JP2013173870A - Polyester resin, and polyester film using the same - Google Patents

Polyester resin, and polyester film using the same Download PDF

Info

Publication number
JP2013173870A
JP2013173870A JP2012040092A JP2012040092A JP2013173870A JP 2013173870 A JP2013173870 A JP 2013173870A JP 2012040092 A JP2012040092 A JP 2012040092A JP 2012040092 A JP2012040092 A JP 2012040092A JP 2013173870 A JP2013173870 A JP 2013173870A
Authority
JP
Japan
Prior art keywords
component
polyester
film
molar ratio
range
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012040092A
Other languages
Japanese (ja)
Other versions
JP5855973B2 (en
Inventor
Toshio Ishidera
俊雄 石寺
Hiromichi Ito
寛道 伊東
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Film Solutions Ltd
Original Assignee
Teijin DuPont Films Japan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin DuPont Films Japan Ltd filed Critical Teijin DuPont Films Japan Ltd
Priority to JP2012040092A priority Critical patent/JP5855973B2/en
Publication of JP2013173870A publication Critical patent/JP2013173870A/en
Application granted granted Critical
Publication of JP5855973B2 publication Critical patent/JP5855973B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a polyester excellent in dimensional stability to temperature change, and heat resistance.SOLUTION: A polyester has an acid component composed of a 2,6-naphthalenedicarboxylic acid component (component A) and an aromatic or alicyclic dicarboxylic acid component (component B) different from the component A, and a glycol component composed of an ethylene glycol component (component C) and an aliphatic dimerdiol component (component D), wherein the molar ratio of the component A and the component B is in the range of 80:20 to 95:5; the molar ratio of the component C and the component D is in the range of 75:25 to 95:5; the molar ratio of the component B (component B) bonding with the component C and the component B (component B) bonding with the component D is in the range of 15:85 to 40:60; and the intrinsic viscosity is ≥0.55.

Description

本発明は、芳香族ジカルボン酸とエチレングリコールを主成分とし、共重合成分として芳香族または脂環族のジカルボン酸と脂肪族ダイマージオールとを用いたポリエステル樹脂およびそれを用いたポリエステルフィルムに関する。   The present invention relates to a polyester resin using an aromatic dicarboxylic acid and ethylene glycol as main components and an aromatic or alicyclic dicarboxylic acid and an aliphatic dimer diol as copolymerization components, and a polyester film using the same.

ポリエチレンテレフタレートやポリエチレン−2,6−ナフタレートに代表される芳香族ポリエステルは優れた機械的特性、寸法安定性および耐熱性を有することから、フィルムなどに幅広く使用されている。特にポリエチレン−2,6−ナフタレートは、ポリエチレンテレフタレートよりも優れた機械的特性、寸法安定性および耐熱性を有することから、それらの要求の厳しい用途、例えば高密度磁気記録媒体などのベースフィルムなどに使用されている。しかしながら、近年の高密度磁気記録媒体などでの寸法安定性の要求はますます高くなってきており、さらなる特性の向上が求められている。   Aromatic polyesters typified by polyethylene terephthalate and polyethylene-2,6-naphthalate have excellent mechanical properties, dimensional stability and heat resistance, and thus are widely used for films and the like. In particular, polyethylene-2,6-naphthalate has mechanical properties, dimensional stability, and heat resistance superior to those of polyethylene terephthalate, so that it is used in demanding applications such as a base film for high-density magnetic recording media. It is used. However, the demand for dimensional stability in high-density magnetic recording media and the like in recent years is increasing, and further improvement of characteristics is required.

一方、特許文献1〜4には、繰り返し単位の一部に、ダイマー酸や脂肪族ポリエステルを組み込むことが提案されているが、実際には融点やガラス転移温度の低下が激しく、耐熱性などが求められる用途などには、その展開が厳しく制限されるものでしかなかった。   On the other hand, Patent Documents 1 to 4 propose that dimer acid or aliphatic polyester is incorporated in a part of the repeating unit, but actually the melting point and glass transition temperature are drastically lowered, and the heat resistance and the like are high. The required applications were only strictly limited in their development.

特公昭57−48577号公報Japanese Patent Publication No.57-48577 特公昭54−15913号公報Japanese Patent Publication No.54-15913 特開平4−91123号公報JP-A-4-91123 特許第3110168号公報Japanese Patent No. 3110168

本発明の目的は、湿度変化に対する優れた寸法安定性を有しながらも、実用上必要なガラス転移温度(Tg)や融点(Tm)などの耐熱性を有して、製膜などの成形性をも有するポリエステルおよびそれを用いたポリエステルフィルムを提供することにある。   An object of the present invention is to have excellent heat stability such as glass transition temperature (Tg) and melting point (Tm) necessary for practical use while having excellent dimensional stability against humidity change, and formability such as film formation. Another object of the present invention is to provide a polyester also having a polyester film and a polyester film using the same.

本発明者らは、上記課題を解決しようと鋭意研究した結果、特定の脂肪族ポリエステルを、芳香族ジカルボン酸とエチレングリコールとからなるポリエステルに組込み、さらにその結合状態を特定の範囲に制御することで、上記課題を解決できることを見出し、本発明に到達した。   As a result of diligent research to solve the above-mentioned problems, the present inventors incorporated a specific aliphatic polyester into a polyester composed of an aromatic dicarboxylic acid and ethylene glycol, and further controlled the bonding state within a specific range. Thus, the inventors have found that the above problems can be solved, and have reached the present invention.

かくして本発明によれば、酸成分が2,6−ナフタレンジカルボン酸成分(成分A)と成分Aとは異なる芳香族または脂環族のジカルボン酸成分(成分B)とからなり、グリコール成分がエチレングリコール成分(成分C)と脂肪族ダイマージオール成分(成分D)とからなるポリエステルであって、
成分Aと成分Bのモル比が80:20〜95:5の範囲で、成分Cと成分Dのモル比が75:25〜95:5の範囲にあること、そして
成分Cと結合している成分B(成分B)と、成分Dと結合している成分B(成分B)とのモル比が、15:85〜40:60の範囲にある固有粘度が0.55以上であるポリエステル樹脂およびそれを用いたポリエステルフィルムが提供される。
Thus, according to the present invention, the acid component comprises a 2,6-naphthalenedicarboxylic acid component (component A) and an aromatic or alicyclic dicarboxylic acid component (component B) different from component A, and the glycol component is ethylene. A polyester comprising a glycol component (component C) and an aliphatic dimer diol component (component D),
The molar ratio of component A to component B is in the range of 80:20 to 95: 5, the molar ratio of component C to component D is in the range of 75:25 to 95: 5, and is bonded to component C Polyester having an intrinsic viscosity of 0.55 or more in which the molar ratio of Component B (Component B C ) to Component B (Component B D ) bonded to Component D is in the range of 15:85 to 40:60 A resin and a polyester film using the resin are provided.

また、本発明によれば、本発明の好ましい態様として、成分Aとのみ結合している成分C(成分C)の割合が、成分Cのモル数を基準として90モル%以上であること、成分Aと結合している成分D(成分D)と、成分Bと結合している成分D(成分D)とのモル比が、40:60〜5:95の範囲にあること、数平均分子量が1,500〜10,000である成分Bと成分Dからなる低分子量前駆体を用いることの少なくともいずれか一つをさらに具備するポリエステル樹脂およびそれを用いたポリエステルフィルムも提供される。 According to the present invention, as a preferred embodiment of the present invention, the proportion of component C (component C A ) bonded only to component A is 90 mol% or more based on the number of moles of component C. The molar ratio of component D (component D A ) bound to component A to component D (component D B ) bound to component B is in the range of 40:60 to 5:95, There are also provided a polyester resin further comprising at least one of using a low molecular weight precursor composed of Component B and Component D having an average molecular weight of 1,500 to 10,000, and a polyester film using the same.

