JP2013173152A - Method for manufacturing complicated-shape structure - Google Patents

Method for manufacturing complicated-shape structure Download PDF

Info

Publication number
JP2013173152A
JP2013173152A JP2012037823A JP2012037823A JP2013173152A JP 2013173152 A JP2013173152 A JP 2013173152A JP 2012037823 A JP2012037823 A JP 2012037823A JP 2012037823 A JP2012037823 A JP 2012037823A JP 2013173152 A JP2013173152 A JP 2013173152A
Authority
JP
Japan
Prior art keywords
molten metal
symmetric shape
shape portion
rotationally symmetric
cavity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012037823A
Other languages
Japanese (ja)
Other versions
JP5881462B2 (en
Inventor
Eiji Saito
英司 齋藤
Hiroaki Goto
裕章 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012037823A priority Critical patent/JP5881462B2/en
Publication of JP2013173152A publication Critical patent/JP2013173152A/en
Application granted granted Critical
Publication of JP5881462B2 publication Critical patent/JP5881462B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Molds, Cores, And Manufacturing Methods Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing a complicated-shape structure which can reduce such a defect-occurring risk that a shrinkage cavity defect is generated in a cast product.SOLUTION: A method for manufacturing a complicated-shape structure including a rotationally-symmetrical shape part in which a space in which a rotation body rotates is formed inside a casing, and a rotationally-asymmetrical shape part continuously provided vertically below the rotationally-symmetrical shape part, includes: a first step of casting by pouring a predetermined amount of a molten metal from a downward in-gate 11 to a region located on a side lower than a boundary position in a height direction where a cavity C is partitioned into the rotationally-asymmetrical shape and the rotationally-symmetrical shape part; and a second step of casting by pouring a molten metal from an upward in-gate 21 to a region located on a side upper than the boundary position by interposing a predetermined time interval after completion of the first step.

Description

本発明は、たとえば蒸気タービンのタービン車室等のように、大型で複雑な形状を有する複雑形状構造物の製造方法に関する。   The present invention relates to a method for manufacturing a complex structure having a large and complicated shape, such as a turbine casing of a steam turbine.

従来、回転機械のケーシングとなる構造物は、一般的には鋳造により製造されている。このような構造物には、たとえば舶用主機を構成するタービン車室のように、回転体が回転する空間を形成する回転対称形状部と、この回転対称形状部と一体で凹凸部を有する非回転対称形状部と、を備えた複雑な形状の構造物(以下、「複雑形状構造物」と呼ぶ)がある。なお、タービン車室のようなケーシングは、一般的に上下に二分割されたものを各々鋳造し、フランジ部をボルト締めすることで一体化される。   Conventionally, a structure that becomes a casing of a rotating machine is generally manufactured by casting. In such a structure, for example, a turbine casing that constitutes a marine main engine, a rotationally symmetric shape portion that forms a space in which a rotating body rotates, and a non-rotating portion that is integrally formed with the rotationally symmetric shape portion and has an uneven portion. There is a complex-shaped structure (hereinafter, referred to as “complex-shaped structure”) including a symmetrically shaped portion. Note that a casing such as a turbine casing is generally integrated by casting each of two vertically divided casings and bolting the flange portion.

上述した複雑構造物を鋳造によって製造する場合には、材料の金属を加熱して溶かした液体(以下、「溶湯」と呼ぶ)を鋳型の空間(以下、「キャビティ」と呼ぶ)内に流し込み、これを冷やして目的の形状に固めることが行われている。この場合、溶湯を連続的に流し込むことで、製品の金属組織に不連続が生じないようにしている。
また、低圧鋳造法においては、たとえば下記の特許文献1に開示されているように、キャビティの形状に応じて溶湯が早く凝固すべき部位に対面する金型の部材と溶湯が遅れて凝固すべき部位に対面する金型の部材とで、時間差を設けて順次冷却媒体を供給し、溶湯を一定の方向に指向性凝固させながら鋳造することが提案されている。
In the case of manufacturing the complex structure described above by casting, a liquid (hereinafter referred to as “molten metal”) obtained by heating and melting a metal material is poured into a mold space (hereinafter referred to as “cavity”), This is cooled and hardened to a desired shape. In this case, the molten metal is continuously poured to prevent discontinuity in the metal structure of the product.
Further, in the low pressure casting method, as disclosed in, for example, Patent Document 1 below, the mold member facing the portion where the molten metal should solidify quickly and the molten metal should be solidified with delay depending on the shape of the cavity. It has been proposed that a cooling medium is successively supplied with a time difference between the mold members facing the part and cast while the molten metal is directional solidified in a certain direction.

