止・低減する、ことによってその時点で車両の有している運動エネルギーを有効利用しての車両の減速走行状態をいう。
但し、走行状態として上記の如く厳密な惰性走行状態ではなく、例えばガソリンエンジンのマニュアルトランスミッション車において、「4速走行時におけるアクセルオフ」等の操作で、擬似的な惰性走行(準惰性走行)とすることができる。
The present invention is intended to solve the above problems and to provide an energy-saving decelerating traveling support method by inertial traveling that can be easily executed by a vehicle driver even in a current vehicle.
Here, coasting refers to stopping the driving force generation operation of a vehicle driving body such as an engine or motor within a range that does not interfere with the safe driving of the vehicle or the reliability of vehicle operation, or the engine or motor. This means that the vehicle is decelerating while effectively utilizing the kinetic energy of the vehicle at that time by stopping and reducing the transmission of the driving force to the drive wheels.
However, the driving state is not the exact inertial driving state as described above. For example, in a manual transmission vehicle with a gasoline engine, an operation such as “acceleration off at the time of four-speed driving” or the like can be used as a pseudo inertial driving (semi-inertial driving). can do.

減速時惰性走行を最大限実行するためには、目標地点が特定された後、現地点・現速度が、惰性走行によって目標地点に到達可能な位置・速度であるか否かを、
(数1)式によって惰性走行可能距離Di を算出し、現地点−目標地点間距離Dとの間に(数2)式を満足するか否かにより判定することが必要となる。
即ち、現速度vc からの惰性走行減速度αi(厳密には現速度vc から惰性走行下限速度間の惰性走行減速度実効値αip )を知って、前記惰性走行減速度αiと現速度vcおよび惰性走行下限速度vbから惰性走行可能距離Diを算出し、前記算出した惰性走行可能距離Diと現地点から目標地点までの距離Dを比較して惰性走行の可否を判定する。
上記惰性走行可否判定の基本的考え方は特許文献1に記載されているので詳しい説明は省略する。
In order to perform coasting at the time of deceleration to the maximum, after the target point is specified, whether the local point / current speed is a position / speed at which the target point can be reached by coasting,
It is necessary to calculate the inertia travelable distance Di using the formula (1) and determine whether the formula (2) is satisfied between the local point-target point distance D or not.
That is, knowing the inertia traveling deceleration αi from the current speed vc (strictly speaking, the inertia traveling deceleration effective value αip between the current speed vc and the inertia traveling lower limit speed), the inertia traveling deceleration αi, the current speed vc, and the inertia The inertial travelable distance Di is calculated from the travel lower limit speed vb, and the inertial travelable distance Di calculated above is compared with the distance D from the local point to the target point to determine whether inertial travel is possible.
Since the basic concept of the inertia traveling propriety determination is described in Patent Document 1, detailed description thereof is omitted.

(数1)
Di =(vc2 −vb2)/(2・αi)
(数2)
Di ≧D−Db
ここで、
vc :現速度
vb :惰性走行下限速度、
(車両が惰性走行の結果本速度に達した時点で惰性走行を停止し制動走行に移行する。)
αi :現速度vc からの惰性走行減速度、
D:現地点−目標地点間距離、
Db :惰性走行下限速度から停止までの間の制動走行距離、(惰性走行終了地点−目標地点間距離、)
である。
(Equation 1)
Di = (vc 2 -vb 2) / (2 · αi)
(Equation 2)
Di ≧ D−Db
here,
vc: current speed vc: inertial traveling lower limit speed,
(When the vehicle reaches this speed as a result of inertial traveling, inertial traveling is stopped and transition is made to braking traveling.)
αi: coasting deceleration from the current speed vc
D: Distance between local point and target point,
Db: braking travel distance from the inertia traveling lower limit speed to the stop, (the inertia traveling end point-target point distance)
It is.

上記は、惰性走行による減速走行の正当な制御方法であるが、上記減速走行制御を行う
ためには車両状態あるいは車両走行状態に対応した正確な惰性走行減速度αi(v)を計測・算出し、これを用いて惰性走行可能距離を算出する必要がある。
上記煩雑さ・複雑さを解消し、ドライバーが簡易に実行でき、かつ相応な省エネルギー効果が得られる減速走行制御(惰性走行制御)方法の提案が本願発明の趣旨である。
The above is a legitimate control method of deceleration traveling by inertia traveling, but in order to perform the deceleration traveling control, an accurate inertia traveling deceleration αi (v) corresponding to the vehicle state or the vehicle traveling state is measured and calculated. It is necessary to calculate the coasting distance using this.
The gist of the present invention is to propose a deceleration traveling control (inertial traveling control) method that eliminates the complexity and complexity described above, that can be easily executed by the driver, and that provides a suitable energy saving effect.

減速走行開始に先立ち、目標停止点位置の特定および惰性走行可能距離暫定値Di 、惰性走行下限速度vb 、制動走行距離算出式Db(v)を設定する。
ここで、制動走行距離算出式は、例えば(数3)の如く設定する。
(数3)
Db(v)=v2 /(2・αb )
ここで、
v:制動走行開始速度
αb :制動減速度
である。
Prior to the start of deceleration traveling, the target stop point position is specified and the inertial travelable distance provisional value Di, the inertial travel lower limit speed vb, and the braking travel distance calculation formula Db (v) are set.
Here, the braking travel distance calculation formula is set, for example, as (Equation 3).
(Equation 3)
Db (v) = v 2 /(2.αb)
here,
v: braking running start speed αb: braking deceleration.

その後、車両現在位置情報と前記特定された目標停止点位置情報とから、車両の現地点から目標停止点までの距離Dを算出し、前記Dが、上記(数2)を満足した時点から惰性走行を開始する。惰性走行中、車両速度vおよび車両現地点−目標停止点間距離Dを周期的に監視し、v=vb に達した時点、あるいは上記DがD=Db(vb)に達した時点で、惰性走行から制動走行に移行する。   Thereafter, a distance D from the vehicle local point to the target stop point is calculated from the vehicle current position information and the specified target stop point position information, and the inertia from the time point when the D satisfies the above (Equation 2). Start running. During inertial running, the vehicle speed v and the vehicle local point-target stop point distance D are periodically monitored, and when v = vb is reached or when the above D reaches D = Db (vb) Transition from running to braking running.

ただし上記惰性走行から制動走行への移行タイミングは、前記惰性走行可能距離Diが車両状態あるいは車両走行状態に正しく対応したものである場合であって、上記の如く暫定値として設定されていた場合には、上記の如く理想的にはいかず、図1に示す如く、
a) Di が(Di’ +Dc )の如く設定された結果惰性走行開始地点が図2 A’ 点となり、
その結果、惰性走行速度vがv=vb に達した時点(図1B’)でD>Db(vb)となる、
あるいは
b) Di がDi’’ の如く設定された結果惰性走行開始地点が図2 A’’点 となり、その結果、速度vがv=vb’ (vb’ >vb) 状態であるにもかかわらず、D<Db(vb’)となる
場合が生じる。
However, the transition timing from the inertia traveling to the braking traveling is the case where the inertia traveling possible distance Di corresponds to the vehicle state or the vehicle traveling state correctly and is set as a provisional value as described above. Is not ideal as described above, as shown in FIG.
a) As a result of setting Di as (Di '+ Dc), the coasting start point becomes point A' in FIG.
As a result, when the inertia running speed v reaches v = vb (FIG. 1B ′), D> Db (vb).
Or
b) As a result of the Di being set as Di ″, the coasting start point becomes the A ″ point in FIG. 2, and as a result, the speed v is in the state of v = vb ′ (vb ′> vb). There is a case where D <Db (vb ′).