本発明によれば、低吸水性に優れ、実用に十分な耐熱性を有するポリエステルを得ることができ、低吸水性であることから、それを製膜することで、湿度変化に対する寸法安定性に優れたポリエステルフィルムを提供できる。   According to the present invention, a polyester having excellent low water absorption and heat resistance sufficient for practical use can be obtained, and since it has low water absorption, by forming it into a film, dimensional stability against humidity change can be obtained. An excellent polyester film can be provided.

本発明のポリエステルおよびポリエステルフィルムを説明するにあたって、まず成分A、成分B、成分Cおよび成分Dを説明する。   In describing the polyester and polyester film of the present invention, component A, component B, component C and component D will be described first.

<成分A>
本発明における成分Aは2,6−ナフタレンジカルボン酸成分である。これを使用することにより力学的特性の点からまた耐熱性の点からも本発明の目的を達成することができる。
<Component A>
Component A in the present invention is a 2,6-naphthalenedicarboxylic acid component. By using this, the object of the present invention can be achieved in terms of mechanical properties and heat resistance.

<成分B>
本発明における成分Bは成分Aとは異なる芳香族または脂環族ジカルボン酸成分であり、具体的には、テレフタル酸成分、イソフタル酸成分、1,4−シクロヘキサンジカルボン酸成分などが挙げられる。
<Component B>
Component B in the present invention is an aromatic or alicyclic dicarboxylic acid component different from component A, and specific examples include a terephthalic acid component, an isophthalic acid component, and a 1,4-cyclohexanedicarboxylic acid component.

<成分C>
本発明における成分Cはエチレングリコール成分である。
<Component C>
Component C in the present invention is an ethylene glycol component.

<成分D>
本発明における成分Dは脂肪族ダイマージオール成分である。ダイマージオールは、不飽和脂肪酸の分子間重合反応によって得られる既知の二塩基酸であるダイマー酸を触媒存在下で水素添加して、ダイマー酸のカルボン酸部分をアルコールとした炭素数36程度のジオールを主成分としたものである。ダイマー酸の工業的製造プロセスは業界でほぼ標準化されており、炭素数が11〜22の不飽和脂肪酸又はその低級アルコールエステルを粘土触媒等にて2量化し、トリマー酸、モノマー酸等の副生成物を除去した後に得られる。具体的なダイマージオールとしては、クローダ社製のPripol2033などが挙げられる。
<Component D>
Component D in the present invention is an aliphatic dimer diol component. Dimer diol is a diol having about 36 carbon atoms in which dimer acid, which is a known dibasic acid obtained by an intermolecular polymerization reaction of unsaturated fatty acid, is hydrogenated in the presence of a catalyst, and the carboxylic acid portion of dimer acid is alcohol. Is the main component. The industrial production process of dimer acid is almost standardized in the industry, dimerization of unsaturated fatty acid having 11 to 22 carbon atoms or its lower alcohol ester with clay catalyst etc., and by-product such as trimer acid and monomer acid Obtained after removal of material. Specific examples of the dimer diol include Pripol 2033 manufactured by Croda.

<ポリエステル>
本発明のポリエステルは、酸成分が主として前記成分Aと前記成分B、グリコール成分が主として前記成分Cと前記成分Dからなるものである。
本発明において、前記成分Aと成分Bのモル比は80:20〜95:5の範囲である。前記範囲にあることで、耐熱性と湿度変化に対する寸法安定性とを高度に発現させることができる。好ましい前記成分Aと成分Bのモル比の下限は85:15、上限は93:7である。
<Polyester>
In the polyester of the present invention, the acid component mainly comprises the component A and the component B, and the glycol component mainly comprises the component C and the component D.
In the present invention, the molar ratio of Component A to Component B is in the range of 80:20 to 95: 5. By being in the said range, heat resistance and the dimensional stability with respect to a humidity change can be expressed highly. The lower limit of the preferred molar ratio of Component A to Component B is 85:15, and the upper limit is 93: 7.

また、本発明において、前記成分Cと成分Dのモル比は75:25〜95:5の範囲である。前記範囲にあることで、耐熱性と湿度変化に対する寸法安定性とを高度に発現させることができる。好ましい前記成分Cと成分Dのモル比の下限は80:20、上限は92:8である。   Moreover, in this invention, the molar ratio of the said component C and the component D is the range of 75: 25-95: 5. By being in the said range, heat resistance and the dimensional stability with respect to a humidity change can be expressed highly. The lower limit of the preferred molar ratio of component C to component D is 80:20, and the upper limit is 92: 8.

ところで、本発明の特徴の一つは、上記の通り、少量の成分Bと成分Dを共重合したものでありながら、成分Bと成分Dとが直接結合している割合を極めて高くし、それによって耐熱性をより高度に具備させたことにある。すなわち、本発明のポリエステルは、成分Cと結合している成分Bの割合(成分B)と、成分Dと結合している成分B(成分B)とのモル比が、モル比で15:85〜40:60の範囲であることが耐熱性の点から必要である。好ましい成分Bと成分Bとのモル比は、20:80〜35:65である。このような結合の状態は、後述の製造方法などを採用することで、調整できる。 By the way, one of the features of the present invention is that, as described above, a small amount of component B and component D are copolymerized, but the ratio of component B and component D being directly bonded is extremely high. Therefore, the heat resistance is further enhanced. That is, in the polyester of the present invention, the molar ratio of the ratio of component B bonded to component C (component B C ) to component B bonded to component D (component B D ) is 15 in terms of molar ratio. : It is necessary from the point of heat resistance that it is the range of 85-40: 60. The molar ratio of the preferred component B C and component B D is 20: 80 to 35: a 65. Such a coupling state can be adjusted by employing a manufacturing method described later.

また、本発明のポリエステルは、耐熱性の点から、成分Aとのみ結合している成分C(成分C)の割合が、90モル%以上であることが好ましい。成分Cのモル数を基準として上限は特に制限されないが、過度にエステル交換反応などを抑制しなくてもよくなることから、95モル%以下、さらに98モル%以下が好ましい。 Further, the polyester of the present invention, from the viewpoint of heat resistance, the proportion of the components is bound only with the component A C (Component C A) is preferably 90 mol% or more. The upper limit is not particularly limited based on the number of moles of Component C, but 95 mol% or less, and more preferably 98 mol% or less is preferable because the transesterification reaction or the like may not be excessively suppressed.

さらにまた、本発明のポリエステルは、耐熱性の点から、成分Aと結合している成分D(成分D)と、成分Bと結合している成分D(成分D)とのモル比が、40:60〜5:95の範囲にあることが好ましい。好ましい成分Dと成分Dとのモル比は、50:50〜30:70である。このような結合の状態は、後述の製造方法などを採用することで、調整できる。 Furthermore, the polyester of the present invention has a molar ratio of component D (component D A ) bonded to component A and component D (component D B ) bonded to component B from the viewpoint of heat resistance. 40:60 to 5:95. The molar ratio of the preferred component D A and component D B is 50: 50-30: 70. Such a coupling state can be adjusted by employing a manufacturing method described later.

本発明のポリエステルは、本発明の効果を阻害しない範囲で、それ自体公知の他の共重合成分を共重合しても良いし、また、ポリエーテルイミドや液晶性樹脂などをブレンドして組成物としてもよい。なお、共重合する場合は、耐熱性の点から、全酸成分のモル数を基準として、10モル%未満、さらに5モル%未満であることが好ましい。
本発明のポリエステルは、P−クロロフェノール/1,1,2,2−テトラクロロエタン(重量比40/60)の混合溶媒を用いて35℃で測定した固有粘度が好ましくは0.4〜1.5dl/g、より好ましくは0.5〜1.3dl/gの範囲である。
The polyester of the present invention may be copolymerized with other copolymerization components known per se within a range not impairing the effects of the present invention, or may be blended with a polyetherimide or a liquid crystalline resin. It is good. In the case of copolymerization, from the viewpoint of heat resistance, it is preferably less than 10 mol%, more preferably less than 5 mol%, based on the number of moles of all acid components.
The polyester of the present invention preferably has an intrinsic viscosity measured at 35 ° C. using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (weight ratio 40/60) at 0.4 to 1. It is 5 dl / g, More preferably, it is the range of 0.5-1.3 dl / g.