特開平1−237065号公報Japanese Patent Laid-Open No. 1-237065

ところで、複雑形状構造物を鋳造する際には、特にタービン車室のような大型の複雑形状構造物を鋳造する際には、キャビティ内に流し込まれた溶湯の落差が大きくなると、溶湯内に空気を巻き込むことが懸念される。このような空気の巻き込みは、鋳造製品に引け巣欠陥が生じる原因となるため好ましくない。   By the way, when casting a complex-shaped structure, particularly when casting a large-sized complex structure such as a turbine casing, if the drop of the molten metal poured into the cavity becomes large, air is introduced into the molten metal. There is a concern to involve. Such air entrainment is undesirable because it causes shrinkage defects in the cast product.

すなわち、通常の鋳造では、鋳型の下部から流し込まれた溶湯が湯道を通って堰からキャビティ内に比較的遅い流速で流入していくことになる。しかし、凹凸部を有する複雑形状構造物の場合には、たとえば凹部において、いったん湯道を上昇した後に上部の堰からキャビティ内に流入した溶湯が、キャビティ内で大きな高低差を落下して凹部に流入することがあり、このような溶湯の落下時に周囲の空気を巻き込みやすい。なお、溶湯の落下時に空気を巻き込むリスクは、一般的に落下する高低差が大きいほど高くなる。   That is, in normal casting, the molten metal poured from the lower part of the mold flows through the runner from the weir into the cavity at a relatively slow flow rate. However, in the case of a complex-shaped structure having an uneven portion, for example, in the recess, the molten metal that has flowed up the runner and then flowed into the cavity from the upper weir drops a large height difference in the cavity, and becomes a recess. Inflow may occur, and ambient air is likely to be involved when such molten metal falls. In addition, the risk of entraining air when the molten metal falls generally increases as the difference in height of the falling metal increases.

このような背景から、複雑形状構造物を鋳造によって製造する場合には、製品の信頼性向上や歩留まり向上の観点から、空気の巻き込みに起因して鋳造製品に引け巣欠陥を生じるという欠陥発生リスクの低減が望まれる。
本発明は、上記の課題を解決するためになされたもので、その目的とするところは、鋳造製品に引け巣欠陥が生じるという欠陥発生リスクを低減できる複雑形状構造物の製造方法を提供することにある。
From such a background, when manufacturing a complex-shaped structure by casting, the risk of occurrence of defects that cause shrinkage defects in the cast product due to air entrainment from the viewpoint of improving product reliability and yield. Reduction is desired.
The present invention has been made to solve the above-described problems, and an object of the present invention is to provide a method for manufacturing a complex-shaped structure that can reduce the risk of occurrence of defects such as shrinkage defects in a cast product. It is in.

本発明は、上記の課題を解決するため、下記の手段を採用した。
本発明に係る複雑形状構造物の製造方法は、回転体が回転する空間をケーシング内側に形成する回転対称形状部と該回転対称形状部の鉛直下方に連続して設けられた非回転対称形状部とを有する複雑形状構造物の製造方法において、キャビティ内を前記非回転対称形状部と前記回転対称形状部とに区分する高さ方向の境界位置より下側の領域に下部の堰から所定量の溶湯を流し込んで鋳込む第1工程と、前記第1工程の終了後に所定の時間差を設けて前記境界位置より上側の領域に上部の堰から溶湯を流し込んで鋳込む第2工程と、を備えていることを特徴とするものである。
In order to solve the above problems, the present invention employs the following means.
The method for manufacturing a complex-shaped structure according to the present invention includes a rotationally symmetric shape portion that forms a space in which a rotating body rotates on the inner side of a casing, and a non-rotationally symmetric shape portion that is continuously provided vertically below the rotationally symmetric shape portion. A predetermined amount from the lower weir to a region below the boundary position in the height direction dividing the inside of the cavity into the non-rotationally symmetric shape portion and the rotation symmetric shape portion. A first step of pouring and casting the molten metal; and a second step of casting by pouring the molten metal from an upper weir into a region above the boundary position by providing a predetermined time difference after completion of the first step. It is characterized by being.

このような本発明の複雑形状構造物の製造方法によれば、キャビティ内を非回転対称形状部と回転対称形状部とに区分する高さ方向の境界位置より下側の領域に下部の堰から所定量の溶湯を流し込んで鋳込む第1工程と、第1工程の終了後に所定の時間差を設けて境界位置より上側の領域に上部の堰から溶湯を流し込んで鋳込む第2工程とを備えているので、第2工程の溶湯流し込みは、キャビティ内の非回転対称形状部に下部の堰からゆっくりとした流速で流し込まれた溶湯の湯面が、所定時間の時間差経過によりある程度上昇するのを待って行われる。このため、キャビティ内においては、第2工程で上部の堰から流し込まれる溶湯と、第1工程で流し込まれた溶湯の湯面との間に生じる高低差を小さくすることができ、この結果、高低差を落下する溶湯が空気を巻き込むリスクを低減できる。
さらに、第1工程及び第2工程で鋳込まれた溶湯は、工程間の時間差を最適化することにより、金属組織に不連続面が形成されることを防止できる。
According to such a method for manufacturing a complex-shaped structure of the present invention, the cavity is divided into a non-rotation symmetric shape portion and a rotation symmetric shape portion from the lower weir in a region below the boundary position in the height direction. A first step in which a predetermined amount of molten metal is poured and cast, and a second step in which a predetermined time difference is provided after the first step is finished and a molten metal is poured into the region above the boundary position from the upper weir and cast. Therefore, in the second step, the molten metal pouring waits for the molten metal surface poured into the non-rotationally symmetric shape portion in the cavity from the lower weir at a slow flow rate to rise to some extent as the time difference elapses. Done. For this reason, in the cavity, the height difference generated between the molten metal poured from the upper weir in the second step and the molten metal surface poured in the first step can be reduced. It is possible to reduce the risk that the molten metal dropping the difference entrains the air.
Furthermore, the molten metal cast in the first step and the second step can prevent a discontinuous surface from being formed in the metal structure by optimizing the time difference between the steps.

上記の発明において、前記所定の時間差は、前記非回転対称形状部の容積及び前記第1工程の溶湯供給流量に基づいて予め算出されることが好ましく、これにより、第二工程で流し込まれる溶湯が湯面に落下する高低差を略所望の範囲内に設定することが可能になり、さらに、金属組織に不連続面が形成されることを確実に防止できる。   In the above invention, the predetermined time difference is preferably calculated in advance based on the volume of the non-rotationally symmetric shape portion and the molten metal supply flow rate in the first step, whereby the molten metal poured in the second step is It becomes possible to set the height difference falling to the molten metal surface within a substantially desired range, and it is possible to reliably prevent the formation of a discontinuous surface in the metal structure.

上述した本発明によれば、第1工程から第2工程までの時間差を最適化することで、溶湯が落下する高低差を最小限に抑えて空気の巻き込みを防止し、しかも、金属組織に不連続面が形成されることも防止できるので、空気の巻き込みに起因して鋳造製品に引け巣欠陥を生じるという欠陥発生リスクを低減し、製品の信頼性向上や歩留まり向上に顕著な効果を奏する。   According to the present invention described above, by optimizing the time difference from the first step to the second step, the difference in height at which the molten metal falls can be minimized to prevent air entrainment, and the metal structure is not affected. Since it is also possible to prevent the formation of a continuous surface, the risk of occurrence of defects that cause shrinkage defects in a cast product due to air entrainment is reduced, and a remarkable effect is achieved in improving the reliability and yield of the product.

すなわち、上述した本発明の製造方法は、製品に金属組織に不連続面が形成されるなどの問題から、通常は実施されることのない2段階鋳込みをあえて所定の時間差で行うようにしたので、たとえば上下に二分割して製造されるタービン車室のように、回転対称形状部及び凹凸部のある非回転対称形状部が一体に構成される大型の複雑形状構造物を鋳造によって製造する製品においても、鋳造製品に引け巣欠陥が生じるという欠陥発生リスクを低減し、信頼性や歩留まりの高い複雑形状構造物の製造が可能になる。   In other words, the above-described manufacturing method of the present invention is intended to carry out two-step casting that is not normally performed at a predetermined time difference because of the problem that a discontinuous surface is formed in the metal structure of the product. For example, a product that is manufactured by casting a large complex shape structure in which a rotationally symmetric shape portion and a non-rotationally symmetric shape portion having an uneven portion are integrally formed, such as a turbine casing manufactured by dividing the upper and lower portions However, it is possible to reduce the risk of occurrence of defects such as shrinkage defects in the cast product, and to manufacture complex-shaped structures with high reliability and high yield.

本発明に係る複雑形状構造物の製造方法の一実施形態を示す図で、(a)は第1工程で溶湯を流す湯道構成例を示す図、(b)は(a)に第2工程で溶湯を流す湯道を追記して示す図である。BRIEF DESCRIPTION OF THE DRAWINGS It is a figure which shows one Embodiment of the manufacturing method of the complex shape structure which concerns on this invention, (a) is a figure which shows the runway structure example which flows a molten metal at a 1st process, (b) is a 2nd process at (a). It is a figure which adds and shows the runway which flows a molten metal in. 本発明との比較例として、複雑形状構造物を鋳造で製造する際の一般的な湯道構成例を示す図である。It is a figure which shows the example of a general runner at the time of manufacturing a complicated-shaped structure by casting as a comparative example with this invention. 複雑形状構造物の一例として、上下二分割したタービン車室の下部ケーシングについて、形状例を示す斜視図である。It is a perspective view which shows a shape example about the lower casing of the turbine casing divided into upper and lower parts as an example of a complex-shaped structure. 図1に示した湯道構成例について、下面側から見た斜視図である。It is the perspective view seen from the lower surface side about the runner structural example shown in FIG. 図1に示した湯道構成例について、上面側から見た斜視図である。It is the perspective view seen from the upper surface side about the runner configuration example shown in FIG. 図1に示した実施形態について、複雑形状構造物の形状と湯道との関係を示す斜視図である。It is a perspective view which shows the relationship between the shape of a complex-shaped structure, and a runner about embodiment shown in FIG.

以下、本発明に係る複雑形状構造物の製造方法について、一実施形態を図1〜図6に基づいて説明する。なお、以下では、複雑構造物の一例として、舶用主機に適用される蒸気タービンのタービン車室について説明するが、これに限定されることはない。
蒸気タービンのタービン車室は、上下に二分割して製造される上部ケーシング及び下部ケーシングのフランジ部が多数のボルトを用いて一体に締結され、たとえば9Cr−1Mo−Ni−V−Nb−N鋼等のCr−Mo含有鋼、Cr−Mo−Ni−V他含有鋼が素材として使用される高温高圧用鋳鋼品である。
Hereinafter, one embodiment is described based on Drawing 1-Drawing 6 about the manufacturing method of the complicated shape structure concerning the present invention. In the following, a turbine casing of a steam turbine applied to a marine main engine will be described as an example of a complex structure, but the present invention is not limited to this.
In a turbine casing of a steam turbine, an upper casing and a lower casing, which are manufactured by dividing the upper and lower casings, are integrally fastened with a plurality of bolts, for example, 9Cr-1Mo-Ni-V-Nb-N steel. It is a cast steel product for high temperature and high pressure in which Cr—Mo containing steel such as Cr—Mo—Ni—V and other containing steel is used as a raw material.

図3は、タービン車室の下部ケーシング(複雑形状構造物)1について、外観形状を示す斜視図である。なお、上部ケーシングの基本構造は実質的に下部ケーシング1と同じであり、回転体が回転する空間を形成する回転対称形状部と、この回転対称形状部と一体で凹凸部を有する非回転対称形状部と、を備えた複雑な形状の構造物となる。従って、上部ケーシングについても、以下に説明する下部ケーシング1と同様の製造方法を適用可能である。   FIG. 3 is a perspective view showing the external shape of the lower casing (complex shape structure) 1 of the turbine casing. The basic structure of the upper casing is substantially the same as that of the lower casing 1, and a rotationally symmetric shape portion that forms a space in which the rotating body rotates, and a non-rotationally symmetric shape that has an uneven portion integrally with the rotationally symmetric shape portion. And a structure having a complicated shape. Therefore, the same manufacturing method as that for the lower casing 1 described below can be applied to the upper casing.

図示の下部ケーシング1は、タービンロータ(回転体)が回転する空間2をケーシング1の内側に形成する回転対称形状部3と、この回転対称形状部3と一体で各種の凹凸部5(たとえば、凹凸部5a〜5c等)を有する非回転対称形状部6と、を備えた複雑な形状の構造物である。この場合、回転対称形状部3が上方に位置し、その鉛直下方に非回転対称形状部6が連続して一体に設けられている。また、図中の符号4は、タービンロータの回転軸(不図示)を通す貫通部であり、符号7はフランジ部である。なお、フランジ部7のボルト穴については、図示が省略されている。   The illustrated lower casing 1 includes a rotationally symmetric shape portion 3 that forms a space 2 in which the turbine rotor (rotary body) rotates inside the casing 1, and various uneven portions 5 (for example, And a non-rotationally symmetric shape portion 6 having uneven portions 5a to 5c). In this case, the rotationally symmetric shape portion 3 is positioned above, and the non-rotationally symmetric shape portion 6 is provided continuously and integrally below the vertically downward portion thereof. Moreover, the code | symbol 4 in a figure is a penetration part which lets the rotating shaft (not shown) of a turbine rotor pass, and the code | symbol 7 is a flange part. In addition, about the bolt hole of the flange part 7, illustration is abbreviate | omitted.

上述した下部ケーシング1は、以下に説明する複雑形状構造物の製造方法により製造される鋳造部品である。すなわち、下部ケーシング1の形状を有するキャビティC(図1参照)の内部に対して、素材の溶湯を第1工程及び第2工程の2段階に分けて流し込む製造方法を採用する。
図1(a)には、第1工程で溶湯を流す湯道10の構成例が示されている。なお、第2工程で使用する湯道20については、図1(a)への図示が省略され、図1(b)に追記して示されている。
The lower casing 1 described above is a cast part manufactured by a method for manufacturing a complex-shaped structure described below. That is, a manufacturing method is adopted in which molten material is poured into the cavity C (see FIG. 1) having the shape of the lower casing 1 in two stages of a first process and a second process.
FIG. 1 (a) shows a configuration example of a runner 10 through which molten metal flows in the first step. In addition, about the runner 20 used at a 2nd process, illustration to FIG. 1 (a) is abbreviate | omitted and it adds and shows in FIG.1 (b).

この第1工程は、非回転対称形状部6と回転対称形状部3とに区分する高さ方向の境界位置となる境界線BL(図3参照)より下側の領域に対して、すなわち、主に非回転対称形状部6となる領域に対して、キャビティCの下部に設けた湯道10に連通する複数の下方堰11から、所定量の溶湯をゆっくりと流し込んで鋳込むものである。   This first step is performed on the region below the boundary line BL (see FIG. 3), which is the boundary position in the height direction, which is divided into the non-rotation symmetric shape portion 6 and the rotation symmetric shape portion 3, that is, the main In addition, a predetermined amount of molten metal is slowly poured into a region which becomes the non-rotationally symmetric shape portion 6 from a plurality of lower weirs 11 communicating with the runner 10 provided at the lower part of the cavity C and cast.

第1工程で使用する湯道10の主流路10aは、たとえば図4〜図6に示す構成例のように、キャビティCの側端部近傍において上方に開口する湯口12から下方へ向かい、キャビティCの下面より下方で略90度の方向転換をした後、キャビティCの下方中央部付近を通って反対側の側端部近傍まで設けられている。なお、湯口12は、キャビティCより高い位置に開口している。
主流路10aには、キャビティCの下方中央部付近を通る水平部において、複数本(図示の構成例では5本)の分岐流路10bが連結されている。各分岐流路10bの出口側には、キャビティCに開口する下方堰11が設けられている。
The main channel 10a of the runner 10 used in the first step is directed downward from the gate 12 that opens upward in the vicinity of the side end portion of the cavity C, for example, as in the configuration examples shown in FIGS. After the direction change of approximately 90 degrees below the lower surface of the cavity C, it passes through the vicinity of the lower central portion of the cavity C to the vicinity of the opposite side end portion. The gate 12 is opened at a position higher than the cavity C.
A plurality of (five in the illustrated configuration example) branch channels 10b are connected to the main channel 10a in a horizontal portion that passes near the lower center of the cavity C. A lower weir 11 that opens to the cavity C is provided on the outlet side of each branch channel 10b.

第2工程は、第1工程の終了後に所定の時間差を設けて、境界位置BLより上側の領域に対して、すなわち、主に回転対称形状部3となる領域に対して、キャビティCの中央付近外周部に設けた湯道20に連通する複数の上方堰21から、所定量の溶湯を追加してゆっくりと流し込んで鋳込むものである。   In the second step, a predetermined time difference is provided after the end of the first step, and the vicinity of the center of the cavity C with respect to the region above the boundary position BL, that is, the region mainly serving as the rotationally symmetric shape portion 3. A predetermined amount of molten metal is added and slowly poured from a plurality of upper weirs 21 communicating with the runner 20 provided on the outer peripheral portion.

第2工程で使用する湯道20は、たとえば図4〜図6に示す構成例のように、主流路20a及び出口側に上方堰21を備えた分岐流路20bにより構成されており、基本的には第1工程の湯道10と同様である。
図示の主流路20aは、主流路10aより高い位置で、具体的には境界線BL付近のレベルで、水平部がキャビティCの周囲三方を取り囲むように設けられ、キャビティCより高い位置に開口する3か所の湯口22から溶湯を流し込むようになっている。すなわち、主流路20aは、キャビティCの側端部近傍において上方に開口する3か所の湯口22から下方へ向かい、境界線BL付近のレベルで略90度の方向転換をして、キャビティCの外周部に沿って三方を囲むように設けられた水平部となる。
The runner 20 used in the second step is configured by a main flow path 20a and a branch flow path 20b having an upper weir 21 on the outlet side, as in the configuration examples shown in FIGS. 4 to 6, for example. This is the same as the runway 10 in the first step.
The illustrated main channel 20a is provided at a position higher than the main channel 10a, specifically, at a level near the boundary line BL so that the horizontal portion surrounds the three sides around the cavity C, and opens to a position higher than the cavity C. The molten metal is poured from three gates 22. That is, the main flow path 20a is directed downward from the three gates 22 opened upward in the vicinity of the side end portion of the cavity C, and is turned approximately 90 degrees at a level near the boundary line BL. It becomes a horizontal part provided to surround three sides along the outer peripheral part.

また、主流路20aの水平部には、キャビティCに開口する上方堰21を出口側に備えた8本の分岐流路20bが連結されている。なお、上方堰21が開口するレベルは、主流路20aから上向きの流路を備えた分岐流路20bを通ることから、下方堰11の開口レベルより高い位置にある。   In addition, eight branch channels 20b each having an upper weir 21 opened to the cavity C on the outlet side are connected to the horizontal portion of the main channel 20a. Note that the level at which the upper weir 21 opens is higher than the opening level of the lower weir 11 because it passes through the branch channel 20b having an upward channel from the main channel 20a.

以下、複雑形状構造物を鋳造する製造方法の手順について、具体的に説明する。
最初の第1工程では、連結流路30を閉じた状態にして、湯口12から所定量の溶湯を流し込む。この結果、溶湯は、湯道10の主流路10aに設けられた鉛直部を通って水平部まで流下し、主流路10a及び分岐流路10bの内部に満たされる。この状態からさらに溶湯を流し込むと、湯口12が下方堰11より高い位置にあるため、溶湯の湯面が上昇して各下方堰11からゆっくりとキャビティCの内部に流入する。この場合、第1工程で流し込む溶湯の所定量は、溶湯の湯面が境界線BL付近まで上昇する値となる。
なお、この境界線BLは、決定した値に対して±10%の差があっても所定の鋳込みが可能である。また、第1工程及び後述する第2工程で鋳込む溶湯としては、高温高圧用鋳鋼品である、たとえば9Cr−1Mo−Ni−V−Nb−N鋼等のCr−Mo含有鋼、Cr−Mo−Ni−V他含有鋼が適用でき、溶湯の温度としては1550℃〜1600℃程度である。
Hereinafter, the procedure of the manufacturing method for casting a complex-shaped structure will be specifically described.
In the first first step, a predetermined amount of molten metal is poured from the gate 12 with the connecting channel 30 closed. As a result, the molten metal flows down to the horizontal portion through the vertical portion provided in the main channel 10a of the runner 10, and fills the main channel 10a and the branch channel 10b. When the molten metal is further poured from this state, since the gate 12 is at a position higher than the lower weir 11, the molten metal surface rises and slowly flows into the cavity C from each lower weir 11. In this case, the predetermined amount of the molten metal poured in the first step is a value at which the molten metal surface rises to the vicinity of the boundary line BL.
The boundary line BL can be cast in a predetermined manner even if there is a difference of ± 10% with respect to the determined value. In addition, as a molten metal to be cast in the first step and the second step to be described later, for example, a Cr-Mo-containing steel such as 9Cr-1Mo-Ni-V-Nb-N steel, which is a cast steel product for high temperature and high pressure, Cr-Mo -Ni-V and other steels can be applied, and the temperature of the molten metal is about 1550 ° C to 1600 ° C.

こうして所定量の溶湯が全量湯口12から流し込まれると、所定の時間差を設けて第2工程に移行する。この時間差は、全量を流し込んだ溶湯が予め想定した湯面に到達するまでの時間を考慮したもので、経験値等に基づいて決めることができる。しかし、より正確な時間差を定めるためには、たとえば非回転対称形状部6の容積及び第1工程の溶湯供給流量に基づいて予め算出することや、試作段階において適宜条件を変更して最適値を定めてもよい。なお、この時間差は、決定した値に対して±10%の差があっても所定の鋳込みが可能である。
このようにして、第1工程から第2工程に移行する時間差の最適値を定めると、第二工程で流し込まれる溶湯が湯面に落下する高低差を低減して、略所望の範囲内に設定することが可能になる。また、時間差の最適化は、湯面の温度変化を最小限に抑えることにもなるので、鋳造後の製品においては、金属組織に不連続面が形成されることの防止にも有効である。
When a predetermined amount of molten metal is poured from the total amount spout 12 in this way, a predetermined time difference is provided and the process proceeds to the second step. This time difference takes into account the time required for the molten metal that has been poured into the total amount to reach the molten metal surface that is assumed in advance, and can be determined based on experience values and the like. However, in order to determine a more accurate time difference, for example, it is calculated in advance based on the volume of the non-rotationally symmetric portion 6 and the molten metal supply flow rate in the first step, or the optimum value is changed by appropriately changing the conditions in the trial production stage. It may be determined. In addition, even if this time difference has a difference of ± 10% with respect to the determined value, predetermined casting is possible.
Thus, when the optimum value of the time difference for shifting from the first step to the second step is determined, the difference in height at which the molten metal poured in the second step falls on the molten metal surface is reduced and set within a substantially desired range. It becomes possible to do. In addition, the optimization of the time difference is also effective in preventing the formation of discontinuous surfaces in the metal structure in the product after casting because the temperature change of the molten metal surface is minimized.

ここで、第2工程で流し込まれた溶湯が上方堰21から湯面に落下する高低差の低減について、図2に示す一般的な一段階の鋳込みを行う湯道の構成例と比較して説明する。なお、図2において、上述した実施形態と同様の部分には同じ符号を付し、その詳細な説明は省略する。
図2に示す湯道40は、主流路40aと、主流路40aから分岐する複数の分岐流路40bとを備えている。各分岐流路40bには、出口側をキャビティCに開口させた堰41が設けられている。なお、図2の主流路40a及び分岐流路40bは、前後方向に重なるものがあるため、全てが図示されているわけではない。
Here, the reduction in the height difference at which the molten metal poured in the second step falls from the upper weir 21 onto the molten metal surface will be described in comparison with the configuration example of the runner that performs the general one-stage casting shown in FIG. To do. In FIG. 2, the same reference numerals are given to the same parts as those in the above-described embodiment, and detailed description thereof is omitted.
The runner 40 shown in FIG. 2 includes a main channel 40a and a plurality of branch channels 40b branched from the main channel 40a. Each branch passage 40b is provided with a weir 41 having an outlet side opened to the cavity C. In addition, since the main flow path 40a and the branch flow path 40b in FIG. 2 overlap in the front-rear direction, not all are illustrated.

湯道40の主流路40aには、複数の湯口42が設けられている。この湯口42から流し込まれた溶湯は、主流路40aの鉛直部を通って流下し、主流路40aの水平部に流入する。この後、主流路40aを満たした溶湯は、上向きの流路を備えた分岐流路40bを通って堰41からゆっくりとキャビティC内に流入する。
このとき、堰41とキャビティCの最下面との間には、たとえば図中に破線表示で囲んだ領域S1〜S4付近において、堰41が高い位置になることから大きな高低差が形成される。すなわち、堰41からキャビティC内に流入する溶湯は、大きな高低差を矢印fのように落下することとなり、従って、溶湯の流れは流速を増すとともに乱れが生じたものとなり、結果として空気を巻き込みやすい状況となる。
A plurality of gates 42 are provided in the main channel 40 a of the runner 40. The molten metal poured from the gate 42 flows down through the vertical part of the main channel 40a and flows into the horizontal part of the main channel 40a. Thereafter, the molten metal filling the main flow path 40a slowly flows into the cavity C from the weir 41 through the branch flow path 40b having the upward flow path.
At this time, a large height difference is formed between the weir 41 and the lowermost surface of the cavity C, for example, in the vicinity of the regions S1 to S4 surrounded by broken lines in the figure, since the weir 41 is at a high position. That is, the molten metal flowing into the cavity C from the weir 41 falls as shown by the arrow f, and therefore the molten metal flow becomes turbulent as the flow rate increases, resulting in air entrainment. Easy situation.

一方、上述した二段階に分けた場合、たとえば図1(b)に示す領域Saでは、溶湯の液面がL付近に上昇した状態において、上方堰21との高低差はHである。この高低差Hは、上述した矢印fの流れと比較すれば、その減少量は顕著である。従って、高低差Hを流下する溶湯の流れは、ほとんど流速を増すことなくゆっくりとしたものとなり、流れに生じる乱れもほとんどない。
このため、高低差Hを落下する溶湯が空気を巻き込むリスクを低減でき、空気の巻き込みに起因して鋳造製品に引け巣欠陥を生じる欠陥発生リスクの低減が可能となる。
On the other hand, when divided into the above-described two stages, for example, in the region Sa shown in FIG. 1B, the height difference from the upper weir 21 is H in a state where the liquid level of the molten metal has risen near L. The amount of decrease in the height difference H is significant when compared with the flow of the arrow f described above. Therefore, the flow of the molten metal flowing down the height difference H becomes slow without increasing the flow velocity, and there is almost no turbulence generated in the flow.
For this reason, it is possible to reduce the risk that the molten metal falling in the height difference H entrains air, and it is possible to reduce the risk of occurrence of defects that cause shrinkage defects in the cast product due to the entrainment of air.

このように、上述した実施形態によれば、第1工程から第2工程までの時間差を最適化することで、溶湯が落下する高低差Hを最小限に抑えて空気の巻き込みを防止でき、しかも、金属組織に不連続面が形成されることも防止できるので、空気の巻き込みに起因して鋳造製品に引け巣欠陥を生じるという欠陥発生リスクを低減し、製品の信頼性や歩留まりを向上させることができる。
なお、本発明は上述した実施形態に限定されることはなく、その要旨を逸脱しない範囲内において適宜変更することができる。
Thus, according to the above-described embodiment, by optimizing the time difference from the first step to the second step, it is possible to minimize the height difference H at which the molten metal falls and prevent air entrainment. Because it can also prevent the formation of discontinuous surfaces in the metal structure, it can reduce the risk of defects that cause shrinkage defects in cast products due to air entrainment, and improve product reliability and yield Can do.
In addition, this invention is not limited to embodiment mentioned above, In the range which does not deviate from the summary, it can change suitably.

1 下部ケーシング(複雑形状構造物)
3 回転対称形状部
6 非回転対称形状部
10,20,40 湯道
10a,20a,40a 主流路
10b,20b,40b 分岐流路
11 下方堰
12,22,42 湯口
21 上方堰
41 堰
C キャビティ
BL 境界線
1 Lower casing (complex shape structure)
3 Rotationally symmetric shape part 6 Non-rotationally symmetric shape part 10, 20, 40 Runway 10a, 20a, 40a Main flow path 10b, 20b, 40b Branch flow path 11 Lower weir 12, 22, 42 Pouring gate 21 Upper weir 41 Weir C Cavity BL border

Claims (2)

回転体が回転する空間をケーシング内側に形成する回転対称形状部と該回転対称形状部の鉛直下方に連続して設けられた非回転対称形状部とを有する複雑形状構造物の製造方法において、
キャビティ内を前記非回転対称形状部と前記回転対称形状部とに区分する高さ方向の境界位置より下側の領域に下部の堰から所定量の溶湯を流し込んで鋳込む第1工程と、
前記第1工程の終了後に所定の時間差を設けて前記境界位置より上側の領域に上部の堰から溶湯を流し込んで鋳込む第2工程と、
を備えていることを特徴とする複雑形状構造物の製造方法。
In a method for manufacturing a complex-shaped structure having a rotationally symmetric shape portion that forms a space in which a rotating body rotates inside a casing and a non-rotationally symmetric shape portion that is continuously provided vertically below the rotationally symmetric shape portion,
A first step of pouring a predetermined amount of molten metal from a lower weir into a region below a boundary position in the height direction dividing the cavity into the non-rotationally symmetric shape portion and the rotation symmetric shape portion;
A second step in which a predetermined time difference is provided after the end of the first step, and the molten metal is poured from an upper weir into a region above the boundary position and cast;
The manufacturing method of the complex-shaped structure characterized by comprising.
前記所定の時間差は、前記非回転対称形状部の容積及び前記第1工程の溶湯供給流量に基づいて予め算出されることを特徴とする請求項1に記載の複雑形状構造物の製造方法。
The method of manufacturing a complex-shaped structure according to claim 1, wherein the predetermined time difference is calculated in advance based on a volume of the non-rotationally symmetric shape portion and a molten metal supply flow rate in the first step.
JP2012037823A 2012-02-23 2012-02-23 Manufacturing method of complex shaped structure Active JP5881462B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012037823A JP5881462B2 (en) 2012-02-23 2012-02-23 Manufacturing method of complex shaped structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012037823A JP5881462B2 (en) 2012-02-23 2012-02-23 Manufacturing method of complex shaped structure

Publications (2)

Publication Number Publication Date
JP2013173152A true JP2013173152A (en) 2013-09-05
JP5881462B2 JP5881462B2 (en) 2016-03-09

Family

ID=49266592

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012037823A Active JP5881462B2 (en) 2012-02-23 2012-02-23 Manufacturing method of complex shaped structure

Country Status (1)

Country Link
JP (1) JP5881462B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104889332A (en) * 2015-05-29 2015-09-09 共享铸钢有限公司 Pouring system of upper crown steel casting piece of thin-wall conical water turbine

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058119A (en) * 1996-08-26 1998-03-03 Mitsubishi Heavy Ind Ltd Method for casting aluminum alloy-made impeller
JP2000071050A (en) * 1998-08-28 2000-03-07 Toyota Motor Corp Die manufacturing method and die

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1058119A (en) * 1996-08-26 1998-03-03 Mitsubishi Heavy Ind Ltd Method for casting aluminum alloy-made impeller
JP2000071050A (en) * 1998-08-28 2000-03-07 Toyota Motor Corp Die manufacturing method and die

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104889332A (en) * 2015-05-29 2015-09-09 共享铸钢有限公司 Pouring system of upper crown steel casting piece of thin-wall conical water turbine

Also Published As

Publication number Publication date
JP5881462B2 (en) 2016-03-09

Similar Documents

Publication Publication Date Title
CN105215271B (en) The cored-up mould sand mould structure and cored-up mould method of a kind of gear box casing casting
CN101618425B (en) Method for casting rotary axis casts of aerogenerators
CN104889324B (en) Steam dewaxing kettle and the process for dewaxing based on the device
CN101618428A (en) Method for casting hub casts of aerogenerators
WO2016181177A9 (en) Casting process and sand mould provided with an inlet system for producing at least partly thin walled aluminium casts with sand moulding technology by means of gravity casting
CN106513631A (en) Runner structure of differential-pressure casting formation
CN101618429A (en) Method for casting hub casts of aerogenerators
CN105499535A (en) Pouring system for die casting of tensioning wheels
CN207533933U (en) A kind of high-quality casting device of founding materials processing
JP5881462B2 (en) Manufacturing method of complex shaped structure
CN105817582A (en) Investment casting gate stick
CN104858365A (en) Integral casting production method of water-cooled furnace mouth
CN103894553A (en) Integral impeller casting process of narrow-sprue centrifugal pump and impeller mould case
CN107790638A (en) A kind of technique of casting series pouring system
CN108080594B (en) Centrifugal casting part cooling method
Sama et al. Sand casting design rules
CN106216607B (en) A kind of casting bottom pouring system
JP2002224809A (en) Metallic mold for casting
WO2014163522A1 (en) Vertical vacuum-type centrifugal casting apparatus and gate for said apparatus (variants)
CN109047717B (en) Turbulent flow structure for vertical extrusion casting mold
CN202845700U (en) Lateral-casting type casting system
CN207358146U (en) For manufacturing the device of directional solidification castings
CN101579731A (en) System for casting, draining and gating bronze bell
CN205904416U (en) Modified low pressure casting water -cooling side forms
JP2005193241A (en) Die casting die, and die casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150925

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20151006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160105

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160202

R151 Written notification of patent or utility model registration

Ref document number: 5881462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151