JP2022183407A - Energy-saving deceleration travel control method - Google Patents

Energy-saving deceleration travel control method Download PDF

Info

Publication number
JP2022183407A
JP2022183407A JP2022109396A JP2022109396A JP2022183407A JP 2022183407 A JP2022183407 A JP 2022183407A JP 2022109396 A JP2022109396 A JP 2022109396A JP 2022109396 A JP2022109396 A JP 2022109396A JP 2022183407 A JP2022183407 A JP 2022183407A
Authority
JP
Japan
Prior art keywords
speed
running
point
inertia
deceleration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022109396A
Other languages
Japanese (ja)
Inventor
渡邉雅弘
Masahiro Watanabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2022109396A priority Critical patent/JP2022183407A/en
Publication of JP2022183407A publication Critical patent/JP2022183407A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect

Abstract

To enable a practical use by solving/reducing a main problem of energy-saving deceleration travel of an inertia travel main object to a target deceleration/stop point of a vehicle.SOLUTION: Deceleration travel of a travelling vehicle to a target deceleration/stop point such as an intersection and cross walk in a constant speed range is performed on the basis of combination of inertia travel from a point of a target deceleration/stop point upstream constant distance at a speed within an inertia travel transit tolerance limit and brake travel (or constant speed travel and brake travel) continuous with the inertia travel.SELECTED DRAWING: Figure 3

Description

本願発明は、車両減速時に車両の有している運動エネルギーを効率的・効果的に車両の減速走行に活用する、従来の制動装置(ブレーキ)は勿論、回生協調ブレーキによる減速走行に比べても、運動エネルギー利用効率に優れた、省エネルギー減速走行制御方法に関する。 The invention of the present application efficiently and effectively utilizes the kinetic energy of the vehicle when the vehicle decelerates to decelerate the vehicle. , and relates to an energy-saving deceleration control method with excellent kinetic energy utilization efficiency.

走行中の車両の減速に際し、減速開始直前時に車両の有している運動エネルギーを最も有効に減速走行に活用することができる走行形態は惰性走行である。
但し惰性走行は無条件で運動エネルギーの有効利用になるわけではない。
たとえば図1に示す如く速度(vc+Δv)から速度(vc-Δv)の間(距離d11間)惰性走行し、その後速度(vc-Δv)から速度(vc+Δv)までの間(距離d12間)加速した場合には、この間の走行距離d1(=d11+d12)を速度vcでの走行と同一の運動エネルギー消費、即ち速度vcでの定速走行と同一運動エネルギー消費、となり、省エネルギー走行とはならない。
これに対して図2に示すごとき単位走行区間走行において、P4からP6までの間制動減速度αbでの減速走行においてはP4-P6間距離が運動エネルギーEvcでの走行距離、P3からP5までの惰性走行減速度αiでの惰性走行と、P5からP6までの制動減速度αbでの制動走行のP3-P5-P6間距離が運動エネルギーEvcでの走行距離となり、P3-P4間距離が惰性走行による省エネルギー走行距離となる。
即ち、目標減速停止点P6に対して、その上流惰性走行可能地点P3からの惰性走行とそれに継続する速度vbからの制動走行によって減速走行開始直前に車両の有していた運動エネルギーEvc=(m・vc/2)を有効利用した省エネルギー減速走行が可能となる。
すなわち、減速・停止の固定目標地点(交差点、横断歩道等の徐行地点、走行路前方の障害物等)が特定された場合、車両の有している運動エネルギーを最大限活用した惰性走行可能距離を算出し、前記目標地点の上流惰性走行可能距離内にある地点からの惰性走行によって目標減速・停止地点まで走行する省エネルギー・低CO2排出減速走行が可能になる。
When decelerating a running vehicle, the running mode in which the kinetic energy of the vehicle immediately before the start of deceleration can be most effectively utilized for deceleration running is coasting.
However, coasting does not unconditionally lead to effective use of kinetic energy.
For example, as shown in FIG. 1, the vehicle coasts between speed (vc+Δv) and speed (vc−Δv) (distance d11), and then accelerates between speed (vc−Δv) and speed (vc+Δv) (distance d12). In this case, the traveling distance d1 (=d11 +d12) during this period will be the same kinetic energy consumption as traveling at the speed vc, ie, the same kinetic energy consumption as the constant speed traveling at the speed vc, and energy-saving traveling will not be achieved.
On the other hand, as shown in FIG. 2, in the unit traveling section traveling, in the deceleration traveling at the braking deceleration αb from P4 to P6, the distance between P4 and P6 is the traveling distance with the kinetic energy Evc, and the traveling distance from P3 to P5 The distance between P3-P5-P6 of the inertia running with the inertia running deceleration αi and the braking running with the braking deceleration αb from P5 to P6 is the running distance with the kinetic energy Evc, and the distance between P3-P4 is the coasting running. Energy-saving mileage due to
That is, the kinetic energy Evc=(m・Energy-saving deceleration running that makes effective use of vc 2 /2) becomes possible.
In other words, when a fixed target point for deceleration/stopping (an intersection, a slow-down point such as a pedestrian crossing, an obstacle in front of the traveling road, etc.) is specified, the inertial travel distance that maximizes the kinetic energy of the vehicle is calculated. is calculated, and energy-saving/low-CO2 emission deceleration running is enabled by coasting from a point within the upstream inertia travelable distance of the target point to the target deceleration/stop point.

ただし上記惰性走行距離による惰性走行実行に際しては、
1)惰性走行開始地点が目標減速・停止地点から数百m以上も上流地点になる、即ち惰性走行距離が過大になる。
2)従って、この間の平均走行速度が、惰性走行移行前の走行速度(定速走行速度)に比べて大きく低下する。
3)また前記惰性走行距離の特定には車両個々の、その時点での、惰性走行減速度の特定、従って走行抵抗の特定、が必要であるが、これを個々の車両において事前に必要精度で得ることは実質的には困難である。、
4)惰性走行移行後の道路状態等の走行環境変化、例えば道路勾配変化、による惰性走行速度変動、への対応。
等の問題がある。
However, when executing inertia running by the above inertia running distance,
1) The coasting start point is several hundred meters or more upstream from the target deceleration/stop point, that is, the coasting distance becomes excessive.
2) Therefore, the average running speed during this period is much lower than the running speed (constant running speed) before transition to inertial running.
3) In order to specify the coasting distance, it is necessary to specify the coasting deceleration of each vehicle at that time, and therefore to specify the running resistance. It is practically difficult to obtain. ,
4) Dealing with changes in the running environment such as road conditions after shifting to coasting, such as changes in the road gradient, resulting in changes in the coasting speed.
etc.