本発明のポリエステルは、DSCで測定した融点が、200〜280℃の範囲、さらに220〜270℃の範囲、特に240〜260℃の範囲にあることが製膜性の点から好ましい。融点が上記上限を越えると、溶融押し出しして成形する際に、流動性が劣り、吐出などが不均一化しやすくなる。一方、上記下限未満になると、製膜性は優れるものの、芳香族ポリエステルの持つ機械的特性などが損なわれやすくなる。   The polyester of the present invention preferably has a melting point measured by DSC in the range of 200 to 280 ° C, further in the range of 220 to 270 ° C, particularly in the range of 240 to 260 ° C, from the viewpoint of film forming property. When the melting point exceeds the above upper limit, when melt extrusion is performed, the fluidity is inferior, and the discharge is likely to be non-uniform. On the other hand, when the ratio is less than the above lower limit, the film forming property is excellent, but the mechanical properties and the like of the aromatic polyester are easily impaired.

また、本発明のポリエステル樹脂は、DSCで測定したガラス転移温度(以下、Tgと称することがある。)が、耐熱性の点から65℃以上であることが好ましい。上限は製膜性などの点から140℃以下であることが好ましい。好ましいTgの下限は70℃、さらに80℃である。また、好ましいTgの上限は120℃である。このような融点やガラス転移温度は、成分A、成分B、成分C、成分Dの種類や割合、さらに後述の製造方法による成分A〜Dの結合の状態、そして副生物の制御などによって調整できる。   The polyester resin of the present invention preferably has a glass transition temperature (hereinafter sometimes referred to as Tg) measured by DSC of 65 ° C. or higher from the viewpoint of heat resistance. The upper limit is preferably 140 ° C. or less from the viewpoint of film forming properties. The minimum of preferable Tg is 70 degreeC, Furthermore, it is 80 degreeC. Moreover, the upper limit of preferable Tg is 120 degreeC. Such melting point and glass transition temperature can be adjusted by the types and ratios of component A, component B, component C, and component D, the bonding state of components A to D by the production method described later, and control of by-products. .

<ポリエステルの製造方法>
つぎに、本発明におけるポリエステルの製造方法について、以下で説明する。
まず、成分A〜Dの原料を用意する。具体的には、成分Aの原料として芳香族ジカルボン酸もしくはそのエステル形成性誘導体を、成分Bの原料として芳香族または脂環族ジカルボン酸もしくはそのエステル形成性誘導体を、成分Cの原料としてエチレングリコールを、成分Dの原料として脂肪族ダイマージオールを用意する。そして、これら成分A〜Dの原料を、エステル化反応もしくはエステル交換反応を経由し、重縮合反応させればよい。ただ、これら成分A〜Dの原料を、最初から所望の割合で混合して反応させるだけでは、前述の組成や結合状態にすることは困難であり、以下、成分Aの原料として2,6−ナフタレンジカルボン酸ジメチル、成分Bとして、ジメチルテレフタレートを用いた場合を例にとって説明する。
<Production method of polyester>
Below, the manufacturing method of polyester in this invention is demonstrated below.
First, ingredients A to D are prepared. Specifically, aromatic dicarboxylic acid or an ester-forming derivative thereof as a raw material for component A, aromatic or alicyclic dicarboxylic acid or an ester-forming derivative thereof as a raw material for component B, and ethylene glycol as a raw material for component C As an ingredient D, an aliphatic dimer diol is prepared. Then, the raw materials of these components A to D may be subjected to a polycondensation reaction via an esterification reaction or a transesterification reaction. However, it is difficult to obtain the above-described composition and bonding state by simply mixing and reacting the raw materials of components A to D at a desired ratio from the beginning. A case where dimethyl terephthalate is used as dimethyl naphthalenedicarboxylate and component B will be described as an example.

まず、前述の結合状態とするために、2,6−ナフタレンジカルボン酸ジメチルと過剰のエチレングリコールとをエステル交換反応させて2,6−ナフタレンジカルボン酸にエチレングリコールが2つ付加したポリエステル前躯体E(2,6−ナフタレンジカルボン酸のエチレングリコール付加体)を作成する。   First, a polyester precursor E in which two ethylene glycols are added to 2,6-naphthalenedicarboxylic acid by transesterifying dimethyl 2,6-naphthalenedicarboxylate with excess ethylene glycol to obtain the above-mentioned bonded state. (Ethylene glycol adduct of 2,6-naphthalenedicarboxylic acid) is prepared.

また、ジメチルテレフタレートと脂肪族ダイマージオールとをエステル交換反応させて、ポリエステル前躯体や2個以上連結した二量体や三量体など低分子量体Fを作成する。これらは使用する脂肪族ダイマージオールとジメチルテレフタレートの使用モル比によって調整することが可能となる。   In addition, dimethyl terephthalate and aliphatic dimer diol are transesterified to produce a low molecular weight substance F such as a polyester precursor, two or more linked dimers and trimers. These can be adjusted by the molar ratio of the aliphatic dimer diol and dimethyl terephthalate used.

ポリエステルの前駆体を製造する際の反応温度としては、グリコール成分がエチレングリコールである場合は、その沸点以上で行うことが好ましく、特に190℃〜250℃の範囲で行なうことが好ましい。190℃よりも低いと反応が十分に進行しにくく、250℃よりも高いと副反応物であるジアルキレングリコールなどが生成しやすい。このエステル交換反応によってポリエステル前駆体としての反応物が得られる。   As the reaction temperature for producing the polyester precursor, when the glycol component is ethylene glycol, it is preferably carried out at the boiling point or higher, particularly preferably in the range of 190 ° C to 250 ° C. When the temperature is lower than 190 ° C., the reaction does not proceed sufficiently. When the temperature is higher than 250 ° C., dialalkylene glycol as a side reaction product is likely to be generated. By this transesterification reaction, a reactant as a polyester precursor is obtained.

ポリエステルの前駆体を製造する反応工程では、公知のエステル化もしくはエステル交換反応触媒を用いてもよい。例えばアルカリ金属化合物、アルカリ土類金属化合物、チタン化合物などが上げられる。そして低分子量前駆体Fはさらに反応器内を減圧することによって得やすくなる。そして、その低分子量前駆体Fの数平均分子量は1,500〜10,000の範囲にあることが好ましい。下限値よりも低いときは上述の各成分の結合割合を達することができず、また上限値よりも高いときは、ポリエステル前駆体Eとの重縮合反応性が悪化する。   In the reaction step for producing the polyester precursor, a known esterification or transesterification reaction catalyst may be used. For example, an alkali metal compound, an alkaline earth metal compound, a titanium compound, and the like can be given. The low molecular weight precursor F can be easily obtained by further reducing the pressure in the reactor. The number average molecular weight of the low molecular weight precursor F is preferably in the range of 1,500 to 10,000. When the ratio is lower than the lower limit, the above-described bonding ratio of each component cannot be reached, and when the ratio is higher than the upper limit, the polycondensation reactivity with the polyester precursor E is deteriorated.

そして、このポリエステル前躯体Eとポリエステル低分子量前駆体Fとを、所望の分子量になるまで重縮合反応させることで製造できる。ここで、重縮合反応について説明する。まず、重縮合温度は得られるポリマーの融点以上でかつ230〜280℃以下、より好ましくは融点より5℃以上高い温度から融点より30℃高い温度の範囲である。重縮合反応では通常50Pa以下の減圧下で行うのが好ましい。50Paより高いと重縮合反応に要する時間が長くなり且つ重合度の高い共重合芳香族ポリエステル樹脂を得ることが困難になる。   And it can manufacture by carrying out the polycondensation reaction until this polyester precursor E and the polyester low molecular weight precursor F become desired molecular weight. Here, the polycondensation reaction will be described. First, the polycondensation temperature is in the range from a temperature higher than the melting point of the polymer to be obtained and 230 to 280 ° C. or lower, more preferably 5 ° C. higher than the melting point to 30 ° C. higher than the melting point. The polycondensation reaction is usually preferably performed under a reduced pressure of 50 Pa or less. If it is higher than 50 Pa, the time required for the polycondensation reaction becomes long and it becomes difficult to obtain a copolymerized aromatic polyester resin having a high degree of polymerization.

