JP2013170600A - Damping force control valve and shock absorber - Google Patents

Damping force control valve and shock absorber Download PDF

Info

Publication number
JP2013170600A
JP2013170600A JP2012033433A JP2012033433A JP2013170600A JP 2013170600 A JP2013170600 A JP 2013170600A JP 2012033433 A JP2012033433 A JP 2012033433A JP 2012033433 A JP2012033433 A JP 2012033433A JP 2013170600 A JP2013170600 A JP 2013170600A
Authority
JP
Japan
Prior art keywords
working fluid
valve body
damping force
force control
fluid chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012033433A
Other languages
Japanese (ja)
Inventor
Hiromi Fukuda
博美 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2012033433A priority Critical patent/JP2013170600A/en
Priority to PCT/JP2013/053844 priority patent/WO2013122250A1/en
Publication of JP2013170600A publication Critical patent/JP2013170600A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/088Electromagnets; Actuators including electromagnets with armatures provided with means for absorbing shocks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/34Special valve constructions; Shape or construction of throttling passages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/44Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction
    • F16F9/46Means on or in the damper for manual or non-automatic adjustment; such means combined with temperature correction allowing control from a distance, i.e. location of means for control input being remote from site of valves, e.g. on damper external wall
    • F16F9/466Throttling control, i.e. regulation of flow passage geometry
    • F16F9/469Valves incorporated in the piston
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16FSPRINGS; SHOCK-ABSORBERS; MEANS FOR DAMPING VIBRATION
    • F16F9/00Springs, vibration-dampers, shock-absorbers, or similarly-constructed movement-dampers using a fluid or the equivalent as damping medium
    • F16F9/32Details
    • F16F9/50Special means providing automatic damping adjustment, i.e. self-adjustment of damping by particular sliding movements of a valve element, other than flexions or displacement of valve discs; Special means providing self-adjustment of spring characteristics
    • F16F9/512Means responsive to load action, i.e. static load on the damper or dynamic fluid pressure changes in the damper, e.g. due to changes in velocity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/121Guiding or setting position of armatures, e.g. retaining armatures in their end position
    • H01F7/122Guiding or setting position of armatures, e.g. retaining armatures in their end position by permanent magnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F7/00Magnets
    • H01F7/06Electromagnets; Actuators including electromagnets
    • H01F7/08Electromagnets; Actuators including electromagnets with armatures
    • H01F7/16Rectilinearly-movable armatures
    • H01F7/1607Armatures entering the winding
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/16Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with polarised armatures moving in alternate directions by reversal or energisation of a single coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/02Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with armatures moved one way by energisation of a single coil system and returned by mechanical force, e.g. by springs

Abstract

PROBLEM TO BE SOLVED: To provide a damping force control valve having superior position controllability of a valve element during a minute opening thereof, and having a wide range of a controllable opening with high accuracy.SOLUTION: A damping force control valve comprises a hollow, cylindrical valve element reciprocally moved by a solenoid; a first hydraulic fluid chamber comprising a guide hole with the valve element being inserted therein, and a port formed at the position facing an end face of the valve element; and a second hydraulic fluid chamber in communication with the first hydraulic fluid chamber via a passage in the valve element. A gap between the end face of the valve element and the port forms a flow path through which the hydraulic fluid passes, and the degree of opening of the flow path is changed according to the position of the end face of the valve element. The damping force is controlled thereby, and when the degree of opening of the flow path is minimum, the gap between the valve element and the port is totally closed, and when the degree of opening of the flow path is maximum, the valve element is separated from the port. In the passage in the valve element, the opening area of a downstream side end in the flow direction in which the hydraulic fluid in the first hydraulic fluid chamber is discharged outside the first hydraulic fluid chamber via the port is larger than the opening area of a minimum diameter part in the passage.

Description

本発明は、減衰力制御弁及びショックアブソーバに関する。   The present invention relates to a damping force control valve and a shock absorber.

一般に、自動車および自動二輪車等には、車両において発生する振動を減衰するためにショックアブソーバ(緩衝器)が設けられている。ショックアブソーバは、通常、シリンダを備え、シリンダ内に、ピストンと、ピストンを支持する支持軸とが設けられている。シリンダ内は、ピストンによって、2つのオイル室に分離されており、ショックアブソーバの伸縮に合わせてピストンが動き、これにより、2つのオイル室の間でオイルが移動する。オイルの移動経路には、比較的流路面積の狭いオリフィス、バルブ等が設けられており、これらの面積の狭い流路を通過するときの流体抵抗により、減衰力を発生させ、車両に発生する振動を減衰させる。   In general, automobiles, motorcycles, and the like are provided with shock absorbers (buffers) to attenuate vibrations generated in the vehicles. The shock absorber usually includes a cylinder, and a piston and a support shaft that supports the piston are provided in the cylinder. The cylinder is separated into two oil chambers by a piston, and the piston moves in accordance with the expansion and contraction of the shock absorber, whereby the oil moves between the two oil chambers. The oil movement path is provided with orifices, valves, etc. having a relatively small flow path area, and a damping force is generated by the fluid resistance when passing through the flow path with a narrow area, which is generated in the vehicle. Damping vibration.

従来のショックアブソーバとして、電子制御により開度の調整が可能な減衰力制御弁(可変オリフィス)を備えたショックアブソーバが存在する。このようなショックアブソーバとしては、バルブがシリンダ内に設置されたショックアブソーバと、バルブがシリンダ外に設置されたショックアブソーバとが存在するが、いずれの場合であっても、走行条件に応じてバルブの開度を調整することにより、減衰力を制御することができる。   As a conventional shock absorber, there is a shock absorber provided with a damping force control valve (variable orifice) whose opening can be adjusted by electronic control. As such a shock absorber, there are a shock absorber in which a valve is installed in a cylinder and a shock absorber in which a valve is installed outside the cylinder. The damping force can be controlled by adjusting the opening degree.

従来の減衰力制御弁としては、例えば、ステッピングモータを備えた減衰力制御弁が存在する。このような減衰力制御弁では、ステッピングモータにより弁体の位置を調整してバルブの開度を変更する。そのため、流体力による弁体の位置変化が生じ難く、弁体の位置制御を比較的正確に行うことができる。一方、ステッピングモータでは、パルスの積算によって回転角が変化し、回転運動を直線運動に変換するネジのピッチによって、弁体の直進速度が決まる。油圧に対して弁体を静止させる必要があるため、ネジのピッチを大きくできない。そのため、弁体を目的の位置まで移動させるまでに比較的長い時間を要する。その結果、優れた応答性が得られないという問題がある。   As a conventional damping force control valve, for example, there is a damping force control valve provided with a stepping motor. In such a damping force control valve, the position of the valve body is adjusted by a stepping motor to change the opening of the valve. Therefore, the position change of the valve body due to the fluid force hardly occurs, and the position control of the valve body can be performed relatively accurately. On the other hand, in the stepping motor, the rotation angle is changed by integrating pulses, and the rectilinear speed of the valve body is determined by the pitch of the screw that converts the rotary motion into the linear motion. Since it is necessary to make the valve body stationary against the hydraulic pressure, the pitch of the screws cannot be increased. Therefore, it takes a relatively long time to move the valve body to the target position. As a result, there is a problem that excellent responsiveness cannot be obtained.

電子制御による減衰力制御の利点としては、走行条件に応じて減衰力を調整できる点が挙げられるが、上述したように優れた応答性が得られなければ、走行条件に応じて減衰力を精度良く調整することは困難であり、電子制御による減衰力制御のメリットを充分に活かすことができない。   The advantage of damping force control by electronic control is that the damping force can be adjusted according to the driving conditions, but if the excellent responsiveness cannot be obtained as described above, the damping force can be accurately adjusted according to the driving conditions. It is difficult to adjust well, and the merit of electronic damping control cannot be fully utilized.

また、従来の減衰力制御弁としては、ソレノイドを備えた減衰力制御弁が存在する(例えば、特許文献1参照)。特許文献1に示す減衰力制御弁では、図8(特許文献1の図6参照)に示すように、ソレノイドにより直線往復動する中空筒状の弁体200が、第一作動流体室234に形成されたガイド孔234cに挿通されている。第一作動流体室234は、弁体200の通路200eを介して、第二作動流体室(図示せず)と連通している。なお、第二作動流体室は、特許文献1における油室112に相当する。また、第一作動流体室234には、弁体200の端面200cと対向する位置にポート234bが設けられている。弁体200の端面200cとポート234bとの間隙が、作動流体の流路である。流路の開度は、弁体200の端面200cの位置によって変更され、これにより減衰力が制御される。このような減衰力制御弁によれば、ソレノイドにより弁体200の位置を調整するので、弁体200を目的の位置まで速やかに移動させることができ、優れた応答性が得られる。従って、特許文献1に示す減衰力制御弁によれば、ステッピングモータを用いた場合に優れた応答性が得られない、という問題を解消することができる。   Further, as a conventional damping force control valve, there is a damping force control valve provided with a solenoid (see, for example, Patent Document 1). In the damping force control valve shown in Patent Document 1, as shown in FIG. 8 (see FIG. 6 of Patent Document 1), a hollow cylindrical valve body 200 that linearly reciprocates by a solenoid is formed in the first working fluid chamber 234. The guide hole 234c is inserted. The first working fluid chamber 234 communicates with a second working fluid chamber (not shown) via the passage 200e of the valve body 200. The second working fluid chamber corresponds to the oil chamber 112 in Patent Document 1. The first working fluid chamber 234 is provided with a port 234b at a position facing the end surface 200c of the valve body 200. A gap between the end surface 200c of the valve body 200 and the port 234b is a flow path of the working fluid. The opening degree of the flow path is changed depending on the position of the end surface 200c of the valve body 200, and thereby the damping force is controlled. According to such a damping force control valve, since the position of the valve body 200 is adjusted by the solenoid, the valve body 200 can be quickly moved to the target position, and excellent responsiveness can be obtained. Therefore, according to the damping force control valve shown in Patent Document 1, it is possible to solve the problem that excellent response cannot be obtained when a stepping motor is used.

国際公開第2011/078317号パンフレットInternational Publication No. 2011/078317 Pamphlet

しかしながら、特許文献1に示す減衰力制御弁を用いたショックアブソーバでは、図8に示すように、作動流体の流路(弁体の端面と開口との間隙)が微小な開度であるときに、弁体200が目的の位置で安定しない場合があった。そのため、特許文献1に示す減衰力制御弁には、微小開度時での弁体200の位置制御性について、改善の余地があった。   However, in the shock absorber using the damping force control valve shown in Patent Document 1, as shown in FIG. 8, when the flow path of the working fluid (the gap between the end face of the valve element and the opening) has a very small opening degree. The valve body 200 may not be stable at the target position. Therefore, the damping force control valve shown in Patent Document 1 has room for improvement with respect to the position controllability of the valve body 200 at a minute opening.

本発明は、微小開度時における弁体の位置制御性に優れ、精度良く制御可能な開度の範囲が広い減衰力制御弁を提供することを目的としている。   An object of the present invention is to provide a damping force control valve that is excellent in position controllability of a valve body at a minute opening and has a wide range of opening that can be accurately controlled.

本発明者は、上述した課題に対して検討を行い、以下の知見を得た。
図8に示すように、弁体200の端面200cとポート234bとの間隔(作動流体の流路)が狭いときに、車両に力が加わりサスペンションを伸縮させ、作動流体が第一作動流体室234から上記間隔を介して第一作動流体室234外に排出される場合、上記間隔が狭いので、作動流体の流れSが速くなる。
The inventor has studied the above-described problems and has obtained the following knowledge.
As shown in FIG. 8, when the distance between the end surface 200c of the valve body 200 and the port 234b (working fluid flow path) is narrow, a force is applied to the vehicle to expand and contract the suspension, and the working fluid becomes the first working fluid chamber 234. When the fluid is discharged from the first working fluid chamber 234 through the interval, the flow S of the working fluid becomes faster because the interval is narrow.

作動流体の流れSは、弁体200の端面200cの周縁とポート234bの周縁との間を通って、作動流体路232に入る。このときの作動流体の流れSは、弁体200の軸線方向に沿って下流側に向かいつつ弁体200の外周側から中心側に向かう。そのため、全周縁間からの作動流体の流れSは互いに衝突する。その結果、下流側へ向かう作動流体の流れFと、流れFとは逆方向に向かう流れRとが生じる。   The flow S of the working fluid enters the working fluid path 232 through between the periphery of the end surface 200c of the valve body 200 and the periphery of the port 234b. The flow S of the working fluid at this time is directed from the outer peripheral side of the valve body 200 toward the center side while moving toward the downstream side along the axial direction of the valve body 200. Therefore, the flow S of the working fluid from the entire periphery collides with each other. As a result, a flow F of the working fluid going to the downstream side and a flow R going in the opposite direction to the flow F are generated.

