JP2013169710A - Method for forming cured layer containing scaly metal oxide fine particles - Google Patents

Method for forming cured layer containing scaly metal oxide fine particles Download PDF

Info

Publication number
JP2013169710A
JP2013169710A JP2012034868A JP2012034868A JP2013169710A JP 2013169710 A JP2013169710 A JP 2013169710A JP 2012034868 A JP2012034868 A JP 2012034868A JP 2012034868 A JP2012034868 A JP 2012034868A JP 2013169710 A JP2013169710 A JP 2013169710A
Authority
JP
Japan
Prior art keywords
substrate
nanosheet
metal oxide
layer
oxide fine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012034868A
Other languages
Japanese (ja)
Other versions
JP5919028B2 (en
Inventor
Tatsuya Ekinaka
達矢 浴中
Takehiro Suga
武宏 菅
Toshio Kida
稔男 喜田
Akira Niimi
亮 新見
yuta Toyoshima
雄太 豊嶋
Tetsuya Shichi
哲也 志知
Daisuke Yoshioka
大輔 吉岡
Makoto Yamashita
誠 山下
Sohei Okazaki
壮平 岡崎
Yuji Kaneko
祐司 金子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Central Japan Railway Co
Original Assignee
Teijin Ltd
Central Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2012034868A priority Critical patent/JP5919028B2/en
Application filed by Teijin Ltd, Central Japan Railway Co filed Critical Teijin Ltd
Priority to PCT/JP2013/055026 priority patent/WO2013125724A1/en
Priority to US14/377,303 priority patent/US10280272B2/en
Priority to EP13752448.4A priority patent/EP2818313B1/en
Priority to PT13752448T priority patent/PT2818313T/en
Priority to KR1020147023168A priority patent/KR20150002591A/en
Priority to CN201380010399.5A priority patent/CN104203557B/en
Priority to TW102105985A priority patent/TWI617458B/en
Publication of JP2013169710A publication Critical patent/JP2013169710A/en
Application granted granted Critical
Publication of JP5919028B2 publication Critical patent/JP5919028B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a method for forming a cured layer on a substrate suitable even in an environment receiving much physical stimulation from dust or the like and excellent in abrasion resistance without baking the same at a high temperature.SOLUTION: A method for forming a cured layer containing scaly metal oxide fine particles on a substrate. The method includes a (step-i) for preparing the substrate, a (step-ii) for coating the substrate with a scaly metal oxide fine particle dispersion to form a coating layer, a (step-iii) for drying the coating layer to form a dry layer, and a (step-iv) for curing the scaly metal oxide fine particle in the dry layer by at least one method selected from a group consisting of ionizing substance irradiation, ionizing irradiation, infrared irradiation, microwave irradiation, and hot water-vapour exposure to form the cured layer.

Description

本発明は、基体上に耐摩耗性に優れる硬化層を形成する方法を提供する方法に関する。   The present invention relates to a method for providing a method for forming a hardened layer having excellent wear resistance on a substrate.

砂塵などによる物理的刺激が多い場面にも適した硬度を有することを目的として、基体層の表面に鱗片状の酸化チタン微粒子(チタニアナノシート)を含むコーティング剤が焼成された積層体が提案されている(例えば、特許文献1)。特許文献1によると、ナノシートの硬度は焼成する温度によって大きく異なり、400℃以上での焼成を行わないと十分な硬度が発現していない。
しかし、このような高温での焼成を行なうと基体が劣化するなど好ましくない影響がある。このため、高温での焼成によらない熱負荷の少ない方法が求められていた。
For the purpose of having hardness suitable for scenes where there is a lot of physical irritation due to dust, etc., a laminate was proposed in which a coating agent containing scaly titanium oxide fine particles (titania nanosheets) was fired on the surface of the base layer. (For example, Patent Document 1). According to Patent Document 1, the hardness of the nanosheet varies greatly depending on the firing temperature, and sufficient hardness is not exhibited unless firing at 400 ° C. or higher.
However, firing at such a high temperature has undesirable effects such as deterioration of the substrate. For this reason, there has been a demand for a method with less heat load that does not depend on firing at a high temperature.

特開2005−290369号公報JP 2005-290369 A

本発明の目的は、砂塵などによる物理的刺激が多い場面にも好適な、耐摩耗性に優れる硬化層を高温で焼成することなく、基体上に形成する方法を提供することにある。   An object of the present invention is to provide a method for forming a hardened layer having excellent wear resistance, which is suitable for a scene where there is a lot of physical irritation due to dust and the like, on a substrate without firing at a high temperature.

本発明によれば、上記課題は、下記構成により解決される。
1. 基体上に鱗片状の金属酸化物微粒子を含む硬化層を形成する方法であって、
(工程−i)基体を準備する工程、
(工程−ii)基体上に鱗片状の金属酸化物微粒子分散液を塗布して塗布層を形成する工程、
(工程−iii)塗布層を乾燥して乾燥層を形成する工程、並びに
(工程−iv)乾燥層中の鱗片状の金属酸化物微粒子を、電離物質線照射、電離放射線照射、赤外線照射、マイクロ波照射および高温水蒸気曝露よりなる群から選ばれる少なくとも1種の方法で硬化して硬化層を形成する工程、
を含む前記方法。
2. 工程−ivは、電離物質線照射で行う前項1に記載の方法。
3. 工程−ivは、プラズマ照射で行う前項1または2に記載の方法。
4. 基体は、ガラス、金属、セラミック、プラスチックよりなる群から選ばれる一種である前項1〜3のいずれか一項に記載の方法。
5. 基体は、透明基体である前項1〜4のいずれか一項に記載の方法。
6. 前項1〜5のいずれか一項記載の方法により製造された部材。
7. 部材が窓用途である前項6記載の部材。
8. 部材が車両窓用途である前項6記載の部材。
According to the present invention, the above problem is solved by the following configuration.
1. A method of forming a cured layer containing scaly metal oxide fine particles on a substrate,
(Step-i) a step of preparing a substrate,
(Step-ii) A step of applying a scaly metal oxide fine particle dispersion on a substrate to form a coating layer,
(Step-iii) Step of drying the coating layer to form a dry layer, and (Step-iv) Scale-like metal oxide fine particles in the dry layer are irradiated with ionizing substance beam, ionizing radiation, infrared irradiation, micro A step of curing by at least one method selected from the group consisting of wave irradiation and high-temperature water vapor exposure to form a cured layer;
Including said method.
2. Process-iv is the method of the preceding clause 1 performed by ionizing substance beam irradiation.
3. Process-iv is the method of the preceding clause 1 or 2 performed by plasma irradiation.
4). 4. The method according to any one of items 1 to 3, wherein the substrate is a kind selected from the group consisting of glass, metal, ceramic, and plastic.
5. 5. The method according to any one of items 1 to 4, wherein the substrate is a transparent substrate.
6). The member manufactured by the method of any one of the preceding clauses 1-5.
7). 7. The member according to 6 above, wherein the member is used for windows.
8). 7. The member according to 6 above, wherein the member is used for a vehicle window.

本発明の方法よれば、砂塵などによる物理的刺激が多い場面にも好適な、優れた耐摩耗性を有する硬化層を高温での焼成を行なうことなく基体上に形成することができる。本発明の方法では、基体が高温に曝され劣化することが抑制される利点がある。本発明の方法で得られる硬化層は、優れた耐摩耗性に加えて光触媒性機能による防汚性を有する。   According to the method of the present invention, it is possible to form a hardened layer having excellent wear resistance, which is suitable for scenes where there is a lot of physical irritation due to dust and the like, on a substrate without firing at a high temperature. The method of the present invention has an advantage that the substrate is prevented from being deteriorated by being exposed to a high temperature. The cured layer obtained by the method of the present invention has antifouling property due to the photocatalytic function in addition to excellent wear resistance.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明は、(工程−i)〜(工程−iv)を含む。   The present invention includes (step-i) to (step-iv).