上記エラーに対しては、
a) の場合は、v=vb に達した時点(図1B’点)から速度vbでの定速走行を
D=Db(vb)(図1B点)まで行った後、制動走行に移行する、また、
b)の場合は、図1B’’ 点から速度vb’ に対応した制動走行距離Db(vb’)制動走行する、
ことによって、目標地点への惰性走行を主体とした減速走行が可能になる。
For the above error,
In the case of a), a constant speed traveling at a speed vb is performed from the time point when v = vb is reached (point B ′) in FIG. Also,
In the case of b), the brake travel distance Db (vb ′) corresponding to the speed vb ′ from the point of FIG.
As a result, it is possible to perform decelerating traveling mainly by inertial traveling to the target point.

また、上記暫定的に設定されたDi 値は、上記減速走行を行った結果として、Di 値を、上記a) の場合は(数4)の如く、またb) の場合は(数5)の如く、学習・修正し、次回の減速走行に生かすことによって、実質的には、正しい惰性走行可能距離による減速走行が可能になる。
(数4)
Di ←[Di −{D−Db(vb)}]
但し、D:惰性走行速度がvb に達した時点の目標停止点までの距離
(数5)
Di ←[Di +{(vb’2 −vb2 )/(2・αi )}]
但し、αi :速度vc における惰性走行減速度
である。
In addition, the provisionally set Di value is obtained as a result of the decelerating traveling, as shown in (Equation 4) in the case of a), and (Equation 5) in the case of b). As described above, learning / correction and use for the next deceleration traveling substantially enable deceleration traveling with the correct inertial traveling distance.
(Equation 4)
Di <-[Di- {D-Db (vb)}]
However, D: Distance to the target stop point when the inertia traveling speed reaches vb (Equation 5)
Di ← [Di + {(vb '2 -vb 2) / (2 · αi)}]
Where αi is the inertia running deceleration at speed vc.

また、上記は目標地点が停止点である場合であるが、目標地点が信号交差点である場合は、制動走行移行時点で、信号状態が青である場合は、惰性走行状態あるいは定速走行状態から制動走行に移行せず、そのままの走行状態で(無停止で)交差点を通過することによって更なる省エネルギー性能の向上および排出ガス量削減が可能となる。 In addition, the above is a case where the target point is a stop point, but when the target point is a signalized intersection, at the time of braking travel transition, when the signal state is blue, from the inertial traveling state or the constant speed traveling state By passing through the intersection in the same running state (without stopping) without shifting to the braking running, it is possible to further improve the energy saving performance and reduce the exhaust gas amount.

また、通常走行から惰性走行移行に際し、車両を現走行状態から惰性走行状態に移行させると車両の安全走行あるいは安定した交通流維持に不都合が生じるような走行状態・走行環境状態にある場合、(例えば、道路勾配が負であり、惰性走行に移行すると加速状態になる、あるいは惰性走行に移行することによってエンジン−駆動輪間の接続が遮断される結果オルターネータ動作が停止して車両の電装品駆動用電源容量が不足状態になる恐れがある場合等、)は、前記不都合が解消されるまで惰性走行への移行あるいは継続は停止することによって、安全かつ高信頼な減速走行が可能となる。 In addition, when transitioning from normal travel to inertial travel, when the vehicle is transitioned from the current travel state to the inertial travel state, when the vehicle is in a travel state / running environment state that causes inconvenience in safe travel of the vehicle or stable traffic flow maintenance, For example, when the road gradient is negative and the vehicle enters an acceleration state, the vehicle enters an acceleration state, or the connection between the engine and the drive wheels is interrupted by the transfer to the inertial drive. In the case where there is a possibility that the drive power supply capacity becomes insufficient, for example, the transition to or the continuation of the inertial traveling is stopped until the inconvenience is resolved, thereby enabling a safe and highly reliable deceleration traveling.

ここで車両の実行できる惰性走行が、厳密な意味での惰性走行(車両駆動力源と駆動輪間の接続が遮断された状態での車両の有する運動エネルギーによる走行)ではなく、
車両において実現可能な惰性走行に準じた走行(前記準惰性走行)である場合も、上記本願発明による惰性走行を主体とした減速走行に代えて準惰性走行を主体とした減速走行によって、相応な省エネルギー性能を得ることができる。
Here, coasting that can be performed by the vehicle is not strictly coasting (running by the kinetic energy of the vehicle in a state where the connection between the vehicle driving force source and the driving wheels is disconnected),
Even in the case of traveling conforming to inertial traveling that can be realized in a vehicle (said semi-inertial traveling), instead of the deceleration traveling mainly based on inertial traveling according to the present invention, it is possible to obtain a suitable response by decelerating traveling mainly based on semi-inertial traveling. Energy saving performance can be obtained.

本発明によって、車両運転者(特にガソリンあるいはディーゼルエンジン車両運転者)は、現走行状態(車両現在位置、現速度)からの惰性走行あるいは準惰性走行可否判定、判定が可の場合の車両運転者の手動操作による惰性走行あるいは準惰性走行への移行、前記惰性走行に続く定速走行への移行、あるいは前記惰性走行、定速走行から制動走行への移行、等々を順次行うことによって、効果的な省エネルギー走行ができることになり、従来提案されている最大限の惰性走行を可能にするための正確な惰性走行減速度の取得およびそれによる惰性走行可能距離の算出処理等を行わなくても、簡易な操作で相応な省エネルギー性能および地球温暖化対策としての排出ガス量削減性能を持った走行が可能になる。
また本願発明はその適用車両としてICV(エンジン車両)に限らず、EV、HEV、PHEV、あるいは燃料電池車に対しても適用が可能である。
According to the present invention, a vehicle driver (especially a gasoline or diesel engine vehicle driver) can determine whether or not inertial traveling or semi-inertial traveling can be determined from the current traveling state (current vehicle position and current speed). It is effective by sequentially performing the transition to inertial traveling or semi-inertial traveling by manual operation, transition to constant speed traveling following the inertial traveling, or transition from inertial traveling, constant speed traveling to braking traveling, etc. Energy-saving travel is possible, and it is easy to perform accurate inertial travel deceleration acquisition and maximum inertial travel distance calculation that have been proposed in the past without the need for accurate inertial travel deceleration. It is possible to travel with appropriate energy-saving performance and exhaust gas reduction performance as a measure against global warming.
The present invention is not limited to an ICV (engine vehicle) as an applicable vehicle, but can be applied to an EV, HEV, PHEV, or a fuel cell vehicle.

図1は本願発明による省エネルギー減速走行制御方法説明のための車両走行状態変移図、FIG. 1 is a vehicle traveling state transition diagram for explaining an energy saving deceleration traveling control method according to the present invention. 図2は、本願発明による減速走行制御方法の処理手順例、である。FIG. 2 is a processing procedure example of the deceleration traveling control method according to the present invention.