上記1)、2)の問題に対しては、目標減速・停止地点までの減速走行を惰性走行と制動走行の効率的・効果的な組み合わせによる方法が考えられている。(特許文献1、特許文献2、特許文献3)即ち、惰性走行開始速度をvc、惰性走行終了速度をvbとすると、惰性走行開始時、および惰性走行終了時(制動走行開始時)の車両の有する運動エネルギーEc、Ebは各々(数1)、(数2)、であらわされる。
(数1)
Ec=m・vc/2
(数2)
Eb=m・vb/2
ここで m:車両(搭乗者を含む)質量。
従って惰性走行開始速度vc ~ 惰性走行終了速度vbの(惰性走行の)間の運動エネルギー利用効率 ηcbは、
(数3)
ηcb=(vc– vb)/vc
また前記惰性走行の間の平均速度vcbは、
(数4)
vcb≒(vc+vb)/2
となる。
従って、例えばvc=60km/h、vb=30km/hとすると、
ηcb=0.75
vcb≒45km/h
とすることができる。
即ち、vc、vbを適切に設定することによって上記惰性走行による減速走行は、運動エネルギー利用効率、および惰性走行の間の平均速度、共に許容範囲内とすることができることがわかる。
To solve the above problems 1) and 2), a method of decelerating to the target deceleration/stop point by efficiently and effectively combining inertia running and braking running has been considered. (Patent Literature 1, Patent Literature 2, Patent Literature 3) That is, when the inertia running start speed is vc and the inertia running end speed is vb, the vehicle speed at the start of inertia running and at the end of inertia running (at the start of braking running) is The kinetic energies Ec and Eb possessed are represented by (Equation 1) and (Equation 2), respectively.
(Number 1)
Ec=m.vc2/ 2
(Number 2)
Eb = m·vb 2/2
where m: vehicle (including passengers) mass.
Therefore, the kinetic energy utilization efficiency ηcb between the inertia running start speed vc and the inertia running end speed vb is
(Number 3)
ηcb = (vc 2 – vb 2 )/vc 2
Also, the average speed vcb during the coasting is
(Number 4)
vcb≈(vc+vb)/2
becomes.
Therefore, if vc = 60 km/h and vb = 30 km/h, for example,
ηcb = 0.75
vcb≈45km/h
can be
That is, by appropriately setting vc and vb, it is possible to keep both the kinetic energy utilization efficiency and the average speed during coasting within the permissible range in deceleration running due to coasting.

しかし上記 3)の惰性走行距離の特定に関しては、特許文献1、特許文献2、特許文献3の方法いずれも、暫定的に惰性走行距離を設定しそれを実惰性走行によって学習・補正する方法を示しているが、いずれの方法共、実用に際してその学習・補正およびその結果に基づく制御が煩雑であるという問題を有している。 However, regarding the identification of the inertia travel distance in 3) above, all of the methods of Patent Document 1, Patent Document 2, and Patent Document 3 provide a method of temporarily setting the inertia travel distance and learning and correcting it by actual inertia travel. However, both methods have the problem that the learning/correction and the control based on the result thereof are complicated in practical use.

一方、減速をすべて制動走行で行う従来の減速走行の場合は、前記惰性走行による減速走行距離長大化の問題は無くなるが、運動エネルギー利用効率は大きく低減する。
また運動エネルギーを回生して、後の走行に活用する回生協調制動走行においても、運動エネルギーの一部は併用する摩擦制動によって消費されること、あるいは回生制動による回生電力も、回生電力蓄積用大容量二次電池パワー密度の特性不足あるいは温度特性等から、充電効率が十分に得られないこと等、運動エネルギー利用効率は惰性走行に比べて劣るという問題がある。
On the other hand, in the case of conventional deceleration running, in which all deceleration is performed by braking, the problem of increasing the deceleration running distance due to inertia running is eliminated, but the kinetic energy utilization efficiency is greatly reduced.
In addition, even in regenerative cooperative braking, which regenerates kinetic energy and utilizes it for subsequent driving, part of the kinetic energy is consumed by the friction braking that is also used. There is a problem that the kinetic energy utilization efficiency is inferior to that of coasting, such as insufficient charging efficiency due to insufficient characteristics of capacity secondary battery power density or temperature characteristics.

特開2013-177126JP 2013-177126 特開2019-034734JP 2019-034734 特許第6788942号Patent No. 6788942

本願発明は、走行中の車両の有する運動エネルギーを惰性走行主体の減速走行に活かすことの最大の問題点である、前記 1)減速走行距離の長大化、2)減速走行距離が長大化する結果としての減速走行の間の平均走行速度低下、3)惰性走行減速度の正確な特定・制御の煩雑さ、および 4)惰性走行中の走行環境変化、の各問題を、合理的かつ簡易に解決あるいは軽減することによって従来の回生協調制動による運動エネルギー活用による方法にも総合的に勝る惰性走行を主体とした省エネルギー減速走行制御方法を提供するものである。 The invention of the present application has the biggest problems in utilizing the kinetic energy of a running vehicle for decelerating mainly due to inertia. 3) Accurate identification and control of coasting deceleration is complicated, and 4) Driving environment changes during coasting can be solved rationally and simply. Alternatively, the present invention provides an energy-saving deceleration running control method based on inertia running, which comprehensively surpasses the conventional method of utilizing kinetic energy by regenerative cooperative braking by reducing energy consumption.

ここで、惰性走行とは車両駆動源動力の駆動輪への伝達を遮断あるいは疎とした走行を言う。(但し、前記車両駆動原動力は必ずしも停止する必要はない。例えばガソリンエンジン車においてエンジンを停止する即ちフューエルカットする必要は、必ずしも、ない。アイドリング状態に保つことでも、惰性走行の間の燃料消費量の低減により相応の省エネルギー効果は得られる。)
また、車両駆動源動力の駆動輪への伝達を完全に遮断しなくても(即ちクラッチカットしなくても)、例えば、MT4速時のアクセルオフ状態を“擬似惰性走行”とした車両駆動源動力の駆動輪への伝達を疎とした形態でも、相応の省エネルギー効果は得られる。
Here, inertia running refers to running in which the transmission of the power of the vehicle drive source to the driving wheels is interrupted or sparse. (However, it is not always necessary to stop the driving force of the vehicle. For example, it is not always necessary to stop the engine in a gasoline engine vehicle, that is, to cut fuel. A corresponding energy saving effect can be obtained by reducing
In addition, even if the transmission of the power of the vehicle drive source to the drive wheels is not completely cut off (that is, the clutch is not cut), for example, the vehicle drive source can set the accelerator off state at MT 4th speed to "pseudo coasting". Even with a configuration in which power is sparsely transmitted to the drive wheels, a corresponding energy saving effect can be obtained.