重縮合触媒としては、少なくとも一種の金属元素を含む金属化合物が挙げられる。なお、重縮合触媒はエステル化反応においても使用することができる。金属元素としては、チタン、ゲルマニウム、アンチモン、アルミニウム、ニッケル、亜鉛、スズ、コバルト、ロジウム、イリジウム、ジルコニウム、ハフニウム、リチウム、カルシウム、マグネシウムなどが挙げられる。より好ましい金属としては、チタン、ゲルマニウム、アンチモン、アルミニウム、スズなどであり、中でも、チタン化合物はエステル化反応と重縮合反応との双方の反応で、高い活性を発揮するので特に好ましい。   Examples of the polycondensation catalyst include metal compounds containing at least one metal element. The polycondensation catalyst can also be used in the esterification reaction. Examples of the metal element include titanium, germanium, antimony, aluminum, nickel, zinc, tin, cobalt, rhodium, iridium, zirconium, hafnium, lithium, calcium, and magnesium. More preferable metals are titanium, germanium, antimony, aluminum, tin, etc. Among them, a titanium compound is particularly preferable because it exhibits high activity in both the esterification reaction and the polycondensation reaction.

これらの触媒は単独でも、あるいは併用してもよい。かかる触媒量は、共重合芳香族ポリエステルの繰り返し単位のモル数に対して、0.001〜0.5モル%、さらには0.005〜0.2モル%が好ましい。   These catalysts may be used alone or in combination. The amount of the catalyst is preferably 0.001 to 0.5 mol%, more preferably 0.005 to 0.2 mol%, based on the number of moles of the repeating unit of the copolymerized aromatic polyester.

具体的な重縮合触媒としてのチタン化合物としては、例えば、テトラ−n−プロピルチタネート、テトライソプロピルチタネート、テトラ−n−ブチルチタネート、テトライソブチルチタネート、テトラ−tert−ブチルチタネート、テトラシクロヘキシルチタネート、テトラフェエルチタネート、テトラベンジルチタネート、蓚酸チタン酸リチウム、蓚酸チタン酸カリウム、蓚酸チタン酸アンモニウム、酸化チタン、チタンのオルトエステルまたは縮合オルトエステル、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルとヒドロキシカルボン酸とリン化合物からなる反応生成物、チタンのオルトエステルまたは縮合オルトエステルと少なくとも2個のヒドロキシル基を有する多価アルコール、2−ヒドロキシカルボン酸、または塩基からなる反応生成物などが挙げられる。   Specific examples of the titanium compound as the polycondensation catalyst include tetra-n-propyl titanate, tetraisopropyl titanate, tetra-n-butyl titanate, tetraisobutyl titanate, tetra-tert-butyl titanate, tetracyclohexyl titanate, tetraphenyl titanate, and the like. Eltitanate, tetrabenzyl titanate, lithium oxalate titanate, potassium oxalate titanate, ammonium oxalate titanate, titanium oxide, titanium orthoester or condensed orthoester, titanium orthoester or condensed orthoester and hydroxycarboxylic acid A reaction product comprising a titanium orthoester or a condensed orthoester, a hydroxycarboxylic acid and a phosphorus compound, a titanium orthoester or a condensed orthoester Both polyhydric alcohol having two hydroxyl groups, 2-hydroxycarboxylic acid or the like reaction product consisting of a base and the like.

また、本発明のポリエステルは、上記のような方法で製造できるが、例えば成分Bと成分Dの割合を目標よりも多いポリエステルを用意し、成分Bと成分Dの割合の少ないポリエステルとを用意し、それらを溶融混練させて所望の組成のポリエステルとしたものであっても良いし、そのようにすることで生産効率よく、成分A,成分B、成分Cおよび成分Dの割合が異なるポリエステルを製造することもできる。   In addition, the polyester of the present invention can be produced by the method as described above. For example, a polyester having a higher ratio of component B and component D than the target is prepared, and a polyester having a lower ratio of component B and component D is prepared. These may be melt-kneaded to obtain a polyester having a desired composition, and by doing so, polyesters having different ratios of Component A, Component B, Component C and Component D are produced with high production efficiency. You can also

<ポリエステルフィルム>
本発明のポリエステルフィルムは、前述のポリエステルを溶融製膜して、シート状に押出すことで得られる。
本発明のポリエステルフィルムは、優れた寸法安定性を発現するため、フィルム面方向における少なくとも一方向に延伸された配向ポリエステルフィルムであることが好ましく、さらに製膜方向と幅方向の両方向に延伸された二軸配向ポリエステルフィルムであることがさらに好ましい。
<Polyester film>
The polyester film of the present invention can be obtained by melt-forming the aforementioned polyester and extruding it into a sheet.
The polyester film of the present invention is preferably an oriented polyester film stretched in at least one direction in the film surface direction in order to express excellent dimensional stability, and is further stretched in both the film forming direction and the width direction. More preferably, it is a biaxially oriented polyester film.

ところで、本発明のポリエステルフィルムは、前述の本発明のポリエステルからなるが、本発明の効果を阻害しない範囲で、他の熱可塑性ポリマー、紫外線吸収剤等の安定剤、酸化防止剤、可塑剤、滑剤(粒子やワックスなど)、難燃剤、離型剤、顔料、核剤、充填剤あるいはガラス繊維、炭素繊維、層状ケイ酸塩などを必要に応じて配合してポリエステル樹脂組成物としても良い。他種熱可塑性ポリマーとしては、脂肪族ポリエステル系樹脂、ポリアミド系樹脂、ポリカーボネート、ABS樹脂、ポリメチルメタクリレート、ポリアミド系エラストマー、ポリエステル系エラストマー、ポリエーテルイミド、ポリイミドなどが挙げられる。特に耐熱性を上げる観点から、ガラス転移温度の高いなどを含有させることは好ましい態様といえる。   By the way, the polyester film of the present invention is composed of the above-described polyester of the present invention, but in the range not inhibiting the effects of the present invention, other thermoplastic polymers, stabilizers such as ultraviolet absorbers, antioxidants, plasticizers, Lubricants (particles, waxes, etc.), flame retardants, mold release agents, pigments, nucleating agents, fillers or glass fibers, carbon fibers, layered silicates and the like may be blended as necessary to form a polyester resin composition. Examples of other types of thermoplastic polymers include aliphatic polyester resins, polyamide resins, polycarbonates, ABS resins, polymethyl methacrylate, polyamide elastomers, polyester elastomers, polyetherimides, polyimides, and the like. In particular, from the viewpoint of increasing the heat resistance, it can be said that it is a preferable embodiment to contain a glass transition temperature and the like.

本発明のポリエステルフィルムは、前述の通り、製膜方向または幅方向に延伸して、その方向の分子配向を高めた配向ポリエステルフィルムであることが好ましく、例えば以下のような方法で製造することが、製膜性を維持しつつ、ヤング率を向上させやすいことから好ましい。   As described above, the polyester film of the present invention is preferably an oriented polyester film that has been stretched in the film forming direction or the width direction to increase the molecular orientation in that direction, and can be produced by the following method, for example. It is preferable because the Young's modulus is easily improved while maintaining the film forming property.