<(工程−i)基体を準備する工程>
工程−iは、基体を準備する工程である。基体は、ガラス、金属、セラミックおよびプラスチックよりなる群から選ばれる1種であることが好ましい。
プラスチックとしては、特に制限はなく、ポリエチレン、ポリプロピレン等のポリオレフィン樹脂、ポリジシクロペンタジエン等のアモルファスポリオレフィン樹脂、ポリカーボネート樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ(エチレン−2,6−ナフタレート)等のポリエステル樹脂、ポリスチレン、ポリアリレート、ポリエーテルスルホン、ポリエーテルエーテルケトン、ポリイミド、フェノール樹脂、尿素樹脂などが挙げられる。中でも優れた透明性を有するポリカーボネート樹脂、ポリメチルメタクリレート等のアクリル樹脂、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリ(エチレン−2,6−ナフタレート)等のポリエステル樹脂、ポリスチレン、ポリプロピレン、ポリアリレート、ポリエーテルスルホンが好ましい。更に、高い衝撃強度を有するポリカーボネート樹脂がより好ましい。
基体の厚みは、特に制限はないが、0.05〜20mmが好ましく、1〜10mmがより好ましい。
<(Step-i) Step of Preparing Substrate>
Step-i is a step of preparing a substrate. The substrate is preferably one selected from the group consisting of glass, metal, ceramic and plastic.
The plastic is not particularly limited, and polyolefin resin such as polyethylene and polypropylene, amorphous polyolefin resin such as polydicyclopentadiene, acrylic resin such as polycarbonate resin and polymethyl methacrylate, polyethylene terephthalate, polybutylene terephthalate, poly (ethylene-2, 6-naphthalate), polystyrene resin, polyarylate, polyethersulfone, polyetheretherketone, polyimide, phenol resin, urea resin, and the like. Among them, polycarbonate resins having excellent transparency, acrylic resins such as polymethyl methacrylate, polyester resins such as polyethylene terephthalate, polybutylene terephthalate, poly (ethylene-2,6-naphthalate), polystyrene, polypropylene, polyarylate, polyethersulfone Is preferred. Furthermore, a polycarbonate resin having a high impact strength is more preferable.
Although there is no restriction | limiting in particular in the thickness of a base | substrate, 0.05-20 mm is preferable and 1-10 mm is more preferable.

また、基体がプラスチックの場合は基体にハードコート層が形成されている場合、より優れた耐摩耗性が得られるため好ましい。ハードコート層に用いるハードコート剤としては、特に制限はないが、シリコーン樹脂系ハードコート剤や有機樹脂系ハードコート剤などが例示される。これら中でも、コロイダルシリカまたはアルコキシシラン加水分解縮合物を含むハードコート剤を用いてハードコート層を形成すると、ハードコート層の表面に鱗片状の金属酸化物微粒子を用いてなるトップコート層を形成させた際に、特に優れた耐摩耗性が得られるため好ましい。シリコーン樹脂系ハードコート剤は、プライマー層とトップ層から構成されるいわゆる2コートタイプ、並びに一層のみから形成されるいわゆる1コートタイプのいずれも選択できる。ハードコート層の厚みは2〜30μmが好ましく、3〜20μmがより好ましく、4〜10μmが更に好ましい。下限以上では、基材の耐摩耗性が得られ、上限以下では、硬化ムラが生じづらく基材との密着性が良好である。   In addition, when the substrate is a plastic, it is preferable that a hard coat layer is formed on the substrate because better wear resistance can be obtained. The hard coat agent used for the hard coat layer is not particularly limited, and examples thereof include a silicone resin hard coat agent and an organic resin hard coat agent. Among these, when a hard coat layer is formed using a hard coat agent containing colloidal silica or an alkoxysilane hydrolyzed condensate, a top coat layer using scaly metal oxide fine particles is formed on the surface of the hard coat layer. In that case, since particularly excellent wear resistance is obtained. The silicone resin hard coat agent can be selected from a so-called two-coat type composed of a primer layer and a top layer and a so-called one-coat type formed from only one layer. The thickness of the hard coat layer is preferably 2 to 30 μm, more preferably 3 to 20 μm, still more preferably 4 to 10 μm. Above the lower limit, the wear resistance of the substrate is obtained, and below the upper limit, curing unevenness hardly occurs and the adhesion to the substrate is good.

ハードコート層表面は通常撥水性であり、そのままの状態ではナノシート分散液をはじいてしまうことが多い。このためハードコート層表面を親水化した後にナノシート分散液を塗布することが好ましい。ハードコート層表面の親水化法としては酸化セリウム研磨、コロナ放電処理、バーナー処理、大気圧プラズマ処理、真空紫外線照射処理等が挙げられる。このような方法でハードコート層表面を処理することによってトップコート層を均質な厚みにコートすることができる。また、親水性を制御することによってトップコート層の堆積方向を制御することが好ましい。   The surface of the hard coat layer is usually water-repellent and often repels the nanosheet dispersion liquid as it is. For this reason, it is preferable to apply the nanosheet dispersion liquid after hydrophilizing the hard coat layer surface. Examples of the method for hydrophilizing the hard coat layer surface include cerium oxide polishing, corona discharge treatment, burner treatment, atmospheric pressure plasma treatment, and vacuum ultraviolet irradiation treatment. By treating the surface of the hard coat layer by such a method, the top coat layer can be coated to a uniform thickness. Further, it is preferable to control the deposition direction of the topcoat layer by controlling the hydrophilicity.

<(工程−ii)塗布工程>
工程−iiは、基体上に鱗片状の金属酸化物微粒子分散液を塗布して塗布層を形成する工程である。
鱗片状の金属酸化物微粒子(以下ナノシートと称することがある)は、厚さは僅か10nm足らずの高いアスペクト比を持つシート状の金属酸化物微粒子である。
<(Process-ii) Application process>
Step-ii is a step of forming a coating layer by applying a scale-like metal oxide fine particle dispersion on a substrate.
Scale-like metal oxide fine particles (hereinafter sometimes referred to as nanosheets) are sheet-like metal oxide fine particles having a high aspect ratio that is only 10 nm in thickness.

ナノシート分散液は、最短幅10nm以上、厚み10nm以下、最短幅/厚み10以上のシート状物質を溶媒中に分散させた分散液で、鉱物結晶を層間剥離物質および分散剤と共に処理する等の方法で調製される。用いる溶媒としては、特に制限はないが、水およびメタノール、エタノール、2−プロパノール、2−メチル−1−プロパノール等のアルコール類、アセトン、2−ブタノン、4−メチル−2−ペンタノン等のケトン類、ジエチルエーテル、テトラヒドロフラン、ジオキソラン等のエーテル類、2−エトキシエタノール、1−メトキシ−2−プロパノール等のエーテルアルコール類、ジメチルホルムアミド、ジメチルスルホキシド等が好ましく、水が特に好ましく用いられる。これらの溶媒は単独で用いても、2種類以上を混合して用いても良い。
ナノシート分散液中のナノシートの濃度は好ましくは0.01〜10%、より好ましくは0.1〜2%である。(基材の表面状態、コート法にもよるが)下限以上の濃度の分散液を使用することでナノシートを隙間なくコートすることができ、上限以下の濃度の分散液を使用することで適切な厚みのナノシート層を得ることができる。
The nanosheet dispersion is a dispersion in which a sheet-like substance having a minimum width of 10 nm or more, a thickness of 10 nm or less, and a minimum width / thickness of 10 or more is dispersed in a solvent, and a mineral crystal is treated with a delamination substance and a dispersant. It is prepared with. The solvent to be used is not particularly limited, but water and alcohols such as methanol, ethanol, 2-propanol and 2-methyl-1-propanol, and ketones such as acetone, 2-butanone and 4-methyl-2-pentanone. , Ethers such as diethyl ether, tetrahydrofuran and dioxolane, ether alcohols such as 2-ethoxyethanol and 1-methoxy-2-propanol, dimethylformamide, dimethyl sulfoxide and the like are preferable, and water is particularly preferably used. These solvents may be used alone or in combination of two or more.
The concentration of the nanosheet in the nanosheet dispersion is preferably 0.01 to 10%, more preferably 0.1 to 2%. Nanosheets can be coated without gaps by using a dispersion with a concentration above the lower limit (depending on the surface condition of the substrate and the coating method), and it is appropriate to use a dispersion with a concentration below the upper limit. A nanosheet layer having a thickness can be obtained.

ナノシート分散液は雲母など層状結晶をとる鉱物にアミン類等の層間剥離、分散安定剤を加えて粉砕、攪拌して得ることができる。このとき層間剥離、分散安定剤がナノシートの両面に配位してナノシート同士が再度結合するのを防いでいる。
このような分散液を塗布、乾燥して作成したナノシート層はナノシート間に剥離、分散安定に使用したアミンが残存した状態になっている。このようなナノシートにエネルギーを加えることでナノシート間物質の除去を行い、ナノシート同士およびナノシートと基体の密着を確保すると共に、ナノシート結晶相の相転位を行い必要な機能を確保する。
ナノシート分散液のコート法には特に制限はなく、バーコート法、ディップコート法、フローコート法、スプレーコート法、スピンコート法、ローラーコート法等の方法を、塗装される基体の形状に応じて適宜選択することができる。
The nanosheet dispersion can be obtained by adding delamination and dispersion stabilizers such as amines to a mineral that takes layered crystals such as mica, and crushing and stirring. At this time, the delamination and dispersion stabilizer are coordinated on both surfaces of the nanosheet to prevent the nanosheets from being bonded again.
The nanosheet layer prepared by applying and drying such a dispersion is in a state where the amine used for separation and dispersion stability remains between the nanosheets. By applying energy to such a nanosheet, the substances between the nanosheets are removed to ensure close contact between the nanosheets and between the nanosheet and the substrate, and to perform a phase transition of the nanosheet crystal phase to ensure a necessary function.
There are no particular restrictions on the coating method of the nanosheet dispersion, and methods such as bar coating, dip coating, flow coating, spray coating, spin coating, and roller coating can be used depending on the shape of the substrate to be coated. It can be selected appropriately.