本願発明による省エネルギー減速制御方法を実現するためには、
・あらかじめ設定された惰性走行可能距離暫定値情報Di 、惰性走行下減速度情報vb 、走行速度vに対応した最適制動距離Db(v)算出式(前記惰性走行下減速度vbに対応する最適制動距離情報Db(vb )を含む)、
の各情報を有し、
・位置特定機能、時計機能、速度特定機能、
・車両の次に停止すべき目標地点位置情報取得機能、
・上記車両の現在位置情報と車両の次に停止すべき目標地点位置情報とから、現地点−目標地点間距離Dを算出する機能
・前記惰性走行可能距離Di学習・修正機能
・車両が通常走行状態から惰性走行に移行するに際し、惰性走行移行によって車両走行に何らかの不都合が生じるか否かの判定(例えば、電装品駆動用バッテリー充電量の過不足判定、あるいは車両が惰性走行することによって通常走行状態での速度以上の速度に加速してしまう恐れの有無判定等)機能、
を有すること、が条件となる。
In order to realize the energy saving deceleration control method according to the present invention,
-Preliminary inertial travelable distance provisional value information Di, inertial traveling deceleration information vb, optimum braking distance Db (v) calculation formula corresponding to traveling speed v (optimum braking corresponding to inertial traveling deceleration vb) Distance information Db (vb) included),
Each information
-Position identification function, clock function, speed identification function,
・ Target location information acquisition function to stop next to the vehicle,
A function for calculating a local point-target point distance D from the current position information of the vehicle and the target point position information to be stopped next to the vehicle. The inertial travelable distance Di learning / correction function. Judgment of whether or not there is any inconvenience to the vehicle traveling due to the inertial traveling transition (e.g., determination of excess or deficiency of the battery charge for electrical component driving, or normal traveling by the vehicle traveling inertially) Whether there is a risk of accelerating to a speed higher than the speed in the state) function,
It is necessary to have

従って、本願発明による省エネルギー減速走行制御方法実現には、従来のカーナビゲー
ション装置、あるいはスマートフォン等のカーナビゲーション用アプリ、に上記各必要機能を付加することが最も簡易かつ適切な方法であると言える。
Therefore, it can be said that the simplest and most appropriate method for realizing the energy-saving deceleration traveling control method according to the present invention is to add each of the necessary functions to a conventional car navigation device or a car navigation application such as a smartphone.

図2に、本発明装置の省エネルギー減速走行制御方法実現のための演算・制御手順例を示す。
但し、本手順例実行には、図2に示す演算・制御手順のバックグラウンドにおいて、車両現在位置情報、車両速度情報、およびバッテリー残量を周期的に計測することが前提となっている。
201は、省エネルギー減速走行制御手順開始点、
202は、車両が次に停止予定の目標地点の特定(目標停止点位置情報を含む)ができているか否かの判定処理、
203は、処理202で目標地点の特定が済んだと判定した場合、制動走行開始速度vb 、制動開始速度vに対応した制動走行距離Db(v)算出式、走行速度vcに対応した惰性走行可能距離Di (vc) 、の設定処理を行う、vb・Db(v)・Di (vc )設定処理、
FIG. 2 shows an example of a calculation / control procedure for realizing the energy-saving deceleration traveling control method of the apparatus of the present invention.
However, the execution of this example procedure is based on the premise that the vehicle current position information, the vehicle speed information, and the remaining battery level are periodically measured in the background of the calculation / control procedure shown in FIG.
201 is an energy saving deceleration traveling control procedure starting point,
202 is a process for determining whether or not the vehicle is scheduled to stop next (including target stop point position information).
If it is determined in step 202 that the target point has been specified, the braking travel start speed vb, the braking travel distance Db (v) calculation formula corresponding to the braking start speed v, and inertial travel corresponding to the travel speed vc are possible. A process for setting the distance Di (vc), vb, Db (v), Di (vc) setting process,

204は、車両現在位置−目標停止点間距離D算出処理、
205は、現走行速度vc に対応した惰性走行可能距離設定値Di(vc)と処理204で算出した距離Dの比較を行い、車両の現在位置が惰性走行移行可能な位置か否かを判定する惰性走行移行可能地点判定処理、
206は、処理205で現地点が惰性走行移行可能地点と判定された場合、惰性走行移行に際しての不都合の有無を(例えば、バッテリー残量から)判定する惰性走行移行可否判定処理、
204 is a vehicle current position-target stop point distance D calculation process;
205 compares the inertial travelable distance setting value Di (vc) corresponding to the current travel speed vc with the distance D calculated in the process 204 to determine whether or not the current position of the vehicle can be shifted to inertial travel. Inertia travel transferable point determination process,
206, an inertial traveling transition determination process for determining whether or not there is any inconvenience in transitioning to inertial traveling when the local point is determined to be inertial traveling transitionable point in the process 205;

207は、惰性走行への移行あるいは継続を行う惰性走行処理、
208は、惰性走行中の車両速度vと処理203で設定された制動走行開始速度vb を比較する速度比較処理、
209は、処理208で現速度vが制動走行開始速度vb に達したと判定された場合、距離Dが制動走行開始距離Db(vb)に達しているか否かを判定する制動走行開始距離判定処理、
210は、処理209で、距離Dが制動走行開始距離に未達と判定された場合、速度vb での定速走行に移行、あるいは定速走行を継続、する定速走行処理、
211は、処理208で現速度vが制動走行開始速度vb に未達と判定された場合、現速度vでの制動走行距離Db(v)を(数3)の制動走行距離算出式から算出する制動走行距離算出処理、
212は、処理211で算出された制動走行距離Db(v)と距離Dの比較を行うDb(v)−D比較処理、
207 is an inertia running process for shifting or continuing to inertia running,
208 is a speed comparison process for comparing the vehicle speed v during coasting and the braking travel start speed vb set in the process 203;
209 is a braking travel start distance determination process for determining whether the distance D has reached the braking travel start distance Db (vb) when it is determined in the process 208 that the current speed v has reached the braking travel start speed vb. ,
210 is a constant speed traveling process in which, when the distance D is determined not to reach the braking travel start distance in the process 209, the process shifts to the constant speed traveling at the speed vb or continues the constant speed traveling;
211, when it is determined in process 208 that the current speed v has not reached the braking travel start speed vb, the braking travel distance Db (v) at the current speed v is calculated from the braking travel distance calculation formula (Equation 3). Braking mileage calculation processing,
212 is a Db (v) -D comparison process for comparing the braking travel distance Db (v) calculated in the process 211 with the distance D;

213は、制動走行に移行あるいは継続する制動走行処理、
214は、車両が停止したか否か(車両速度が0に達したか否か)を判定する車両停止判定処理、
215は、本省エネルギー減速走行制御方法実現のための演算・制御手順の終了点、
である。
以上のごとき演算・制御手順によって、惰性走行可能距離として暫定的な値を用いても、相応な省エネルギー減速走行制御の実行が可能になる。
213 is a braking traveling process for shifting to or continuing to the braking traveling;
214 is a vehicle stop determination process for determining whether or not the vehicle has stopped (whether or not the vehicle speed has reached 0);
215 is the end point of the calculation / control procedure for realizing the energy saving deceleration traveling control method,
It is.
According to the calculation / control procedure as described above, even if a temporary value is used as the inertial travelable distance, it is possible to execute appropriate energy-saving deceleration travel control.

実施例1の図2に示す演算・制御手順例において、
処理210の定速走行移行時、当初設定されている惰性走行可能距離暫定値Di を(数4)に示す[Di −{D−Db(vb)}]に置き換えて、
あるいは処理212において距離Dが制動走行距離Db(v)以下と判定されたとき当初設定されている惰性走行可能距離暫定値Di を(数5)に示す[Di +{(vb’2 −vb2 )/(2・αi )}]に置き換えて、
次回減速走行時この置き換えられた惰性走行可能距離暫定値を新たなDi として惰性走行を行うことによってより制御精度の高い省エネルギー減速走行制御が可能となる。
In the calculation / control procedure example shown in FIG.
At the time of shifting to the constant speed running in the process 210, the initially set inertial running distance provisional value Di is replaced with [Di− {D−Db (vb)}] shown in (Equation 4),
Alternatively, when it is determined in the process 212 that the distance D is equal to or less than the braking travel distance Db (v), the initially set inertial travelable distance provisional value Di is shown in (Equation 5) as [Di + {(vb ′ 2 −vb 2]. ) / (2 · αi)}]
By performing inertial traveling with the replaced inertial travelable provisional value replaced as a new Di during the next deceleration traveling, energy-saving deceleration traveling control with higher control accuracy is possible.