作動流体の流れFは、作動流体路232を通過して減衰路制御弁の外へ向かう速やかな流れとなる。従って、作動流体路232の圧力が低くなる。また、作動流体の流れRの発生によって、通路200e内の圧力が上昇し、その圧力が第二作動流体室(特許文献1における第二作動流体室40に相当)に伝播することにより、第二作動流体室の圧力が高くなる。このような作動流体の流れF、Rが生じることによって、通路200e側と、作動流体路232側との間に圧力差が生じる。この圧力差によって、弁体200に、ポート234bに向かう力が加わる。   The flow F of the working fluid is a rapid flow that passes through the working fluid path 232 and goes out of the damping path control valve. Therefore, the pressure in the working fluid path 232 is lowered. Further, the pressure in the passage 200e increases due to the generation of the flow R of the working fluid, and the pressure propagates to the second working fluid chamber (corresponding to the second working fluid chamber 40 in Patent Document 1), whereby the second The pressure in the working fluid chamber increases. When such working fluid flows F and R are generated, a pressure difference is generated between the passage 200e side and the working fluid path 232 side. Due to this pressure difference, a force directed to the port 234b is applied to the valve body 200.

また、弁体200の端面200cとポート234bとの間隔(作動流体の流路)が狭いほど、作動流体の流れSが速くなるので、弁体200の端面200cの表面上の作動流体が、作動流体の流れSに引き寄せられる。そのため、弁体200の端面200cの表面上の圧力が低くなり、その結果、弁体200に、ポート234bに向かう力が加わる。   Further, since the flow S of the working fluid becomes faster as the distance between the end surface 200c of the valve body 200 and the port 234b (the flow path of the working fluid) is narrower, the working fluid on the surface of the end surface 200c of the valve body 200 is activated. It is drawn to the fluid flow S. Therefore, the pressure on the surface of the end surface 200c of the valve body 200 is lowered, and as a result, a force directed to the port 234b is applied to the valve body 200.

このように、弁体200にポート234bに向かう力が加わることによって、弁体200はポート234bに近づき、弁体200の端面200cとポート234bとの間隔(作動流体の流路)が更に狭くなる。弁体200の端面200cとポート234bとの間隔が狭いほど、弁体200に加わる力が強くなるため、弁体200の位置が更に変化する。
このようなメカニズムにより、弁体200が目的の位置で安定しない場合が生じていたのである。
In this manner, when the force toward the port 234b is applied to the valve body 200, the valve body 200 approaches the port 234b, and the interval (the working fluid flow path) between the end surface 200c of the valve body 200 and the port 234b is further narrowed. . As the distance between the end surface 200c of the valve body 200 and the port 234b is narrower, the force applied to the valve body 200 becomes stronger, so that the position of the valve body 200 further changes.
By such a mechanism, the case where the valve body 200 was not stabilized at the target position occurred.

上述した課題は、ステッピングモータを備えた減衰力制御弁では生じない。なぜなら、ステッピングモータにより弁体の位置を調整する場合、弁体は流体力を受けても移動しないので、作動流体の流れによって弁体の位置が変化しないからである。
上記知見は、ソレノイドを備えた減衰力制御弁に特有の課題の発生メカニズムであり、本発明者は、上記知見を得て、上記知見に基づいて、本発明を完成させた。
The above-described problem does not occur in the damping force control valve provided with the stepping motor. This is because when the position of the valve body is adjusted by the stepping motor, the valve body does not move even if it receives a fluid force, and therefore the position of the valve body does not change due to the flow of the working fluid.
The above knowledge is a mechanism for generating a problem peculiar to a damping force control valve provided with a solenoid, and the present inventor has obtained the above knowledge and completed the present invention based on the above knowledge.

即ち、本発明は、以下の構成を採用する。
(1) 減衰力制御弁であって、
前記減衰力制御弁は、
ソレノイドにより直線往復動する中空筒状の弁体と、
前記弁体が挿通されるガイド孔と、前記弁体の端面と対向する位置に形成されたポートとを備えた第一作動流体室と、
前記弁体内の通路を介して、前記第一作動流体室と連通する第二作動流体室と、
を備え、
前記弁体の前記端面と前記ポートとの間隙は、作動流体が通過する流路であり、
前記流路の開度は、前記弁体の前記端面の位置によって変更され、これにより減衰力が制御され、
前記流路の開度が最小のとき、前記弁体と前記ポートとの間隙が全閉となる一方、前記流路の開度が最大のとき、前記弁体は前記ポートから離れており、
前記弁体内の前記通路において、前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される流れの向きの下流側端の開口面積は、前記通路内の最小径部の開口面積よりも大きい。
That is, the present invention employs the following configuration.
(1) A damping force control valve,
The damping force control valve is
A hollow cylindrical valve body that linearly reciprocates by a solenoid;
A first working fluid chamber comprising a guide hole through which the valve body is inserted, and a port formed at a position facing the end face of the valve body;
A second working fluid chamber communicating with the first working fluid chamber via a passage in the valve body;
With
The gap between the end face of the valve body and the port is a flow path through which a working fluid passes,
The opening degree of the flow path is changed depending on the position of the end face of the valve body, whereby the damping force is controlled,
When the opening of the flow path is the minimum, the gap between the valve body and the port is fully closed, while when the opening of the flow path is the maximum, the valve body is away from the port,
In the passage in the valve body, the opening area at the downstream end in the flow direction in which the working fluid in the first working fluid chamber is discharged out of the first working fluid chamber through the port is the largest in the passage. It is larger than the opening area of the small diameter part.

(1)の構成によれば、下流側端の開口面積は、通路内の最小径部の開口面積よりも大きい。これにより、通路の下流側に、最小径部よりも開口面積の広い空間が確保される。従って、下流側から通路を介して第二作動流体室に向かう作動流体の流れR(図8参照)が生じても、作動流体の流れRは、最小径部の下流側における開口面積の広い空間内で渦を成して拡散しながら作動流体の流れFに戻り易い。その結果、第二作動流体室の圧力の上昇を抑制することができるので、下流側と通路内との圧力差の増大が防止され、ポートに向けて弁体に加わる力を抑制することができる。   According to the structure of (1), the opening area of a downstream end is larger than the opening area of the minimum diameter part in a channel | path. As a result, a space having a larger opening area than the minimum diameter portion is secured on the downstream side of the passage. Therefore, even if the flow R (see FIG. 8) of the working fluid from the downstream to the second working fluid chamber is generated via the passage, the working fluid flow R is a space having a wide opening area on the downstream side of the minimum diameter portion. It is easy to return to the flow F of the working fluid while vortexing inside and diffusing. As a result, an increase in pressure in the second working fluid chamber can be suppressed, so that an increase in the pressure difference between the downstream side and the passage is prevented, and a force applied to the valve body toward the port can be suppressed. .

また、下流側端の開口面積が大きくなっているので、弁体の端面とポートとの間を通過する作動流体の流れS(図8参照)が弁体の端面の表面に沿って流れる距離が比較的短い。従って、弁体の端面の表面上の作動流体が、作動流体の流れSに引き寄せられ難い。そのため、弁体の端面の表面上の圧力低下が防止され、ポートに向けて弁体に加わる力を抑制することができる。従って、(1)の構成によれば、微小開度時における弁体の位置制御性に優れ、精度良く制御可能な開度の範囲が広く、且つ高い応答性を実現できる。   Moreover, since the opening area of the downstream end is large, the distance that the flow S (see FIG. 8) of the working fluid passing between the end face of the valve element and the port flows along the surface of the end face of the valve element is small. Relatively short. Therefore, it is difficult for the working fluid on the surface of the end face of the valve body to be drawn to the flow S of the working fluid. Therefore, the pressure drop on the surface of the end face of the valve body is prevented, and the force applied to the valve body toward the port can be suppressed. Therefore, according to the configuration of (1), it is excellent in the position controllability of the valve body at the time of a minute opening, a wide range of opening that can be controlled with high accuracy, and high responsiveness can be realized.

(2) (1)の減衰力制御弁であって、
前記減衰力制御弁は、前記第一作動流体室内において前記弁体が挿通され、前記弁体の軸線方向に沿って前記弁体に力を加える環状の付勢体を備え、
前記弁体内の前記通路において、前記下流側端の開口面積は、前記付勢体の内径面積よりも小さいことが好ましい。
(2) The damping force control valve according to (1),
The damping force control valve includes an annular biasing body through which the valve body is inserted in the first working fluid chamber and applies force to the valve body along the axial direction of the valve body,
In the passage in the valve body, it is preferable that an opening area of the downstream end is smaller than an inner diameter area of the biasing body.

(2)の構成によれば、前記下流側端の開口面積が、弁体の軸線方向に沿って弁体に力を加える環状の付勢体の内径面積よりも小さく、付勢体に弁体が挿通されるので、第一作動流体室から通路を介して第二作動流体室に至る通路内に前記付勢体を設置しなくてもよい。従って、弁体の移動時における通路内の圧力伝達又は作動流体の移動がスムーズであり、応答性をより向上させることができる。   According to the structure of (2), the opening area of the said downstream end is smaller than the internal diameter area of the cyclic | annular biasing body which applies force to a valve body along the axial direction of a valve body, Is inserted, it is not necessary to install the urging body in the passage from the first working fluid chamber to the second working fluid chamber via the passage. Therefore, the pressure transmission in the passage or the movement of the working fluid during the movement of the valve body is smooth, and the responsiveness can be further improved.

(3) (1)又は(2)の減衰力制御弁であって、
前記通路は、前記下流側端を含む大径部を有し、前記大径部の径は、前記大径部の前記下流側端の反対側端から前記第二作動流体室に向けて延びる連通部の径よりも大きいことが好ましい。
(3) The damping force control valve according to (1) or (2),
The passage has a large-diameter portion including the downstream end, and the diameter of the large-diameter portion extends from the opposite end of the large-diameter portion toward the second working fluid chamber. It is preferable that it is larger than the diameter of the part.

(3)の構成によれば、連通部の径よりも大きな径を有する大径部において、作動流体の流れRは、渦を成して拡散しながら作動流体の流れFに戻り易い。また、弁体の端面とポートとの間を通過する作動流体の流れS(図8参照)が弁体の端面の表面に沿って流れる距離が短く、ポートに向けて弁体に加わる力を抑制することができる。従って、(3)の構成によれば、微小開度時における弁体の位置制御性に更に優れ、精度良く制御可能な開度の範囲が更に広く、且つより高い応答性を実現できる。   According to the configuration of (3), the flow R of the working fluid easily returns to the flow F of the working fluid while diffusing in a vortex in the large-diameter portion having a diameter larger than the diameter of the communication portion. Further, the working fluid flow S (see FIG. 8) passing between the end face of the valve body and the port has a short distance along the surface of the end face of the valve body, and the force applied to the valve body toward the port is suppressed. can do. Therefore, according to the configuration of (3), the position controllability of the valve body at the minute opening is further excellent, the range of the opening that can be controlled with high accuracy is further widened, and higher responsiveness can be realized.

(4) (3)の減衰力制御弁であって、
前記大径部は、前記通路の径が変化する段差を有していることが好ましい。
(4) The damping force control valve according to (3),
The large diameter portion preferably has a step where the diameter of the passage changes.

(4)の構成によれば、大径部内で渦が生成され易くなるので、第二作動流体室の圧力の上昇を効果的に抑制することができる。   According to the structure of (4), since it becomes easy to produce | generate a vortex within a large diameter part, the raise of the pressure of a 2nd working fluid chamber can be suppressed effectively.

(5) (3)又は(4)の減衰力制御弁であって、
前記大径部は、前記下流側端に近づくにつれて前記通路の径が大きくなるテーパ形状を有していることが好ましい。
(5) The damping force control valve according to (3) or (4),
It is preferable that the large diameter portion has a tapered shape in which the diameter of the passage increases as it approaches the downstream end.

(5)の構成によれば、大径部内で渦が生成され易くなるので、第二作動流体室の圧力の上昇を効果的に抑制することができる。   According to the structure of (5), since it becomes easy to produce | generate a vortex within a large diameter part, the raise of the pressure of a 2nd working fluid chamber can be suppressed effectively.

(6) (3)〜(5)のいずれか1の減衰力制御弁であって、
前記弁体の軸線方向視において、前記大径部の重心位置と前記弁体の重心位置とが異なることが好ましい。
(6) The damping force control valve according to any one of (3) to (5),
In the axial direction view of the valve body, it is preferable that the gravity center position of the large diameter portion and the gravity center position of the valve body are different.