鱗片状の金属酸化物微粒子は、Ti、Nb、Al、Si、W、Fe、Mn、Cr、Ca、およびMgからなる群から選ばれる少なくとも1種類の元素を構成元素とすることが、優れた耐摩耗性が得られる点から好ましい。さらに、防汚性を付与する場合は、光触媒性を有する元素を構成元素とする。そのような構成元素からなる鱗片状の金属酸化物微粒子を使用することでバンドギャップに相当するエネルギー(紫外光等)吸収により価電子帯の電子が伝導帯に励起され、価電子帯には電子の抜け殻である正孔(ホール:h+)が、伝導帯には電子(e-)が生じる。この電子とホールは酸化チタン表面の水や酸素と反応して極めて強い酸化力を有するラジカルを生成し、そのラジカルは汚れやバクテリアを構成するほとんど全ての有機物を分解する。また、紫外光吸収により構造変化が起こり、表面が高度に親水化して、水で容易に汚れを洗い流せるようになる。このような作用により紫外光照射により、容易に汚れを除去できる表面が形成される。構成元素としては、なかでもTi、Nbが、光触媒性に優れ、表面が超親水性となり、防汚性に優れるため好ましい。 It is excellent that the scaly metal oxide fine particles have at least one element selected from the group consisting of Ti, Nb, Al, Si, W, Fe, Mn, Cr, Ca, and Mg as a constituent element. It is preferable from the point that abrasion resistance is obtained. Furthermore, when imparting antifouling property, an element having photocatalytic properties is used as a constituent element. By using scale-like metal oxide fine particles composed of such constituent elements, energy in the valence band is excited to the conduction band by absorption of energy (such as ultraviolet light) corresponding to the band gap. Holes (holes: h + ), which are shells of slag, generate electrons (e ) in the conduction band. These electrons and holes react with water and oxygen on the surface of titanium oxide to generate radicals having extremely strong oxidizing power, and the radicals decompose almost all organic substances constituting dirt and bacteria. In addition, structural changes occur due to absorption of ultraviolet light, and the surface becomes highly hydrophilic so that dirt can be easily washed away with water. By such an action, a surface from which dirt can be easily removed is formed by irradiation with ultraviolet light. Among the constituent elements, Ti and Nb are preferable because they are excellent in photocatalytic property, have a superhydrophilic surface, and are excellent in antifouling property.

構成元素がTiである場合、たとえばチタン酸カリウム、チタン酸カリウムマグネシウム、チタン酸セシウム等の層状チタン酸塩をイオン交換および層間剥離して得られる鱗片状金属酸化物微粒子を好適に用いることができる。さらに、レピドクロサイト型構造を有するチタン酸セシウム(Cs0.7Ti1.8250.175、□は空孔)から合成したナノシートは、アスペクト比の大きい板状構造を有しており、分散性に優れていることから、良質なコート膜を形成するため特に好ましい。構成元素がNbである場合においては、組成式KNbまたはKNb17で表わされる層状ニオブ酸カリウムをイオン交換および層間剥離して得られる鱗片状金属酸化物微粒子を好適に用いることができる。特に[Nbの組成で表わされるナノシートは、対称性の高い構造を有しており、ロール状に巻きあがることがなく、シート構造が安定に保たれるため、良質なコート膜を得るのに特に優れている。 When the constituent element is Ti, for example, scaly metal oxide fine particles obtained by ion exchange and delamination of layered titanates such as potassium titanate, potassium magnesium titanate, and cesium titanate can be suitably used. . Furthermore, nanosheets synthesized from cesium titanate having a lipidocrocite structure (Cs 0.7 Ti 1.8250.175 O 4 , □ are vacancies) have a plate-like structure with a large aspect ratio. In addition, since it is excellent in dispersibility, it is particularly preferable for forming a good-quality coat film. When the constituent element is Nb, scaly metal oxide fine particles obtained by ion exchange and delamination of layered potassium niobate represented by the composition formula KNb 3 O 8 or K 4 Nb 6 O 17 are preferably used. be able to. In particular, the nanosheet represented by the composition [Nb 3 O 8 ] has a highly symmetric structure, does not roll up into a roll shape, and maintains a stable sheet structure. Is particularly good at getting.

<(工程−iii)乾燥工程>
工程−iiiは、塗布層を乾燥して乾燥層を形成する工程である。乾燥は、特に制限はないが、常温から該基体の熱変形温度以下の温度下で加熱し除去して行なう。
<(Process-iii) Drying process>
Step-iii is a step of drying the coating layer to form a dry layer. The drying is not particularly limited, but is performed by heating and removing at a temperature from room temperature to a temperature lower than the heat distortion temperature of the substrate.

<(工程−iv)硬化工程>
工程−ivは、乾燥層中の鱗片状の金属酸化物微粒子を硬化して硬化層を形成する工程である。硬化は、電離物質線照射、電離放射線照射、赤外線照射、マイクロ波照射および高温水蒸気曝露よりなる群から選ばれる少なくとも1種の方法で行う。
<(Process-iv) Curing process>
Step-iv is a step of curing the scaly metal oxide fine particles in the dry layer to form a hardened layer. Curing is performed by at least one method selected from the group consisting of ionizing substance beam irradiation, ionizing radiation irradiation, infrared irradiation, microwave irradiation, and high-temperature water vapor exposure.

(電離物質線照射による硬化)
電離物質線とは、プラズマ、イオン、電子等の電離性物質の放射線の総称のことであり、電離性物質は電荷を持っているので電場でその状態を制御することができ、高エネルギーを局所的に加えることができるため好ましい。プラズマ(状態)とは物質がイオンと電子に分離して自由に動き回っている状態、およびその状態における自由電子とイオンを指す。プラズマ状態は高温下、もしくは放電環境下で形成されるのが一般的であり、真空下グロー放電やタウンゼント放電、大気圧下高周波電源による放電、高温下アーク放電を行うことなどで形成される。中でも真空下グロー放電やタウンゼント放電で形成される低温プラズマはキャリアガスイオンの温度と電子温度に極端に大きな違いがあるのが特徴であり、基体の温度上昇を抑えながら表面に高エネルギーを加えることができるため特に好ましい。
(Curing by ionizing radiation)
The ionizing material beam is a general term for the radiation of ionizing substances such as plasma, ions, and electrons. Since ionizing substances have a charge, their state can be controlled by an electric field, and high energy is locally applied. It is preferable because it can be added automatically. The plasma (state) refers to a state in which a substance is separated and freely moved into ions and electrons, and free electrons and ions in that state. The plasma state is generally formed at a high temperature or in a discharge environment, and is formed by performing glow discharge under vacuum, Townsend discharge, discharge by a high-frequency power source under atmospheric pressure, arc discharge at high temperature, or the like. Among them, low-temperature plasma generated by glow discharge or Townsend discharge under vacuum is characterized by extremely large differences in the temperature of carrier gas ions and the temperature of electrons, and it applies high energy to the surface while suppressing the temperature rise of the substrate. Is particularly preferable.