実施例1においては目標地点は停止点としているが、目標点を信号交差点とし、図2実施例の処理213移行に先立ち、信号交差点信号状態が青信号か否かの判定処理を行い、青信号と判定した場合は、現地点−目標地点間距離DがD=0となるまで現時点までの走行(惰性走行あるいは速度vbでの定速走行)を継続し、距離DがD=0になった時点から通常走行に移行して信号交差点を無停止で通過するするように制御することによって信号交差点での不要な停止を回避することができ一層の省エネルギー走行が可能になる。 In the first embodiment, the target point is a stop point, but the target point is a signalized intersection. Prior to the transition to the process 213 in FIG. In this case, until the distance D between the local point and the target point becomes D = 0, the vehicle travels up to the present time (inertia travel or constant speed travel at the speed vb) until the distance D reaches D = 0. By shifting to normal driving and passing through the signalized intersection without stopping, unnecessary stopping at the signalized intersection can be avoided, and further energy-saving driving is possible.

本願発明によって、最大限の惰性走行による減速走行実行に必要な、正確な惰性走行減速度の計測・算出あるいは前記惰性走行減速度による惰性走行可能距離の算出を行うことなしに、簡易な惰性走行主体の減速走行実行による相応な省エネルギー減速走行および排出ガス削減走行が可能となる。
また、本願発明は、厳密な意味での惰性走行は不可能で準惰性走行しか可能でない車両においても、減速走行の主体を準惰性走行とすることによって相応の効果のある省エネルギー走行が可能になる。
さらに、エンジン車両における惰性走行(エンジン−駆動輪間接続遮断状態での走行)を長距離実行することによるオルターネータ等のエンジンに接続されている機器の動作不全となる問題も、惰性走行時、即ちエンジン−駆動輪間接続が遮断されている間、エンジン制御を通常走行時(エンジン−駆動輪間接続が接続されている状態時)と独立に惰性走行状態に最適化して実行することによって解決が可能となる。
以上の如く本願発明によって惰性走行実行に際しての問題はすべて解決することができ、車両運転者による手動制御においてもあるいは自動走行においても、またエンジン車両、EV、HEV、PHEV、あるいは燃料電池車等の駆動形態を問わず、惰性走行の省エネルギー・排出ガス量削減走行への有効性を十分発揮することが可能となる。
According to the present invention, it is possible to perform simple inertial travel without performing accurate inertial travel deceleration measurement / calculation or inertial travelable distance calculation based on the inertial travel deceleration, which is necessary for executing deceleration travel with maximum inertial travel. Appropriate energy-saving deceleration traveling and exhaust gas reduction traveling can be performed by executing the deceleration traveling of the main body.
Further, the present invention makes it possible to perform energy-saving traveling with a corresponding effect by making the subject of deceleration traveling quasi-inertial traveling even in a vehicle in which coasting traveling in a strict sense is impossible and only semi-inertial traveling is possible. .
Furthermore, the problem of malfunction of equipment connected to the engine such as an alternator due to long-distance execution (running in a state where the connection between the engine and driving wheels is disconnected) in the engine vehicle is also In other words, while the connection between the engine and the driving wheel is cut off, the engine control is performed by optimizing and executing the inertial driving state independently of the normal driving (when the connection between the engine and the driving wheel is connected). Is possible.
As described above, the invention of the present application can solve all the problems in executing inertial traveling, whether in manual control by the vehicle driver or in automatic traveling, and in engine vehicles, EVs, HEVs, PHEVs, fuel cell vehicles, etc. Regardless of the drive mode, it is possible to sufficiently demonstrate the effectiveness of inertial traveling for energy saving and reduced exhaust gas traveling.

v:車両速度、
vc :惰性走行開始前の車両速度、
vb :惰性走行下限速度、
vb’ :惰性走行停止速度(vb’ >vb)
D:車両現在位置−目標地点間距離、
Db (v):速度vからの制動距離、
≒v/(2・αb )
Db(vb ):速度vbからの制動走行距離、

=Db
Di :惰性走行可能距離、
αi :速度vc 時の惰性走行減速度、
αb :制動減速度、
v: vehicle speed,
vc: vehicle speed before coasting,
vb: inertia running lower limit speed,
vb ': inertial running stop speed (vb'> vb)
D: Distance between current vehicle position and target point,
Db (v): braking distance from speed v,
≒ v / (2 ・ αb)
Db (vb): braking distance from speed vb,

= Db
Di: coasting distance,
αi: coasting deceleration at speed vc,
αb: braking deceleration,

自動車の省エネルギー運転のポイントは、自動車が加速走行によって獲得した運動エネルギーを減速時に如何に走行抵抗に打ち勝っての走行エネルギーとして有効活用するかである。このためには上記運動エネルギーを制動、特に摩擦制動、によって浪費しない走行、即ち惰性走行あるいは惰性走行に準じた走行(準惰性走行)が有効である(特許文献1、特許文献2)。
しかし、減速時惰性走行を車両の有する運動エネルギーの許す範囲で最大現行うためには、車両の状態あるいは走行環境に対応した正確な惰性走行減速度を知る必要があるが、これには煩瑣で複雑な計測および計算が必須であり、これを現状の車両において容易に実行できないこと、およびICV(エンジン車両)において惰性走行を行う場合、一般的にはエンジンと駆動輪間接続を遮断することが、エンジンに接続されているオルタネータあるいはコンプレッサ等の機器動作が不全となる恐れがあること、が省エネルギー走行として惰性走行を有効活用できていない最大の理由であるといえる。
The point of energy-saving driving of a car is how to effectively use the kinetic energy acquired by the car as a result of accelerating driving as driving energy that overcomes driving resistance when decelerating . For this purpose, traveling that does not waste the kinetic energy by braking, particularly friction braking, that is, traveling according to inertial traveling or inertial traveling (quasi-inertial traveling) is effective (Patent Document 1, Patent Document 2).
However, in order to perform inertial running at the time of deceleration within the range allowed by the kinetic energy of the vehicle, it is necessary to know an accurate inertial deceleration that corresponds to the state of the vehicle or the running environment. Complicated measurement and calculation are indispensable, and this cannot be easily performed in the current vehicle, and when performing inertial running in an ICV (engine vehicle), generally, the connection between the engine and the driving wheel may be cut off. It can be said that the operation of equipment such as an alternator or a compressor connected to the engine may be incomplete, which is the biggest reason that inertial traveling cannot be effectively utilized as energy-saving traveling.

本願発明は上記問題を解決し、現行車両においても車両運転者が簡易に実行可能な惰性走行による省エネルギー減速走行支援方法を提供しようとするものである。
ここで、惰性走行とは、車両の安全走行上あるいは車両動作の信頼性上の支障をきたさない範囲内で、エンジン、モータ等の車両駆動体の駆動力発生動作を停止する、あるいはエンジン、モータ等の駆動力の駆動輪への伝達を停止・低減する、ことによってその時点で車両の有している運動エネルギーを有効利用した車両の減速走行状態をいう。
但し、走行状態として上記の如く厳密な惰性走行状態ではなく、例えばガソリンエンジンのマニュアルトランスミッション車において、「4速走行時におけるアクセルオフ」等の操作によって、擬似的な惰性走行(準惰性走行)とすることができる。
The present invention is intended to solve the above problems and to provide an energy-saving decelerating traveling support method by inertial traveling that can be easily executed by a vehicle driver even in a current vehicle.
Here, coasting refers to stopping the driving force generation operation of a vehicle driving body such as an engine or motor within a range that does not interfere with the safe driving of the vehicle or the reliability of vehicle operation, or the engine or motor. This refers to a deceleration traveling state of the vehicle that effectively uses the kinetic energy of the vehicle at that time by stopping and reducing the transmission of the driving force to the driving wheels.
However, the driving state is not a strictly inertial driving state as described above. For example, in a manual transmission vehicle of a gasoline engine, a pseudo inertial driving (semi-inertial driving) is performed by an operation such as “accelerator off at the time of four-speed driving”. can do.