大径部の重心位置と弁体の重心位置とが合致している場合、弁体と軸受との微小な隙間が存在するため、弁体を軸線上に安定させることは難しい。そのため、作動流体の流れが変動してしまい、結果として、流れが不安定になるおそれがある。
これに対し、(6)の構成によれば、大径部の重心位置と弁体の重心位置とを敢えて異ならせることにより、作動流体の流れの経時的な変動を抑え、作動流体の流れを安定させることができる。これにより、弁体の径方向の位置が安定し、流体力の変動を抑えることができ、その結果、軸線方向における弁体の位置制御の安定性及び正確性を向上させることができる。
When the position of the center of gravity of the large diameter portion matches the position of the center of gravity of the valve body, there is a minute gap between the valve body and the bearing, so it is difficult to stabilize the valve body on the axis. Therefore, the flow of the working fluid fluctuates, and as a result, the flow may become unstable.
On the other hand, according to the configuration of (6), the centroid position of the large-diameter portion and the centroid position of the valve body are different from each other, thereby suppressing the temporal change in the flow of the working fluid and reducing the flow of the working fluid. It can be stabilized. Thereby, the position of the valve body in the radial direction can be stabilized, and the fluctuation of the fluid force can be suppressed. As a result, the stability and accuracy of the position control of the valve body in the axial direction can be improved.

(7) (1)〜(6)のいずれか1の減衰力制御弁であって、
前記弁体の通路内には、実質的に流体のみが存在することが好ましい。
なお、ここでいう「流体」は、作動流体に限定されず、空気等の気体を含む。また、「実質的に流体のみが存在する」とは、作動流体とともに移動する固形不純物が流体に含まれていてもよいことをいう。そのような固形不純物としては、例えば、弁(又はショックアブソーバ)内の摺動部分から生じる粉塵等が挙げられる。
(7) The damping force control valve according to any one of (1) to (6),
It is preferable that substantially only fluid is present in the passage of the valve body.
The “fluid” here is not limited to a working fluid but includes a gas such as air. Further, “substantially only the fluid exists” means that the fluid may contain solid impurities that move with the working fluid. Examples of such solid impurities include dust generated from a sliding portion in a valve (or shock absorber).

(7)の構成によれば、通路内に付勢体等が取り付けられておらず、弁体の移動時における通路内の作動流体の移動がスムーズであり、応答性をより向上させることができる。   According to the structure of (7), the biasing body etc. are not attached in a channel | path, the movement of the working fluid in a channel | path at the time of movement of a valve body is smooth, and it can improve responsiveness more. .

(8) (1)〜(7)のいずれか1の減衰力制御弁であって、
前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される流れの向きは、前記弁体の軸線方向に沿っていることが好ましい。
(8) The damping force control valve according to any one of (1) to (7),
The direction of the flow of the working fluid in the first working fluid chamber being discharged out of the first working fluid chamber through the port is preferably along the axial direction of the valve body.

(8)の構成によれば、作動流体を第一作動流体室外にスムーズに排出することができるので、応答性を更に向上させることができる。   According to the structure of (8), since a working fluid can be discharged | emitted smoothly out of a 1st working fluid chamber, responsiveness can further be improved.

(9) ショックアブソーバであって、
前記ショックアブソーバは、(1)〜(8)のいずれか1の減衰力制御弁を備えることが好ましい。
(9) A shock absorber,
The shock absorber preferably includes the damping force control valve according to any one of (1) to (8).

(9)の構成によれば、(1)〜(8)のいずれか1の減衰力制御弁を備えるので、精度良く制御可能な減衰力の範囲が広く、高い応答性を実現できる。   According to the configuration of (9), since the damping force control valve of any one of (1) to (8) is provided, the range of damping force that can be controlled with high accuracy is wide, and high responsiveness can be realized.

(10) (9)のショックアブソーバであって、
前記ショックアブソーバは、前記減衰力制御弁において、前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される方向に作動流体を流すように構成されていることが好ましい。
(10) The shock absorber according to (9),
The shock absorber is configured to flow the working fluid in a direction in which the working fluid in the first working fluid chamber is discharged out of the first working fluid chamber through the port in the damping force control valve. Is preferred.

(10)の構成によれば、減衰力制御弁において、ポートに向けて弁体に加わる力を、より効果的に抑制できる方向に、作動流体を流すことができる。従って、精度良く制御可能な減衰力の範囲がより広く、より高い応答性を実現できる。   According to the configuration of (10), in the damping force control valve, it is possible to flow the working fluid in a direction that can more effectively suppress the force applied to the valve body toward the port. Therefore, the range of damping force that can be controlled with high accuracy is wider, and higher responsiveness can be realized.

この発明の上述の目的およびその他の目的、特徴、局面および利点は、添付図面に関連して行われる以下のこの発明の実施形態の詳細な説明から一層明らかとなろう。   The above and other objects, features, aspects and advantages of the present invention will become more apparent from the following detailed description of embodiments of the present invention taken in conjunction with the accompanying drawings.

本発明によれば、微小開度時における弁体の位置制御性に優れ、精度良く制御可能な開度の範囲が広い減衰力制御弁を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, it is excellent in the position controllability of the valve body at the time of a very small opening degree, and can provide the damping force control valve with the wide opening range which can be controlled accurately.

本発明の一実施形態に係る減衰力制御弁を模式的に示す縦断面図である。It is a longitudinal section showing typically a damping force control valve concerning one embodiment of the present invention. 図1に示す減衰力制御弁の全閉時(a)、微小開度時(b)、全開時(c)の様子を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the mode at the time of the fully closed (a) of the damping force control valve shown in FIG. 本発明の他の実施形態に係る減衰力制御弁の全閉時(a)、微小開度時(b)、全閉時(c)の様子を模式的に示す縦断面図である。It is a longitudinal cross-sectional view which shows typically the mode at the time of the fully closed (a), the minute opening degree (b), and the fully closed time (c) of the damping force control valve which concerns on other embodiment of this invention. (a)〜(h)は、弁体の下流側端の形状の例を模式的に示す縦断面図である。(A)-(h) is a longitudinal cross-sectional view which shows typically the example of the shape of the downstream end of a valve body. (a)〜(i)は、弁体の下流側端の形状の変形例を模式的に示す側面図である。(A)-(i) is a side view which shows typically the modification of the shape of the downstream end of a valve body. 図1に示す減衰力制御弁を備えたショックアブソーバの一例を示す油圧回路図である。It is a hydraulic circuit diagram which shows an example of the shock absorber provided with the damping force control valve shown in FIG. 図1に示す減衰力制御弁を備えたショックアブソーバの一例を示す油圧回路図である。It is a hydraulic circuit diagram which shows an example of the shock absorber provided with the damping force control valve shown in FIG. 微小開度時における従来の減衰力制御弁を模式的に示す部分拡大断面図である。It is a partial expanded sectional view which shows typically the conventional damping-force control valve at the time of a very small opening degree.

以下、図面を参照してこの発明の実施の形態について説明する。
図1は、本発明の一実施形態に係る減衰力制御弁10を模式的に示す縦断面図である。
図1では、減衰力制御弁10の全閉時の様子を示している。
以下の説明においては、第一作動流体室30の作動流体が第一ポート30aを介して排出される方向を、下流方向Dと称する。また、弁体20の軸線方向Sに沿って下流方向Dと反対の方向を、反対方向Uと称する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 is a longitudinal sectional view schematically showing a damping force control valve 10 according to an embodiment of the present invention.
FIG. 1 shows a state where the damping force control valve 10 is fully closed.
In the following description, the direction in which the working fluid in the first working fluid chamber 30 is discharged through the first port 30a is referred to as a downstream direction D. A direction opposite to the downstream direction D along the axial direction S of the valve body 20 is referred to as an opposite direction U.

減衰力制御弁10は、中空筒状の外筒11(ハウジング)を備える。外筒11は、下流方向D側に開口11aを備え、反対方向U側に開口11bを備える。外筒11の開口11bには、内筒12が嵌め込まれている。外筒11の反対方向U側端は、内側に曲げられ、軸線方向Sにおいて内筒12と当接しており、これにより、外筒11と内筒12とが固定されている。外筒11は、軸線方向Sにおける略中央部において軸心に向かって環状に突出するフランジ部11cを有する。フランジ部11cは、その内縁部において開口11bに向かって延びる筒状部11dを有する。筒状部11dには、筒状のガイド部材13が挿入される。ガイド部材13は、下流方向D側にフランジ部13aを有する。フランジ部11c、13aは、互いに当接している。これにより、外筒11内において、ガイド部材13の反対方向U側への移動が規制される。ガイド部材13は、ガイド孔13bを備えている。ガイド孔13bには、中空円筒状の弁体20が摺動可能に挿入されている。   The damping force control valve 10 includes a hollow cylindrical outer cylinder 11 (housing). The outer cylinder 11 includes an opening 11a on the downstream direction D side and an opening 11b on the opposite direction U side. The inner cylinder 12 is fitted into the opening 11 b of the outer cylinder 11. The opposite end U side end of the outer cylinder 11 is bent inward and is in contact with the inner cylinder 12 in the axial direction S, whereby the outer cylinder 11 and the inner cylinder 12 are fixed. The outer cylinder 11 has a flange portion 11 c that protrudes in an annular shape toward the axial center at a substantially central portion in the axial direction S. The flange portion 11c has a cylindrical portion 11d extending toward the opening 11b at the inner edge portion thereof. A cylindrical guide member 13 is inserted into the cylindrical portion 11d. The guide member 13 has a flange portion 13a on the downstream direction D side. The flange portions 11c and 13a are in contact with each other. This restricts the movement of the guide member 13 in the opposite direction U in the outer cylinder 11. The guide member 13 includes a guide hole 13b. A hollow cylindrical valve body 20 is slidably inserted into the guide hole 13b.

弁体20は、下流方向D側の端面20aと、反対方向U側の端面20bとを有している。弁体20は、端面20aから端面20bまで延びる通路21が形成されている。通路21は、下流方向D側の端面20aを含む大径部21aと、大径部21aの反対方向U側端から第二作動流体室40に向けて延びる連通部21bとを含む。連通部21bは、柱状空間であり、径は略一定である。弁体20の下流方向D側の端面20aにおける通路21(大径部21a)の開口面積は、連通部21bの開口面積よりも大きい。通路21において、連通部21bの径が最も小さい。即ち、減衰力制御弁10において、連通部21bが、通路21内の最小径部である。軸線方向Sにおける大径部21aと連通部21bとの境界は、第一作動流体室30内に位置している。   The valve body 20 has an end surface 20a on the downstream direction D side and an end surface 20b on the opposite direction U side. The valve body 20 has a passage 21 extending from the end surface 20a to the end surface 20b. The passage 21 includes a large diameter portion 21a including an end surface 20a on the downstream direction D side, and a communication portion 21b extending from the end on the U direction opposite to the large diameter portion 21a toward the second working fluid chamber 40. The communicating part 21b is a columnar space and has a substantially constant diameter. The opening area of the passage 21 (large diameter portion 21a) on the end surface 20a on the downstream direction D side of the valve body 20 is larger than the opening area of the communication portion 21b. In the passage 21, the communication portion 21b has the smallest diameter. That is, in the damping force control valve 10, the communication portion 21 b is the smallest diameter portion in the passage 21. A boundary between the large diameter portion 21 a and the communication portion 21 b in the axial direction S is located in the first working fluid chamber 30.