プラズマ形成ガスの種類としては、特に制限はないがヘリウム、ネオン、アルゴン、キセノン等の希ガス類、水素、窒素、酸素、二酸化炭素等が挙げられ、ヘリウム、ネオン、アルゴン、キセノン等の希ガス類および酸素がナノシートの性能維持のため好ましい。
プラズマ形成は通常0.001〜1000Paの圧力下で行うのが好ましく、0.01〜20Paがより好ましく、0.01〜10Paが更に好ましく、特に0.1〜5Paが好ましい。下限以上では、安定してプラズマ放電状態を形成できるため好ましく、上限以下では、ナノシートの硬化に必要なエネルギーを持ったプラズマ粒子の割合が高くなるため好ましい。装置のサイズ、用いる真空ポンプの能力にもよるので一概には言えないが、このような圧力を実現するためにガスの流量として電極1cmあたり通常0.01〜3sccm程度プラズマ形成ガスが装置に導入される。
プラズマ状態を形成するのに一般的に行なわれるグロー放電は通常0.4〜10Paの状態で安定して放電を行うことができるため好ましく、装置の工夫で0.001〜1000Paで放電状態が安定的に維持される。プラズマ状態に関係するガス圧、投入電力は共に自由電子の量、個々の自由電子の運動エネルギーに、ガス圧は自由電子の数に大きく影響し、投入電力は自由電子全体のエネルギー量に大きく影響する。同じ投入電力の場合、ガス圧が低い方が自由電子の数は少なく、個々の自由電子のエネルギーは大きくなる。
The type of plasma forming gas is not particularly limited, and examples include noble gases such as helium, neon, argon, and xenon, hydrogen, nitrogen, oxygen, carbon dioxide, etc., and noble gases such as helium, neon, argon, and xenon, and oxygen. It is preferable for maintaining the performance of the nanosheet.
The plasma formation is usually preferably performed under a pressure of 0.001 to 1000 Pa, more preferably 0.01 to 20 Pa, still more preferably 0.01 to 10 Pa, and particularly preferably 0.1 to 5 Pa. Above the lower limit, it is preferable because a plasma discharge state can be stably formed, and below the upper limit, it is preferable because the proportion of plasma particles having energy necessary for curing the nanosheet is increased. Although it depends on the size of the device and the capacity of the vacuum pump to be used, it cannot be generally stated, but in order to realize such a pressure, plasma forming gas is usually about 0.01 to 3 sccm per 1 cm 2 of electrode as the gas flow rate. be introduced.
The glow discharge that is generally performed to form a plasma state is preferable because it can normally stably discharge at a state of 0.4 to 10 Pa, and the discharge state is stable at 0.001 to 1000 Pa by devising the apparatus. Maintained. The gas pressure and input power related to the plasma state both affect the amount of free electrons and the kinetic energy of each free electron, the gas pressure greatly affects the number of free electrons, and the input power greatly affects the total amount of free electrons. To do. For the same input power, the lower the gas pressure, the smaller the number of free electrons, and the greater the energy of individual free electrons.

ナノシートにプラズマを照射している際は、自由電子がナノシートに衝突することでナノシートの硬化を起こすと共に、そのエネルギーを基体に伝えて、基体の温度上昇を引き起こす。個々の自由電子のエネルギーが大きいほどナノシートの硬化に有利であり、自由電子全体のエネルギーが小さいほど基体温度の上昇抑制に有利である。
ガス圧5Pa以下かつ投入電力0.4W/cm以上で個々の自由電子の運動エネルギーがナノシートの硬化に好ましい運動エネルギーになり、5W/cm以下の投入電力で基体の温度上昇を抑制することができるため好ましい。またガス圧0.4〜5Paとすることで投入電力0.1〜5W/cmの範囲でグロー放電できる。該ガス圧および投入電力の範囲では、で基体の温度上昇を抑えながらナノシートの硬化を効率的に進めることができるため好ましい。
プラズマ照射時間は長ければ長いほどナノシートの硬化が進み好ましいが、プラズマ照射中基体の温度は上昇を続けるので、プラズマ照射時間は基体の耐熱性が許容する範囲で設定する必要がある。プラズマ照射が可能な時間はガス圧、投入電力によるが、例えばガス圧0.5Pa、投入電力1W/cmの場合は、5分以上10分以下であると基体の温度上昇を抑えながらナノシートの硬化を効率的に進めることができるため好ましい。
When the nanosheet is irradiated with plasma, free electrons collide with the nanosheet to cause hardening of the nanosheet and transmit the energy to the substrate to cause an increase in temperature of the substrate. The greater the energy of individual free electrons, the more advantageous for curing the nanosheet, and the smaller the total energy of free electrons, the more advantageous for suppressing the rise in substrate temperature.
When the gas pressure is 5 Pa or less and the input power is 0.4 W / cm 2 or more, the kinetic energy of each free electron becomes a preferable kinetic energy for curing the nanosheet, and the temperature rise of the substrate is suppressed by the input power of 5 W / cm 2 or less. Is preferable. Further, by setting the gas pressure to 0.4 to 5 Pa, glow discharge can be performed in the range of input power of 0.1 to 5 W / cm 2 . The range of the gas pressure and input power is preferable because the nanosheet can be efficiently cured while suppressing the temperature rise of the substrate.
The longer the plasma irradiation time is, the more the nanosheet is cured and is preferable. However, since the temperature of the substrate continues to rise during the plasma irradiation, it is necessary to set the plasma irradiation time within a range that the heat resistance of the substrate allows. The time during which plasma irradiation is possible depends on the gas pressure and the input power. For example, in the case of a gas pressure of 0.5 Pa and an input power of 1 W / cm 2 , if the time is from 5 minutes to 10 minutes, It is preferable because the curing can proceed efficiently.

(電離放射線照射による硬化)
電離放射線は、物質と衝突することで、その物質から電子を弾き飛ばし、2次電子とイオンを発生させる作用のある放射線を指し、具体的には紫外線、X線、γ線、中性子線、電子線、イオン線等が挙げられる。物質から電子を弾き飛ばすことからも分かるように非常に大きなエネルギーを持っており、そのエネルギーで熱振動とは違う作用で層間配位子の除去、ナノシートの相転位ができるため基体の温度上昇を抑制しつつナノシートの硬化を行うことができ好ましい。
(Curing by ionizing radiation)
Ionizing radiation refers to radiation that has the effect of generating electrons and secondary electrons by colliding with a substance to blow off electrons from the substance. Specifically, ultraviolet rays, X rays, γ rays, neutron rays, electrons Wire, ion beam and the like. It has a very large energy, as can be seen from flipping electrons from the material, and this energy can remove the intercalation ligands and phase transition of the nanosheets by a different action from thermal vibration. It is preferable that the nanosheet can be cured while being suppressed.

(赤外線照射による硬化)
赤外線照射による硬化は、振動エネルギーを電磁波の形で加えることで短時間、局所的にナノシートを加熱するため基体の温度上昇を抑制しつつナノシートの硬化を行うことができ好ましい。レーザー光を使用すれば、ビーム径を通常の赤外線ランプより絞ることも可能である。
(Curing by infrared irradiation)
Curing by infrared irradiation is preferable because the nanosheet is locally heated for a short time by applying vibration energy in the form of electromagnetic waves, so that the nanosheet can be cured while suppressing the temperature rise of the substrate. If laser light is used, it is possible to narrow the beam diameter from that of a normal infrared lamp.

(マイクロ波照射による硬化)
マイクロ波照射法は、マイクロ波との共鳴でナノシート自身を振動させることで、基体に熱を伝えることなくナノシートを加熱することができるため基体の温度上昇を抑制しつつナノシートの硬化を行うことができ好ましい。
(Curing by microwave irradiation)
In the microwave irradiation method, the nanosheet itself can be vibrated by resonance with the microwave, so that the nanosheet can be heated without transferring heat to the substrate, so that the nanosheet can be cured while suppressing the temperature rise of the substrate. This is preferable.

(高温水蒸気曝露による硬化)
高温水蒸気曝露による硬化は、高温の水分子を吹き付けることで水分子が衝突した部分だけで加熱が起こり、基体全体の温度上昇は抑えられるため好ましい。また、水分子がアミン系配位子の除去、相転位の触媒になる効果が得られるため好ましい。
これらの硬化方法の中でも、電離物質線照射が基体の温度上昇抑制の点で好ましく、プラズマ照射が特に好ましい。
一方、トップコート層の厚さは、硬化後に3〜100nmとなることが好ましく、4〜30nmがより好ましく、5〜20nmが特に好ましい。トップコート層の厚みが下限以上では、耐摩耗性に優れるため好ましく、上限以下では、トップコート層を十分に固定化できるため好ましい。
(Curing by exposure to high temperature steam)
Curing by exposure to high-temperature steam is preferable because high-temperature water molecules are sprayed so that heating occurs only at the portions where the water molecules collide and the temperature rise of the entire substrate is suppressed. Further, it is preferable because water molecules have an effect of removing amine-based ligands and becoming a catalyst for phase rearrangement.
Among these curing methods, ionizing substance beam irradiation is preferable from the viewpoint of suppressing the temperature rise of the substrate, and plasma irradiation is particularly preferable.
On the other hand, the thickness of the topcoat layer is preferably 3 to 100 nm after curing, more preferably 4 to 30 nm, and particularly preferably 5 to 20 nm. When the thickness of the topcoat layer is not less than the lower limit, it is preferable because the abrasion resistance is excellent, and when the thickness is not more than the upper limit, the topcoat layer can be sufficiently fixed.

以下、実施例を挙げて詳細に説明するが、本発明はその趣旨を超えない限り、何らこれに限定されるものではない。なお実施例、比較例中の評価は下記の方法に従った。   Hereinafter, although an example is given and explained in detail, the present invention is not limited to this unless it exceeds the purpose. In addition, evaluation in an Example and a comparative example followed the following method.