以下に、図3を用いて、本願発明の基本的考え方を説明する。
図3において、直線P4-P6は、走行速度vcmaxでの定速走行車両の、地点P4から地点P6に向けての制動減速度αb での制動減速直線を示している。
即ち速度vcmaxで定速走行中の車両は、通常は地点P4まで定速走行し、地点P4から制動減速度αbで停止点P6に向けて制動走行する。 この結果速度vcmax で走行中の車両の有する運動エネルギーは、地点P4-P6間の制動走行ですべて消費され、この間の車両の運動エネルギー車両走行への利用効果、即ち走行距離は地点P4-P6間距離のみとなる。
これに対して本発明による省エネルギー減速走行は、惰性走行移行許容速度範囲、即ち速度vcmin~速度vcmax の範囲、内で走行中の車両は地点P6から一定距離dr上流の地点P3において、通常走行(加速走行あるいは定速走行)状態から(減速のための)惰性走行状態に移行する。
The basic idea of the present invention will be described below with reference to FIG.
In FIG. 3, a straight line P4-P6 indicates a braking deceleration straight line at a braking deceleration αb from a point P4 to a point P6 of a constant speed running vehicle at the running speed vcmax.
That is, the vehicle traveling at a constant speed at the speed vcmax normally travels at a constant speed to the point P4, and then brakes from the point P4 toward the stop point P6 at the braking deceleration αb. As a result, the kinetic energy possessed by the vehicle running at the speed vcmax is all consumed in the braking run between the points P4 and P6, and the kinetic energy utilization effect of the vehicle during this period, that is, the running distance between the points P4 and P6 is distance only.
On the other hand, in the energy-saving deceleration running according to the present invention, the vehicle running within the inertial running transition allowable speed range, that is, the range of speed vcmin to speed vcmax, starts normal running ( (acceleration or constant speed) to coasting (for deceleration).

速度vcmin~速度vcmaxの惰性走行移行許容速度範囲内で地点P3を通過して惰性走行する車両は、図3に示す如く、速度vcmin以上では惰性走行を、速度vcminに到達後は速度vcminでの定速走行を制動開始地点P4まで行い、それ以降は制動減速度αbの制動走行で目標減速・停止地点P6に到達する。
ここで地点P5-地点P6間距離は速度vcmin から速度0までの制動走行距離即ち
db=(vcmin2/(2・αb))である。
また、地点P3を速度vcmin未満で通過する車両は、制動減速直線P4―P6までの間地点P3通過時の速度を保って定速走行を継続する。
As shown in FIG. 3, the vehicle that coasts past the point P3 within the allowable speed range for transition to inertia running from speed vcmin to speed vcmax performs coasting at speed vcmin or higher, and after reaching speed vcmin, starts at speed vcmin. Constant speed running is performed up to the braking start point P4, after which the vehicle reaches the target deceleration/stop point P6 by braking running at the braking deceleration αb.
Here, the distance between point P5 and point P6 is the braking travel distance from speed vcmin to speed 0, that is, db=(vcmin 2 /(2·αb)).
Further, the vehicle passing the point P3 at a speed less than vcmin continues to run at a constant speed while maintaining the speed at which it passed the point P3 until the braking deceleration straight line P4-P6.

また地点P3において、惰性走行移行速度vcで通常走行から惰性走行に移行後、何らかの原因(例えば道路勾配等)で惰性走行速度が、惰性走行移行速度vc以上となる場合は、惰性走行を中止して通常走行に移行しての速度vcでの走行を制動走行移行地点(目標減速停止地点から距離db={vc2/(2・αb)})まで行いそれ以降は減速度αbでの制動走行で地点P6に到達する。 At the point P3, if the inertia running speed becomes equal to or higher than the inertia running transition speed vc for some reason (such as a road gradient) after the normal running is shifted to the inertia running at the inertia running transition speed vc, the inertia running is stopped. After that, it shifts to normal running and runs at speed vc up to the braking running transition point (distance db = {vc 2 / (2 · αb)} from the target deceleration stop point), and after that, braking running at deceleration αb to reach point P6.

ここで地点P3~地点P6間距離drは、運動エネルギー利用効率の観点からは、速度vcmaxでの惰性走行可能距離であることが望ましいが、惰性走行移行許容速度上限値vcmaxでの惰性走行主体の減速走行の運動エネルギー利用効率、あるいは惰性走行の間の平均速度、がいずれも許容範囲内にあれば、必ずしも惰性走行可能距離である必要はない。
即ち前記問題3)は、暫定惰性走行距離の実走行による学習・補正を惰性走行のたびに行うことなく、事前に暫定的に特定した惰性走行開始地点P3からの惰性走行結果が、運動エネルギー利用効率および惰性走行の間の平均速度が前記許容範囲内に収まるのであれば、速度vcmin ~ 速度vcmaxにおける惰性走行開始地点P3を地点P6からの一定距離dr上流地点とすることができる。
Here, the distance dr between the point P3 and the point P6 is preferably the coastable distance at the speed vcmax from the viewpoint of kinetic energy utilization efficiency. If the kinetic energy utilization efficiency of deceleration running or the average speed during coasting are both within the allowable range, the distance is not necessarily the coastable running distance.
That is, the problem 3) is that the inertia running result from the inertia running start point P3 provisionally specified in advance is not learned and corrected by actual running of the temporary inertia running distance every time the inertia running is performed, and the kinetic energy is used. If the efficiency and the average speed during coasting are within the allowable range, the coasting start point P3 at the speed vcmin to the speed vcmax can be made a fixed distance dr upstream from the point P6.

この結果、本発明によって、惰性走行主体の減速走行に際しての惰性走行可能距離を、特許文献1、特許文献2、特許文献3に示される如くに、暫定惰性走行距離を設定しての実惰性走行による学習・更新・制御の如く必ずしも正確に特定・制御する必要はなくなる。
但しこの場合は、前記の如く、惰性走行による運動エネルギーの利用効率あるいはこの間の走行速度を許容範囲内である程度犠牲にすることになる。
As a result, according to the present invention, the allowable inertia travel distance during deceleration travel mainly due to inertia travel is set to the actual inertia travel distance by setting the provisional inertia travel distance, as shown in Patent Document 1, Patent Document 2, and Patent Document 3. It is no longer necessary to specify and control accurately like learning, updating, and control by.
However, in this case, as described above, the utilization efficiency of kinetic energy due to coasting or the running speed during this period is sacrificed to some extent within the allowable range.

惰性走行の省エネルギー効果説明図Illustration of the energy saving effect of coasting 単位走行区間の走行状態説明図Explanatory drawing of running condition of unit running section 本願発明による省エネルギー減速走行制御方法の基本的考え方説明図Explanatory diagram of the basic concept of the energy-saving deceleration control method according to the present invention 本願発明による省エネルギー減速走行制御支援装置における処理手順例である。It is an example of a processing procedure in the energy-saving deceleration control support device according to the present invention.