減速時惰性走行を最大限実行するためには、目標地点が特定された後、現地点・現速度
が、惰性走行によって目標地点に到達可能な位置・速度であるか否かを、
(数1)式によって惰性走行可能距離Di を算出し、現地点−目標地点間距離Dとの間に(数2)式を満足するか否かにより判定することが必要となる。
即ち、現速度vc からの惰性走行減速度αi(厳密には現速度vc から惰性走行下限速度vb 間の惰性走行減速度実効値αip )を知って、前記惰性走行減速度αiと現速度vcおよび惰性走行下限速度vbから惰性走行可能距離Diを算出し、前記算出した惰性走行可能距離Diと現地点から目標地点までの距離Dを比較して惰性走行の可否を判定する。
上記惰性走行可否判定の基本的考え方は特許文献1に記載されているので詳しい説明は省略する。
In order to perform coasting at the time of deceleration to the maximum, after the target point is specified, whether the local point / current speed is a position / speed at which the target point can be reached by coasting,
It is necessary to calculate the inertia travelable distance Di using the formula (1) and determine whether the formula (2) is satisfied between the local point-target point distance D or not.
That is, knowing the inertia traveling deceleration αi from the current speed vc (strictly speaking, the inertia traveling deceleration effective value αip between the current speed vc and the inertia traveling lower limit speed vb ), the inertia traveling deceleration αi and the current speed vc and The inertial travel possible distance Di is calculated from the inertial travel lower limit speed vb, and the inertial travel possible distance Di is compared with the distance D from the local point to the target point to determine whether inertial travel is possible.
Since the basic concept of the inertia traveling propriety determination is described in Patent Document 1, detailed description thereof is omitted.

減速走行開始に先立ち、目標停止点位置の特定および惰性走行可能距離暫定値Di 、惰性走行下限速度vb 、制動走行距離算出式Db(v)を設定する。
ここで、制動走行距離算出式は、例えば(数3)の如く設定する。
(数3)
Db(vb)=vb 2 /(2・αb )
ここで、
vb:制動走行開始速度
αb :制動減速度
である。
ここで、惰性走行可能距離は惰性走行開始速度によって変化することから、上記惰性走行可能距離暫定値Di も惰性走行開始時点の速度に対応して設定すべきであるが、以下の説明においては説明を簡易にするため、惰性走行開始時点の速度はvc 一定とする。
Prior to the start of deceleration traveling, the target stop point position is specified and the inertial travelable distance provisional value Di, the inertial travel lower limit speed vb, and the braking travel distance calculation formula Db (v) are set.
Here, the braking travel distance calculation formula is set, for example, as (Equation 3).
(Equation 3)
Db (vb) = vb 2 /(2.αb)
here,
vb : braking running start speed αb: braking deceleration.
Here, the inertial travelable distance varies depending on the inertial travel start speed. Therefore, the inertial travelable distance provisional value Di should also be set in accordance with the speed at the time of inertial travel start. In order to simplify the above, the speed at the start of inertial running is assumed to be constant vc.

ただし上記惰性走行から制動走行への移行タイミングは、前記惰性走行可能距離Diが車両状態あるいは車両走行状態に正しく対応したものである場合であって、上記の如く暫定値として設定されていた場合には、上記の如く理想的にはいかず、図1に示す如く、
a)Di が(Di’+Dc )の如く設定された結果惰性走行開始地点が図1A’ 点となり、
その結果、惰性走行速度vがv=vb に達した時点(図1B’)でD>Db(vb)、即ち制動開始にはまだ早すぎる状態、となる、
あるいは
b)Di がDi’’の如く設定された結果惰性走行開始地点が図2A’’点 となり、その結果、速度vがv=vb’(但し、vb’ >vb) 状態であるにもかかわらず、D<Db(vb’)となる、
場合が生じる。
However, the transition timing from the inertia traveling to the braking traveling is the case where the inertia traveling possible distance Di corresponds to the vehicle state or the vehicle traveling state correctly and is set as a provisional value as described above. Is not ideal as described above, as shown in FIG.
a) As a result of setting Di as (Di '+ Dc), the inertial starting point becomes point A' in FIG.
As a result, when inertial running speed v reaches v = vb (FIG. 1B ′), D> Db (vb ), that is, a state that is still too early to start braking .
Or b) As a result of the setting of Di as Di ″, the coasting start point becomes the point of FIG. 2A ″, and as a result, the speed v is in the state of v = vb ′ ( where vb ′> vb). D <Db (vb ′),
Cases arise.

また、上記暫定的に設定されたDi 値は、上記減速走行を行った結果として、Di 値を、上記a)の場合は(数4)の如く、またb)の場合は(数5)の如く、学習・修正し、次回の減速走行に生かすことによって、実質的には、正しい惰性走行可能距離による減速走行が可能になる。
(数4)
Di ←[Di −{D’−Db(vb)}]
但し、D’:惰性走行速度がvb に達した時点の目標停止点までの距離(図1におけるDc+Db)
(数5)
Di ←[Di +{(vb’2 −vb2 )/(2・αi )}]
但し、αi :速度vc における惰性走行減速度
である。
Further, the provisionally set Di value is obtained as a result of the decelerating traveling, as shown in (Equation 4) in the case of a), and (Equation 5) in the case of b). As described above, learning / correction and use for the next deceleration traveling substantially enable deceleration traveling with the correct inertial traveling distance.
(Equation 4)
Di <-[Di- { D'- Db (vb)}]
However, D ′ : Distance to the target stop point when the inertial traveling speed reaches vb (Dc + Db in FIG. 1)
(Equation 5)
Di ← [Di + {(vb '2 -vb 2) / (2 · αi)}]
Where αi is the inertia running deceleration at speed vc.

また、上記は目標地点が停止点である場合であるが、目標地点が信号交差点であって
制動走行移行時点で、信号状態が青である場合は、惰性走行状態あるいは定速走行状態から制動走行に移行せず、そのままの走行状態で(無停止で)交差点を通過することによって更なる省エネルギー性能の向上および排出ガス量削減が可能となる。
Also, above, but is when the target point is the stopping point, the target point is a signalized intersection,
If the signal state is blue at the time of braking travel transition, further energy saving is achieved by passing through the intersection in the traveling state as it is (without stopping) without shifting from the inertial traveling state or the constant speed traveling state to the braking traveling state. It is possible to improve performance and reduce the amount of exhaust gas.

また、通常走行から惰性走行移行に際し、車両を現走行状態から惰性走行状態に移行させると車両の安全走行あるいは安定した交通流維持に不都合が生じるような走行状態・走行環境状態にある場合(例えば、道路勾配が負であり、惰性走行に移行すると加速状態になる場合、あるいは惰性走行に移行することによってエンジン−駆動輪間の接続が遮断される結果オルターネータ動作が停止して車両の電装品駆動用電源容量が不足状態になる恐れがある場合、等)は、前記不都合が解消されるまで惰性走行への移行あるいは継続は停止することによって、安全かつ高信頼な減速走行が可能となる。 When there upon coasting shift from the normal traveling, when shifting the vehicle from the current travel state to coasting state safe driving or steady running state and running environment state as inconvenience to the traffic flow maintenance of the vehicle (e.g. If the road gradient is negative and the vehicle enters an acceleration state when it shifts to coasting, or the connection between the engine and the drive wheels is interrupted by transitioning to coasting, the alternator operation stops and the electrical components of the vehicle If there is a possibility that the drive power supply capacity becomes insufficient , etc. , the transition or continuation to coasting is stopped until the inconvenience is resolved, thereby enabling safe and highly reliable deceleration traveling.