<評価>
(1)外観
目視にて試験片のコート層外観(異物の有無)、ひび割れ(クラック)の有無、および基体層の状態を確認した。外観が良好である場合を○、外観が不良である場合を×とした。
(2)密着性
コート層にカッターナイフで1mm間隔の100個の碁盤目を作りニチバン製粘着テープ(商品名“セロテープ”(登録商標))を圧着し、垂直に強く引き剥がして基体上に残った碁盤目の数で評価した(JIS K5600−5−6に準拠)。
(3)鉛筆硬度
試験片に対して45°の角度に鉛筆をセットし、750gの荷重で鉛筆を押し当てながら引っかき試験片にキズがつくかどうか外観を確認した。キズがつかなかった最も硬い鉛筆の硬度をその試験片の鉛筆硬度とした(JIS K5600−5−4に準拠)。
(4)スチールウール硬度(SW)
#0000の粗さのスチールウールを直径1mmの円形の治具に貼り付け1kg荷重で、前後5cmの幅で20往復させて傷のつき具合を以下の5段階で目視評価した。
5:全くキズがつかない。
4:長さ3mm以内のキズが1〜5本発生
3:長さ3mm以内のキズが6〜20本発生
2:キズが20〜50本発生
1:キズが50本以上発生
(5)耐摩耗性
Calibrase社製CS−10Fの摩耗輪を用い、荷重500gで1000回転テーバー摩耗試験を行い、テーバー摩耗試験後のヘーズとテーバー摩耗試験前のヘーズとの差△Htを測定して評価した(ASTM D1044に準拠)。
(ヘーズ=Td/Tt×100、Td:散乱光線透過率、Tt:全光線透過率)
(6)光照射後の水接触角測定
試験片に1mW/cmの紫外線を1時間照射した後、水滴の接触角を接触角計(協和界面科学製ドロップマスターM−301型)を用いて測定した。
<Evaluation>
(1) Appearance The coat layer appearance (existence of foreign matter) of the test piece, the presence or absence of cracks (cracks), and the state of the base layer were visually confirmed. A case where the appearance was good was marked as ◯, and a case where the appearance was bad was marked as x.
(2) Adhesion 100 grids with a 1 mm interval are made on the coating layer with a knife, and a Nichiban adhesive tape (trade name “Serotape” (registered trademark)) is pressure-bonded, peeled off vertically and left on the substrate. It was evaluated by the number of round grids (conforming to JIS K5600-5-6).
(3) Pencil hardness A pencil was set at an angle of 45 ° with respect to the test piece, and the appearance was checked to see if the scratched test piece was scratched while pressing the pencil with a load of 750 g. The hardness of the hardest pencil that was not scratched was defined as the pencil hardness of the test piece (in accordance with JIS K5600-5-4).
(4) Steel wool hardness (SW)
A steel wool having a roughness of # 0000 was attached to a circular jig having a diameter of 1 mm, and it was reciprocated 20 times at a width of 5 cm in the front and back with a 1 kg load, and the degree of scratching was visually evaluated in the following five stages.
5: No scratch at all.
4: 1 to 5 scratches within 3 mm in length 3: 6 to 20 scratches within 3 mm in length 2: 20 to 50 scratches 1: 50 or more scratches (5) Abrasion resistance Using a wear wheel of CS-10F manufactured by Calibrase, a 1000-rotor Taber abrasion test was performed at a load of 500 g, and a difference ΔHt between the haze after the Taber abrasion test and the haze before the Taber abrasion test was measured and evaluated (ASTM D1044).
(Haze = Td / Tt × 100, Td: scattered light transmittance, Tt: total light transmittance)
(6) Water contact angle measurement after light irradiation After irradiating the test piece with 1 mW / cm 2 ultraviolet light for 1 hour, the contact angle of the water droplet was measured using a contact angle meter (Dropmaster M-301, manufactured by Kyowa Interface Science). It was measured.

<I.ハードコート層に用いるサンプル調製>
(参考例1)アクリルプライマーコート剤(A−1)の調製
還流冷却器及び撹拌装置を備え、窒素置換したフラスコ中にエチルメタクリレート(以下EMAと省略する)79.9部、シクロヘキシルメタクリレート(以下CHMAと省略する)33.6部、2−ヒドロキシエチルメタクリレート(以下HEMAと省略する)13.0部、メチルイソブチルケトン126.6部(以下MIBKと省略する)および2−ブタノール(以下2−BuOHと省略する)63.3部を添加混合した。混合物に窒素ガスを15分間通気して脱酸素した後、窒素ガス気流下にて70℃に昇温し、アゾビスイソブチロニトリル(以下AIBNと省略する)0.33部を加え、窒素ガス気流中、70℃で5時間攪拌下に反応させた。さらにAIBN0.08部を加えて80℃に昇温し3時間反応させ、不揮発分濃度が39.6%のアクリル共重合体溶液(A)を得た。アクリル共重合体の重量平均分子量はGPCの測定(カラム;Shodex GPCA−804、溶離液;THF)からポリスチレン換算で125,000であった。
得られたアクリル共重合体溶液(A)100部に、メチルイソブチルケトン43.2部、2−ブタノール21.6部、1−メトキシ−2−プロパノール83.5部を加えて混合し、チヌビン400(BASF(株)製トリアジン系紫外線吸収剤)5.3部、アクリル樹脂溶液(A)中のアクリル共重合体のヒドロキシ基1当量に対してイソシアネート基が1.0当量になるようにVESTANAT B1358/100(デグサ・ジャパン(株)製ポリイソシアネート化合物前駆体)10.6部を添加し、さらにジメチルジネオデカノエート錫0.015部を加えて25℃で1時間攪拌し、アクリルプライマーコート剤(A−1)を得た。
<I. Sample preparation for hard coat layer>
Reference Example 1 Preparation of Acrylic Primer Coating Agent (A-1) Equipped with a reflux condenser and a stirrer, 79.9 parts of ethyl methacrylate (hereinafter abbreviated as EMA) and cyclohexyl methacrylate (hereinafter referred to as CHMA) in a flask purged with nitrogen. 33.6 parts, 2-hydroxyethyl methacrylate (hereinafter abbreviated as HEMA) 13.0 parts, methyl isobutyl ketone 126.6 parts (hereinafter abbreviated as MIBK) and 2-butanol (hereinafter referred to as 2-BuOH) (Omitted) 63.3 parts were added and mixed. The mixture was deoxygenated by bubbling nitrogen gas for 15 minutes, then heated to 70 ° C. under a nitrogen gas stream, 0.33 parts of azobisisobutyronitrile (hereinafter abbreviated as AIBN) was added, and nitrogen gas was added. The reaction was carried out in an air stream at 70 ° C. with stirring for 5 hours. Further, 0.08 part of AIBN was added, the temperature was raised to 80 ° C., and the mixture was reacted for 3 hours to obtain an acrylic copolymer solution (A) having a nonvolatile content concentration of 39.6%. The weight average molecular weight of the acrylic copolymer was 125,000 in terms of polystyrene from the measurement of GPC (column; Shodex GPCA-804, eluent: THF).
To 100 parts of the resulting acrylic copolymer solution (A), 43.2 parts of methyl isobutyl ketone, 21.6 parts of 2-butanol, and 83.5 parts of 1-methoxy-2-propanol were added and mixed, and tinuvin 400 (BASF Co., Ltd. triazine ultraviolet absorber) 5.3 parts, VESTANAT B1358 so that the isocyanate group becomes 1.0 equivalent with respect to 1 equivalent of the hydroxy group of the acrylic copolymer in the acrylic resin solution (A). / 100 (Degussa Japan Co., Ltd. Polyisocyanate Compound Precursor) 10.6 parts, 0.015 parts dimethyldineodecanoate tin is added and stirred at 25 ° C. for 1 hour, acrylic primer coat Agent (A-1) was obtained.