まず、上述の本発明のポリエステル、もしくは溶融混練する前の成分(A)と成分(C)の多いポリエステルと成分Bと成分Dの多いポリエステル樹脂とを原料とし、これを乾燥後、該ポリエステル樹脂の融点(Tm:℃)ないし(Tm+50)℃の温度に加熱された押出機に供給して、例えばTダイなどのダイよりシート状に押出す。この押出されたシート状物を回転している冷却ドラムなどで急冷固化して未延伸フィルムとし、さらに該未延伸フィルムを延伸する。このとき、溶融混練の間に過度にエステル交換反応が進んでしまわないように注意する。なお、冷却ドラムによる冷却は非常に速やかに行なうことが好ましい。このような低温で行うことで、未延伸フィルムの状態での結晶化が抑制され、その後の延伸をよりスムーズに行うことが可能となる。   First, the polyester of the present invention described above, or a polyester having a large amount of component (A) and component (C) and a polyester resin having a large amount of component B and component D before being melt kneaded, are dried, and the polyester resin is dried. Is supplied to an extruder heated to a melting point (Tm: ° C.) to (Tm + 50) ° C., and extruded from a die such as a T die, for example. The extruded sheet is rapidly cooled and solidified with a rotating cooling drum or the like to form an unstretched film, and the unstretched film is stretched. At this time, care is taken so that the transesterification reaction does not proceed excessively during melt-kneading. It is preferable that the cooling by the cooling drum be performed very quickly. By performing at such a low temperature, crystallization in the state of an unstretched film is suppressed, and subsequent stretching can be performed more smoothly.

なお、二軸延伸の場合、その延伸方法は、逐次二軸延伸でも同時二軸延伸でもよい。
ここでは、逐次二軸延伸で、縦延伸、横延伸および熱処理をこの順で行う製造方法を一例として挙げて説明する。まず、最初の縦延伸は共重合芳香族ポリエステルのガラス転移温度(Tg:℃)ないし(Tg+40)℃の温度で、3〜8倍に延伸し、次いで横方向に先の縦延伸よりも高温で(Tg+10)〜(Tg+50)℃の温度で3〜10倍に延伸し、さらに熱処理としてポリマーの融点以下の温度でかつ(Tg+50)〜(Tg+150)℃の温度で1〜20秒、さらに1〜15秒熱固定処理するのが好ましい。
なお、ポリエステルフィルムの厚みは、用いる用途に応じて適宜選定すればよいが、磁気記録媒体のベースフィルムに用いる場合、10μm以下、さらに8μm以下が好ましく、厚みの下限は特に制限されないが、1μm以上、さらに3μm以上が好ましい。
In the case of biaxial stretching, the stretching method may be sequential biaxial stretching or simultaneous biaxial stretching.
Here, a manufacturing method in which longitudinal stretching, lateral stretching, and heat treatment are performed in this order by sequential biaxial stretching will be described as an example. First, in the first longitudinal stretching, the glass transition temperature (Tg: ° C.) to (Tg + 40) ° C. of the copolymerized aromatic polyester is stretched 3 to 8 times, and then in the transverse direction at a higher temperature than the previous longitudinal stretching. The film is stretched 3 to 10 times at a temperature of (Tg + 10) to (Tg + 50) ° C., and further treated as a heat treatment at a temperature below the melting point of the polymer and at a temperature of (Tg + 50) to (Tg + 150) ° C. for 1 to 20 seconds, and further 1 to 15 It is preferable to carry out a second heat fixing treatment.
The thickness of the polyester film may be appropriately selected according to the application to be used, but when used for the base film of the magnetic recording medium, it is preferably 10 μm or less, more preferably 8 μm or less, and the lower limit of the thickness is not particularly limited, but 1 μm or more. Further, 3 μm or more is preferable.

前述の説明は逐次二軸延伸について説明したが、本発明の二軸配向ポリエステルフィルムは縦延伸と横延伸とを同時に行う同時二軸延伸でも製造でき、例えば先で説明した延伸倍率や延伸温度などを参考にすればよい。
また、上述の二軸配向ポリエステルフィルムをベースフィルムとし、その一方の面に非磁性層および磁性層がこの順で形成され、他方の面にバックコート層が形成することなどで磁気記録テープとすることができる。
Although the above description has been described for sequential biaxial stretching, the biaxially oriented polyester film of the present invention can be produced by simultaneous biaxial stretching in which longitudinal stretching and lateral stretching are simultaneously performed, for example, the stretching ratio and stretching temperature described above, etc. Should be referred to.
In addition, the above-mentioned biaxially oriented polyester film is used as a base film, and a nonmagnetic layer and a magnetic layer are formed in this order on one side, and a backcoat layer is formed on the other side. be able to.

以下に実施例および比較例を挙げ、本発明をより具体的に説明する。なお、本発明では、以下の方法により、その特性を測定および評価した。   Hereinafter, the present invention will be described more specifically with reference to examples and comparative examples. In the present invention, the characteristics were measured and evaluated by the following methods.

(1)固有粘度
得られたポリエステルの固有粘度はP−クロロフェノール/1,1,2,2−テトラクロロエタン(40/60重量比)の混合溶媒を用いてポリマーを溶解して35℃で測定して求めた。
(1) Intrinsic viscosity The intrinsic viscosity of the obtained polyester was measured at 35 ° C by dissolving the polymer using a mixed solvent of P-chlorophenol / 1,1,2,2-tetrachloroethane (40/60 weight ratio). And asked.

(2)ガラス転移点および融点
ガラス転移点と融点は、DSC(TAインスツルメンツ(株)製、商品名:DSC2920)によりサンプル重量20mg、昇温速度10℃/minで測定した。
(2) Glass transition point and melting point The glass transition point and the melting point were measured by DSC (TA Instruments Co., Ltd., trade name: DSC2920) at a sample weight of 20 mg and a heating rate of 10 ° C / min.

(3)数平均分子量
ポリマーをHFIP(ヘキサフロロイソプロパノール)に溶解し、GPC(Shodex GPC−101)にて測定を行った。本数平均分子量はポリスチレン換算で求めた。
(3) Number average molecular weight The polymer was dissolved in HFIP (hexafluoroisopropanol) and measured by GPC (Shodex GPC-101). The number average molecular weight was determined in terms of polystyrene.

(4)共重合量
試料20mgを重トリフルオロ酢酸:重クロロホルム=1:1の混合溶媒0.6mLに溶解し、室温でH−NMRスペクトル(日本電子製 JEOL A600)を測定した。NMRのスペクトルより、共重合量の割合を見積もった。
(4) Copolymerization amount 20 mg of a sample was dissolved in 0.6 mL of a mixed solvent of deuterated trifluoroacetic acid: deuterated chloroform = 1: 1, and a 1 H-NMR spectrum (JEOL A600 manufactured by JEOL Ltd.) was measured at room temperature. The proportion of the copolymerization amount was estimated from the NMR spectrum.

(5)吸水率
得られたフィルムを50±2℃に保った恒温槽中で24±1時間乾燥し、デシケータ内で放冷し、23±2℃のイオン交換水の入った容器に入れ、完全に浸せき液中に24時間浸せきする。フィルムサンプルを取り出した後、表面を清浄な乾いた布でふきとり、浸漬前後の重量変化を浸漬前の重量で割り、吸水率を測定した。
(5) Water absorption rate The obtained film was dried in a thermostat kept at 50 ± 2 ° C. for 24 ± 1 hours, allowed to cool in a desiccator, and put in a container containing ion exchange water at 23 ± 2 ° C. Immerse in the complete immersion solution for 24 hours. After taking out the film sample, the surface was wiped with a clean dry cloth, the weight change before and after immersion was divided by the weight before immersion, and the water absorption was measured.