本願発明による省エネルギー減速走行制御方法は、経路探索・誘導機能を有する現状のカーナビゲーション装置の一部改良で実現可能である。
具体的には、出発地において目的地までの経路探索を行い、その結果から、出発地から目的地までの(複数の)単位走行区間を特定し、各単位走行区間における目標減速・停止地点位置情報を特定・取得するとともに、各単位走行区間における車両の周期的な速度情報・位置情報の取得結果から車両現在位置-前記目標減速停止地点間の距離情報を得て前記惰性走行あるいは制動走行支援を行う機能を有する必要がある。
The energy-saving deceleration control method according to the present invention can be realized by partially improving the current car navigation system having route search/guidance functions.
Specifically, a route search is performed from the departure point to the destination, and based on the results, (multiple) unit travel sections from the departure point to the destination are specified, and the target deceleration/stop point positions in each unit travel section are determined. Information is specified and obtained, and distance information between the current position of the vehicle and the target deceleration stop point is obtained from the periodic speed information and position information acquisition results of the vehicle in each unit travel section, and the coasting or braking support is obtained. must have the ability to

また、本願発明は、上記の如く、現行のガソリン/ディーゼル 車あるいはEV等電動車の
手動操作車両(ドライバーによって運転される車両)への上記現行カーナビゲーションシステムの一部改良による省エネルギー減速走行制御方法およびその支援装置として有効であるが、自動運転車への適用も勿論可能である。
In addition, as described above, the present invention provides an energy-saving deceleration control method for manually operated vehicles (vehicles driven by a driver) of current gasoline/diesel vehicles or electric vehicles such as EVs by partially improving the above-mentioned current car navigation system. It is also effective as a support device for such devices, and can of course also be applied to automatic driving vehicles.

図4に本願発明による省エネルギー減速走行制御方法およびその支援装置における処理手順例を示す。
但し本手順例は、一単位走行区間内走行を意図している車両が目標減速・停止地点を特定した後、惰性走行主体の減速走行に移行してのち目標減速・停止地点で停止する間の手順に限定したものである。
また、この処理手順の間、車両速度および車両現在位置情報は、バックグラウンドにおいて、必要な頻度・精度で周期的に特定されるものとする。
FIG. 4 shows an example of processing procedures in the energy-saving deceleration control method and its support device according to the present invention.
However, in this procedure example, after the vehicle intended to travel within a single unit travel section specifies the target deceleration/stop point, it shifts to deceleration mainly due to inertia and then stops at the target deceleration/stop point. It is limited to procedures.
Also, during this procedure, the vehicle speed and current vehicle position information shall be determined periodically in the background with the required frequency and accuracy.

図4において、
401は、本手順例開始点、
402は、車両の(次の)目標減速・停止点位置(図3 P6地点)が特定されているか否かを判定するP6地点特定済判定処理、
403は処理402で、目標減速・停止地点(P6地点)が未だ特定されていないと判定された場合、P4地点を特定するP4地点特定処理、
404は、P6地点上流一定距離drである惰性走行移行地点を特定するdr特定処理、
405は車両現在位置-P4間距離d を算出・特定するd 算出・特定処理、
406は、処理404で特定した距離drと、処理405で算出・特定した距離d を比較して惰性走行移行可否を判定する惰性走行移行可否判定処理、
407は、処理406で惰性走行移行可否判定が“否”となった場合通常走行(加速走行あるいは定速走行)を行う通常走行処理、
In FIG. 4,
401 is the starting point of this procedure example;
402 is point P6 identification determination processing for determining whether or not the (next) target deceleration/stop point position (point P6 in FIG. 3) of the vehicle has been identified;
403 is point P4 identification processing for identifying point P4 when it is determined in processing 402 that the target deceleration/stop point (point P6) has not yet been identified;
404 is a dr identification process for identifying a coasting transition point that is a fixed distance dr upstream of the P6 point;
405 is a d calculation/specification process for calculating/specificating the distance d between the current position of the vehicle and P4;
406 is an inertia running shift determination process for comparing the distance dr specified in the process 404 and the distance d calculated and specified in the process 405 to determine whether or not the inertia running shift can be performed;
407 is a normal running process in which normal running (acceleration running or constant speed running) is performed when the inertia running transition decision in process 406 is "no";

408は、処理406で惰性走行移行可否判定が“可”となった場合車両速度vが惰性走行移行可能速度範囲vcmin~vcmax内か否かを判定する惰性走行移行速度判定処理、
409は、処理408で車両速度vが惰性走行移行可能速度範囲内であると判定された場合、即ち v=vcである場合、惰性走行に移行あるいは惰性走行を継続する惰性走行処理、
410は、車両速度が惰性走行移行速度vcを超えているか否かを判定するv>vc判定処理、
411は、処理410で車両速度vが v>vc と判定された場合、惰性走行を止めて速度v=vcでの定速走行に移行する定速走行移行処理、
412は、処理411の結果、地点P6までの残距離d が vc2/(2・αb) 以下の制動走行移行距離になったか否かを判定する制動走行移行可否判定処理、
413は、車両現在位置のP6までの距離d が現速度v での制動を開始すべき距離
d≦{v2/(2・αb)}に達したか否かを判定する制動開始判定処理A、
414は、処理413と同様、車両現在位置のP6までの距離d が制動を開始すべき距離db≦
{v2/(2・αb)}に達したか否かを判定する制動開始判定処理B、
415は、処理414で車両現在位置のP6までの距離d が制動を開始すべき距離dbに未達と判定された場合、速度vcminで定速走行を行う、vcmin定速走行処理、
416は、処理413あるいは処理414で、車両現在位置のP6までの距離d が現行速度vからの制動を開始すべき距離db≦{v2/(2・αb)}に達したと判定された場合、制動減速度αbの制動を行う制動走行処理、
417は、処理416による制動走行の結果、車両現在位置のP6までの距離d がd=0 即ち目標減速・停止点位置(図3 P6地点)に到達したか否かを判定する目標減速・停止点位置到達判定処理、
418は、処理417で判定した目標減速・停止点位置が本走行の、最終目的地か否かを判定する、最終目的地判定処理、
419は、処理418で最終目的地に到達したと判定した場合、本処理手順を終了する本処理手順終了点、
である。
408 is an inertial running transition speed determination process for determining whether or not the vehicle speed v is within the inertial running transition possible speed range vcmin to vcmax when the inertia running transition possibility determination is "Yes" in the process 406;
In step 409, if it is determined in step 408 that the vehicle speed v is within the range of speeds that allow inertia travel, i.e., if v=vc, then inertia travel processing is performed to transition to inertia travel or continue inertia travel.
410 is v>vc determination processing for determining whether or not the vehicle speed exceeds the inertia transition speed vc;
In step 411, when the vehicle speed v is determined to be v>vc in step 410, a constant speed transition process is performed to stop coasting and shift to constant speed driving at speed v=vc.
In step 412, as a result of the processing 411, a braking travel transition possibility determination processing is performed to determine whether or not the remaining distance d to the point P6 has become a braking travel transition distance of vc2 /(2·αb) or less.
413 is the distance d from the current position of the vehicle to P6 should start braking at the current speed v.
braking start determination processing A for determining whether or not d≦{v 2 /(2·αb)} has been reached;
In step 414, as in step 413, the distance d from the current position of the vehicle to P6 is the distance db at which braking should start.
Braking start determination process B for determining whether or not {v 2 /(2·αb)} has been reached;
415 is a vcmin constant speed running process for carrying out constant speed running at a speed vcmin when it is determined in the process 414 that the distance d from the current position of the vehicle to P6 has not reached the distance db at which braking should be started;
At 416, it is determined in processing 413 or processing 414 that the distance d from the current vehicle position to P6 has reached the distance db≤{ v2 /(2·αb)} where braking should start from the current speed v. In the case, braking travel processing for braking the braking deceleration αb,
417 is the target deceleration/stop for determining whether or not the distance d from the current position of the vehicle to P6 has reached d=0, that is, the target deceleration/stop position (point P6 in FIG. 3) as a result of the braking run by the process 416 Point position reach determination processing,
418 is final destination determination processing for determining whether or not the target deceleration/stop point position determined in processing 417 is the final destination of the main run;
419 is the end point of this processing procedure for ending this processing procedure when it is determined that the final destination has been reached in processing 418;
is.