(参考例2)シリコーン樹脂系ハードコート剤(I−1)の調製
水分散型コロイダルシリカ分散液(触媒化成工業(株)製 カタロイドSN−35、固形分濃度30重量%)133部に1Mの塩酸1.3部を加えよく攪拌した。この分散液を10℃まで冷却し、氷水浴で冷却下メチルトリメトキシシラン162部を滴下して加えた。メチルトリメトキシシランの滴下直後から反応熱で混合液の温度は上昇を開始し、滴下開始から5分後に60℃まで温度上昇した後、冷却の効果で徐々に混合液温度が低下した。混合液の温度が30℃になった段階でこの温度を維持するようにして30℃で10時間攪拌し、これに、硬化触媒としてコリン濃度45重量%のメタノール溶液0.8部、pH調整剤として酢酸5部、希釈溶剤として2−プロパノール200部を混合し、シリコーン樹脂系ハードコート剤(I−1)を得た。
(Reference Example 2) Preparation of silicone resin hard coat agent (I-1) Water-dispersed colloidal silica dispersion (catalyst SN-35, produced by Catalytic Chemical Industry Co., Ltd., solid content concentration: 30% by weight) 1.3 parts of hydrochloric acid was added and stirred well. The dispersion was cooled to 10 ° C., and 162 parts of methyltrimethoxysilane was added dropwise with cooling in an ice-water bath. Immediately after the addition of methyltrimethoxysilane, the temperature of the mixture started to increase due to the reaction heat, and after 5 minutes from the start of the addition, the temperature rose to 60 ° C., and then the temperature of the mixture gradually decreased due to the cooling effect. The mixture was stirred at 30 ° C. for 10 hours so that the temperature of the mixed solution reached 30 ° C., and 0.8 parts of a methanol solution having a choline concentration of 45% by weight as a curing catalyst was added thereto. As a mixture, 5 parts of acetic acid and 200 parts of 2-propanol as a diluting solvent were mixed to obtain a silicone resin hard coat agent (I-1).

(参考例3)紫外線硬化型アクリレートハードコート剤(I−2)の調製
多官能アクリレートオリゴマー(新中村化学(株)製U−15HA)100部、フェニル−1−ヒドロキシシクロヘキシルケトン(BASF(株)製Irgacure184)7部、1−メトキシ−2−プロパノール250部、2−プロパノール100部、有機溶剤分散コロイダルシリカ(日産化学工業(株)製IPA−ST 固形分濃度30%)50部を混合して紫外線硬化型アクリレートハードコート剤(I−2)を得た。
(Reference Example 3) Preparation of UV-curable acrylate hard coat agent (I-2) 100 parts of polyfunctional acrylate oligomer (Shin Nakamura Chemical Co., Ltd. U-15HA), phenyl-1-hydroxycyclohexyl ketone (BASF Corp.) 7 parts of Irgacure 184), 250 parts of 1-methoxy-2-propanol, 100 parts of 2-propanol, 50 parts of organic solvent-dispersed colloidal silica (IPA-ST solid content concentration 30%, manufactured by Nissan Chemical Industries, Ltd.) An ultraviolet curable acrylate hard coat agent (I-2) was obtained.

(参考例4)メラミン樹脂ハードコート剤(I−3)の調製
ヘキサメトキシメチロールメラミン(三井化学(株) 製サイメル350)100部、ポリエチレングリコール(分子量200)25部、1,4−ブタンジオール45部、イソプロピルアルコール118部、イソブタノール244部、マレイン酸7部、2,4−ジヒドロキシベンゾフェノン6部を混合してメラミン樹脂ハードコート剤(I−3)を得た。
(Reference Example 4) Preparation of Melamine Resin Hard Coating Agent (I-3) 100 parts of hexamethoxymethylol melamine (Simel 350 manufactured by Mitsui Chemicals, Inc.), 25 parts of polyethylene glycol (molecular weight 200), 45 of 1,4-butanediol 45 Parts, isopropyl alcohol 118 parts, isobutanol 244 parts, maleic acid 7 parts, 2,4-dihydroxybenzophenone 6 parts were mixed to obtain a melamine resin hard coat agent (I-3).

<II.トップコート層に用いるサンプル調製>
(参考例5)チタニアナノシートコート剤(II−1)の調製
炭酸セシウム、酸化チタンをモル比1:5.3の割合で混合し、800℃、20時間の焼成を2回行った。生成したチタン酸セシウムを希塩酸中で撹拌、ろ過、乾燥するという一連の処理を4回繰り返し、セシウムイオンを水素イオンに置き換えた層状チタン酸を得た。これに、層間剥離剤としてテトラブチルアンモニウムヒドロキシド水溶液を加え、14日間撹拌した後、純水で希釈して固形分濃度3重量%のチタニアナノシート水分散液を調製した。得られたチタニアナノシート水分散液をエタノールで希釈して固形分濃度0.3重量%のチタニアナノシートコート剤(II−1)を得た。
コート剤(II−1)をさらにエタノールで希釈して0.01重量%とし、石英ガラス板上に引き上げ速度毎秒3cmの速さで、ディップコート法で塗布した。
得られた試験片表面を原子間力顕微鏡で観察して、サイズおよび厚みの測定を行ったところ、得られたナノシートは面方向の寸法が10〜50μm、厚み2〜5nmであった。
<II. Sample preparation for topcoat layer>
Reference Example 5 Preparation of titania nanosheet coating agent (II-1) Cesium carbonate and titanium oxide were mixed at a molar ratio of 1: 5.3, and baked twice at 800 ° C. for 20 hours. A series of treatments of stirring, filtering and drying the produced cesium titanate in dilute hydrochloric acid was repeated four times to obtain layered titanic acid in which cesium ions were replaced with hydrogen ions. To this was added an aqueous tetrabutylammonium hydroxide solution as a delamination agent, stirred for 14 days, and then diluted with pure water to prepare a titania nanosheet aqueous dispersion having a solid content concentration of 3% by weight. The obtained titania nanosheet aqueous dispersion was diluted with ethanol to obtain a titania nanosheet coating agent (II-1) having a solid content concentration of 0.3% by weight.
The coating agent (II-1) was further diluted with ethanol to 0.01% by weight and applied onto a quartz glass plate by a dip coating method at a pulling rate of 3 cm per second.
When the surface of the obtained test piece was observed with an atomic force microscope and the size and thickness were measured, the obtained nanosheet had a dimension in the plane direction of 10 to 50 μm and a thickness of 2 to 5 nm.

(参考例6)ニオビアナノシートコート剤(II−2)の調製
硝酸カリウム、酸化ニオブをモル比1:3(K:Nb)の割合で混合し、600℃、2時間の仮焼を行った。粉末を粉砕混合し、再度900℃、20時間の本焼成を行い、徐冷してニオブ酸カリウム(KNb)を得た。生成したニオブ酸カリウムを1Mの硝酸中で懸濁・撹拌して24時間イオン交換を行い、遠心分離で上澄みを除去した後、純水で洗浄した。この一連のイオン交換処理を4回繰り返し、カリウムイオンを水素イオンに置き換えた層状ニオブ酸を得た。これに、層間剥離剤として3−メトキシプロピルアミン水溶液を加え、14日間撹拌した後、純水で希釈して固形分濃度3重量%のニオビアナノシート水分散液を調製した。得られたニオビアナノシート水分散液をエタノールで希釈して固形分濃度1重量%のニオビアナノシートコート剤(II−2)を得た。
コート剤(II−2)をさらにエタノールで希釈して0.01重量%とし、石英ガラス板上に引き上げ速度毎秒3cmの速さで、ディップコート法で塗布した。
得られた試験片表面を原子間力顕微鏡で観察して、サイズおよび厚みの測定を行ったところ、得られたナノシートは面方向の寸法が20〜50μm、厚み3〜8nmであった。
Reference Example 6 Preparation of Niobium Nano Sheet Coating Agent (II-2) Potassium nitrate and niobium oxide were mixed at a molar ratio of 1: 3 (K: Nb) and calcined at 600 ° C. for 2 hours. The powder was pulverized and mixed, fired again at 900 ° C. for 20 hours, and gradually cooled to obtain potassium niobate (KNb 3 O 8 ). The produced potassium niobate was suspended and stirred in 1 M nitric acid, and ion exchange was performed for 24 hours. The supernatant was removed by centrifugation, and then washed with pure water. This series of ion exchange treatment was repeated four times to obtain layered niobic acid in which potassium ions were replaced with hydrogen ions. To this was added a 3-methoxypropylamine aqueous solution as a delaminating agent, stirred for 14 days, and then diluted with pure water to prepare a niobium nanosheet aqueous dispersion having a solid content concentration of 3% by weight. The obtained niobium nanosheet aqueous dispersion was diluted with ethanol to obtain a niobium nanosheet coating agent (II-2) having a solid concentration of 1% by weight.
The coating agent (II-2) was further diluted with ethanol to 0.01% by weight and applied onto a quartz glass plate by a dip coating method at a pulling rate of 3 cm per second.
When the surface of the obtained specimen was observed with an atomic force microscope and the size and thickness were measured, the obtained nanosheet had a dimension in the plane direction of 20 to 50 μm and a thickness of 3 to 8 nm.