(6)(成分B)(成分B)(成分C)(成分D)および(成分D)の割合
重合したポリマーの約20mgを重トリフルオロ酢酸:重クロロホルム=1:1の混合溶媒0.6mLに溶解し、室温でH−NMRスペクトル(日本電子製 JEOL A600)を測定した。NMRのスペクトルより、成分B、B、C、D、Dの割合を見積もった。
(6) Ratio of (Component B C ) (Component B D ) (Component C A ) (Component D A ) and (Component D B ) About 20 mg of the polymerized polymer was deuterated with trifluoroacetic acid: deuterated chloroform = 1: 1. mixture is dissolved in a solvent 0.6 mL, it was measured at room temperature 1 H-NMR spectrum (JEOL JEOL A600). Than spectrum of NMR, we estimated component B C, B D, C A , D A, the ratio of D B.

(7)製膜性
実施例1に記載した条件で、縦方向、および横方向に延伸して製膜し、安定に製膜できるか観察した。下記基準で評価した。
○:1時間以上安定に製膜できる
×:1時間以内に切断が発生し、安定な製膜ができない
(7) Film forming property Under the conditions described in Example 1, the film was formed by stretching in the vertical direction and the horizontal direction, and it was observed whether the film could be stably formed. Evaluation was made according to the following criteria.
○: Stable film formation for 1 hour or more ×: Cutting occurs within 1 hour, and stable film formation is not possible

[参考例1]
モル比1:1.25でジメチルテレフタレート、脂肪族ダイマージオールとしてpripol2033(クローダ社製)を反応器に仕込み、更に触媒として酢酸マンガン(ジメチルテレフタレートのモル数を基準として30mmol%)を添加した。180℃に加熱して溶融し撹拌した。反応容器内温度をゆっくりと235℃まで昇温しながら反応を進め、生成するメタノールを反応容器外へ留出させた。メタノールの留出が終了したらリン化合物としてフェニルホスホン酸(ダイマー酸のモル数を基準として40mmol%)を添加し、エステル化反応を終了させた。続いて5分後に、重縮合触媒として三酸化アンチモンを添加し(ダイマー酸のモル数を基準として20mmol%)、280℃まで加熱して、徐々に真空度を高めてポリエステル低分子量前駆体F1を作成した。
[Reference Example 1]
Dimethyl terephthalate at a molar ratio of 1: 1.25 and pripol 2033 (manufactured by Croda) as an aliphatic dimer diol were charged into a reactor, and manganese acetate (30 mmol% based on the number of moles of dimethyl terephthalate) was further added as a catalyst. Heated to 180 ° C., melted and stirred. The reaction was advanced while the temperature inside the reaction vessel was slowly raised to 235 ° C., and the methanol produced was distilled out of the reaction vessel. When the distillation of methanol was completed, phenylphosphonic acid (40 mmol% based on the number of moles of dimer acid) was added as a phosphorus compound to complete the esterification reaction. Subsequently, after 5 minutes, antimony trioxide was added as a polycondensation catalyst (20 mmol% based on the number of moles of dimer acid), heated to 280 ° C., and the degree of vacuum was gradually increased to obtain polyester low molecular weight precursor F1. Created.

[参考例2]
モル比1:1.22でシクロヘキサンジカルボン酸ジメチル、ダイマージオールとしてpripol2033(クローダ社製)を反応器に仕込んだこと以外は、参考例1と同様に行い、ポリエステル低分子量前駆体F2を作成した。
[Reference Example 2]
A polyester low molecular weight precursor F2 was prepared in the same manner as in Reference Example 1 except that dimethylcyclohexanedicarboxylate and pripol 2033 (manufactured by Claude) were charged into the reactor at a molar ratio of 1: 1.22.

[参考例3]
モル比1:1.05でジメチルテレフタレート、ダイマージオールとしてpripol2033(クローダ社製)を反応器に仕込んだこと以外は、参考例1と同様に行い、ポリエステル低分子量前駆体F3を作成した。
[Reference Example 3]
A polyester low molecular weight precursor F3 was prepared in the same manner as in Reference Example 1, except that dimethyl terephthalate and dipol diol Pripol 2033 (manufactured by Croda) were charged into the reactor at a molar ratio of 1: 1.05.

[参考例4]
モル比1:2でジメチルテレフタレート、ダイマージオールとしてpripol2033(クローダ社製)を反応器に仕込んだこと以外は、参考例1と同様に行い、ポリエステル低分子量前駆体F4を作成した。
[Reference Example 4]
A polyester low molecular weight precursor F4 was prepared in the same manner as in Reference Example 1, except that dimethyl terephthalate at a molar ratio of 1: 2 and pripol 2033 (manufactured by Croda) as a dimer diol were charged into the reactor.

[実施例1]
エステル交換反応容器に2,6−ナフタレンジカルボン酸ジメチル、エチレングリコール、酢酸マンガン(2,6−ナフタレンジカルボン酸ジメチルのモル数を基準として30mmol%)を仕込み、150℃に加熱して溶融し撹拌した。反応容器内温度をゆっくりと235℃まで昇温しながら反応を進め、生成するメタノールを反応容器外へ留出させた。メタノールの留出が終了したらリン化合物としてフェニルホスホン酸(2,6−ナフタレンジカルボン酸のモル数を基準として50mmol%)を添加し、エステル交換反応(以下、EI反応と略す)を終了させた。続いて5分後に、重縮合触媒として三酸化アンチモンを添加し(2,6−ナフタレンジカルボン酸ジメチルのモル数を基準として20mmol%)、240℃まで加熱して一部のエチレングリコールを留出させて、ポリエステル前躯体E1を作成した。
このようにして得られたポリエステル前躯体E1とポリエステル低分子量前駆体F1とを、内部に撹拌翼を有する重縮合装置に移行した。この際、ポリエステル低分子量前駆体F1を2,6−ナフタレンジカルボン酸ジメチルの20wt%となるように仕込んだ。その後、10分間溶解攪拌させた後に、徐々に真空度を高めながら35分間を要して、反応温度を290℃に到達せしめた。この温度を保持して真空度を40Paに保ち、重縮合反応(PN反応と略す)を行った。得られたポリエステルの固有粘度は0.61dl/gであった。得られたポリエステルのポリマー物性について表1に記す。
このようにして得られたポリエステルを、押し出し機に供給して300℃(平均滞留時間:20分)でダイから溶融状態で回転中の温度55℃の冷却ドラム上にシート状に押し出し未延伸フィルムとした。そして、製膜方向に沿って回転速度の異なる二組のローラー間で、上方よりIRヒーターにてフィルム表面温度がTg+25℃になるように加熱して縦方向(製膜方向)の延伸を、延伸倍率3.5倍で行い、一軸延伸フィルムを得た。そして、この一軸延伸フィルムをステンターに導き、横延伸温度Tg+30℃で横延伸倍率3.5倍、熱固定処理(205℃で10秒間)および冷却を行い、厚さ4.5μmの二軸延伸フィルムを得た。
得られた二軸配向ポリエステルフィルムおよびそれを構成するポリエステル樹脂の特性を表1に示す。
[Example 1]
A transesterification vessel was charged with dimethyl 2,6-naphthalenedicarboxylate, ethylene glycol, and manganese acetate (30 mmol% based on the number of moles of dimethyl 2,6-naphthalenedicarboxylate), heated to 150 ° C., melted and stirred. . The reaction was advanced while the temperature inside the reaction vessel was slowly raised to 235 ° C., and the methanol produced was distilled out of the reaction vessel. When the distillation of methanol was completed, phenylphosphonic acid (50 mmol% based on the number of moles of 2,6-naphthalenedicarboxylic acid) was added as a phosphorus compound to complete the transesterification reaction (hereinafter abbreviated as EI reaction). Subsequently, after 5 minutes, antimony trioxide was added as a polycondensation catalyst (20 mmol% based on the number of moles of dimethyl 2,6-naphthalenedicarboxylate) and heated to 240 ° C. to distill some ethylene glycol. Thus, a polyester precursor E1 was prepared.
The polyester precursor E1 and the polyester low molecular weight precursor F1 thus obtained were transferred to a polycondensation apparatus having a stirring blade inside. At this time, the polyester low molecular weight precursor F1 was charged so as to be 20 wt% of dimethyl 2,6-naphthalenedicarboxylate. Then, after dissolving and stirring for 10 minutes, the reaction temperature was allowed to reach 290 ° C. over 35 minutes while gradually increasing the degree of vacuum. While maintaining this temperature, the degree of vacuum was kept at 40 Pa, and a polycondensation reaction (abbreviated as PN reaction) was performed. The intrinsic viscosity of the obtained polyester was 0.61 dl / g. The polymer properties of the obtained polyester are shown in Table 1.
The polyester thus obtained is supplied to an extruder and extruded from a die at 300 ° C. (average residence time: 20 minutes) onto a cooling drum having a temperature of 55 ° C. while rotating in a molten state. It was. And between two sets of rollers with different rotation speeds along the film forming direction, the film is heated from above with an IR heater so that the film surface temperature becomes Tg + 25 ° C., and stretching in the longitudinal direction (film forming direction) A uniaxially stretched film was obtained at a magnification of 3.5. Then, this uniaxially stretched film is led to a stenter, a transverse stretching temperature Tg + 30 ° C., a transverse stretching ratio of 3.5 times, heat setting treatment (at 205 ° C. for 10 seconds) and cooling, and a biaxially stretched film having a thickness of 4.5 μm. Got.
Table 1 shows the properties of the obtained biaxially oriented polyester film and the polyester resin constituting it.