本願発明による省エネルギー減速制御方法を実現するためには、
・あらかじめ設定された惰性走行可能距離暫定値情報Di 、惰性走行下減速度情報vb 、走行速度vに対応した最適制動距離Db(v)算出式(前記惰性走行下減速度vbに対応する最適制動距離情報Db(vb )を含む)、
の各情報を有し、
・位置特定機能、時計機能、速度特定機能、
・車両の次に停止すべき目標地点位置情報取得機能、
・上記車両の現在位置情報と車両の次に停止すべき目標地点位置情報とから、現地点−目標地点間距離Dを算出する機能、
を有することが条件となる。
さらに付加機能として
・前記惰性走行可能距離Di学習・修正機能
・車両が通常走行状態から惰性走行に移行するに際し、惰性走行移行によって車両走行に何らかの不都合が生じるか否かの判定(例えば、電装品駆動用バッテリー充電量の過不足判定、あるいは車両が惰性走行することによって通常走行状態での速度以上の速度に加速してしまう恐れの有無判定等)機能、
を有すること、が望ましい。
In order to realize the energy saving deceleration control method according to the present invention,
-Preliminary inertial travelable distance provisional value information Di, inertial traveling deceleration information vb, optimum braking distance Db (v) calculation formula corresponding to traveling speed v (optimum braking corresponding to inertial traveling deceleration vb) Distance information Db (vb) included),
Each information
-Position identification function, clock function, speed identification function,
・ Target location information acquisition function to stop next to the vehicle,
A function of calculating a local point-target point distance D from the current position information of the vehicle and target point position information to be stopped next to the vehicle;
It is necessary to have
Further, as an additional function , the inertial travelable distance Di learning / correction function is determined when the vehicle shifts from the normal travel state to the inertial travel, and whether or not there is any inconvenience in the vehicle travel due to the inertial travel transition (for example, electrical equipment) Function for determining whether the battery charge for driving is excessive or insufficient, or whether there is a risk that the vehicle may accelerate to a speed higher than the normal driving speed due to inertial driving)
It is desirable to have

従って、本願発明による省エネルギー減速走行制御方法実現には、従来のカーナビゲー
ション装置、あるいはスマートフォン等のカーナビゲーション用アプリ、に上記各機能中の不足機能を付加することが最も簡易かつ適切な方法であると言える。
Therefore, in order to realize the energy saving deceleration traveling control method according to the present invention, it is the simplest and most appropriate method to add a deficient function among the above functions to a conventional car navigation device or a car navigation application such as a smartphone. It can be said.

図2に、本発明装置の省エネルギー減速走行制御方法実現のための演算・制御手順例を示す。
但し、本手順例実行には、図2に示す演算・制御手順のバックグラウンドにおいて、車両現在位置情報、車両速度情報、およびバッテリー残量を周期的に計測することが前提となる
201は、省エネルギー減速走行制御手順開始点、
202は、車両が次に停止予定の目標地点の特定(目標停止点位置情報を含む)ができているか否かの判定処理、
203は、処理202で目標地点の特定が済んだと判定した場合、制動走行開始速度vb 、制動開始速度vに対応した制動走行距離Db(v)算出式、走行速度vcに対応した惰性走行可能距離Di(vc)、の設定処理を行う、初期設定処理、
FIG. 2 shows an example of a calculation / control procedure for realizing the energy-saving deceleration traveling control method of the apparatus of the present invention.
However, the present procedure example executed in the background of the operation and control procedure shown in FIG. 2, the vehicle current position information, vehicle speed information, and the remaining battery level be periodically measured as a premise.
201 is an energy saving deceleration traveling control procedure starting point,
202 is a process for determining whether or not the vehicle is scheduled to stop next (including target stop point position information).
If it is determined in step 202 that the target point has been specified, the braking travel start speed vb, the braking travel distance Db (v) calculation formula corresponding to the braking start speed v, and inertial travel corresponding to the travel speed vc are possible. An initial setting process for setting a distance Di (vc);

実施例1の図2に示す演算・制御手順例において、
処理210の定速走行移行時、当初設定されている惰性走行可能距離暫定値Di を(数4)に示す[Di −{D’−Db(vb)}]に置き換えて、
あるいは処理212において距離Dが制動走行距離Db(v)以下と判定されたとき当初設定されている惰性走行可能距離暫定値Di を(数5)に示す[Di +{(vb’2 −vb2 )/(2・αi )}]に置き換えて、
次回減速走行時この置き換えられた惰性走行可能距離暫定値を新たなDi として惰性走行を行うことによってより制御精度の高い省エネルギー減速走行制御が可能となる。


In the calculation / control procedure example shown in FIG.
At the time of shifting to the constant speed running of the process 210, the initially set inertial running distance provisional value Di is replaced with [Di− { D′− Db (vb)}] shown in (Equation 4),
Alternatively, when it is determined in the process 212 that the distance D is equal to or less than the braking travel distance Db (v) , the initially set inertial travel distance provisional value Di is represented by (Equation 5) [Di + {(vb ′ 2 −vb 2 ) / (2.αi)}]
By performing the coasting the next deceleration during coasting distance provisional value which is the replacement as new Di, it allows high energy saving deceleration control with higher control accuracy.


減速走行開始に先立ち、目標停止点位置の特定および惰性走行可能距離暫定値Di 、惰性走行下限速度vb 、制動走行距離算出式Db(v)を設定する。
ここで、制動走行距離算出式は、例えば(数3)の如く設定する。
(数3)
Db(v)=v2 /(2・αb )
但し
αb :制動減速度
である。
ここで、惰性走行下限速度vbとは、車両が惰性走行による減速走行を行うに際し、周辺車両を含む交通流の安全・安定に支障をきたさない許容最低速度であって、惰性走行による減速中速度vがvb 以下となる恐れがある場合は惰性走行をやめて制動走行あるいは定速走行に移行する。
である。
また、惰性走行可能距離は惰性走行開始速度によって変化することから、上記惰性走行可能距離暫定値Di も惰性走行開始時点の速度に対応して設定すべきであるが、以下の説明においては説明を簡易にするため、惰性走行開始時点の速度はvc 一定とする。
Prior to the start of deceleration traveling, the target stop point position is specified and the inertial travelable distance provisional value Di, the inertial travel lower limit speed vb, and the braking travel distance calculation formula Db (v) are set.
Here, the braking travel distance calculation formula is set, for example, as (Equation 3).
(Equation 3)
Db (v) = v 2 /(2.αb)
Where αb is the braking deceleration.
Here, the inertial traveling lower limit speed vb is an allowable minimum speed that does not hinder the safety and stability of traffic flow including surrounding vehicles when the vehicle decelerates by inertial traveling, and is a speed during deceleration due to inertial traveling. If there is a possibility that v is less than or equal to vb, the coasting is stopped and the vehicle is shifted to braking traveling or constant speed traveling.
It is.
In addition, since the inertial travelable distance varies depending on the inertial travel start speed, the inertial travelable distance provisional value Di should also be set in accordance with the speed at the time of inertial travel start. For the sake of simplicity, the speed at the start of coasting is assumed to be constant vc.