本願発明によって、現状ハイブリッド車あるいは電気自動車に採用されている減速時の運動エネルギー活用を目的とした回生協調走行に代えて、またガソリンエンジン車/ディーゼルエンジン車においても、車両の有する運動エネルギーの惰性走行を主体とした減速走行への簡易な演算・制御による効率的・効果的な利用が可能となる。
即ち本願発明は、車両の駆動形態および自動運転/手動運転の運転形態、如何にかかわらず、あらゆる車両において、従来の制動走行あるいは回生協調制動走行に代えての運動エネルギーを効率的に利用した簡易で効果的な省エネルギー・地球温暖化ガス削減減速走行を可能とするものである。
また、本願発明は、カーナビゲーション装置による支援を行わずに、インフラ側からの車両への前記惰性走行開始信号および制動走行開始信号を提供することでも実施可能である。
また、本願発明は、図3地点P5(惰性走行終了地点)近傍において、車両前方目標減速・停止地点である信号交差点の交通信号状態、あるいは横断歩道上の歩行者の有無、をドライバーの目視で、あるいは車両に搭載されたカメラ等のセンサーを用いて検知し、交通信号が青であるときあるいは横断歩道上に歩行者がいないことを確認できたとき、惰性走行あるいは定速走行から制動走行への移行は中止し、その時点の車両走行速度vを保って、地点P6(目標減速・停止地点) を経ての、次の減速・停止点に向けての走行を継続することも可能である。
By the present invention, instead of the regenerative coordinated running for the purpose of utilizing kinetic energy during deceleration, which is currently adopted in hybrid vehicles or electric vehicles, the inertia of the kinetic energy possessed by the vehicle can be used even in gasoline engine vehicles / diesel engine vehicles. Efficient and effective use is possible with simple calculation and control for deceleration running, which is mainly for running.
That is, the present invention is a simple driving system that efficiently uses kinetic energy instead of conventional braking or regenerative cooperative braking in any vehicle, regardless of the driving mode of the vehicle and the driving mode of automatic driving/manual driving. This enables effective energy-saving and greenhouse gas reduction deceleration driving.
Further, the present invention can also be implemented by providing the coasting start signal and the braking start signal to the vehicle from the infrastructure side without providing assistance from the car navigation system.
In addition, in the vicinity of the point P5 (inertia running end point) in FIG. Alternatively, sensors such as cameras mounted on the vehicle can be used to detect when the traffic light is green or when it is confirmed that there are no pedestrians on the crosswalk, the vehicle will shift from coasting or constant speed to braking. It is also possible to stop the transition, maintain the vehicle running speed v at that time, and continue running toward the next deceleration/stop point after passing point P6 (target deceleration/stop point).

図1、図2、において
P1:発進・加速開始点
P2:加速終了点、定速走行開始点
P3:惰性走行開始点
P4:定速走行終了点、制動走行開始点
P5:惰性走行終了点、制動走行開始点
P6:制動走行終了点
d11:惰性走行距離
d12:加速走行距離
d1:(惰性走行+加速走行) 1周期間の走行距離
αa:加速度
αb:制動減速度
αi:惰性走行減速度
図3、図4、および(数1)~(数4)において
P3:車両走行速度vcmax~vcmin間の惰性走行開始地点
P34:惰性走行開始速度vc3車両の惰性走行終了/定速走行開始点
P4:車両走行速度 vcmaxからの制動走行開始地点
P45:惰性走行開始速度vc2車両の惰性走行終了地点
P5:惰性走行開始速度 vc2からの惰性走行終了/制動走行開始地点
:車両走行速度 vcminからの制動走行開始地点
P6:目標減速・停止地点
ηcb:惰性走行による運動エネルギー利用効率
v:車両走行速度(定速走行、惰性走行、制動走行の各速度を含む)
vc:惰性走行移行(開始)速度
vc1、vcmax:惰性走行移行許容上限速度
vc2、vc3 :惰性走行移行許容速度
vc4、vcmin:惰性走行移行許容下限速度
vb:制動走行開始速度
vcb:惰性走行の間の平均速度
αi:惰性走行減速度
αb:制動減速度
d:現地点―目標減速・停止地点間距離
dr:目標減速・停止地点上流の惰性走行開始一定距離
db:目標減速・停止地点上流の制動開始距離
dbmax=vcmax2/(2・αb):速度vcmaxからの制動走行距離
dvmin=vcmin2/(2・αb):速度vcminからの制動走行距離
In Figures 1 and 2, P1: Start/acceleration start point P2: Acceleration end point, constant speed running start point P3: Inertia running start point P4: Constant speed running end point, braking start point P5: Inertia running end point, Braking running start point P6: Braking running end point d11: Inertia running distance d12: Acceleration running distance d1: (Inertia running + Acceleration running) Traveling distance during one cycle αa: Acceleration αb: Braking deceleration αi: Inertia running deceleration chart 3, FIG. 4, and (Formula 1) to (Formula 4) P3: Inertial running start point between vehicle running speeds vcmax to vcmin P34: Inertial running start speed vc3 Vehicle inertial running end/constant speed running start point P4: Braking start point P45 from vehicle speed vcmax: Inertia start speed vc2 Vehicle inertia end point P5: Inertia start speed vc2 / Braking start point: Braking start from vehicle speed vcmin Point P6: Target deceleration/stop point ηcb: Kinetic energy utilization efficiency due to inertia v: Vehicle running speed (including constant speed running, inertial running, and braking running speeds)
vc: Inertia running transition (start) speed vc1, vcmax: Inertia running transition allowable upper limit speed vc2, vc3: Inertia running transition allowable speed vc4, vcmin: Inertia running transition allowable lower limit speed vb: Braking start speed vcb: During inertia running Average speed αi: Inertia deceleration αb: Braking deceleration d: Distance between current point and target deceleration/stop point dr: Inertia start constant distance upstream of target deceleration/stop point db: Braking upstream of target deceleration/stop point Start distance dbmax=vcmax 2 /(2·αb): Braking distance from speed vcmax dvmin=vcmin 2 /(2·αb): Braking distance from speed vcmin