[実施例2]
ポリエステル低分子量F1との仕込みを、2,6−ナフタレンジカルボン酸ジメチルの40wt%となるように変更する以外は、実施例1と同様の操作を行なった。得られたポリマー物性と、二軸延伸フィルムの物性について表1に記す。
[Example 2]
The same operation as in Example 1 was performed except that the preparation with the polyester low molecular weight F1 was changed to 40 wt% of dimethyl 2,6-naphthalenedicarboxylate. Table 1 shows the polymer properties obtained and the properties of the biaxially stretched film.

[実施例3]
ポリエステル低分子量前躯体F1の代わりにF2を使用したこと、また添加量を変更したこと以外は、実施例1と同様の操作を行なった。得られたポリマー物性と、二軸延伸フィルムの物性について表1に記す。
[Example 3]
The same operation as in Example 1 was performed except that F2 was used in place of the polyester low molecular weight precursor F1 and the addition amount was changed. Table 1 shows the polymer properties obtained and the properties of the biaxially stretched film.

[比較例1]
ポリエステル前躯体F1の添加のタイミングを、実施例1におけるポリエステル前躯体E1のエステル交換反応の始めに変更したこと、また添加量を変更したこと以外は、実施例1と同様の操作を行なった。得られたポリマー物性と、二軸延伸フィルムの物性について表1に記す。
[Comparative Example 1]
The same operation as in Example 1 was performed except that the addition timing of the polyester precursor F1 was changed to the beginning of the transesterification reaction of the polyester precursor E1 in Example 1 and the addition amount was changed. Table 1 shows the polymer properties obtained and the properties of the biaxially stretched film.

[比較例2]
ポリエステル前躯体F1をF3に変更したこと以外は、また添加量を変更したこと以外は実施例1と同様の操作を行なった。重縮合反応は進まず、高い粘度のポリマーを得ることができず、また製膜を行うことができなかった。得られたポリマー物性について表1に記す。
[Comparative Example 2]
The same operation as in Example 1 was performed except that the amount of the polyester precursor F1 was changed to F3 and the addition amount was changed. The polycondensation reaction did not proceed, and a high-viscosity polymer could not be obtained, and film formation could not be performed. The obtained polymer physical properties are shown in Table 1.

[比較例3]
ポリエステル前躯体F1をF4に変更したこと、また添加量を変更したこと以外は、実施例1と同様の操作を行なった。得られたポリマー物性と、二軸延伸フィルムの物性について表1に記す。
[Comparative Example 3]
The same operation as in Example 1 was performed except that the polyester precursor F1 was changed to F4 and the addition amount was changed. Table 1 shows the polymer properties obtained and the properties of the biaxially stretched film.

[比較例4]
添加量を変更したこと以外は、実施例1と同様の操作を行なった。得られたポリマー物性と、二軸延伸フィルムの物性について表1に記す。
[Comparative Example 4]
The same operation as in Example 1 was performed except that the addition amount was changed. Table 1 shows the polymer properties obtained and the properties of the biaxially stretched film.

[比較例5]
ポリエステル前躯体F1を重合する際に、1,6−ヘキサンジオールではなく、1,4−ブタンジオールを用いて重合したものを前駆体F3とする。ポリエステル前駆体F1の代わりにポリエステル前駆体F3を使用する以外は実施例1と同様の操作を行なった。得られたポリマー物性と、二軸延伸フィルムの物性について表1に記す。
[Comparative Example 5]
When the polyester precursor F1 is polymerized, the precursor F3 is polymerized using 1,4-butanediol instead of 1,6-hexanediol. The same operation as in Example 1 was performed except that the polyester precursor F3 was used instead of the polyester precursor F1. Table 1 shows the polymer properties obtained and the properties of the biaxially stretched film.

Figure 2013173870
Figure 2013173870

表1中の、検出量の成分Aは芳香族ジカルボン酸成分、成分Bはジメチルテレフタレートまたはシクロヘキサンジカルボン酸成分、成分Dはダイマージオール成分、成分Cはエチレングリコール成分、DEGはジエチレングリコール成分、成分Bは成分Cと結合している成分B、成分Bは成分Dと結合している成分B、成分Cは成分Aとのみ結合している成分C、成分Cは成分Bとも結合している成分C、成分Dは成分Aと結合している成分D、成分Dは成分Bと結合している成分D、Tgはガラス転移温度、を示す。 In Table 1, the detected amount of component A is an aromatic dicarboxylic acid component, component B is a dimethyl terephthalate or cyclohexane dicarboxylic acid component, component D is a dimer diol component, component C is an ethylene glycol component, DEG is a diethylene glycol component, component B C Is a component B that is coupled to component C, component B D is a component B that is coupled to component D, component C A is a component C that is coupled only to component A, and component C B is also coupled to component B Component C, Component D A are Component D bonded to Component A, Component DB B is Component D bonded to Component B, and Tg is a glass transition temperature.

本発明のポリエステルおよびそれを用いたポリエステルフィルムは、従来のポリエチレンテレフタレート、ポリエチレン−2,6−ナフタレートでは達成できなかったような優れた寸法安定性を有し、寸法安定性が求められる用途、特に高密度磁気記録媒体のベースフィルムとして、好適に使用することができる。   The polyester of the present invention and the polyester film using the same have excellent dimensional stability that cannot be achieved by conventional polyethylene terephthalate and polyethylene-2,6-naphthalate, and are particularly required for dimensional stability. It can be suitably used as a base film for high-density magnetic recording media.

Claims (5)

酸成分が2,6−ナフタレンジカルボン酸成分(成分A)と成分Aとは異なる芳香族または脂環族のジカルボン酸成分(成分B)とからなり、グリコール成分がエチレングリコール成分(成分C)と脂肪族ダイマージオール成分(成分D)とからなるポリエステルであって、
成分Aと成分Bのモル比が80:20〜95:5の範囲で、成分Cと成分Dのモル比が75:25〜95:5の範囲にあること、そして
成分Cと結合している成分B(成分B)と、成分Dと結合している成分B(成分B)とのモル比が、15:85〜40:60の範囲にある固有粘度が0.55以上であるポリエステル樹脂。
The acid component comprises a 2,6-naphthalenedicarboxylic acid component (component A) and an aromatic or alicyclic dicarboxylic acid component (component B) different from component A, and the glycol component is an ethylene glycol component (component C). A polyester comprising an aliphatic dimer diol component (component D),
The molar ratio of component A to component B is in the range of 80:20 to 95: 5, the molar ratio of component C to component D is in the range of 75:25 to 95: 5, and is bonded to component C Polyester having an intrinsic viscosity of 0.55 or more in which the molar ratio of Component B (Component B C ) to Component B (Component B D ) bonded to Component D is in the range of 15:85 to 40:60 resin.
成分Aとのみ結合している成分C(成分C)の割合が、成分Cのモル数を基準として90モル%以上である請求項1記載のポリエステル樹脂。 The polyester resin according to claim 1, wherein the proportion of component C (component C A ) bonded only to component A is 90 mol% or more based on the number of moles of component C. 成分Aと結合している成分D(成分D)と、成分Bと結合している成分D(成分D)とのモル比が、40:60〜5:95の範囲にある請求項1または2のいずれか記載のポリエステル樹脂。 The molar ratio of component D (component D A ) bonded to component A to component D (component D B ) bonded to component B is in the range of 40:60 to 5:95. Or the polyester resin in any one of 2. 数平均分子量が1,500〜10,000である成分Bと成分Dからなる低分子量前駆体を用いた請求項1〜3のいずれか記載のポリエステル樹脂。   The polyester resin according to any one of claims 1 to 3, wherein a low molecular weight precursor comprising component B and component D having a number average molecular weight of 1,500 to 10,000 is used. 請求項1〜4のいずれか記載のポリエステル樹脂からなるポリエステルフィルム。   The polyester film which consists of a polyester resin in any one of Claims 1-4.
JP2012040092A 2012-02-27 2012-02-27 Polyester resin and polyester film using the same Active JP5855973B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040092A JP5855973B2 (en) 2012-02-27 2012-02-27 Polyester resin and polyester film using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040092A JP5855973B2 (en) 2012-02-27 2012-02-27 Polyester resin and polyester film using the same

Publications (2)

Publication Number Publication Date
JP2013173870A true JP2013173870A (en) 2013-09-05
JP5855973B2 JP5855973B2 (en) 2016-02-09

Family

ID=49267071

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040092A Active JP5855973B2 (en) 2012-02-27 2012-02-27 Polyester resin and polyester film using the same

Country Status (1)

Country Link
JP (1) JP5855973B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019130778A (en) * 2018-01-31 2019-08-08 帝人フィルムソリューション株式会社 Laminate polyester film and magnetic recording medium
JP2019131787A (en) * 2018-01-31 2019-08-08 帝人フィルムソリューション株式会社 Polyester composition, polyester film and magnetic recording medium
WO2019151089A1 (en) 2018-01-31 2019-08-08 帝人フィルムソリューション株式会社 Polyester composition, polyester film, and magnetic recording medium
JP2019196460A (en) * 2018-05-11 2019-11-14 帝人フィルムソリューション株式会社 Polyester film
JP2019195981A (en) * 2018-05-11 2019-11-14 帝人フィルムソリューション株式会社 Laminated polyester film
WO2020054450A1 (en) 2018-09-14 2020-03-19 東洋紡フイルムソリューション株式会社 Polyester composition, polyester film, and magnetic recording medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319364A (en) * 1999-05-14 2000-11-21 Kanebo Ltd High-viscosity polyethylene naphthalate resin, its production and molding product comprising the resin
JP2002212316A (en) * 2001-01-15 2002-07-31 Toyobo Co Ltd Heat shrinking polyester film
JP2004106887A (en) * 2002-09-18 2004-04-08 Toyobo Co Ltd Lid made of polyester
JP2011094159A (en) * 2000-02-02 2011-05-12 Toyobo Co Ltd Heat-shrinkable polyester film and method for manufacturing the same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000319364A (en) * 1999-05-14 2000-11-21 Kanebo Ltd High-viscosity polyethylene naphthalate resin, its production and molding product comprising the resin
JP2011094159A (en) * 2000-02-02 2011-05-12 Toyobo Co Ltd Heat-shrinkable polyester film and method for manufacturing the same
JP2002212316A (en) * 2001-01-15 2002-07-31 Toyobo Co Ltd Heat shrinking polyester film
JP2004106887A (en) * 2002-09-18 2004-04-08 Toyobo Co Ltd Lid made of polyester

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022184870A (en) * 2018-01-31 2022-12-13 東洋紡株式会社 Polyester composition, polyester film and magnetic recording medium
JP2019131787A (en) * 2018-01-31 2019-08-08 帝人フィルムソリューション株式会社 Polyester composition, polyester film and magnetic recording medium
WO2019151089A1 (en) 2018-01-31 2019-08-08 帝人フィルムソリューション株式会社 Polyester composition, polyester film, and magnetic recording medium
JP2019130778A (en) * 2018-01-31 2019-08-08 帝人フィルムソリューション株式会社 Laminate polyester film and magnetic recording medium
US11739182B2 (en) 2018-01-31 2023-08-29 Toyobo Co., Ltd. Polyester composition, polyester film, and magnetic recording medium
JP7194328B2 (en) 2018-01-31 2022-12-22 東洋紡株式会社 Polyester composition, polyester film and magnetic recording medium
US20210032401A1 (en) * 2018-01-31 2021-02-04 Toyobo Film Solutions Limited Polyester composition, polyester film, and magnetic recording medium
JP2019196460A (en) * 2018-05-11 2019-11-14 帝人フィルムソリューション株式会社 Polyester film
JP7028053B2 (en) 2018-05-11 2022-03-02 東洋紡株式会社 Laminated polyester film
JP7106977B2 (en) 2018-05-11 2022-07-27 東洋紡株式会社 polyester film
JP2019195981A (en) * 2018-05-11 2019-11-14 帝人フィルムソリューション株式会社 Laminated polyester film
US20210332233A1 (en) * 2018-09-14 2021-10-28 Toyobo Co., Ltd. Polyester composition, polyester film, and magnetic recording medium
WO2020054450A1 (en) 2018-09-14 2020-03-19 東洋紡フイルムソリューション株式会社 Polyester composition, polyester film, and magnetic recording medium
US11708488B2 (en) 2018-09-14 2023-07-25 Toyobo Co., Ltd. Polyester composition, polyester film, and magnetic recording medium

Also Published As

Publication number Publication date
JP5855973B2 (en) 2016-02-09

Similar Documents

Publication Publication Date Title
TWI385194B (en) Aromatic polyester and its manufacturing method
JP5855973B2 (en) Polyester resin and polyester film using the same
JP6276261B2 (en) Ternary blend of terephthalate or isophthalate polyester containing EG, CHDM and TMCD
JP2022155579A (en) Polyester resin and molding comprising polyester resin
TW202028315A (en) Polyester film and preparation method thereof
JP5684689B2 (en) Polyester resin and polyester film using the same
JP5346517B2 (en) Flame retardant copolyester and biaxially oriented film comprising the same
JP2010031175A (en) Copolyester and production method thereof
JP2002293903A (en) Method for producing cyclic polyester oligomer and method for producing polyester
JP6757669B2 (en) Polyester resin pellets, their manufacturing methods and molded products made from them
JP5199580B2 (en) Copolyethylene-2,6-naphthalate
TW201835184A (en) Polyester, method for producing the same and shaped article of the same
JP3365450B2 (en) Method for producing high polymerization degree polyester
JP2022144048A (en) Polyester resin, and molded article made thereof
JP4928334B2 (en) Copolyester
JP2008013664A (en) Copolyester and its molded product
TW583215B (en) Transparent flexible polyester
JP5616203B2 (en) Copolymerized aromatic polyester and biaxially oriented film using the same
JP5080096B2 (en) Copolymerized aromatic polyester composition and method for producing the same
JP5763362B2 (en) Copolyester and biaxially oriented film
KR20160053716A (en) Novel polyester resin and method for preparation of the same
JP2758521B2 (en) Method for producing high polymerization degree polyester
JP2009167343A (en) Method for producing polyester
JP2009007444A (en) Aromatic copolyester and its manufacturing method
JP5209218B2 (en) Biaxially oriented polyester film

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20140813

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141120

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150820

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150825

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151022

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151117

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151210

R150 Certificate of patent or registration of utility model

Ref document number: 5855973

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150