ただし上記惰性走行から制動走行への移行タイミングは、前記惰性走行可能距離Diが車
両状態あるいは車両走行状態に正しく対応したものである場合であって、上記の如く暫定値として設定されていた場合には、理想的にはいかず、図1に示す如く、
a)Di が(Di’+Dc )の如く設定された結果惰性走行開始地点が図1A’ 点となり、
その結果、惰性走行速度vがv=vb に達した時点(図1B’)でD>Db(vb)、即ち制動開始にはまだ早すぎる状態、となる、
あるいは
b)Di がDi’’の如く設定された結果惰性走行開始地点が図2A’’点 となり、その結果、速度vがv=vb’(但し、vb’ >vb) 状態、即ち速度vが惰性走行下限速度vbに達していないにもかかわらず、D<Db(vb’)即ち目標地点までの距離Dが速度vb’での制動距離Db(vb’)より短くなる場合が生じる。
However, the transition timing from the inertia traveling to the braking traveling is the case where the inertia traveling possible distance Di corresponds to the vehicle state or the vehicle traveling state correctly and is set as a provisional value as described above. Is not ideal, as shown in FIG.
a) As a result of setting Di as (Di '+ Dc), the inertial starting point becomes point A' in FIG.
As a result, when inertial running speed v reaches v = vb (FIG. 1B ′), D> Db (vb ), that is, a state that is still too early to start braking .
Or b) As a result, when Di is set as Di ″, the coasting start point becomes the point of FIG. 2A ″. As a result, the speed v is v = vb ′ ( where vb ′> vb), that is, the speed v is In spite of not reaching the inertial traveling lower limit speed vb, D <Db (vb ′), that is, the distance D to the target point may be shorter than the braking distance Db (vb ′) at the speed vb ′ .

Claims (6)

車両の惰性走行および制動走行による減速走行に際し、惰性走行下限速度vb、制動走行距離(惰性走行下限速度vbからの制動走行による目標停止点までの走行距離)Db(vb)、および惰性走行可能距離暫定値Di 、をあらかじめ設定し、車両現在地−目標停止点間距離Dが
D≦{Di +Db(vb)} なる地点から惰性走行を開始し、速度vがv=vb 時点で惰性走行から制動走行に移行し、制動走行で目標停止点に到達する、ことを特徴とする省エネルギー減速走行制御方法。
At the time of inertia traveling and deceleration traveling by braking, the inertia traveling lower limit speed vb, braking traveling distance (traveling distance from the inertia traveling lower limit speed vb to the target stop point by braking traveling) Db (vb), and inertia traveling possible distance Provisional value Di is set in advance, coasting is started from a point where the distance D between the current vehicle position and the target stop point is D ≦ {Di + Db (vb)}, and braking traveling from coasting is performed when speed v is v = vb. The energy-saving decelerating travel control method is characterized in that the target stop point is reached by braking travel.
惰性走行速度vがv=vb に到達した時点での車両現在地−目標停止点間距離Dが、D>Db(vb )なる場合は、距離DがD=Db(vb )となるまでの間速度vb での定速走行を行い、距離DがD=Db(vb )となった時点で制動走行に移行して制動走行で目標停止点に到達する、
また惰性走行中、速度v時の距離DがD≦Db(v)となった場合は、惰性走行から制動走行に移行して制動走行で目標停止点に到達する、
ことを特徴とする請求項1記載の省エネルギー減速走行制御方法。
If the vehicle current position-target stop point distance D when the inertial traveling speed v reaches v = vb is D> Db (vb), the speed until the distance D becomes D = Db (vb). The vehicle travels at a constant speed at vb, and when the distance D becomes D = Db (vb), the vehicle shifts to braking traveling and reaches the target stop point by braking traveling.
When the distance D at the speed v is D ≦ Db (v) during inertial traveling, the inertial traveling is shifted to braking traveling, and the target stop point is reached by braking traveling.
The energy-saving decelerating traveling control method according to claim 1.
惰性走行速度vがv=vb に到達した時点での距離Dが、D>Db(vb )なる場合は、惰性走行可能距離暫定値Di を[Di −{D−Db(vb)}]に、
また惰性走行速度vがv=vb’ (但し、vb <vb’ )時の距離DがD=Db(vb’)なる場合は、惰性走行可能距離暫定値Di を[Di +{(vb’2 −vb2 )/(2・αi )}]に、
置き換えて、これを次回の減速走行時の惰性走行可能距離暫定値Diとすること、
を特徴とする請求項2記載の省エネルギー減速走行制御方法。
ここで、
αi:速度vc における惰性走行減速度
である。
If the distance D when the inertial traveling speed v reaches v = vb is D> Db (vb), the inertial travelable provisional distance Di is set to [Di− {D−Db (vb)}]
Further, when the distance D when the inertial traveling speed v is v = vb ′ (where vb <vb ′) is D = Db (vb ′), the inertial travelable distance provisional value Di is set to [Di + {(vb ′ 2 −vb 2 ) / (2 · αi)}]
Replace this with the inertial travelable distance provisional value Di at the next deceleration travel,
The energy-saving decelerating traveling control method according to claim 2.
here,
αi: coasting deceleration at speed vc.
目標停止点が信号交差点である場合の減速走行中、惰性走行あるいは定速走行から制動走行移行に際し、交差点信号が青である場合は、制動走行に代えて惰性走行あるいは定速走行を信号交差点までの間継続すること、を特徴とする請求項1記載の省エネルギー減速走行制御方法。   When the target stop point is a signalized intersection and the vehicle is decelerating, when the inertia signal or constant speed driving is switched to the braking operation, the intersection signal is blue. 2. The energy saving deceleration traveling control method according to claim 1, wherein the energy saving deceleration traveling control method is continued for a while. 惰性走行移行あるいは惰性走行継続による何らかの不都合(例えば、エンジン車両における電装品駆動用バッテリー残量が一定値以下等)を検知した場合には、惰性走行移行あるいは惰性走行継続を停止することを特徴とする省エネルギー減速走行制御方法。 When any inconvenience due to inertial traveling transition or inertial traveling continuation (for example, the remaining amount of electric component driving battery in the engine vehicle is below a certain value) is detected, inertial traveling transition or inertial traveling continuation is stopped. Energy-saving decelerating running control method. エンジン車両において、惰性走行時、エンジン−駆動輪間接続を遮断することによるオルターネータ・コンプレッサ等エンジンに接続されている機器の不全動作対策として、惰性走行時(エンジン−駆動輪間接続を遮断した状態時)は通常走行時(エンジン−駆動輪間接続のある状態時)と異なる惰性走行に適合したエンジン駆動制御を行うこと、を特徴とする省エネルギー減速走行制御方法。 In an engine vehicle, during inertial driving, as a countermeasure against malfunction of devices connected to the engine such as alternators and compressors by disconnecting the engine-driving wheel connection, the engine-driving wheel connection was interrupted. An energy-saving deceleration traveling control method characterized by performing engine drive control adapted to inertial traveling different from that during normal traveling (when the engine and driving wheels are connected).
JP2013075470A 2013-03-30 2013-03-30 Energy-saving deceleration travel control method Expired - Fee Related JP5382832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013075470A JP5382832B2 (en) 2013-03-30 2013-03-30 Energy-saving deceleration travel control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013075470A JP5382832B2 (en) 2013-03-30 2013-03-30 Energy-saving deceleration travel control method

Publications (2)

Publication Number Publication Date
JP2013177126A true JP2013177126A (en) 2013-09-09
JP5382832B2 JP5382832B2 (en) 2014-01-08