上記1)、2)の問題に対しては、目標減速・停止地点までの減速走行を惰性走行と制動走行の効率的・効果的な組み合わせによる方法が考えられている。(特許文献1、特許文献2、特許文献3)即ち、惰性走行開始速度をvc、惰性走行終了速度をvbとすると、惰性走行開始時、および惰性走行終了時(制動走行開始時)の車両の有する運動エネルギーEc、Ebは各々(数1)、(数2)、であらわされる。
(数1)
Ec=m・vc/2
(数2)
Eb=m・vb/2
ここで m:車両(搭乗者を含む)質量。
従って惰性走行開始速度vc ~ 惰性走行終了速度vbの(惰性走行の)間の運動エネルギー利用効率 ηcbは、
(数3)
ηcb=(vc vb)/vc
また前記惰性走行の間の平均速度vcbは、
(数4)
vcb≒(vc+vb)/2
となる。
従って、例えばvc=60km/h、vb=30km/hとすると、
ηcb=0.75
vcb≒45km/h
とすることができる。
即ち、vc、vbを適切に設定することによって上記惰性走行による減速走行は、運動エネルギー利用効率、および惰性走行の間の平均速度、共に許容範囲内とすることができることがわかる。
To solve the above problems 1) and 2), a method of decelerating to the target deceleration/stop point by efficiently and effectively combining inertia running and braking running has been considered. (Patent Literature 1, Patent Literature 2, Patent Literature 3) That is, when the inertia running start speed is vc and the inertia running end speed is vb, the vehicle speed at the start of inertia running and at the end of inertia running (at the start of braking running) is The kinetic energies Ec and Eb possessed are represented by (Equation 1) and (Equation 2), respectively.
(Number 1)
Ec=m.vc2/ 2
(Number 2)
Eb = m·vb 2/2
where m: vehicle (including passengers) mass.
Therefore, the kinetic energy utilization efficiency ηcb between the inertia running start speed vc and the inertia running end speed vb is
(Number 3)
ηcb = (vc 2 - vb 2 )/vc 2
Also, the average speed vcb during the coasting is
(Number 4)
vcb≈(vc+vb)/2
becomes.
Therefore, if vc = 60 km/h and vb = 30 km/h, for example,
ηcb = 0.75
vcb≈45km/h
can be
That is, by appropriately setting vc and vb, it is possible to keep both the kinetic energy utilization efficiency and the average speed during coasting within the permissible range in deceleration running due to coasting.

上記1)、2)の問題に対しては、目標減速・惰性走行までの減速走行を惰性走行と制動走行の効率的・効果的な組み合わせによる方法が考えられている(特許文献1、特許文献2、特許文献3)。即ち、惰性走行開始速度をvc、惰性走行終了速度をvbとすると、惰性走行開始時、および惰性走行終了時(制動走行開始時)の車両の有する運動エネルギーEc 、Ebは各々(数1)、(数2)であらわされる。
(数1)
Ec=m・vc2/2
(数2)
Eb=m・vb2/2
ここでm:車両(搭乗者を含む)質量
したがって惰性走行開始速度vc ~惰性走行終了速度vbの(惰性走行の)間の運動エネルギー利用効率ηcbは、
(数3)
ηcb­­=(vc 2 ―vb 2 )/vc 2
また前記惰性走行間の平均速度vcbは、
vcb≒(vc+vb)/2
となる。
従って、例えばvc=60km/h、vb=30km/hとすると、
ηcb­­=0.75
vcb≒45km/h
とすることができる。
即ち、vc、vbを適切に設定することによって上記惰性走行による減速走行は、運動エネルギー利用効率および惰性走行の間の平均速度、共に許容範囲内にすることができることがわかる。
In order to solve the problems 1) and 2) above, methods have been conceived that use an efficient and effective combination of inertia running and braking running for deceleration running up to target deceleration/inertia running (Patent Document 1, Patent Document 2, Patent Document 3). That is, if the inertia start speed is vc and the inertia end speed is vb, the kinetic energies Ec and Eb possessed by the vehicle at the start of the inertia run and at the end of the inertia run (at the start of the braking run) are respectively (Equation 1), (Equation 2).
(Number 1)
Ec=m.vc2/ 2
(Number 2)
Eb=m.vb2/ 2
Here, m: Vehicle (including passenger) mass Therefore, the kinetic energy utilization efficiency ηcb between the inertia running start speed vc and the inertia running end speed vb (of inertial running) is
(Number 3)
ηcb­­ = (vc2 - vb2 ) / vc2
Also, the average speed vcb during the coasting is
vcb≈(vc+vb)/2
becomes.
Therefore, if vc = 60 km/h and vb = 30 km/h, for example,
ηcb­­=0.75
vcb≈45km/h
can be
That is, by appropriately setting vc and vb, it is possible to keep both the kinetic energy utilization efficiency and the average speed during coasting within the permissible range in deceleration running due to coasting.

以下に図3を用いて、本願発明の基本的考え方を説明する。
図3において、直線P4―P6は、走行速度vcmaxでの定速走行車両の、地点P4からの地点P6に向けての制動減速度αbでの制動減速直線を示している。
即ち、速度vcmaxで定速走行中の車両は、通常は地点P4まで定速走行し、地点P4から制動減速度αbで停止点P6に向けて制動走行する。この結果速度vcmaxで車両の有している運動エネルギーは、地点P4―P6間の制動走行ですべて消費され、この間の車両の運動エネルギー車両走行への利用効果、すなわち走行距離は地点P4―P6間距離のみとなる。
これに対して本発明による省エネルギー減速走行は、惰性走行移行許容速度範囲、すなわち速度vcmin~vcmaxの範囲内で走行中の車両は、地点P6から一定距離dr上流の地点P3において、通常走行(加速走行あるいは定速走行)状態から(減速のための)惰性走行に移行する。
また、惰性走行へ移行後、速度vの惰性走行から制動走行に移行する直線P4―P6上の地点P6上流距離は、
(数5)
d=v /(2・αb)
となる。
The basic concept of the present invention will be described below with reference to FIG.
In FIG. 3, a straight line P4-P6 indicates a braking deceleration straight line at the braking deceleration αb from the point P4 toward the point P6 of the constant speed running vehicle at the running speed vcmax.
That is, the vehicle that is traveling at a constant speed at the speed vcmax normally travels at a constant speed to the point P4, and then brakes from the point P4 toward the stop point P6 at the braking deceleration αb. As a result, the kinetic energy possessed by the vehicle at the speed vcmax is completely consumed during braking travel between points P4 and P6, and the effect of utilization of the kinetic energy of the vehicle for vehicle travel during this period, that is, the traveling distance is the point P4-P6 only the distance between them.
On the other hand, in the energy-saving deceleration running according to the present invention, the vehicle running within the inertial running transition allowable speed range, that is, the range of speeds vcmin to vcmax, starts normal running (acceleration (driving or constant speed) to coasting (for deceleration).
Further, after shifting to coasting, the upstream distance of point P6 on straight line P4-P6 where the coasting at speed v shifts to braking is
(Number 5)
d=v2 / (2·αb)
becomes.