(参考例7)マイカナノシートコート剤(II−3)の調製
炭酸カリウム、酸化ケイ素、酸化アルミニウム、酸化マグネシウムをモル比1:4:3:3の割合で混合し、800℃、20時間の焼成を行った。生成した各種雲母類を希塩酸中で撹拌、ろ過、乾燥するという一連の処理を4回繰り返し、過剰の酸化カリウムを洗い流し、カリウムイオンを水素イオンに置き換えた雲母類混合物を得た。これに、層間剥離剤としてテトラブチルアンモニウム塩酸塩水溶液を加え、14日間撹拌した後、純水で希釈して固形分濃度6重量%のマイカナノシート水分散液を調製した。得られたマイカナノシート水分散液を2−プロパノールで希釈して固形分濃度0.5重量%のマイカナノシートコート剤(II−3)を得た。
コート剤(II−3)をさらにエタノールで希釈して0.01重量%とし、石英ガラス板上に引き上げ速度毎秒3cmの速さで、ディップコート法で塗布した。
得られた試験片表面を原子間力顕微鏡で観察して、サイズおよび厚みの測定を行ったところ、得られたナノシートは面方向の寸法が20〜80μm、厚み1〜4nmであった。
Reference Example 7 Preparation of Mica Nano Sheet Coating Agent (II-3) Potassium carbonate, silicon oxide, aluminum oxide and magnesium oxide were mixed at a molar ratio of 1: 4: 3: 3 and baked at 800 ° C. for 20 hours. Went. A series of treatments of stirring, filtering and drying the produced various mica in dilute hydrochloric acid was repeated 4 times to wash out excess potassium oxide, and a mica mixture in which potassium ions were replaced with hydrogen ions was obtained. To this was added an aqueous tetrabutylammonium hydrochloride solution as an interlayer release agent, and the mixture was stirred for 14 days, and then diluted with pure water to prepare a mica nanosheet aqueous dispersion having a solid content concentration of 6% by weight. The obtained mica nanosheet aqueous dispersion was diluted with 2-propanol to obtain a mica nanosheet coating agent (II-3) having a solid concentration of 0.5% by weight.
The coating agent (II-3) was further diluted with ethanol to 0.01% by weight and applied onto a quartz glass plate by a dip coating method at a pulling rate of 3 cm per second.
When the surface of the obtained specimen was observed with an atomic force microscope and the size and thickness were measured, the obtained nanosheet had a dimension in the plane direction of 20 to 80 μm and a thickness of 1 to 4 nm.

実施例1
ポリカーボネート樹脂(以下、PC樹脂と略称する)製シート(帝人化成(株)製PC−1111シート、150×150×5mm)に、参考例1で得られたアクリルプライマーコート剤(A−1)を、熱硬化後の膜厚が5.0μmになるようにディップコート法によって両面塗布し、25℃で20分静置後、130℃で1時間熱硬化させた。
次いで、該成形板の被膜表面上に参考例2で得られたシリコーン樹脂系ハードコート剤(I−1)を熱硬化後の膜厚が4.0μmになるようにディップコート法で塗布し、25℃で20分静置後、120℃で1時間熱硬化させた。該被覆シート表面にキセノンエキシマランプからの照射光(40nW/cm)をランプからの距離0.5mmで1分照射して親水化した。
その後、参考例5で得られたチタニアナノシートコート剤(II−1)を硬化後の膜厚が20nmになるようにディップコート法で塗布し、25℃で5分静置後、容量結合型内部電極方式のプラズマ発生装置でプラズマキャリアガス:アルゴンガス、プロセス真空度0.5Pa、RF電源13.56MHz3600W、電極面積3600cmの条件でプラズマを発生させて該被覆成形板表面に7分間照射して硬化し、ポリカーボネート樹脂積層体を得た。硬化終了時の基体の温度を基体表面に取り付けた熱伝対により測定したところ、130℃であった。得られた積層体の各評価結果を表1に示した。
Example 1
The acrylic primer coating agent (A-1) obtained in Reference Example 1 was applied to a sheet made of polycarbonate resin (hereinafter abbreviated as PC resin) (PC-1111 sheet manufactured by Teijin Chemicals Ltd., 150 × 150 × 5 mm). The film was coated on both sides by a dip coating method so that the film thickness after thermosetting was 5.0 μm, allowed to stand at 25 ° C. for 20 minutes, and then thermally cured at 130 ° C. for 1 hour.
Next, the silicone resin hard coat agent (I-1) obtained in Reference Example 2 was applied on the surface of the molded plate by a dip coating method so that the film thickness after thermosetting was 4.0 μm, After standing at 25 ° C. for 20 minutes, it was thermoset at 120 ° C. for 1 hour. The coated sheet surface was made hydrophilic by irradiating light (40 nW / cm 2 ) from a xenon excimer lamp for 1 minute at a distance of 0.5 mm from the lamp.
Thereafter, the titania nanosheet coating agent (II-1) obtained in Reference Example 5 was applied by dip coating so that the film thickness after curing was 20 nm, and allowed to stand at 25 ° C. for 5 minutes. Plasma is generated with an electrode type plasma generator under the conditions of plasma carrier gas: argon gas, process vacuum 0.5 Pa, RF power source 13.56 MHz 3600 W, electrode area 3600 cm 2 and irradiated on the surface of the coated molding plate for 7 minutes. Cured to obtain a polycarbonate resin laminate. When the temperature of the substrate at the end of curing was measured by a thermocouple attached to the substrate surface, it was 130 ° C. The evaluation results of the obtained laminate are shown in Table 1.

実施例2
参考例6で得られたニオビアナノシートコート剤(II−2)を硬化後の膜厚が15nmになるようにディップコート法で塗布した以外は実施例1と同様にしてポリカーボネート樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 2
A polycarbonate resin laminate is obtained in the same manner as in Example 1 except that the niobia nanosheet coating agent (II-2) obtained in Reference Example 6 is applied by dip coating so that the film thickness after curing is 15 nm. It was. The evaluation results of the obtained laminate are shown in Table 1.

実施例3
プラズマを9分間照射した以外は実施例2と同様にしてポリカーボネート樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 3
A polycarbonate resin laminate was obtained in the same manner as in Example 2 except that plasma was applied for 9 minutes. The evaluation results of the obtained laminate are shown in Table 1.

実施例4
ナノシートコート剤の硬化後の膜厚が5nmになるように塗布して、プラズマキャリアガス:アルゴンガス、プロセス真空度1.1Pa、RF電源13.56MHz3600W、電極面積3600cmの条件でプラズマを発生させて該被覆成形板表面に7分間照射して、硬化した以外は実施例2と同様にしてポリカーボネート樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 4
The nanosheet coating agent is applied so that the film thickness after curing is 5 nm, and plasma is generated under the conditions of plasma carrier gas: argon gas, process vacuum degree 1.1 Pa, RF power source 13.56 MHz 3600 W, electrode area 3600 cm 2. Then, a polycarbonate resin laminate was obtained in the same manner as in Example 2 except that the surface of the coated molded plate was cured by irradiation for 7 minutes. The evaluation results of the obtained laminate are shown in Table 1.

実施例5
PC樹脂製シート(150×150×5mm)に、参考例3で得られた紫外線硬化型アクリレートハードコート剤(I−2)を、硬化後の膜厚が5.0μmになるようにディップコート法によって両面塗布し、25℃で1分、80℃で1分静置後、積算照度が600mJ/cmになるように高圧水銀ランプで紫外線を照射して硬化させた以外は実施例2と同様にしてPC樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 5
A dip coating method in which the UV curable acrylate hard coating agent (I-2) obtained in Reference Example 3 is applied to a PC resin sheet (150 × 150 × 5 mm) so that the film thickness after curing is 5.0 μm. The same as in Example 2 except that the coating was applied on both sides and allowed to stand at 25 ° C. for 1 minute and 80 ° C. for 1 minute, and then cured by irradiating with a high-pressure mercury lamp so that the integrated illuminance was 600 mJ / cm 2. Thus, a PC resin laminate was obtained. The evaluation results of the obtained laminate are shown in Table 1.

実施例6
PC樹脂製シート(150×150×5mm)に、0.2%の2−アミノエタノールのメタノール溶液を流しかけて乾燥し、表面の汚れを除去すると共に表面に官能基を露出させた。該シートに参考例4で得られたメラミン樹脂ハードコート剤(I−3)を、硬化後の膜厚が5.0μmになるようにディップコート法によって両面塗布し、25℃で20分静置後、120℃で1時間熱硬化させた以外は実施例2と同様にしてPC樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 6
A PC resin sheet (150 × 150 × 5 mm) was dried by pouring a methanol solution of 0.2% 2-aminoethanol to remove dirt on the surface and to expose functional groups on the surface. The melamine resin hard coat agent (I-3) obtained in Reference Example 4 was applied to the sheet by dip coating so that the film thickness after curing was 5.0 μm, and left at 25 ° C. for 20 minutes. Thereafter, a PC resin laminate was obtained in the same manner as in Example 2 except that it was thermally cured at 120 ° C. for 1 hour. The evaluation results of the obtained laminate are shown in Table 1.