Family

ID=49269241

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013075470A Expired - Fee Related JP5382832B2 (en) 2013-03-30 2013-03-30 Energy-saving deceleration travel control method

Country Status (1)

Country Link
JP (1) JP5382832B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203661A (en) * 2015-04-15 2016-12-08 日産自動車株式会社 Drive operation support device and drive operation support method
JP2017056927A (en) * 2015-11-02 2017-03-23 渡邉 雅弘 Energy-saving deceleration-running control method
JP2018030460A (en) * 2016-08-25 2018-03-01 渡邉 雅弘 Energy saving travel control method
JP6315143B1 (en) * 2017-07-25 2018-04-25 トヨタ自動車株式会社 Vehicle control device
CN108454628A (en) * 2018-04-17 2018-08-28 吉林大学 A kind of driver turns to rolling optimization control method in people's vehicle collaboration of ring
CN109835327A (en) * 2017-11-24 2019-06-04 罗伯特·博世有限公司 Method and apparatus for running motor vehicle
JP2021024344A (en) * 2019-08-01 2021-02-22 渡邉 雅弘 Method for supporting energy-saving deceleration traveling
CN114690784A (en) * 2022-04-19 2022-07-01 烟台艾睿光电科技有限公司 Method, system, storage medium and unmanned ship for unmanned ship to reach target site
JP2022183407A (en) * 2022-07-07 2022-12-09 渡邉 雅弘 Energy-saving deceleration travel control method

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017124806A (en) * 2016-03-18 2017-07-20 渡邉 雅弘 Energy saving deceleration travel control method

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337135A (en) * 1995-06-13 1996-12-24 Aqueous Res:Kk Vehicular stop control device
JP2005165423A (en) * 2003-11-28 2005-06-23 Denso Corp Vehicle-driving support device
JP2009244167A (en) * 2008-03-31 2009-10-22 Mazda Motor Corp Operation support method and device for vehicle
JP2011225103A (en) * 2010-04-20 2011-11-10 Masahiro Watanabe Vehicle traveling control method
JP2012047148A (en) * 2010-08-30 2012-03-08 Toyota Motor Corp Control device of vehicle
WO2012073373A1 (en) * 2010-12-02 2012-06-07 トヨタ自動車株式会社 Vehicle control device
WO2012160636A1 (en) * 2011-05-23 2012-11-29 トヨタ自動車株式会社 Information processing system for vehicle
WO2013073014A1 (en) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 Driving assistance device
WO2013072996A1 (en) * 2011-11-14 2013-05-23 トヨタ自動車株式会社 Driving assistance device
JP2013129412A (en) * 2012-03-29 2013-07-04 Masahiro Watanabe Inertia traveling control method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337135A (en) * 1995-06-13 1996-12-24 Aqueous Res:Kk Vehicular stop control device
JP2005165423A (en) * 2003-11-28 2005-06-23 Denso Corp Vehicle-driving support device
JP2009244167A (en) * 2008-03-31 2009-10-22 Mazda Motor Corp Operation support method and device for vehicle
JP2011225103A (en) * 2010-04-20 2011-11-10 Masahiro Watanabe Vehicle traveling control method
JP2012047148A (en) * 2010-08-30 2012-03-08 Toyota Motor Corp Control device of vehicle
WO2012073373A1 (en) * 2010-12-02 2012-06-07 トヨタ自動車株式会社 Vehicle control device
WO2012160636A1 (en) * 2011-05-23 2012-11-29 トヨタ自動車株式会社 Information processing system for vehicle
WO2013072996A1 (en) * 2011-11-14 2013-05-23 トヨタ自動車株式会社 Driving assistance device
WO2013073014A1 (en) * 2011-11-15 2013-05-23 トヨタ自動車株式会社 Driving assistance device
JP2013129412A (en) * 2012-03-29 2013-07-04 Masahiro Watanabe Inertia traveling control method

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016203661A (en) * 2015-04-15 2016-12-08 日産自動車株式会社 Drive operation support device and drive operation support method
JP2017056927A (en) * 2015-11-02 2017-03-23 渡邉 雅弘 Energy-saving deceleration-running control method
JP2018030460A (en) * 2016-08-25 2018-03-01 渡邉 雅弘 Energy saving travel control method
JP2019025940A (en) * 2017-07-25 2019-02-21 トヨタ自動車株式会社 Vehicular control apparatus
CN109291910A (en) * 2017-07-25 2019-02-01 丰田自动车株式会社 The control device of vehicle
JP6315143B1 (en) * 2017-07-25 2018-04-25 トヨタ自動車株式会社 Vehicle control device
US10266166B2 (en) 2017-07-25 2019-04-23 Toyota Jidosha Kabushiki Kaisha Vehicle control system
CN109835327A (en) * 2017-11-24 2019-06-04 罗伯特·博世有限公司 Method and apparatus for running motor vehicle
CN108454628A (en) * 2018-04-17 2018-08-28 吉林大学 A kind of driver turns to rolling optimization control method in people's vehicle collaboration of ring
JP2021024344A (en) * 2019-08-01 2021-02-22 渡邉 雅弘 Method for supporting energy-saving deceleration traveling
CN114690784A (en) * 2022-04-19 2022-07-01 烟台艾睿光电科技有限公司 Method, system, storage medium and unmanned ship for unmanned ship to reach target site
CN114690784B (en) * 2022-04-19 2024-05-03 烟台艾睿光电科技有限公司 Method and system for enabling unmanned ship to reach target site, storage medium and unmanned ship
JP2022183407A (en) * 2022-07-07 2022-12-09 渡邉 雅弘 Energy-saving deceleration travel control method

Also Published As

Publication number Publication date
JP5382832B2 (en) 2014-01-08

Similar Documents

Publication Publication Date Title
JP5382832B2 (en) Energy-saving deceleration travel control method
US8768553B2 (en) Method and system for controlling charging of battery for hybrid electric vehicle
US10703353B2 (en) System and method for controlling driving of hybrid vehicle
CN108216202B (en) Method and apparatus for learning engine clutch half-engagement point of hybrid vehicle
US8725332B2 (en) Hybrid vehicle
WO2013051104A1 (en) Electrical charging control apparatus and electrical charging method
JP2016117389A (en) Hybrid vehicle control device
CN106240561B (en) Apparatus and method for controlling plug-in hybrid electric vehicle
US10800402B2 (en) Hybrid vehicle and method of controlling driving mode therefor
KR20170011162A (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
JP2017085723A (en) Electric car control device
JP2014222989A (en) Regeneration control apparatus for electric automobile
JP6435789B2 (en) Output control device for hybrid drive vehicle
US11352001B2 (en) Method for controlling deceleration of environmentally friendly vehicle
US10933861B2 (en) Method for controlling driving of hybrid vehicle using dynamic traffic information
JP2014111413A (en) Travel control device of hybrid electric automobile
JP6210677B2 (en) Travel control device for hybrid electric vehicle
KR101007747B1 (en) Method and apparatus for breaking hybrid electrical vehicle
JP2017083999A (en) Vehicle control apparatus
KR102359938B1 (en) Method for controlling coasting drive of environmentally friendly vehicle using dynamic traffic information
JP6495793B2 (en) Control device and control method for electric vehicle
JP2015058818A (en) Device for controlling battery in vehicle
KR20230039803A (en) Hybrid vehicle and method of controlling charging amount
KR20180086783A (en) Method for controlling driving of hybrid vehicle
JP2016113093A (en) Control unit of hybrid vehicle

Legal Events

Date Code Title Description
A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20130614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130624

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130822

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130911

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130926

R150 Certificate of patent or registration of utility model

Ref document number: 5382832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees