JP2013173643A - Method for producing sintered body - Google Patents

Method for producing sintered body Download PDF

Info

Publication number
JP2013173643A
JP2013173643A JP2012038761A JP2012038761A JP2013173643A JP 2013173643 A JP2013173643 A JP 2013173643A JP 2012038761 A JP2012038761 A JP 2012038761A JP 2012038761 A JP2012038761 A JP 2012038761A JP 2013173643 A JP2013173643 A JP 2013173643A
Authority
JP
Japan
Prior art keywords
sintered body
sintering
precursor
glass
mixed gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012038761A
Other languages
Japanese (ja)
Other versions
JP5963345B2 (en
Inventor
Seiji Itaya
清司 板谷
Kaori Abe
佳織 阿部
Atsushi Tsuji
篤史 辻
Akimichi Miyazawa
誠通 宮澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Glass Co Ltd
Sophia School Corp
Original Assignee
Central Glass Co Ltd
Sophia School Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Glass Co Ltd, Sophia School Corp filed Critical Central Glass Co Ltd
Priority to JP2012038761A priority Critical patent/JP5963345B2/en
Publication of JP2013173643A publication Critical patent/JP2013173643A/en
Application granted granted Critical
Publication of JP5963345B2 publication Critical patent/JP5963345B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain a dense glass sintered body, because pores generated inside the sintered body not only causes strength decline of the sintered body but also causes scattering of light.SOLUTION: This method for producing a sintered body includes a step of forming a compact from glass powder by dry molding, a step of obtaining a precursor by sintering the compact, and a step of obtaining a sintered body by pressurizing and sintering the precursor under a mixed gas atmosphere containing oxygen; wherein the partial pressure of oxygen in the mixed gas is ≥10 vol.%. The relative density of the precursor is 90-96%, and the relative density becomes higher than the precursor by passing through pressurization sintering under the mixed gas atmosphere.

Description

本発明は、焼結体の製造方法に関するものであり、特に、ガラス粉末の緻密な焼結体の製造方法に関するものである。   The present invention relates to a method for producing a sintered body, and more particularly to a method for producing a dense sintered body of glass powder.

焼結体に関する技術は、従来より特にセラミックス粉末を用いて様々な方法で検討されている。例えば特許文献1にはガラスとセラミックを混合させた焼結体、特許文献2には窒化珪素粒子間が酸窒化物の結晶化ガラス相で充填されてなる窒化珪素質焼結体、特許文献3には酸化亜鉛による緻密焼結体の作製方法、特許文献4にはセラミック粉末の表面をプラズマ処理した後成型して焼結を行う焼結体の製造方法がそれぞれ開示されている。しかしながら、一般的にセラミックス粉末を用いた緻密焼結体を得る方法は、固相反応を経るために焼結時間が10〜30時間程度と長く、また、長時間焼結を行っても、実際に得られる焼結体は内部に微細な気孔や気泡を有するものであった。   Conventionally, techniques relating to sintered bodies have been studied by various methods, particularly using ceramic powder. For example, Patent Document 1 discloses a sintered body in which glass and ceramic are mixed, Patent Document 2 discloses a silicon nitride-based sintered body in which silicon nitride particles are filled with a crystallized glass phase of oxynitride, and Patent Document 3 Discloses a method for producing a dense sintered body using zinc oxide, and Patent Document 4 discloses a method for producing a sintered body in which the surface of a ceramic powder is subjected to plasma treatment and then molded and sintered. However, in general, the method for obtaining a dense sintered body using ceramic powder is a solid phase reaction, and the sintering time is as long as about 10 to 30 hours. The obtained sintered body had fine pores and bubbles inside.

ここで、前述したセラミックの焼結体の他に、ガラスの焼結体の製造方法についても検討が行われ、特に半導体分野へ利用されている。   Here, in addition to the ceramic sintered body described above, a method for producing a glass sintered body has also been studied, and is particularly used in the semiconductor field.

ガラス粉末を用いた焼結体の製造方法としては、ガラス粉末と有機バインダーとを用いてペレットを作製した後、当該ガラス粉末のガラス転移点以上で焼結することにより焼結体を得る方法が主流である(特許文献5)。上記のようにバインダーを用いたペレットは、焼結前に完全にバインダーを除去してから焼結を行うものであり、最終的に得られる焼結体内に気孔を生じ易い。例えば特許文献6には、成形体を形成した後、該成形体に含まれる水分を乾燥除去し、減圧雰囲気下で融点以下で焼結することで相対密度95%以上のガラスの焼結体を得る技術が開示されている。   As a manufacturing method of the sintered compact using glass powder, after producing a pellet using glass powder and an organic binder, the method of obtaining a sintered compact by sintering above the glass transition point of the glass powder. The mainstream (Patent Document 5). As described above, pellets using a binder are sintered after the binder is completely removed before sintering, and pores are easily generated in the finally obtained sintered body. For example, Patent Document 6 discloses a glass sintered body having a relative density of 95% or more by forming a molded body, drying and removing moisture contained in the molded body, and sintering it at a melting point or lower in a reduced-pressure atmosphere. Obtaining techniques are disclosed.

特開2011−225446号公報JP 2011-225446 A 特開平05−330919号公報JP 05-330919 A 特開2008−195567号公報JP 2008-195567 A 特開2002−293649号公報JP 2002-293649 A 特開2010-195655号公報JP 2010-195655 A 特開2002−362967号公報JP 2002-362967 A

ガラスの有する特性のひとつとして、光の透過性が高く、また、樹脂等と比較して紫外光や薬品、熱等への耐久性に優れていことが挙げられ、近年、ガラス焼結体の光学部材への展開が期待されつつある。   One of the properties of glass is that it has high light transmission and is superior in durability to ultraviolet light, chemicals, heat, etc. compared to resins, etc. Development to members is expected.

しかし、前述した焼結体内部に生じる気孔や気泡の存在は、焼結体の強度低下の要因となるだけでなく、光を散乱させる要因にもなるため、当該焼結体を光学物品に組み込むことは依然として難しかった。   However, the presence of pores and bubbles generated in the sintered body described above not only causes a decrease in strength of the sintered body but also causes light scattering, so that the sintered body is incorporated into an optical article. That was still difficult.

従って、本発明は緻密なガラス焼結体を得ることを目的とした。   Accordingly, an object of the present invention is to obtain a dense glass sintered body.

本発明者らが上記課題について鋭意検討を行った結果、一度焼結したものを、再度加圧しながら焼結することにより、焼結体中の気孔や気泡が除去され、緻密で透明な焼結体を得られることが明らかとなった。   As a result of the present inventors diligently studying the above-mentioned problems, pores and bubbles in the sintered body are removed by sintering the sintered material while pressing it again, and a dense and transparent sintered material is obtained. It became clear that the body could be obtained.

すなわち本発明は、ガラス粉末を乾式成型により成型体とする工程、該成型体を焼結して前駆体を得る工程、及び該前駆体を酸素ガスと不活性ガスとの混合ガス雰囲気下で加圧焼結して焼結体を得る工程、を含む焼結体製造方法である。   That is, the present invention includes a step of forming glass powder by dry molding, a step of sintering the molded body to obtain a precursor, and a step of adding the precursor in a mixed gas atmosphere of oxygen gas and inert gas. And a step of obtaining a sintered body by pressure sintering.

また、前記混合ガスにおいて、酸素分圧が10体積%以上であることを特徴とする。   In the mixed gas, the oxygen partial pressure is 10% by volume or more.

また、前記焼結体を得る工程において、前記ガラス粉末のガラス転移点に対して+10〜+50℃で1〜20時間加圧焼結を行うことを特徴とする。   In the step of obtaining the sintered body, pressure sintering is performed at +10 to + 50 ° C. for 1 to 20 hours with respect to the glass transition point of the glass powder.

また、前記前駆体の相対密度が90〜96%であることを特徴とする。   The relative density of the precursor is 90 to 96%.

本発明により、緻密なガラス焼結体を得ることが可能となった。また、当該ガラス焼結体は光の散乱を抑制したものであるため、光学物品に利用できる。   According to the present invention, a dense glass sintered body can be obtained. Moreover, since the said glass sintered compact is what suppressed scattering of light, it can utilize for an optical article.

本発明は、ガラス粉末を乾式成型により成型体とする工程、該成型体を焼結して前駆体を得る工程、及び該前駆体を酸素を含む混合ガス雰囲気下で加圧焼結して焼結体を得る工程、を含む焼結体製造方法である。   The present invention includes a step of forming glass powder into a molded body by dry molding, a step of sintering the molded body to obtain a precursor, and sintering the precursor by pressure sintering in a mixed gas atmosphere containing oxygen. A method for producing a sintered body.

尚、成型体とは前記ガラス粉末が圧力により押し固められて成型されたものを指すものとする。   In addition, a molded object shall refer to what the said glass powder was shape | molded by pressing with pressure.

上記成型体は、加熱を行わない乾式成型法により形成され、特に量産性に富んだ一軸加圧成型法を用いるのが好ましい。   The molded body is formed by a dry molding method in which heating is not performed, and it is particularly preferable to use a uniaxial pressure molding method that is rich in mass productivity.

一軸加圧成型法を用いて成型体を作製する場合、金型内のガラス粉末をプレスすることにより押し固める。プレス時の圧力は40MPa以上、60MPa以下とするのが好ましい。上記範囲を外れると、プレスが不十分となったり、成型体にクラックが生じることがある。   When producing a molded body using the uniaxial pressure molding method, the glass powder in the mold is pressed and solidified. The pressure during pressing is preferably 40 MPa or more and 60 MPa or less. If it is out of the above range, the press may be insufficient or the molded body may be cracked.

上記加圧成型に用いられるガラス粉末は酸化物ガラスであり、製造の各工程において焼結が可能でかつ結晶が析出しないガラスを用いればよい。加圧焼結時の温度は一般的に少なくとも400℃まで上昇するため、焼結・焼結が可能となるように、例えばガラス転移点が390℃以上のガラス粉末を用いるとしてもよい。   The glass powder used for the pressure molding is an oxide glass, and a glass that can be sintered and does not precipitate crystals in each step of the production may be used. Since the temperature during pressure sintering generally rises to at least 400 ° C., for example, glass powder having a glass transition point of 390 ° C. or higher may be used so that sintering and sintering can be performed.

また、本発明では前駆体を得る工程において第一の加熱を行い、焼結体を得る工程において第二の加熱を行うことから、再加熱時の結晶析出温度がガラス転移点の+30〜+100℃であるガラス粉末を用いるのが好ましい。   In the present invention, since the first heating is performed in the step of obtaining the precursor and the second heating is performed in the step of obtaining the sintered body, the crystal precipitation temperature during reheating is +30 to + 100 ° C. of the glass transition point. It is preferable to use the glass powder which is.

また、前記ガラス粉末は平均粒径が0.5〜5.0μmであるのが好ましい。0.5μm以下のガラス粉末は凝集し易くなることから前駆体の作製が困難となることがある。一方、5.0μmを越えるガラス粉末は成型体中の空隙が大きくなりすぎるために、その後の焼結で内部の気孔や気泡を無くすことが困難となることがある。また、より好ましくは1.0〜3.0μmとしてもよい。   The glass powder preferably has an average particle size of 0.5 to 5.0 μm. A glass powder of 0.5 μm or less is likely to aggregate, which may make it difficult to produce a precursor. On the other hand, the glass powder exceeding 5.0 μm has too large voids in the molded body, so that it may be difficult to eliminate internal pores and bubbles in subsequent sintering. Moreover, it is good also as 1.0-3.0 micrometers more preferably.

また、前記ガラス粉末はガラス転移点が前述した範囲内になるように適宜決定されればよい。また、ガラス粉末以外に50質量%以下であれば任意の第三成分を混合して成型体を形成してもよい。例えば機能性無機フィラーやYAG等の蛍光体等が挙げられる。   The glass powder may be appropriately determined so that the glass transition point is within the above-described range. Moreover, if it is 50 mass% or less other than glass powder, arbitrary 3rd components may be mixed and a molded object may be formed. For example, functional inorganic fillers and phosphors such as YAG can be used.

前駆体を得る工程は、前記成型体を加熱により焼結し前駆体を形成するものであり、特に加圧を必要とするものではない。当該前駆体は、該成型体を構成するガラス粉末同士が加熱により融着したものであるが、気孔や気泡を含有した状態で融着するため、該前駆体は光を散乱する。この時、該前駆体の相対密度は90〜96%とするのが好ましい。相対密度が90%未満となると、その後の焼結工程を経ても相対密度が99%以上となる緻密体になり難くなる。また、96%を越える場合、加熱時間が長時間となり製造コストが増大することがある。尚、相対密度はアルキメデス法を用いて測定した。   The step of obtaining the precursor is to form the precursor by sintering the molded body by heating, and does not particularly require pressurization. The precursor is obtained by fusing glass powders constituting the molded body by heating, but the precursor scatters light because it is fused while containing pores and bubbles. At this time, the relative density of the precursor is preferably 90 to 96%. When the relative density is less than 90%, it becomes difficult to obtain a dense body having a relative density of 99% or more even after the subsequent sintering step. On the other hand, if it exceeds 96%, the heating time may be long and the production cost may increase. The relative density was measured using the Archimedes method.

焼結時の温度は結晶を生じない程度であればよく、例えば、成型体を構成するガラス粉末のガラス転移点に対して−30〜+50℃としてもよい。   The temperature at the time of sintering should just be a grade which does not produce a crystal | crystallization, for example, is good also as -30- + 50 degreeC with respect to the glass transition point of the glass powder which comprises a molded object.

焼結工程において、前述した焼結温度まで段階的に昇温すると温度ムラ等が生じるのを抑制できるため好ましい。昇温温度を1〜20℃/分、昇温時間を10〜60分程度とすると効率的に前駆体を得ることができる。   In the sintering process, it is preferable to raise the temperature stepwise to the above-described sintering temperature because it is possible to suppress the occurrence of temperature unevenness. When the temperature rise temperature is 1 to 20 ° C./min and the temperature rise time is about 10 to 60 minutes, the precursor can be obtained efficiently.

また、焼結時間は焼結温度の保持時間であり、1〜5時間とするのが好ましい。保持時間が1時間未満の場合、焼結が不十分となり前駆体の相対密度が著しく低くなるため不適である。また、ある程度の時間焼結を行えば前駆体の相対密度が一定となるため、上限は特に限定する必要はないが、例えば5時間以下としてもよい。   The sintering time is a holding time of the sintering temperature, and is preferably 1 to 5 hours. If the holding time is less than 1 hour, the sintering is insufficient and the relative density of the precursor is remarkably lowered, which is not suitable. Further, since the relative density of the precursor becomes constant if sintering is performed for a certain period of time, the upper limit is not particularly limited, but may be, for example, 5 hours or less.

焼結体を形成する工程は、熱間等方加圧法(HIP)等により、加熱と加圧とを同時に行い、前駆体を焼結させるものであり、本発明においては高温・高圧の混合ガスを媒体として該前駆体を緻密に焼結する。   The step of forming the sintered body is to simultaneously heat and pressurize the precursor by hot isostatic pressing (HIP) or the like to sinter the precursor. The precursor is densely sintered using a medium as a medium.

混合ガスは、酸素ガスと不活性ガスとを有するものである。酸素は10体積%以上含有するのが好ましく、より好ましくは15体積%以上としてもよい。酸素が存在しない場合焼結が進まず、また、安全に製造を行うために酸素は100体積%未満とするのが望ましい。また、不活性ガスは希ガス、Nが挙げられ、特にArは安価で入手しやすいことから好適に利用される。 The mixed gas has oxygen gas and inert gas. Oxygen is preferably contained at 10% by volume or more, more preferably 15% by volume or more. In the absence of oxygen, sintering does not proceed and oxygen is preferably less than 100% by volume for safe production. Further, examples of the inert gas include a rare gas and N 2 , and Ar is particularly preferably used because it is inexpensive and easily available.

また、混合ガスの圧力を100MPa以上とするのが好ましい。100MPa未満では十分に緻密化が進行しないことがある。また、安全に製造を行う為に200MPa以下とするのがよい。   Moreover, it is preferable that the pressure of mixed gas shall be 100 Mpa or more. If it is less than 100 MPa, the densification may not proceed sufficiently. Moreover, it is good to set it as 200 Mpa or less in order to manufacture safely.

また、本発明は上記混合ガスを用いた高圧条件下で焼結を行う。この時の焼結温度は前駆体を形成する際と同様に結晶が生じない程度であればよいが、十分に焼結させるために、使用したガラス粉末のガラス転移点に対して+10〜+50℃とするのが好ましい。   In the present invention, sintering is performed under high pressure conditions using the above mixed gas. The sintering temperature at this time may be a level at which crystals are not generated as in the case of forming the precursor, but in order to sufficiently sinter, +10 to + 50 ° C. with respect to the glass transition point of the used glass powder. Is preferable.

以下に本発明の実施例を記載する。   Examples of the present invention will be described below.

実施例1
1.5gのガラス粉末(ガラス転移点470℃、平均粒径1.0μm、製品名:B20、セントラル硝子社製)を一軸加圧成型用の金型に入れ、50MPaでプレス成型し成型体を作製した。次に、得られた成型体を電気ヒーターで加熱される箱型炉を用い、空気中で、昇温温度を10℃/分、昇温時間を46分とし、460℃で30分間の焼結を行い、前駆体を得た。得られた前駆体について相対密度を測定した。
Example 1
1.5 g of glass powder (glass transition point 470 ° C., average particle size 1.0 μm, product name: B20, manufactured by Central Glass Co., Ltd.) is placed in a mold for uniaxial pressure molding and press molded at 50 MPa to form a molded body. Produced. Next, the obtained molded body was sintered in an air heater at 460 ° C. for 30 minutes using a box furnace heated by an electric heater, in air, with a temperature rising temperature of 10 ° C./min and a temperature rising time of 46 minutes. To obtain a precursor. The relative density was measured about the obtained precursor.

次に上記の前駆体を用いて、熱間等方加圧法(以下HIPと記載することもある)により焼結体の製造を行った。加圧焼結装置は(株)KOBELCO製ドクターHIPを用いた。また、前駆体を白金皿上に乗せて同装置内に置き、酸素ガス(20体積%)とArガス(80体積%)を有する混合ガスを150MPaの圧力となるように満たした後、490℃で12時間焼結を行い、ガラス焼結体を得た。得られたガラス焼結体について相対密度を測定した。各相対密度と加圧焼結時の混合ガス雰囲気を表1に記載した。   Next, using the above precursor, a sintered body was produced by a hot isostatic pressing method (hereinafter sometimes referred to as HIP). The pressure sintering apparatus used was a doctor HIP manufactured by KOBELCO. The precursor was placed on a platinum dish and placed in the same apparatus, and after filling a mixed gas containing oxygen gas (20% by volume) and Ar gas (80% by volume) to a pressure of 150 MPa, 490 ° C. Was sintered for 12 hours to obtain a glass sintered body. The relative density was measured about the obtained glass sintered compact. Table 1 shows the relative density and the mixed gas atmosphere during pressure sintering.

比較例1
Arガス中で2時間、490℃の条件下で加圧焼結を行い、焼結体を得た以外は、実施例1と同様の方法でガラス焼結体を得た。
Comparative Example 1
A glass sintered body was obtained in the same manner as in Example 1 except that pressure sintering was carried out in Ar gas at 490 ° C. for 2 hours to obtain a sintered body.

比較例2
前駆体を得るための焼結工程を経ずに、それ以外の条件は全て実施例1と同様の方法でガラス焼結体を得た。
Comparative Example 2
A glass sintered body was obtained in the same manner as in Example 1 except that the sintering step for obtaining the precursor was not performed.

純Ar雰囲気で焼結を行った比較例1はガラスの一部に着色が見られた。また、前駆体を経ずに加圧焼結した比較例2は焼結が不十分となり、得られた焼結体の内部に気孔が残るものであった。

Figure 2013173643
In Comparative Example 1 in which sintering was performed in a pure Ar atmosphere, coloring was observed on a part of the glass. Further, in Comparative Example 2 in which the pressure sintering was performed without passing through the precursor, the sintering was insufficient, and pores remained inside the obtained sintered body.
Figure 2013173643

本発明は透明なガラス焼結体であることから、高屈折率なガラス製品として用いることが可能である。特に、光学物品のレンズやフィルターのように小サイズな形状を要求される物品として有用である。   Since the present invention is a transparent glass sintered body, it can be used as a glass product having a high refractive index. In particular, it is useful as an article requiring a small size, such as a lens or filter of an optical article.

Claims (5)

ガラス粉末を乾式成型により成型体とする工程、該成型体を焼結して前駆体を得る工程、及び該前駆体を酸素ガスと不活性ガスとの混合ガス雰囲気下で加圧焼結して焼結体を得る工程、を含む焼結体製造方法。 The step of forming glass powder into a molded body by dry molding, the step of sintering the molded body to obtain a precursor, and the pressure sintering of the precursor in a mixed gas atmosphere of oxygen gas and inert gas A method for producing a sintered body comprising a step of obtaining a sintered body. 前記混合ガスにおいて、酸素分圧が10体積%以上であることを特徴とする請求項1に記載の焼結体製造方法。 2. The method for producing a sintered body according to claim 1, wherein the mixed gas has an oxygen partial pressure of 10% by volume or more. 前記焼結体を得る工程において、前記ガラス粉末のガラス転移点に対して+10〜+50℃で1〜20時間加圧焼結を行うことを特徴とする請求項1又は請求項2に記載の焼結体製造方法。 The sintering according to claim 1 or 2, wherein in the step of obtaining the sintered body, pressure sintering is performed at +10 to + 50 ° C for 1 to 20 hours with respect to a glass transition point of the glass powder. Bond manufacturing method. 前記前駆体の相対密度が90〜96%であることを特徴とする請求項1乃至請求項3のいずれかに記載の焼結体製造方法。 The method for producing a sintered body according to any one of claims 1 to 3, wherein a relative density of the precursor is 90 to 96%. 請求項1乃至請求項4のいずれかに記載の焼結体製造方法から得られることを特徴とするガラス焼結体。 A glass sintered body obtained from the method for producing a sintered body according to any one of claims 1 to 4.
JP2012038761A 2012-02-24 2012-02-24 Method for manufacturing sintered body Active JP5963345B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012038761A JP5963345B2 (en) 2012-02-24 2012-02-24 Method for manufacturing sintered body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012038761A JP5963345B2 (en) 2012-02-24 2012-02-24 Method for manufacturing sintered body

Publications (2)

Publication Number Publication Date
JP2013173643A true JP2013173643A (en) 2013-09-05
JP5963345B2 JP5963345B2 (en) 2016-08-03

Family

ID=49266947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012038761A Active JP5963345B2 (en) 2012-02-24 2012-02-24 Method for manufacturing sintered body

Country Status (1)

Country Link
JP (1) JP5963345B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197180A (en) * 2017-05-24 2018-12-13 日本電気硝子株式会社 Production method of sintered body and sintered body

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495619A (en) * 1978-01-13 1979-07-28 Tokyo Shibaura Electric Co Glass firing method
JP2009096653A (en) * 2007-10-15 2009-05-07 Panasonic Electric Works Co Ltd Manufacturing method of color converting member

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5495619A (en) * 1978-01-13 1979-07-28 Tokyo Shibaura Electric Co Glass firing method
JP2009096653A (en) * 2007-10-15 2009-05-07 Panasonic Electric Works Co Ltd Manufacturing method of color converting member

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018197180A (en) * 2017-05-24 2018-12-13 日本電気硝子株式会社 Production method of sintered body and sintered body

Also Published As

Publication number Publication date
JP5963345B2 (en) 2016-08-03

Similar Documents

Publication Publication Date Title
JP5314429B2 (en) Synthetic opaque quartz glass and method for producing the same
CN101734923A (en) Aluminum nitride porous ceramic and preparation method thereof
JP2015218107A (en) Methods and compositions for formation of ceramic articles
JP5963345B2 (en) Method for manufacturing sintered body
JP6891394B2 (en) Manufacturing method of three-dimensional model
JP2018168002A (en) Method for producing sintered silica component
US9676631B2 (en) Reaction bonded silicon carbide bodies made from high purity carbonaceous preforms
Merkininkaite et al. Additive manufacturing of SiOC, SiC, and Si3N4 ceramic 3D microstructures
KR101152628B1 (en) SiC/C composite powders and a high purity and high strength reaction bonded SiC using the same
JP4452059B2 (en) Method for producing opaque silica glass molded body
US20230303420A1 (en) Fabrication and Thermal Shaping of Transparent Glass
JP2006321691A (en) Method for manufacturing silica molded product and method for manufacturing silica glass article by sintering the silica molded product
JP2017095349A (en) Method for manufacturing composite formed of high silicic acid containing material
KR101142265B1 (en) High dense silicon carbide for core materials of glass lens and Preparing method thereof
CN107805071B (en) Preparation method of titanium-trialuminum-carbon-mullite composite ceramic with low glass wettability
JP2008239404A (en) Hyperfine silicon carbide particle, its preparing method and hyperfine silicon carbide sintered compact
KR20150123470A (en) Ceramic core and method of manufacturing thereof
JP5568792B2 (en) Method for producing porous body
US20240140877A1 (en) Material and Process for Fabricating and Shaping of Transparent Ceramics
TW565536B (en) Manufacturing method of quartz glass component
KR100355350B1 (en) Manufacturing method of near-net-shaped reaction-bonded silicon carbide
CN117586022A (en) MgAlON transparent ceramic, photo-curing ceramic slurry and corresponding preparation methods
RU2554963C2 (en) Method of making articles from diamond-metal composite material
KR20220156759A (en) Porous carbon-based material and method for manufacturing porous carbon-based material
TWI458693B (en) A method for producing a high strength porous substrate using liquid crystal glass powder

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20150205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20150218

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151119

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160307

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160621

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160627

R150 Certificate of patent or registration of utility model

Ref document number: 5963345

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250