弁体20の下流方向D側の端面20aは、第一作動流体室30の第一ポート30aと対向する。端面20aは、第一作動流体室30の壁面(底面26a)と当接しない。弁体20は、非磁性材料によって構成される。筒状部11dの反対方向U側に、中空筒状の支持部材14が設置されている。支持部材14は、筒状部11dと同軸上において筒状部11dと対向する。支持部材14は、下流方向D側に形成された開口14aと、反対方向U側に形成された開口14bと、軸線方向Sにおける略中央部において軸心に向かって環状に突出するガイド部14cとを有する。ガイド部14cの内周側には、円環状の軸受20cが設置されている。軸受20cには、弁体20が挿通されており、軸受20cは、弁体20を摺動可能に支持する。支持部材14の内周面において、ガイド部14cよりも開口14b側には、バネ受け部材15が固定されている。バネ受け部材15の外周面には、支持部材14とバネ受け部材15との間を密閉するための環状シール16(例えば、Oリング)が設けられている。支持部材14の反対方向U側端には、キャップ17が設けられている。キャップ17は、開口14bを塞いでいる。支持部材14内において、ガイド部14cとバネ受け部材15との間には、第二作動流体室40が形成されている。   An end surface 20 a on the downstream direction D side of the valve body 20 faces the first port 30 a of the first working fluid chamber 30. The end surface 20a does not contact the wall surface (bottom surface 26a) of the first working fluid chamber 30. The valve body 20 is made of a nonmagnetic material. A hollow cylindrical support member 14 is installed on the opposite side U of the cylindrical portion 11d. The support member 14 faces the cylindrical portion 11d on the same axis as the cylindrical portion 11d. The support member 14 includes an opening 14a formed on the downstream direction D side, an opening 14b formed on the opposite direction U side, and a guide portion 14c projecting in an annular shape toward the axial center at a substantially central portion in the axial direction S. Have An annular bearing 20c is installed on the inner peripheral side of the guide portion 14c. The valve body 20 is inserted in the bearing 20c, and the bearing 20c supports the valve body 20 so that sliding is possible. On the inner peripheral surface of the support member 14, a spring receiving member 15 is fixed closer to the opening 14 b than the guide portion 14 c. An annular seal 16 (for example, an O-ring) for sealing between the support member 14 and the spring receiving member 15 is provided on the outer peripheral surface of the spring receiving member 15. A cap 17 is provided at the opposite end U side of the support member 14. The cap 17 closes the opening 14b. In the support member 14, a second working fluid chamber 40 is formed between the guide portion 14 c and the spring receiving member 15.

第二作動流体室40内に弁体20の端面20bが露出している。第二作動流体室40内において、弁体20の端面20bと、バネ受け部材15とによって、コイルバネ18が支持される。コイルバネ18は、弁体20を下流方向Dに向けて付勢している。筒状部11dと支持部材14とを接続するように、筒状の筒部材19が設けられている。筒部材19は、非磁性材料によって構成される。外筒11内には、ボビン22が設けられている。ボビン22は、支持部材14の外周面、及び筒部材19の外周面を覆う。ボビン22には、ソレノイドコイル23が巻かれている。外筒11の内周面において、ボビン22と、内筒12との間には、円環板状のキャップ24が取り付けられている。キャップ24は、磁性材料(例えば鉄)によって構成される。   The end face 20 b of the valve body 20 is exposed in the second working fluid chamber 40. In the second working fluid chamber 40, the coil spring 18 is supported by the end surface 20 b of the valve body 20 and the spring receiving member 15. The coil spring 18 urges the valve body 20 in the downstream direction D. A cylindrical tube member 19 is provided so as to connect the cylindrical portion 11d and the support member 14. The cylindrical member 19 is made of a nonmagnetic material. A bobbin 22 is provided in the outer cylinder 11. The bobbin 22 covers the outer peripheral surface of the support member 14 and the outer peripheral surface of the cylindrical member 19. A solenoid coil 23 is wound around the bobbin 22. An annular plate-like cap 24 is attached between the bobbin 22 and the inner cylinder 12 on the inner peripheral surface of the outer cylinder 11. The cap 24 is made of a magnetic material (for example, iron).

弁体20の外周面において、ガイド部材13と、ガイド部14cとの間には、筒状のプランジャ25が固定されている。筒状部11dの内径は、プランジャ25の外径よりも大きい。また、支持部材14において、ガイド部14cよりも開口14a側の部分の内径は、プランジャ25の外径よりも大きい。したがって、プランジャ25は、ガイド部材13とガイド部14cとの間において軸線方向Sに移動できる。減衰力制御弁10においては、ソレノイドコイル23によって発生される磁界の磁束密度を調整することによって、プランジャ25をガイド部材13とガイド部14cとの間で軸線方向Sに移動させることができる。それにより、弁体20が軸線方向Sに移動する。ソレノイドコイル23とコイルバネ18とはソレノイドを構成する。プランジャ25の設置空間25aは、筒状部11d、ガイド部材13、ガイド部14cおよび筒部材19によって形成される。設置空間25a内にも、作動流体HOが充填されている。空間25aは、弁体20の外周面とガイド部材13の内周面との隙間を介して第一作動流体室30に連通している。空間25aは、弁体20の外周面とガイド部14cの内周面との隙間を介して第二作動流体室40に連通している。   On the outer peripheral surface of the valve body 20, a cylindrical plunger 25 is fixed between the guide member 13 and the guide portion 14c. The inner diameter of the cylindrical portion 11 d is larger than the outer diameter of the plunger 25. In the support member 14, the inner diameter of the portion closer to the opening 14 a than the guide portion 14 c is larger than the outer diameter of the plunger 25. Therefore, the plunger 25 can move in the axial direction S between the guide member 13 and the guide portion 14c. In the damping force control valve 10, the plunger 25 can be moved in the axial direction S between the guide member 13 and the guide portion 14 c by adjusting the magnetic flux density of the magnetic field generated by the solenoid coil 23. Thereby, the valve body 20 moves in the axial direction S. The solenoid coil 23 and the coil spring 18 constitute a solenoid. The installation space 25a of the plunger 25 is formed by the cylindrical portion 11d, the guide member 13, the guide portion 14c, and the cylindrical member 19. The working space HO is also filled in the installation space 25a. The space 25 a communicates with the first working fluid chamber 30 through a gap between the outer peripheral surface of the valve body 20 and the inner peripheral surface of the guide member 13. The space 25a communicates with the second working fluid chamber 40 via a gap between the outer peripheral surface of the valve body 20 and the inner peripheral surface of the guide portion 14c.

外筒11内において開口11a側には、ガイド部材13のフランジ部13aに接触するように、有底の略円筒形状のバルブヘッド26が設置されている。バルブヘッド26の底面26aの中央には、第一ポート30aが形成されている。第一ポート30aは、弁体20の端面20aと対向する位置に設置されている。バルブヘッド26では、第一ポート30aから下流方向Dに向けて、作動流体路31が延びている。バルブヘッド26は、バルブヘッド26の外周壁26cに、第二ポート30bを備えている。バルブヘッド26では、第二ポート30bから径方向に向けて、作動流体路32が延びている。   In the outer cylinder 11, a bottomed substantially cylindrical valve head 26 is installed on the opening 11 a side so as to contact the flange portion 13 a of the guide member 13. A first port 30 a is formed at the center of the bottom surface 26 a of the valve head 26. The first port 30 a is installed at a position facing the end surface 20 a of the valve body 20. In the valve head 26, the working fluid path 31 extends in the downstream direction D from the first port 30a. The valve head 26 includes a second port 30 b on the outer peripheral wall 26 c of the valve head 26. In the valve head 26, the working fluid path 32 extends from the second port 30b in the radial direction.

バルブヘッド26とガイド部材13とによって、第一作動流体室30が構成されている。第一作動流体室30は、ガイド孔13bを備えている。第一作動流体室30と第二作動流体室40とは、弁体20を挟んで対向配置されている。弁体20の端面20aは、第一作動流体室30側に配置されている。第一作動流体室30と第二作動流体室40とは、弁体20の通路21を介して連通している。弁体20の外周面の周囲には、第一作動流体室30内の空間が位置している。作動流体は、作動流体路32から弁体20の径方向に沿って第一作動流体室30内に流入する。   A first working fluid chamber 30 is constituted by the valve head 26 and the guide member 13. The first working fluid chamber 30 includes a guide hole 13b. The first working fluid chamber 30 and the second working fluid chamber 40 are disposed to face each other with the valve body 20 in between. The end surface 20a of the valve body 20 is disposed on the first working fluid chamber 30 side. The first working fluid chamber 30 and the second working fluid chamber 40 communicate with each other via the passage 21 of the valve body 20. A space in the first working fluid chamber 30 is located around the outer peripheral surface of the valve body 20. The working fluid flows into the first working fluid chamber 30 from the working fluid path 32 along the radial direction of the valve body 20.

第一作動流体室30内では、ガイド部材13の下流側面13cと、バルブヘッド26の底面26aとが軸線方向Sに沿って対向している。第一作動流体室30内において、弁体20の外周には、固定具としてのサークリップ33が固定されている。なお、固定具はサークリップに限定されない。   In the first working fluid chamber 30, the downstream side surface 13 c of the guide member 13 and the bottom surface 26 a of the valve head 26 face each other along the axial direction S. In the first working fluid chamber 30, a circlip 33 as a fixture is fixed to the outer periphery of the valve body 20. The fixture is not limited to a circlip.

サークリップ33の下流方向D側において、サークリップ33とバルブヘッド26の底面26aとの間に、付勢体としてのコイルバネ34が設置されている。コイルバネ34には、弁体20が挿通されている。下流方向Dに近づくにつれて、コイルバネ34の径は大きくなっている。従って、作動流体路32から第一作動流体室30を介して作動流体路31に至る作動流体の流れが、コイルバネ34によって妨げられ難い。   On the downstream direction D side of the circlip 33, a coil spring 34 as an urging member is installed between the circlip 33 and the bottom surface 26 a of the valve head 26. The valve body 20 is inserted through the coil spring 34. As it approaches the downstream direction D, the diameter of the coil spring 34 increases. Therefore, the flow of the working fluid from the working fluid path 32 through the first working fluid chamber 30 to the working fluid path 31 is hardly disturbed by the coil spring 34.

固定具としてのサークリップ33の反対方向U側において、サークリップ33とガイド部材13の下流側面13cとの間に、付勢体としてのコイルバネ35が設置されている。コイルバネ35には、弁体20が挿通されている。反対方向Uに近づくにつれて、コイルバネ35の径が大きくなっている。   A coil spring 35 as an urging member is installed between the circlip 33 and the downstream side surface 13c of the guide member 13 on the opposite side U of the circlip 33 as a fixture. The valve body 20 is inserted through the coil spring 35. As the opposite direction U is approached, the diameter of the coil spring 35 increases.

コイルバネ18、34、35は、軸線方向Sに沿って、弁体20に対して力を加える。減衰力制御弁10では、ソレノイドコイル23の非通電時に、コイルバネ18、34、35によって、弁体20が移動し、弁体20が第一ポート30aを塞ぐ。なお、付勢体は、コイルバネに限定されず、例えば、板バネ等の従来公知の付勢体を採用できる。   The coil springs 18, 34, and 35 apply a force to the valve body 20 along the axial direction S. In the damping force control valve 10, when the solenoid coil 23 is not energized, the valve body 20 is moved by the coil springs 18, 34, 35, and the valve body 20 closes the first port 30a. The urging body is not limited to a coil spring, and for example, a conventionally known urging body such as a leaf spring can be adopted.

次に、図2を用いて、減衰力制御弁の動作について説明する。
図2は、図1に示す減衰力制御弁の全閉時(a)、微小開度時(b)、全開時(c)の様子を模式的に示す縦断面図である。
Next, the operation of the damping force control valve will be described with reference to FIG.
FIG. 2 is a longitudinal sectional view schematically showing the state of the damping force control valve shown in FIG. 1 when fully closed (a), when the opening degree is minute (b), and when fully opened (c).

ソレノイドコイル23の非通電時には、図2(a)に示すように、コイルバネ18、34、35により、弁体20が下流方向D側に位置し、第一ポート30aが閉じられている。これにより、作動流体路32から第一作動流体室30を介して作動流体路31に至る流路(図2(b)、(c)における流路T)が遮断される。   When the solenoid coil 23 is not energized, the valve body 20 is positioned on the downstream direction D side and the first port 30a is closed by the coil springs 18, 34, 35 as shown in FIG. Thereby, the flow path (the flow path T in FIGS. 2B and 2C) from the working fluid path 32 to the working fluid path 31 through the first working fluid chamber 30 is blocked.

弁体20の端面20a(図1参照)の一部(略半分)には、スラント加工が施されている。これにより、端面20aは、平坦部20dと、平坦部20dから反対方向Dに向けて傾斜する傾斜部20eとからなる。図2(a)では、平坦部20dは、第一ポート30aよりも下流方向D側に位置し、作動流体路31に入り込んでいる。傾斜部20eの反対方向U側の端縁は、弁体20の軸線方向Sにおいて第一ポート30aと同位置に存在する。   Slant processing is applied to a part (substantially half) of the end face 20a (see FIG. 1) of the valve body 20. Thereby, the end surface 20a includes a flat portion 20d and an inclined portion 20e inclined from the flat portion 20d toward the opposite direction D. In FIG. 2A, the flat portion 20 d is located on the downstream direction D side from the first port 30 a and enters the working fluid path 31. An end edge on the opposite direction U side of the inclined portion 20 e exists at the same position as the first port 30 a in the axial direction S of the valve body 20.

ソレノイドコイル23に通電され、減衰力制御弁10が微小開度(例えば、約0.5mmの間隔)に調整されるときには、図2(b)に示すように、平坦部20dと第一ポート30aとが弁体20の軸線方向Sにおいて同位置に存在する。一方、傾斜部20eと、第一ポート30aとの間には間隔が空いている。この間隔が、作動流体の流路Tである。微小開度時では、作動流体の流路Tが狭いので、流路Tを通過する作動流体の流れXは比較的速い。作動流体の流れXは、作動流体路31の内壁に衝突し、流れXの一部は、そのまま下流方向Dに向かう。また、流れXの一部は、反対方向Uに向かう流れYになる。弁体20の下流方向D側端には、大径部21aが形成されているので、作動流体の流れYは、大径部21a内で渦を成して拡散しながら作動流体の流れXに戻り易い。つまり、大径部21aは、整流作用を有し、作動流体の流れを下流方向Dに向けて整える。これにより、作動流体路31と第二作動流体室40との圧力差の増大が防止され、第一ポート30aに向けて弁体20に加わる力を抑制できる。また、大径部21aが形成されているので、作動流体の流れXが端面20a(傾斜部20e)に沿って流れる距離が短い。従って、第一ポート30aに向けて弁体20に加わる力を抑制することができる。これにより、減衰力制御弁10は、微小開度時における弁体20の位置制御性に優れ、精度良く制御可能な開度の範囲が広く、より高い応答性を実現できる。   When the solenoid coil 23 is energized and the damping force control valve 10 is adjusted to a small opening (for example, an interval of about 0.5 mm), as shown in FIG. 2B, the flat portion 20d and the first port 30a. Are present at the same position in the axial direction S of the valve body 20. On the other hand, there is a gap between the inclined portion 20e and the first port 30a. This interval is the working fluid flow path T. When the opening is very small, the flow path T of the working fluid is narrow, so the flow X of the working fluid passing through the flow path T is relatively fast. The flow X of the working fluid collides with the inner wall of the working fluid path 31, and a part of the flow X goes in the downstream direction D as it is. Further, a part of the flow X becomes a flow Y directed in the opposite direction U. Since the large-diameter portion 21a is formed at the downstream side D side end of the valve body 20, the flow Y of the working fluid forms a vortex in the large-diameter portion 21a and diffuses into the flow X of the working fluid. Easy to return. That is, the large-diameter portion 21a has a rectifying action and regulates the flow of the working fluid in the downstream direction D. Thereby, increase of the pressure difference of the working fluid path 31 and the 2nd working fluid chamber 40 is prevented, and the force added to the valve body 20 toward the 1st port 30a can be suppressed. Further, since the large-diameter portion 21a is formed, the distance that the working fluid flow X flows along the end surface 20a (the inclined portion 20e) is short. Therefore, the force applied to the valve body 20 toward the first port 30a can be suppressed. Thereby, the damping force control valve 10 is excellent in the position controllability of the valve body 20 at the time of a very small opening, has a wide range of opening that can be controlled with high accuracy, and can realize higher responsiveness.

また、図2(b)に示すように、弁体20の外周縁の一部が第一ポート30a内に位置しているとき、流路Tは、弁体20の外周縁の一部と第一ポート30aの外周縁の一部との間隔である。従って、弁体20のストローク(軸線方向Sの変位量)に対する流路Tの開口面積の変化が比較的小さい。   Further, as shown in FIG. 2B, when a part of the outer peripheral edge of the valve body 20 is located in the first port 30a, the flow path T This is the distance from a part of the outer peripheral edge of one port 30a. Therefore, the change in the opening area of the flow path T with respect to the stroke of the valve body 20 (the displacement amount in the axial direction S) is relatively small.

ソレノイドコイル23に通電され、減衰力制御弁10の開度が最大(例えば、約2mmの間隔)に調整されるときには、図2(c)に示すように、弁体20が第一ポート30aから離れる。弁体20と第一ポート30aとが離れているときには、流路Tは、弁体20の全外周縁と第一ポート30aの全外周縁との間隔である。従って、弁体20のストロークに対する流路Tの開口面積の変化が比較的大きい。   When the solenoid coil 23 is energized and the opening degree of the damping force control valve 10 is adjusted to the maximum (for example, an interval of about 2 mm), as shown in FIG. Leave. When the valve body 20 and the first port 30a are separated, the flow path T is the distance between the entire outer peripheral edge of the valve body 20 and the entire outer peripheral edge of the first port 30a. Therefore, the change of the opening area of the flow path T with respect to the stroke of the valve body 20 is relatively large.

このように、減衰力制御弁10では、微小開度時には、弁体20のストロークに対する流路Tの開口面積の変化が小さく、開度が大きい時には、弁体20のストロークに対する流路Tの開口面積の変化が大きい。   Thus, in the damping force control valve 10, when the opening is very small, the change in the opening area of the flow path T with respect to the stroke of the valve body 20 is small, and when the opening is large, the opening of the flow path T with respect to the stroke of the valve body 20. Large change in area.

次に、本発明の他の実施形態について説明する。
図3は、本発明の他の実施形態に係る減衰力制御弁の全閉時(a)、微小開度時(b)、全閉時(c)の様子を模式的に示す縦断面図である。なお、図3は、弁体20の下流方向D側端の形状を除いて、図2と同じであるから、図3においては、図2と同一の構成に対して同一の符号を付し、その説明を省略又は簡略化する。
Next, another embodiment of the present invention will be described.
FIG. 3 is a longitudinal cross-sectional view schematically showing the state of the damping force control valve according to another embodiment of the present invention when it is fully closed (a), when it is slightly opened (b), and when it is fully closed (c). is there. Since FIG. 3 is the same as FIG. 2 except for the shape of the downstream end D side of the valve body 20, in FIG. 3, the same reference numerals are given to the same configurations as FIG. The description is omitted or simplified.

図3に示す減衰力制御弁10では、弁体20の下流方向D側の端面20a´が平坦である。ソレノイドコイル23の非通電時には、図3(a)に示すように、コイルバネ18、34、35により、弁体20が下流方向D側に位置し、第一ポート30aを閉じる。弁体20の端面20a´は、弁体20の軸線方向Sにおいて第一ポート30aと同位置に存在する。   In the damping force control valve 10 shown in FIG. 3, the end face 20a ′ on the downstream direction D side of the valve body 20 is flat. When the solenoid coil 23 is not energized, as shown in FIG. 3A, the valve body 20 is positioned on the downstream direction D side by the coil springs 18, 34, and 35, and the first port 30 a is closed. The end surface 20 a ′ of the valve body 20 exists at the same position as the first port 30 a in the axial direction S of the valve body 20.

ソレノイドコイル23に通電され、減衰力制御弁10が微小開度に調整されるときには、図3(b)に示すように、弁体20の端面20a(図3(a))と、第一ポート30aとが開く。弁体20の全外周縁と第一ポート30aの全外周縁との間隔が、作動流体の流路Tである。微小開度時では、作動流体の流路Tが狭いので、流路Tを通過する作動流体の流れXは比較的速い。流路Tを通過する作動流体の流れXは互いに衝突し、流れXの一部は、そのまま下流方向Dに向かう。また、流れXの一部は、反対方向Uに向かう流れYになる。弁体20の下流方向D側端には、大径部21aが形成されているので、作動流体の流れYは、大径部21a内で渦を成して拡散しながら作動流体の流れXに戻り易い。これにより、作動流体路31と第二作動流体室40との圧力差の増大が防止され、第一ポート30aに向けて弁体20に加わる力を抑制できる。また、大径部21aが形成されているので、作動流体の流れXが端面20aに沿って流れる距離が短い。従って、第一ポート30aに向けて弁体20に加わる力を抑制することができる。これにより、減衰力制御弁10は、微小開度時における弁体20の位置制御性に優れ、精度良く制御可能な開度の範囲が広く、より高い応答性を実現できる。その後、減衰力制御弁10の開度が最大に調整されたときには、図3(c)に示すように、流路Tが広く確保される。   When the solenoid coil 23 is energized and the damping force control valve 10 is adjusted to a small opening, as shown in FIG. 3B, the end face 20a of the valve body 20 (FIG. 3A) and the first port 30a opens. A distance between the entire outer peripheral edge of the valve body 20 and the entire outer peripheral edge of the first port 30a is a flow path T of the working fluid. When the opening is very small, the flow path T of the working fluid is narrow, so the flow X of the working fluid passing through the flow path T is relatively fast. The working fluid flows X passing through the flow path T collide with each other, and a part of the flow X goes in the downstream direction D as it is. Further, a part of the flow X becomes a flow Y directed in the opposite direction U. Since the large-diameter portion 21a is formed at the downstream side D side end of the valve body 20, the flow Y of the working fluid forms a vortex in the large-diameter portion 21a and diffuses into the flow X of the working fluid. Easy to return. Thereby, increase of the pressure difference of the working fluid path 31 and the 2nd working fluid chamber 40 is prevented, and the force added to the valve body 20 toward the 1st port 30a can be suppressed. Further, since the large diameter portion 21a is formed, the distance that the working fluid flow X flows along the end face 20a is short. Therefore, the force applied to the valve body 20 toward the first port 30a can be suppressed. Thereby, the damping force control valve 10 is excellent in the position controllability of the valve body 20 at the time of a very small opening, has a wide range of opening that can be controlled with high accuracy, and can realize higher responsiveness. Thereafter, when the opening degree of the damping force control valve 10 is adjusted to the maximum, as shown in FIG.

次に、図4及び図5を用いて、弁体20の下流方向D側端の形状の変形例について説明する。
図4(a)〜(h)は、弁体20の下流側端の形状の例を模式的に示す縦断面図である。
図中、Qは、連通部21bの半径である。Vは、大径部21aと連通部21bとの半径の差である。Wは、大径部21aにおける弁体20の肉厚である。Q+Vは、大径部21aの半径である。V+Wは、連通部21bにおける弁体20の肉厚である。Hは、大径部21aのうち、円筒状の部分の深さであり、Kは、テーパ状の部分の深さである。なお、図4(a)〜(h)では、Q<W+Vであり、Q>Wであり、V>Wである。このQ、V、Wの寸法関係は、本実施形態の一例であり、本発明におけるQ、V、Wの寸法関係は、この例に限定されない。
Next, a modified example of the shape of the downstream end D side end of the valve body 20 will be described with reference to FIGS. 4 and 5.
4A to 4H are longitudinal sectional views schematically showing an example of the shape of the downstream end of the valve body 20.
In the figure, Q is the radius of the communication portion 21b. V is a difference in radius between the large diameter portion 21a and the communication portion 21b. W is the thickness of the valve body 20 in the large diameter portion 21a. Q + V is the radius of the large diameter portion 21a. V + W is the thickness of the valve body 20 in the communication part 21b. H is the depth of the cylindrical portion of the large diameter portion 21a, and K is the depth of the tapered portion. In FIGS. 4A to 4H, Q <W + V, Q> W, and V> W. This dimensional relationship between Q, V, and W is an example of this embodiment, and the dimensional relationship between Q, V, and W in the present invention is not limited to this example.

図4(a)では、大径部21aが筒状であり、大径部21aと連通部21bとの間に段差がある。深さHは、H<Q、H<V、H>Wを満たす。   In FIG. 4A, the large diameter portion 21a is cylindrical, and there is a step between the large diameter portion 21a and the communication portion 21b. The depth H satisfies H <Q, H <V, and H> W.

図4(b)では、大径部21aが筒状であり、大径部21aと連通部21bとの間に段差がある。深さHは、H>Q、H>V、H>Wを満たす。   In FIG.4 (b), the large diameter part 21a is cylindrical, and there exists a level | step difference between the large diameter part 21a and the communication part 21b. The depth H satisfies H> Q, H> V, and H> W.

図4(c)は、バルブヘッド26の第一ポート30aの周縁にテーパ部26bが形成されている点を除いて、図4(a)と同じである。テーパ部26bの深さJは、J<Hを満たしている。   FIG. 4C is the same as FIG. 4A except that a tapered portion 26 b is formed on the periphery of the first port 30 a of the valve head 26. The depth J of the tapered portion 26b satisfies J <H.

図4(d)では、大径部21aは、下流方向D側に位置する円筒状の部分と、反対方向U側に位置するテーパ状の部分とからなる。また、バルブヘッド26の第一ポート30aの周縁にテーパ部26bが形成されている。深さHは、H<Q、H<V、H>W、H>J、H<Kを満たす。また、深さKは、K>Q、K>V、K>W、K>Jを満たす。また、J及びWは、W>Jを満たす。弁体20の下流方向D側からみて、弁体20の軸線方向Sと大径部21aのテーパ部分とが成す角は、30°である。   In FIG.4 (d), the large diameter part 21a consists of the cylindrical part located in the downstream direction D side, and the taper-shaped part located in the opposite direction U side. Further, a tapered portion 26 b is formed on the periphery of the first port 30 a of the valve head 26. The depth H satisfies H <Q, H <V, H> W, H> J, and H <K. The depth K satisfies K> Q, K> V, K> W, and K> J. J and W satisfy W> J. When viewed from the downstream direction D side of the valve body 20, the angle formed by the axial direction S of the valve body 20 and the tapered portion of the large diameter portion 21a is 30 °.

図4(e)では、大径部21aは、下流方向D側に位置する円筒状の部分と、反対方向U側に位置するテーパ状の部分とからなる。また、バルブヘッド26の第一ポート30aの周縁にテーパ部26bが形成されている。図4(d)よりもJが大きい点を除いて、図4(e)は、図4(d)と同じである。テーパ部26bの深さJは、J>W、J<H、J<Q、J<Vを満たす。   In FIG.4 (e), the large diameter part 21a consists of the cylindrical part located in the downstream direction D side, and the taper-shaped part located in the opposite direction U side. Further, a tapered portion 26 b is formed on the periphery of the first port 30 a of the valve head 26. 4 (e) is the same as FIG. 4 (d) except that J is larger than FIG. 4 (d). The depth J of the tapered portion 26b satisfies J> W, J <H, J <Q, and J <V.

図4(f)では、大径部21aがテーパ形状である。深さKは、K>Q、K>V、K>Wを満たす。弁体20の下流方向D側からみて、弁体20の軸線方向Sと大径部21aのテーパ部分とが成す角は、例えば、30°である。   In FIG.4 (f), the large diameter part 21a is a taper shape. The depth K satisfies K> Q, K> V, and K> W. When viewed from the downstream direction D side of the valve body 20, the angle formed by the axial direction S of the valve body 20 and the tapered portion of the large diameter portion 21a is, for example, 30 °.

図4(g)では、大径部21aがテーパ形状である。深さKは、K>Q、K<V、K>Wを満たす。弁体20の下流方向D側からみて、弁体20の軸線方向Sと大径部21aのテーパ部分とが成す角は、例えば、45°である。   In FIG.4 (g), the large diameter part 21a is a taper shape. The depth K satisfies K> Q, K <V, and K> W. When viewed from the downstream direction D side of the valve body 20, the angle formed by the axial direction S of the valve body 20 and the tapered portion of the large diameter portion 21a is, for example, 45 °.

図4(h)では、大径部21aがテーパ形状である。深さKは、K<Q、K<V、K>Wを満たす。弁体20の下流方向D側からみて、弁体20の軸線方向Sと大径部21aのテーパ部分とが成す角は、例えば、60°である。   In FIG.4 (h), the large diameter part 21a is a taper shape. The depth K satisfies K <Q, K <V, K> W. When viewed from the downstream direction D side of the valve body 20, the angle formed by the axial direction S of the valve body 20 and the tapered portion of the large diameter portion 21a is, for example, 60 °.

図4(a)〜(h)に示す形状を有する弁体20によれば、図2(b)及び図3(b)に示すように、反対方向Uに向かう作動流体の流れYが、大径部21a内で渦を成して拡散しながら、下流方向Dに向かう作動流体の流れXに戻る。これにより、連通部21bと、作動流体路31との圧力差の発生を防止することができる。弁体20の軸線方向Sと大径部21aのテーパ部分とが成す角は、特に限定されないが、例えば、22.5°以上であることが好ましい。   According to the valve body 20 having the shape shown in FIGS. 4A to 4H, the flow Y of the working fluid toward the opposite direction U is large as shown in FIGS. 2B and 3B. It returns to the flow X of the working fluid in the downstream direction D while vortexing and diffusing in the diameter portion 21a. Thereby, generation | occurrence | production of the pressure difference of the communication part 21b and the working fluid path 31 can be prevented. The angle formed by the axial direction S of the valve body 20 and the tapered portion of the large diameter portion 21a is not particularly limited, but is preferably 22.5 ° or more, for example.

図5(a)〜(i)は、弁体の下流側端の形状の変形例を模式的に示す側面図である。   Fig.5 (a)-(i) is a side view which shows typically the modification of the shape of the downstream end of a valve body.

図5(a)では、弁体20の下流方向D側の端面20aを含むように、円筒状の大径部21aが形成されている。大径部21aの反対方向U側には連通部21bが形成されている。弁体20の軸線Cは、連通部の軸線と同じである。弁体20の軸線Cは、大径部21aの軸線C´と異なっている。即ち、大径部21aの重心位置と弁体20の重心位置とが異なっている。また、端面20aの外周縁には、外周テーパ部20fが形成されている。   In FIG. 5A, a cylindrical large-diameter portion 21a is formed so as to include the end surface 20a on the downstream direction D side of the valve body 20. A communicating portion 21b is formed on the opposite direction U side of the large diameter portion 21a. The axis C of the valve body 20 is the same as the axis of the communication part. The axis C of the valve body 20 is different from the axis C ′ of the large diameter portion 21a. That is, the position of the center of gravity of the large diameter portion 21a and the position of the center of gravity of the valve body 20 are different. Further, an outer peripheral taper portion 20f is formed on the outer peripheral edge of the end surface 20a.

図5(b)では、弁体20の下流方向D側の端面20aを含むように、大径部21aが形成されている。大径部21aは、下流方向D側に位置する円筒状の部分と、反対方向U側に位置するテーパ状の部分とからなり、円筒状の部分とテーパ状の部分とでは、軸線C´が共通しているが、軸線C´は、弁体20の軸線Cと異なっている。即ち、また、端面20aの外周縁には、外周テーパ部20fが形成されている。   In FIG.5 (b), the large diameter part 21a is formed so that the end surface 20a of the downstream direction D side of the valve body 20 may be included. The large-diameter portion 21a is composed of a cylindrical portion located on the downstream direction D side and a tapered portion located on the opposite direction U side, and the axis C ′ is between the cylindrical portion and the tapered portion. Although common, the axis C ′ is different from the axis C of the valve body 20. That is, an outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end surface 20a.

図5(c)では、弁体20の下流方向D側の端面20aを含むように、大径部21aが形成されている。大径部21aは、テーパ形状を有している。端面20aの外周縁には、外周テーパ部20fが形成されている。   In FIG.5 (c), the large diameter part 21a is formed so that the end surface 20a of the downstream direction D side of the valve body 20 may be included. The large diameter portion 21a has a tapered shape. An outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end surface 20a.

図5(d)では、弁体20の下流方向D側に端面20aを含むように、円筒状の大径部21aが形成されている。弁体20と大径部21aとでは軸線が合致している。また、端面20aの外周側には、外周テーパ部20fが形成されている。   In FIG. 5D, a cylindrical large diameter portion 21 a is formed so as to include the end surface 20 a on the downstream direction D side of the valve body 20. The axes of the valve body 20 and the large diameter portion 21a are matched. Further, an outer peripheral taper portion 20f is formed on the outer peripheral side of the end surface 20a.

図5(e)では、弁体20の下流方向D側の端面20aを含むように、大径部21aが形成されている。大径部21aは、下流方向D側に位置する円筒状の部分と、反対方向U側に位置するテーパ状の部分とからなり、弁体20の軸線と、円筒状の部分及びテーパ状の部分の軸線とが共通している。また、端面20aの外周側には、外周テーパ部20fが形成されている。   In FIG.5 (e), the large diameter part 21a is formed so that the end surface 20a of the downstream direction D side of the valve body 20 may be included. The large diameter portion 21a includes a cylindrical portion located on the downstream direction D side and a tapered portion located on the opposite direction U side. The axis of the valve body 20, the cylindrical portion, and the tapered portion The axis is common. Further, an outer peripheral taper portion 20f is formed on the outer peripheral side of the end surface 20a.

図5(f)は、図1及び図2に示した弁体20と同形状を有しているが、図5(f)では、図1及び図2では示していなかった外周テーパ20fを示している。
図5(f)では、弁体20の下流方向D側に大径部21aが形成されている。大径部21aは、テーパ形状を有している。端面20aの外周縁には、外周テーパ部20fが形成されている。また、弁体20の端面20aの略半分には、スラント加工が施されており、端面20aは、平坦部20dと、平坦部20dから反対方向Dに向けて傾斜する傾斜部20eとからなる。傾斜部20eは平坦である。
5 (f) has the same shape as the valve body 20 shown in FIGS. 1 and 2, but FIG. 5 (f) shows an outer peripheral taper 20f that was not shown in FIGS. ing.
In FIG. 5 (f), a large diameter portion 21 a is formed on the downstream direction D side of the valve body 20. The large diameter portion 21a has a tapered shape. An outer peripheral tapered portion 20f is formed on the outer peripheral edge of the end surface 20a. Further, slant processing is performed on substantially half of the end surface 20a of the valve body 20, and the end surface 20a includes a flat portion 20d and an inclined portion 20e that inclines in the opposite direction D from the flat portion 20d. The inclined portion 20e is flat.

図5(g)の弁体20は、図5(f)と同様に端面20aにスラント加工が施されている点を除いて、図5(d)と同様である。   5 (g) is the same as FIG. 5 (d), except that the end surface 20a is slanted as in FIG. 5 (f).

図5(h)の弁体20は、図5(f)と同様に端面20aにスラント加工が施されている点を除いて、図5(e)と同様である。   The valve body 20 of FIG. 5 (h) is the same as FIG. 5 (e) except that the end surface 20a is slanted as in FIG. 5 (f).

図5(i)の弁体20は、傾斜部20eが曲面(凸面)である点を除いて、図5(f)の弁体20と同じである。   The valve body 20 in FIG. 5 (i) is the same as the valve body 20 in FIG. 5 (f) except that the inclined portion 20e is a curved surface (convex surface).

図5(j)の弁体20は、弁体20の軸線Cと、テーパ状の大径部21aの軸線C´とがズレている点を除いて、図5(f)と同じである。外周テーパ部20fと弁体20の軸線方向Sとが成す角は、特に限定されないが、例えば、10°以下であることが好ましい。   The valve body 20 in FIG. 5 (j) is the same as FIG. 5 (f) except that the axis C of the valve body 20 and the axis C ′ of the tapered large diameter portion 21a are misaligned. The angle formed by the outer peripheral tapered portion 20f and the axial direction S of the valve body 20 is not particularly limited, but is preferably 10 ° or less, for example.

次に、本発明の一実施形態に係るショックアブソーバ100について説明する。
図6及び図7は、図1に示す減衰力制御弁10を備えたショックアブソーバ100を示す油圧回路図である。
Next, a shock absorber 100 according to an embodiment of the present invention will be described.
6 and 7 are hydraulic circuit diagrams showing the shock absorber 100 provided with the damping force control valve 10 shown in FIG.

ショックアブソーバ100は、油圧シリンダ112を備える。油圧シリンダ112内には、ピストンアセンブリ144が設置されている。油圧シリンダ112内は、ピストンアセンブリ144によって、2つの作動流体室158、160に区画されている。ピストンロッド162の一端は、油圧シリンダ112の一端側から、油圧シリンダ112内に挿入されており、ピストンアセンブリ144に固定されている。ピストンロッド162の他端は、車両の車体側(図示せず)に接続されている。また、油圧シリンダ112の他端は、車体の車輪側(図示せず)に接続されている。   The shock absorber 100 includes a hydraulic cylinder 112. A piston assembly 144 is installed in the hydraulic cylinder 112. The hydraulic cylinder 112 is divided into two working fluid chambers 158 and 160 by the piston assembly 144. One end of the piston rod 162 is inserted into the hydraulic cylinder 112 from one end side of the hydraulic cylinder 112 and is fixed to the piston assembly 144. The other end of the piston rod 162 is connected to the vehicle body side (not shown) of the vehicle. The other end of the hydraulic cylinder 112 is connected to the wheel side (not shown) of the vehicle body.

ピストンアセンブリ144は、複数枚のシムからなる減衰バルブ148、150を備えている。減衰バルブ148は、作動流体室160から作動流体室158へ作動流体を流すことができ、このときに減衰力が発生する(伸び減衰)。その逆方向には作動流体を流すことはできない。減衰バルブ150は、作動流体室158から作動流体室160へ作動流体を流すことができ、このときに減衰力が発生する(縮み減衰)。その逆方向に作動流体を流すことはできない。   The piston assembly 144 includes damping valves 148 and 150 made up of a plurality of shims. The damping valve 148 can flow the working fluid from the working fluid chamber 160 to the working fluid chamber 158, and at this time, a damping force is generated (elongation damping). The working fluid cannot flow in the opposite direction. The damping valve 150 can flow the working fluid from the working fluid chamber 158 to the working fluid chamber 160, and at this time, a damping force is generated (contraction damping). The working fluid cannot flow in the opposite direction.

作動流体室158と、リザーバタンク114との間には、減衰力調整装置116が設置されている。減衰力調整装置116では、減衰力制御弁10と、複数枚のシムからなる減衰バルブ116bと、チェックバルブ116cとが並列に設置されている。減衰バルブ116bは、油圧シリンダ112側からリザーバタンク114側に作動流体を流すことができ、その逆方向には作動流体を流すことができない。チェックバルブ116cは、リザーバタンク114側から油圧シリンダ112側に作動流体を流すことができる。その逆方向には作動流体を流すことができない。リザーバタンク114内には、作動流体Oと気体Gとが収容されており、作動流体Oと気体Gとが界面OSで接触している。作動流体Oは、例えば、作動油等である。気体Gは、例えば、窒素ガスや空気等である。   A damping force adjusting device 116 is installed between the working fluid chamber 158 and the reservoir tank 114. In the damping force adjusting device 116, the damping force control valve 10, a damping valve 116b composed of a plurality of shims, and a check valve 116c are installed in parallel. The damping valve 116b can flow the working fluid from the hydraulic cylinder 112 side to the reservoir tank 114 side, and cannot flow the working fluid in the opposite direction. The check valve 116c can flow the working fluid from the reservoir tank 114 side to the hydraulic cylinder 112 side. The working fluid cannot flow in the opposite direction. The reservoir tank 114 contains the working fluid O and the gas G, and the working fluid O and the gas G are in contact with each other at the interface OS. The working fluid O is, for example, working oil. The gas G is, for example, nitrogen gas or air.

減衰力制御弁10は、図2(b)、(c)及び図3(b)、(c)に示す状態においては、作動流体を、作動流体路32から第一作動流体室30を介して作動流体路31に向かう方向に流すことができる。また、減衰力制御弁10は、その逆方向に作動流体を流すことも可能である。また、減衰力制御弁10は、図6及び図7に示すように、減衰バルブ116bに対するバイパスとして設置されている。   In the state shown in FIGS. 2B and 2C and FIGS. 3B and 3C, the damping force control valve 10 passes the working fluid from the working fluid path 32 through the first working fluid chamber 30. It can flow in the direction toward the working fluid path 31. The damping force control valve 10 can also flow the working fluid in the opposite direction. Moreover, the damping force control valve 10 is installed as a bypass with respect to the damping valve 116b, as shown in FIG.6 and FIG.7.

ピストンアセンブリ144がX1方向に移動するとき、油圧シリンダ112内に入ったピストンロッド162の体積分の作動流体が、油圧シリンダ112から排出され、リザーバタンク114に移動する。減衰力制御弁10と減衰バルブ116bとは互いにバイパスの関係にあり、油圧シリンダ112から排出された作動流体HOは、図6に示すように、減衰力制御弁10および減衰バルブ116bを通過してリザーバタンク114に流入する。減衰力制御弁10では、作動流体が第一作動流体室30から第一ポート30aを介して排出される向きに流れる。減衰力調整装置116(減衰バルブ116b及び減衰力制御弁10)を流れる時の抵抗が、油圧シリンダ112内の作動流体の圧力を増大させ、ピストンロッド162のX1方向の移動に抵抗する力(シリンダ内の作動流体の圧力×ピストンロッド162の断面積)、即ち圧縮減衰力(1)が発生する。ここで減衰力制御弁10の開度を調整すると、減衰バルブ116bと減衰力制御弁10との流量の割合が変化するので、減衰バルブ116の抵抗が調整されて、ピストンロッド162に作用する圧縮減衰力が調整される。また、ピストンアセンブリ144の減衰バルブ150にも作動流体室158から作動流体室160の方向に作動流体が流れ、そのときの抵抗がピストンアセンブリ144に作用し、ピストンロッド162に圧縮減衰力(2)として付加される。   When the piston assembly 144 moves in the X1 direction, the working fluid corresponding to the volume of the piston rod 162 that has entered the hydraulic cylinder 112 is discharged from the hydraulic cylinder 112 and moved to the reservoir tank 114. The damping force control valve 10 and the damping valve 116b are in a bypass relationship with each other, and the working fluid HO discharged from the hydraulic cylinder 112 passes through the damping force control valve 10 and the damping valve 116b as shown in FIG. It flows into the reservoir tank 114. In the damping force control valve 10, the working fluid flows in the direction of being discharged from the first working fluid chamber 30 via the first port 30a. The resistance when flowing through the damping force adjusting device 116 (the damping valve 116b and the damping force control valve 10) increases the pressure of the working fluid in the hydraulic cylinder 112 and resists the movement of the piston rod 162 in the X1 direction (cylinder). The pressure of the working fluid inside the cross-sectional area of the piston rod 162), that is, the compression damping force (1) is generated. Here, when the opening degree of the damping force control valve 10 is adjusted, the flow rate ratio between the damping valve 116b and the damping force control valve 10 changes, so that the resistance of the damping valve 116 is adjusted and the compression acting on the piston rod 162 is adjusted. The damping force is adjusted. Further, the working fluid also flows from the working fluid chamber 158 to the working fluid chamber 160 in the damping valve 150 of the piston assembly 144, the resistance at that time acts on the piston assembly 144, and the compression damping force (2) acts on the piston rod 162. Added as.

一方、ピストンアセンブリ144がX2方向に移動するとき、図7に示すように、ピストンロッド162が退出した体積分の作動流体が、チェックバルブ116cを抵抗なく通過して油圧シリンダ112に戻る。
このように、ショックアブソーバ100では、圧縮時の減衰力の一部を減衰力制御弁10により調整可能である。具体的には、ショックアブソーバ100では、圧縮時の減衰力(即ち、上記の圧縮減衰力(1)及び(2))のうち、ピストンロッド162の進入により発生する圧縮減衰力(1)を調整することができる。
なお、本発明は、この例に限定されず、ショックアブソーバ100は、例えば、圧縮時の減衰力の全部を減衰力制御弁10により調整可能であってもよい。具体的には、図6及び図7に示す例において、減衰バルブ150に代えて、作動流体室158から作動流体室160に作動流体を流すチェックバルブが設けられていてもよい。このように構成されたショックアブソーバ100では、ピストンアセンブリ144がX1方向に移動するとき、上記の圧縮減衰力(1)が生じるが、上記の圧縮減衰力(2)が生じない。従って、圧縮減衰力(1)を調整することにより、圧縮時の減衰力の全部を調整することができる。
On the other hand, when the piston assembly 144 moves in the X2 direction, as shown in FIG. 7, the working fluid of the volume from which the piston rod 162 has retracted passes through the check valve 116c without resistance and returns to the hydraulic cylinder 112.
Thus, in the shock absorber 100, a part of the damping force at the time of compression can be adjusted by the damping force control valve 10. Specifically, the shock absorber 100 adjusts the compression damping force (1) generated by the entry of the piston rod 162 out of the damping force during compression (that is, the compression damping forces (1) and (2)). can do.
The present invention is not limited to this example. For example, the shock absorber 100 may be capable of adjusting all of the damping force during compression by the damping force control valve 10. Specifically, in the example illustrated in FIGS. 6 and 7, a check valve that allows the working fluid to flow from the working fluid chamber 158 to the working fluid chamber 160 may be provided instead of the damping valve 150. In the shock absorber 100 configured as described above, when the piston assembly 144 moves in the X1 direction, the compression damping force (1) is generated, but the compression damping force (2) is not generated. Therefore, by adjusting the compression damping force (1), it is possible to adjust the entire damping force during compression.

以上、減衰力制御弁10によれば、弁体20の通路21において、下流方向D側端の開口面積は、通路21内の最小径部としての連通部21bの開口面積よりも大きい。従って、下流側の作動流体路31と通路21との圧力差の増大が抑制され、第一ポート30aに向けて弁体20に加わる力を抑制することができる。また、弁体20の端面20aと第一ポート30aとの間を通過する作動流体の流れXが弁体20の端面20aの表面に沿って流れる距離が比較的短いので、弁体20の端面20aの表面上の圧力低下が防止され、第一ポート30aに向けて弁体20に加わる力を抑制することができる。従って、微小開度時における弁体20の位置制御性に優れ、精度良く制御可能な開度の範囲が広く、且つ高い応答性を実現できる。   As described above, according to the damping force control valve 10, the opening area of the downstream direction D side end in the passage 21 of the valve body 20 is larger than the opening area of the communication portion 21 b as the minimum diameter portion in the passage 21. Therefore, an increase in the pressure difference between the downstream working fluid passage 31 and the passage 21 is suppressed, and the force applied to the valve body 20 toward the first port 30a can be suppressed. Further, the distance X of the working fluid flow X passing between the end surface 20a of the valve body 20 and the first port 30a flows along the surface of the end surface 20a of the valve body 20 is relatively short. A pressure drop on the surface of the valve body 20 is prevented, and the force applied to the valve body 20 toward the first port 30a can be suppressed. Therefore, the position controllability of the valve body 20 at the minute opening is excellent, the range of the opening that can be accurately controlled is wide, and high responsiveness can be realized.

また、減衰力制御弁10は、第一作動流体室30内において弁体20が挿通され、弁体20の軸線方向Sに沿って弁体20に力を加えるコイルバネ34、35を備えている。弁体20内の通路21において、下流側端の開口面積は、コイルバネ34、35の内径面積よりも小さい。弁体20の移動時における通路21内の圧力伝達又は作動流体の移動がスムーズであり、応答性をより向上させることができる。   Further, the damping force control valve 10 includes coil springs 34 and 35 through which the valve body 20 is inserted in the first working fluid chamber 30 and applies force to the valve body 20 along the axial direction S of the valve body 20. In the passage 21 in the valve body 20, the opening area at the downstream end is smaller than the inner diameter area of the coil springs 34 and 35. The pressure transmission in the passage 21 or the movement of the working fluid during the movement of the valve body 20 is smooth, and the responsiveness can be further improved.

また、通路21は、下流側端を含む大径部21aを有し、大径部21aの径は連通部21bの径よりも大きい。大径部21aにおいて、作動流体の流れXの一部は作動流体の流れFに戻る。また、弁体20の端面20aと第一ポート30aとの間を通過する作動流体の流れX弁体20の端面20aの表面に沿って流れる距離が比較的短く、第一ポート30aに向けて弁体20に加わる力を抑制することができる。   Moreover, the channel | path 21 has the large diameter part 21a containing a downstream end, and the diameter of the large diameter part 21a is larger than the diameter of the communication part 21b. In the large-diameter portion 21a, a part of the working fluid flow X returns to the working fluid flow F. Further, the flow of the working fluid passing between the end face 20a of the valve body 20 and the first port 30a. The distance flowing along the surface of the end face 20a of the valve body 20 is relatively short, and the valve is directed toward the first port 30a. The force applied to the body 20 can be suppressed.

図4(a)に示す弁体20では、大径部21aと連通部21bとの間に、通路21の径が変化する段差が設けられている。このように、大径部21aは、段差を有していることが好ましい。大径部21a内での渦の生成が容易になる。   In the valve body 20 shown to Fig.4 (a), the level | step difference from which the diameter of the channel | path 21 changes is provided between the large diameter part 21a and the communication part 21b. Thus, it is preferable that the large diameter part 21a has a level | step difference. Generation of vortices in the large diameter portion 21a is facilitated.

図4(f)に示す弁体20では、大径部21aは、下流方向D側端に近づくにつれて、通路21の径が大きくなるテーパ形状を有している。このように、大径部21aは、テーパ形状を有していることが好ましい。大径部21a内での渦の生成が容易になる。   In the valve body 20 shown in FIG. 4F, the large-diameter portion 21a has a tapered shape in which the diameter of the passage 21 increases as it approaches the end in the downstream direction D. Thus, it is preferable that the large diameter part 21a has a taper shape. Generation of vortices in the large diameter portion 21a is facilitated.

図5(a)に示す弁体20では、弁体20の軸線方向S視において、大径部21aの軸心C´と、弁体20の軸心Cとが異なっている。即ち、大径部21aの重心位置と、弁体20の重心位置とが異なる。作動流体の流れXによって弁体20の径方向に加わる力が、弁体20の軸線C上で平行せず、弁体20がガイド孔13bの壁に沿って安定する。   In the valve body 20 shown in FIG. 5A, the axial center C ′ of the large diameter portion 21 a and the axial center C of the valve body 20 are different in the axial direction S view of the valve body 20. That is, the position of the center of gravity of the large diameter portion 21a is different from the position of the center of gravity of the valve body 20. The force applied in the radial direction of the valve body 20 by the flow X of the working fluid is not parallel on the axis C of the valve body 20, and the valve body 20 is stabilized along the wall of the guide hole 13b.

減衰力制御弁10では、弁体20の通路21内には実質的には流体のみが存在する。通路21内には、付勢体等の部材が取り付けられていない。弁体20の移動時における通路21内の圧力伝達又は作動流体の移動がスムーズである。   In the damping force control valve 10, substantially only fluid exists in the passage 21 of the valve body 20. A member such as a biasing member is not attached in the passage 21. When the valve body 20 moves, the pressure transmission in the passage 21 or the movement of the working fluid is smooth.

減衰力制御弁10では、作動流体の下流方向Dへの流れの向きは、弁体20の軸線方向Sに沿っている。作動流体を第一作動流体室30外にスムーズに排出することができるので、応答性に優れる。   In the damping force control valve 10, the direction of the flow of the working fluid in the downstream direction D is along the axial direction S of the valve body 20. Since the working fluid can be smoothly discharged out of the first working fluid chamber 30, the responsiveness is excellent.

上述の実施形態では、減衰力制御弁10を油圧シリンダ112に接続する場合について説明したが、減衰力調整装置の配置方法は上述の例に限定されない。図6及び図7に示すショックアブソーバ100は、減衰力制御弁10に対して作動流体を両方向に流すことができるように構成されていたが、本発明は、この例に限定されない。本発明では、少なくとも第一作動流体室30から第一ポート30aを介して作動流体を排出する方向に作動流体を流すように構成されていることが好ましい。また、ショックアブソーバ100は、伸長時に第一作動流体室30から第一ポート30aを介して作動流体を排出する方向に作動流体を流すように構成されていてもよく、縮退時に第一作動流体室30から第一ポート30aを介して作動流体を排出する方向に作動流体を流すように構成されていてもよい。   In the above-described embodiment, the case where the damping force control valve 10 is connected to the hydraulic cylinder 112 has been described, but the arrangement method of the damping force adjusting device is not limited to the above example. The shock absorber 100 shown in FIGS. 6 and 7 is configured to allow the working fluid to flow in both directions with respect to the damping force control valve 10, but the present invention is not limited to this example. In the present invention, it is preferable that the working fluid is configured to flow in a direction in which the working fluid is discharged from at least the first working fluid chamber 30 through the first port 30a. Further, the shock absorber 100 may be configured to flow the working fluid from the first working fluid chamber 30 through the first port 30a when extended, and the first working fluid chamber when degenerated. The working fluid may be configured to flow in a direction in which the working fluid is discharged from 30 through the first port 30a.

上述の実施形態では、円筒状の弁体について説明したが、弁体の形状は上記の例に限定されない。たとえば、弁体が中空角筒形状を有していてもよい。また、作動流体路の形状も上述の例に限定されず、作動流体路の断面が多角形状であってもよく、楕円形状であってもよい。また、本実施形態では、ソレノイドとして、比例ソレノイドが用いられる場合について説明した。但し、本発明は、この例に限定されず、ソレノイドとして、例えば、ON/OFFソレノイドが用いられてもよい。   In the above-described embodiment, the cylindrical valve body has been described, but the shape of the valve body is not limited to the above example. For example, the valve body may have a hollow rectangular tube shape. Further, the shape of the working fluid path is not limited to the above example, and the cross section of the working fluid path may be polygonal or elliptical. In the present embodiment, the case where a proportional solenoid is used as the solenoid has been described. However, the present invention is not limited to this example, and for example, an ON / OFF solenoid may be used as the solenoid.

以上、この発明の好ましい実施形態について説明されたが、この発明の範囲および精神を逸脱しない限りにおいて種々の変更が可能であることは明らかである。この発明の範囲は、添付された請求の範囲のみによって限定される。   Although the preferred embodiment of the present invention has been described above, it is apparent that various modifications can be made without departing from the scope and spirit of the present invention. The scope of the invention is limited only by the appended claims.

10 減衰力制御弁
20 弁体
21 通路
21a 大径部
21b 連通部
23 ソレノイドコイル
26 バルブベッド
30 第一作動流体室
30a 第一ポート
40 第二作動流体室
10 damping force control valve 20 valve body 21 passage 21a large diameter portion 21b communication portion 23 solenoid coil 26 valve bed 30 first working fluid chamber 30a first port 40 second working fluid chamber

Claims (10)

減衰力制御弁であって、
前記減衰力制御弁は、
ソレノイドにより直線往復動する中空筒状の弁体と、
前記弁体が挿通されるガイド孔と、前記弁体の端面と対向する位置に形成されたポートとを備えた第一作動流体室と、
前記弁体内の通路を介して、前記第一作動流体室と連通する第二作動流体室と、
を備え、
前記弁体の前記端面と前記ポートとの間隙は、作動流体が通過する流路であり、
前記流路の開度は、前記弁体の前記端面の位置によって変更され、これにより減衰力が制御され、
前記流路の開度が最小のとき、前記弁体と前記ポートとの間隙が全閉となる一方、前記流路の開度が最大のとき、前記弁体は前記ポートから離れており、
前記弁体内の前記通路において、前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される流れの向きの下流側端の開口面積は、前記通路内の最小径部の開口面積よりも大きい。
A damping force control valve,
The damping force control valve is
A hollow cylindrical valve body that linearly reciprocates by a solenoid;
A first working fluid chamber comprising a guide hole through which the valve body is inserted, and a port formed at a position facing the end face of the valve body;
A second working fluid chamber communicating with the first working fluid chamber via a passage in the valve body;
With
The gap between the end face of the valve body and the port is a flow path through which a working fluid passes,
The opening degree of the flow path is changed depending on the position of the end face of the valve body, whereby the damping force is controlled,
When the opening of the flow path is the minimum, the gap between the valve body and the port is fully closed, while when the opening of the flow path is the maximum, the valve body is away from the port,
In the passage in the valve body, the opening area at the downstream end in the flow direction in which the working fluid in the first working fluid chamber is discharged out of the first working fluid chamber through the port is the largest in the passage. It is larger than the opening area of the small diameter part.
請求項1に記載の減衰力制御弁であって、
前記減衰力制御弁は、前記第一作動流体室内において前記弁体が挿通され、前記弁体の軸線方向に沿って前記弁体に力を加える環状の付勢体を備え、
前記弁体内の前記通路において、前記下流側端の開口面積は、前記付勢体の内径面積よりも小さい。
The damping force control valve according to claim 1,
The damping force control valve includes an annular biasing body through which the valve body is inserted in the first working fluid chamber and applies force to the valve body along the axial direction of the valve body,
In the passage in the valve body, an opening area of the downstream end is smaller than an inner diameter area of the biasing body.
請求項1又は2に記載の減衰力制御弁であって、
前記通路は、前記下流側端を含む大径部を有し、前記大径部の径は、前記大径部の前記下流側端の反対側端から前記第二作動流体室に向けて延びる連通部の径よりも大きい。
The damping force control valve according to claim 1 or 2,
The passage has a large-diameter portion including the downstream end, and the diameter of the large-diameter portion extends from the opposite end of the large-diameter portion toward the second working fluid chamber. It is larger than the diameter of the part.
請求項3に記載の減衰力制御弁であって、
前記大径部は、前記通路の径が変化する段差を有している。
A damping force control valve according to claim 3,
The large diameter portion has a step where the diameter of the passage changes.
請求項3又は4に記載の減衰力制御弁であって、
前記大径部は、前記下流側端に近づくにつれて前記通路の径が大きくなるテーパ形状を有している。
The damping force control valve according to claim 3 or 4,
The large diameter portion has a tapered shape in which the diameter of the passage increases as it approaches the downstream end.
請求項3〜5のいずれか1に記載の減衰力制御弁であって、
前記弁体の軸線方向視において、前記大径部の重心位置と前記弁体の重心位置とが異なる。
A damping force control valve according to any one of claims 3 to 5,
When the valve body is viewed in the axial direction, the position of the center of gravity of the large diameter portion is different from the position of the center of gravity of the valve body.
請求項1〜6のいずれか1に記載の減衰力制御弁であって、
前記弁体の通路内には、実質的に流体のみが存在する。
A damping force control valve according to any one of claims 1 to 6,
There is substantially only fluid in the passage of the valve body.
請求項1〜7のいずれか1に記載の減衰力制御弁であって、
前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される流れの向きは、前記弁体の軸線方向に沿っている。
A damping force control valve according to any one of claims 1 to 7,
The direction of the flow in which the working fluid in the first working fluid chamber is discharged out of the first working fluid chamber through the port is along the axial direction of the valve body.
ショックアブソーバであって、
前記ショックアブソーバは、請求項1〜8のいずれか1に記載の減衰力制御弁を備えた。
A shock absorber,
The shock absorber includes the damping force control valve according to any one of claims 1 to 8.
請求項9に記載のショックアブソーバであって、
前記ショックアブソーバは、前記減衰力制御弁において、前記第一作動流体室内の作動流体が前記ポートを介して前記第一作動流体室外へ排出される方向に作動流体を流すように構成されている。
The shock absorber according to claim 9,
The shock absorber is configured to flow the working fluid in a direction in which the working fluid in the first working fluid chamber is discharged out of the first working fluid chamber through the port in the damping force control valve.
JP2012033433A 2012-02-17 2012-02-17 Damping force control valve and shock absorber Pending JP2013170600A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012033433A JP2013170600A (en) 2012-02-17 2012-02-17 Damping force control valve and shock absorber
PCT/JP2013/053844 WO2013122250A1 (en) 2012-02-17 2013-02-18 Damping force control valve and shock absorber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012033433A JP2013170600A (en) 2012-02-17 2012-02-17 Damping force control valve and shock absorber

Publications (1)

Publication Number Publication Date
JP2013170600A true JP2013170600A (en) 2013-09-02

Family

ID=48984357

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012033433A Pending JP2013170600A (en) 2012-02-17 2012-02-17 Damping force control valve and shock absorber

Country Status (2)

Country Link
JP (1) JP2013170600A (en)
WO (1) WO2013122250A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009150A (en) * 2017-06-20 2019-01-17 新電元メカトロニクス株式会社 Proportional solenoid
JP7437100B1 (en) 2023-09-13 2024-02-22 株式会社シェルタージャパン braking device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0579527A (en) * 1991-05-17 1993-03-30 Tokico Ltd Damping force adjusting type hydraulic buffer
JP5463684B2 (en) * 2008-04-25 2014-04-09 日立オートモティブシステムズ株式会社 Damping force adjustable shock absorber
EP2518364A1 (en) * 2009-12-25 2012-10-31 Yamaha Hatsudoki Kabushiki Kaisha Shock absorber

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019009150A (en) * 2017-06-20 2019-01-17 新電元メカトロニクス株式会社 Proportional solenoid
JP7025741B2 (en) 2017-06-20 2022-02-25 新電元メカトロニクス株式会社 Proportional solenoid
JP7437100B1 (en) 2023-09-13 2024-02-22 株式会社シェルタージャパン braking device

Also Published As

Publication number Publication date
WO2013122250A1 (en) 2013-08-22

Similar Documents

Publication Publication Date Title
KR102374626B1 (en) Damping valve device with a damping force characteristic curve
US7273138B2 (en) Damping force variable valve and shock absorber using same
KR101321386B1 (en) Shock absorber
EP1925845A1 (en) A hydraulic suspension damper
US10518601B2 (en) Damper with internal hydraulic stop
WO2019239721A1 (en) Pressure shock absorber
CN110131354B (en) Shock absorber device
JP6404484B2 (en) Cylinder device
JP2005076752A (en) Magnetic fluid buffer
JP4660432B2 (en) Damping force variable shock absorber
JP2013170600A (en) Damping force control valve and shock absorber
JP2012002336A (en) Shock absorber
JP4447018B2 (en) Variable damping force damper
JP6489977B2 (en) Shock absorber
KR20100007018A (en) Piston valve assembly and continuous damping control damper comprising the same
EP2770227A2 (en) Damping force control valve and shock absorber
JP2013170601A (en) Damping force control valve and shock absorber
JP2013170602A (en) Shock absorber
JP2021156376A (en) Shock absorber
KR101165057B1 (en) Suspension system of automobile
KR101761867B1 (en) Damping force variable shock absorber
JP2019027563A (en) valve
JP6621352B2 (en) Pressure shock absorber
JP2007303581A (en) Magnetic viscous fluid shock absorber
JP5907707B2 (en) Shock absorber