速度vcmin~速度vcmaxの惰性走行移行可能速度範囲内で地点P3を通過して惰性走行する車両は 、図3に示す如く、速度vcmin以上では惰性走行を,速度vcminに到達後は速度vcminでの定速走行を、制動開始直線P4―P6に到達するまで行い、 それ以降は制動減速度αbの制動走行で目標減速・停止地点P6に到達する。
ここで地点P45は惰性走行移行可能速度上限値vcmaxからの惰性走行の前期制動開始直線P4―P6への到達地点であり、この時点での速度をvとすると、地点P45-地点P6間距離d=v /(2・αb)が制動距離となる。
また地点P5―地点P6間距離は、速度vcminから速度0までの制動走行距離即ちdb=vcmin /(2・αb)である。
また地点P3を速度vcmin未満で通過する車両は、制動減速直線P4―P6到達までの間、地点P3通過時の速度を保っての定速走行を継続する。
As shown in Fig. 3, the vehicle that coasts after passing point P3 within the range of speeds vcmin to vcmax that can transition to inertia travels. Constant speed running is performed until reaching the braking start straight line P4-P6, after which the vehicle reaches the target deceleration/stop point P6 by braking running at the braking deceleration αb.
Here, the point P45 is the point at which the inertial running transition possible speed upper limit vcmax reaches the initial braking start straight line P4-P6 of the inertial running. =v 2 /(2·αb) is the braking distance.
The distance between the point P5 and the point P6 is the braking travel distance from the speed vcmin to the speed 0, that is, db= vcmin 2 /(2·αb) .
Further, the vehicle passing the point P3 at a speed less than vcmin continues to run at a constant speed while maintaining the speed at which it passed the point P3 until it reaches the braking deceleration straight line P4-P6.

図4に本願発明による省エネルギー減速走行制御方法及びその支援装置における処理手順を示す。
但し本手順例は、一単位走行区間内走行を意図している車両が、目標減速・停止地点を特定した後、惰性走行主体の減速走行に移行して目標減速・停止地点に停止する間の手順に限定したものである。
この処理手順においては、惰性走行移行可能速度範囲vcmin~vcmax、目標減速停止地点上流惰性走行開始一定距離dr、および制動減速度αb、はあらかじめ設定・特定されているものとしている。
また、この処理手順の間、車両速度および車両現在位置情報は、バックグランドにおいて、必要な頻度、制度で周期的に特定されるものとする。
FIG. 4 shows the processing procedure in the energy-saving deceleration control method and its support device according to the present invention.
However, in this procedure example, after the vehicle intended to travel within a single unit travel section specifies the target deceleration/stop point, it shifts to deceleration travel based on inertia and stops at the target deceleration/stop point. It is limited to procedures.
In this procedure, it is assumed that the inertial traveling transferable speed range vcmin to vcmax, the inertial traveling start fixed distance dr upstream of the target deceleration stop point, and the braking deceleration αb are set and specified in advance.
Also, during this procedure, the vehicle speed and current vehicle position information shall be periodically identified in the background with the required frequency and accuracy.

図1、図2、において
P1:発信加速開始点
P2:加速終了点、定速走行開始点
P3:惰性走行開始点
P4:低速走行終了点、制動走行開始点
P5:惰性走行終了点、制動走行開始点
P6:目標減速停止点、制動走行終了点
d11:惰性走行距離
d12:加速走行距離
d1:(惰性走行+加速走行)一周期間の走行距離
αa:加速度
αb:制動減速度
αi:惰性走行減速度
図3、図4、および(数1)~(数5)において
P3:車両走行速度vcmax~vcmin間の惰性走行開始地点
P34:惰性走行開始速度vc3車両の惰性走行終了/定速走行開始地点
P4:車両走行速度vcmaxからの制動走行開始地点
P45:惰性走行開始速度vc1車両の惰性走行終了/制動走行開始地点
P5:惰性走行開始速度vc2からの惰性走行終了/制動走行開始地点
:車両走行速度vcminからの制動走行開始地点
P6:目標減速・停止地点
ηcb:惰性走行による運動エネルギー利用効率
v:車両走行速度(低速走行惰性走行、制動走行の各速度を含む)
vc:惰性走行移行(開始)速度
vc1、vcmax:惰性走行移行許容(可能)上限速度
vc2、vc3:惰性走行移行許容(可能)速度
vc4、vcmin:惰性走行移行許容(可能)下限速度
vb:制動走行開始速度
vcb:惰性走行の間の平均速度
αi:惰性走行減速度
αb:制動減速度
d:現地点―目標減速停止地点間距離
dr:目標減速・停止地点上流の惰性走行開始一定距離
db:目標減速・停止地点上流の制動開始距離
dbmax=vcmax2/(2・αb):速度 vcmaxからの制動走行距離
dbmin=vcmin2/(2・αb):速度 vcminからの制動走行距離
In FIGS. 1 and 2, P1: Transmission acceleration start point P2: Acceleration end point, constant speed running start point P3: Inertia run start point P4: Low speed run end point, braking run start point P5: Inertia run end point, braking run Starting point P6: Target deceleration stop point, braking end point d11: Inertia travel distance d12: Acceleration travel distance d1: (Inertia travel + acceleration travel) travel distance during one cycle αa: Acceleration αb: Braking deceleration αi: Inertia travel decrease In velocity diagrams 3, 4, and (Equation 1) to (Equation 5)
P3: Inertia start point between vehicle speed vcmax and vcmin
P34: Coasting start speed vc3 Vehicle coasting end/constant speed starting point
P4: Braking start point from vehicle running speed vcmax
P45: Coasting start speed vc1 Vehicle coasting end /braking start point
P5: Inertia running end/brake running start point from inertia running start speed vc2 : Braking running start point from vehicle running speed vcmin
P6: Target deceleration/stop point ηcb: Kinetic energy utilization efficiency due to inertia v: Vehicle running speed (including low-speed coasting and braking)
vc: Inertia transition (start) speed vc1, vcmax: Inertia transition permissible (possible) upper limit speed vc2, vc3: Inertia transition permissible (possible) speed vc4, vcmin: Inertia transition permissible (possible) lower limit speed vb: Braking Running start speed vcb: Average speed during inertia running αi: Inertia running deceleration αb: Braking deceleration d: Distance between current point and target deceleration/stop point dr: Inertia running start constant distance upstream of target deceleration/stop point db: Braking start distance upstream of target deceleration/stop point dbmax = vcmax 2 / (2 · αb): Braking travel distance from speed vcmax dbmin = vcmin 2 / (2 · αb): Braking travel distance from speed vcmin

Claims (1)

惰性走行移行可能速度範囲(vcmin~vcmax)内で走行している車両において、目標減速・停止地点上流前記惰性走行移行可能速度範囲上限速度(vcmax)での惰性走行可能距離範囲内の一定距離 dr地点から惰性走行を開始し、目標減速・停止地点上流距離
db=v2/(2・αb)の制動走行移行地点で惰性走行から制動走行に移行して目標減速停止地点に到達すること、
但し惰性走行中速度が惰性走行移行可能速度範囲下限速度vcminに到達した時点・地点で、目標減速・停止地点までの残距離dが、
d>{vcmin2/(2・αb)}場合は、残距離dが d={vcmin2/(2・αb)}に達するまでの間は速度v=vcminでの定速走行を行う、また惰性走行移行可能速度範囲内速度vcで惰性走行に移行した後の車両速度vが速度vc以上となる場合は、残距離dが d={vc2/(2・αb)}に達するまでの間は惰性走行から速度vcを保っての通常走行に移行して走行する、ことを特徴とする省エネルギー減速走行制御方法。
ここで αb:制動減速度
v:惰性走行移行後の車両速度、但し vcmin ≤ v ≤ vcmax
である。
A constant distance dr within the range of possible coasting distance at the upper limit speed (vcmax) of the speed range capable of coasting transition upstream of the target deceleration/stop point in a vehicle running within the speed range capable of coasting transition (vcmin to vcmax). starting coasting from a point, shifting from inertia running to braking running at a braking-run transition point with a distance db=v 2 /(2·αb) upstream of the target deceleration/stop point, and reaching the target deceleration/stop point;
However, at the time point/point when the speed during inertial running reaches the lower limit speed vcmin of the speed range where inertial running can be shifted, the remaining distance d to the target deceleration/stop point is
If d>{vcmin 2 /(2・αb)}, run at a constant speed v=vcmin until the remaining distance d reaches d={vcmin 2 /(2・αb)}, or If the vehicle speed v after shifting to inertia running at the speed vc within the inertial running transitionable speed range is greater than or equal to the speed vc, until the remaining distance d reaches d = {vc 2 / (2 · αb)} is an energy-saving deceleration running control method, characterized in that the vehicle moves from coasting to normal running while maintaining a speed vc.
where αb: Braking deceleration
v: Vehicle speed after coasting transition, where vcmin ≤ v ≤ vcmax
is.
JP2022109396A 2022-07-07 2022-07-07 Energy-saving deceleration travel control method Pending JP2022183407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022109396A JP2022183407A (en) 2022-07-07 2022-07-07 Energy-saving deceleration travel control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2022109396A JP2022183407A (en) 2022-07-07 2022-07-07 Energy-saving deceleration travel control method

Publications (1)

Publication Number Publication Date
JP2022183407A true JP2022183407A (en) 2022-12-09

Family

ID=84332389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022109396A Pending JP2022183407A (en) 2022-07-07 2022-07-07 Energy-saving deceleration travel control method

Country Status (1)

Country Link
JP (1) JP2022183407A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177126A (en) * 2013-03-30 2013-09-09 Masahiro Watanabe Control method for energy saving deceleration travelling
JP2017020460A (en) * 2015-07-14 2017-01-26 日産自動車株式会社 Coasting travel control method and coasting travel control device
JP2017056927A (en) * 2015-11-02 2017-03-23 渡邉 雅弘 Energy-saving deceleration-running control method
JP2017124806A (en) * 2016-03-18 2017-07-20 渡邉 雅弘 Energy saving deceleration travel control method
US20200346648A1 (en) * 2019-05-01 2020-11-05 Toyota Motor Engineering & Manufacturing North America, Inc. Reutilization of regenerative braking energy for delaying an engine start event

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013177126A (en) * 2013-03-30 2013-09-09 Masahiro Watanabe Control method for energy saving deceleration travelling
JP2017020460A (en) * 2015-07-14 2017-01-26 日産自動車株式会社 Coasting travel control method and coasting travel control device
JP2017056927A (en) * 2015-11-02 2017-03-23 渡邉 雅弘 Energy-saving deceleration-running control method
JP2017124806A (en) * 2016-03-18 2017-07-20 渡邉 雅弘 Energy saving deceleration travel control method
US20200346648A1 (en) * 2019-05-01 2020-11-05 Toyota Motor Engineering & Manufacturing North America, Inc. Reutilization of regenerative braking energy for delaying an engine start event

Similar Documents

Publication Publication Date Title
CN105946857B (en) Parallel plug-in hybrid electric vehicle (PHEV) energy management method based on intelligent transportation system
US9205843B2 (en) Deceleration factor estimating device and drive assisting device
KR101428184B1 (en) Device and method controlling driving of electric vehicle in the coasting situation
CN105829159B (en) The drive dynamic control device of moving body
JP2013253956A (en) Method for identifying eco-route using state of charge consumption ratio map
JP2011225103A (en) Vehicle traveling control method
JP2009274610A (en) Hybrid vehicle control unit
JP5382832B2 (en) Energy-saving deceleration travel control method
KR20180049261A (en) Predictive and adaptative movement support apparatus, movement support method, and driving support system for a hybrid vehicle for mode driving section optimization
JP5102101B2 (en) Control device for hybrid vehicle
JP6494006B2 (en) Energy-saving deceleration travel control method
JP2017085723A (en) Electric car control device
CN111532264A (en) Intelligent internet automobile cruising speed optimization method for variable-gradient and variable-speed-limit traffic scene
JP2011046272A (en) Vehicle traveling control method
JP5835126B2 (en) Driving assistance device
CN112955359A (en) Vehicle control method and device
JP2017081356A (en) Electric car control device
JP2015104984A (en) Travel control device of hybrid vehicle
JP6495793B2 (en) Control device and control method for electric vehicle
JP2017081353A (en) Electric car control device
JP2022183407A (en) Energy-saving deceleration travel control method
JP2014122010A (en) Energy-saving travel control method
JP2023145862A (en) Energy saving deceleration travel control method
JP2018046735A (en) Method of travel control to expand drivable distance in electric automobile
JP2017140962A (en) Energy saving slowdown travel assisting method

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220724

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220810

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20220815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230221

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230515