実施例7
参考例7で得られたマイカナノシートコート剤(II−3)を硬化後の膜厚が10nmになるようにディップコート法で塗布した以外は実施例1と同様にしてポリカーボネート樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 7
A polycarbonate resin laminate was obtained in the same manner as in Example 1 except that the mica nanosheet coating agent (II-3) obtained in Reference Example 7 was applied by dip coating so that the film thickness after curing was 10 nm. . The evaluation results of the obtained laminate are shown in Table 1.

実施例8
実施例1と同様にしてシリコーン樹脂ハードコート被覆PCシートを作成し、該被覆シート表面にブタンガスバーナーを2秒間照射して親水化した。
その後、参考例6で得られたニオビアナノシートコート剤(II−2)を、固定化後の膜厚が15nmになるようにディップコート法で塗布、25℃で5分静置後、1000Wのハロゲン赤外線ランプ2灯を備えた集光式ランプハウス中を分速5mの速さで4回通過させてナノシートを硬化しPC樹脂積層体を得た。
得られた積層体の各評価結果を表1に示した。尚、集光式ランプハウス内では明るい部分と暗い部分の境目の目視評価で幅5cmまで集光できていた。分速5mの速さでランプ内を通過させることでサンプルは0.6秒赤外線が集光した高温部を通過することになる。この赤外線の集光点(線)では静置サンプルの温度は最終的に1000℃まで上昇した。
Example 8
A silicone resin hard coat coated PC sheet was prepared in the same manner as in Example 1, and the surface of the coated sheet was made hydrophilic by irradiating it with a butane gas burner for 2 seconds.
Thereafter, the niobia nanosheet coating agent (II-2) obtained in Reference Example 6 was applied by a dip coating method so that the film thickness after immobilization was 15 nm, and allowed to stand at 25 ° C. for 5 minutes. The nanosheet was cured by passing through a condensing lamp house equipped with two halogen infrared lamps at a speed of 5 m / min to obtain a PC resin laminate.
The evaluation results of the obtained laminate are shown in Table 1. In the condensing type lamp house, it was possible to condense up to a width of 5 cm by visual evaluation of the boundary between the bright part and the dark part. By allowing the sample to pass through the lamp at a speed of 5 m / min, the sample passes through the high temperature portion where the infrared rays are condensed for 0.6 seconds. At the infrared condensing point (line), the temperature of the stationary sample finally increased to 1000 ° C.

実施例9
チタニアナノシートコート剤(II−1)を固定化後の膜厚が20nmになるようにディップコート法で塗布する以外は実施例9と同様にしてPC樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 9
A PC resin laminate was obtained in the same manner as in Example 9 except that the titania nanosheet coating agent (II-1) was applied by dip coating so that the film thickness after immobilization was 20 nm. The evaluation results of the obtained laminate are shown in Table 1.

実施例10
実施例1と同様にしてシリコーン樹脂ハードコート被覆PCシートを作成し、該被覆シート表面にキセノンエキシマランプからの照射光(40nW/cm)をランプからの距離0.5mmで30秒照射して親水化した。
その後、チタニアナノシートコート剤(II−1)を、固定化後の膜厚が20nmになるようにディップコート法で塗布、25℃で5分静置後、ArFエキシマランプを用いて10mW/cmの条件で10分間真空紫外線を照射して固定化してPC樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 10
A silicone resin hard coat coated PC sheet was prepared in the same manner as in Example 1, and the surface of the coated sheet was irradiated with irradiation light (40 nW / cm 2 ) from a xenon excimer lamp at a distance of 0.5 mm from the lamp for 30 seconds. Hydrophilized.
Thereafter, the titania nanosheet coating agent (II-1) was applied by dip coating so that the film thickness after immobilization was 20 nm, allowed to stand at 25 ° C. for 5 minutes, and then 10 mW / cm 2 using an ArF excimer lamp. The PC resin laminate was obtained by irradiating with vacuum ultraviolet rays for 10 minutes under the conditions described above and fixing. The evaluation results of the obtained laminate are shown in Table 1.

実施例11
実施例6のPC樹脂製シート(150×150×5mm)をポリメチルメタクリレート樹脂(PMMA,三菱レイヨン(株)製ダイアライトL)からなるシート(150×150×2mm)に変更した以外は、実施例6と同様にしてプラスチック積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 11
Except that the PC resin sheet (150 × 150 × 5 mm) of Example 6 was changed to a sheet (150 × 150 × 2 mm) made of polymethylmethacrylate resin (PMMA, Mitsubishi Rayon Co., Ltd. Dialite L) A plastic laminate was obtained in the same manner as in Example 6. The evaluation results of the obtained laminate are shown in Table 1.

実施例12
実施例6のPC樹脂製シート(150×150×5mm)をポリエチレン樹脂(PE)からなるシート(150×150×1mm)に変更した以外は、実施例6と同様にしてプラスチック積層体を得た。得られた積層体の各評価結果を表1に示した。ポリエチレン樹脂が不透明なためテーバー摩耗試験は実施していないが、スチールウール硬度評価により、優れた耐摩耗性が得られていることを確認した。
Example 12
A plastic laminate was obtained in the same manner as in Example 6 except that the PC resin sheet (150 × 150 × 5 mm) in Example 6 was changed to a sheet (150 × 150 × 1 mm) made of polyethylene resin (PE). . The evaluation results of the obtained laminate are shown in Table 1. Since the polyethylene resin is opaque, a Taber abrasion test was not performed, but it was confirmed by steel wool hardness evaluation that excellent abrasion resistance was obtained.

実施例13
実施例3のPC樹脂製シート(150×150×5mm)をポリエーテルスルホン樹脂(PES,住友化学(株)製スミカエクセル)からなるシート(150×150×1mm)に変更した以外は、実施例3と同様にしてプラスチック積層体を得た。得られた積層体の各評価結果を表1に示した。
Example 13
Example except that the PC resin sheet (150 × 150 × 5 mm) of Example 3 was changed to a sheet (150 × 150 × 1 mm) made of polyethersulfone resin (PES, Sumika Excel manufactured by Sumitomo Chemical Co., Ltd.) 3 to obtain a plastic laminate. The evaluation results of the obtained laminate are shown in Table 1.

実施例14
ガラス板(150×150×3mm)に参考例6で得られたニオビアナノシートコート剤(II−2)を硬化後の膜厚が15nmになるようにディップコート法で塗布し、実施例1と同様のプラズマ照射条件でガラス積層体を得た。得られた積層体の各評価結果を表1に示した。の各評価結果を表1に示した。尚、密着性テストに関してはガラス板にカッターナイフで碁盤目の傷をつけることはできなかったので実施していない。
Example 14
The niobium nanosheet coating agent (II-2) obtained in Reference Example 6 was applied to a glass plate (150 × 150 × 3 mm) by dip coating so that the film thickness after curing was 15 nm. A glass laminate was obtained under similar plasma irradiation conditions. The evaluation results of the obtained laminate are shown in Table 1. The evaluation results are shown in Table 1. The adhesion test was not performed because it was not possible to scratch the grid with a cutter knife on the glass plate.

実施例15
銅板(150×150×3mm)を0.1Mシュウ酸次いで純水で洗浄した後、参考例6で得られたニオビアナノシートコート剤(II−2)を硬化後の膜厚が15nmになるようにディップコート法で塗布し、実施例1と同様のプラズマ照射条件で銅積層体を得た。得られた銅積層体のスチールウール硬度(SW)を測定した結果を表1に示す。また、得られた銅積層体を60℃95%RH環境に2週間放置した後、取り出して外観を観察した。元の金属光沢を保ち外観変化は見られなかった。
Example 15
After washing the copper plate (150 × 150 × 3 mm) with 0.1M oxalic acid and then with pure water, the thickness of the niobium nanosheet coating agent (II-2) obtained in Reference Example 6 is 15 nm after curing. Was applied by dip coating, and a copper laminate was obtained under the same plasma irradiation conditions as in Example 1. Table 1 shows the results of measuring the steel wool hardness (SW) of the obtained copper laminate. Moreover, after leaving the obtained copper laminated body in a 60 degreeC95% RH environment for 2 weeks, it took out and observed the external appearance. The original metallic luster was maintained and no change in appearance was observed.

実施例16
銅板(150×150×3mm)を0.1Mシュウ酸次いで純水で洗浄した後、参考例6で得られたニオビアナノシートコート剤(II−2)を硬化後の膜厚が20nmになるようにディップコート法で塗布し、プラズマキャリアガス:アルゴンガス、プロセス真空度0.5Pa、RF電源13.56MHz1800W、電極面積3600cmの条件でプラズマを発生させて該被覆ステンレス板表面に20分間照射して硬化し、銅積層体を得た。得られた銅積層体のスチールウール硬度を測定した結果を表1に示す。また、得られた銅積層体を60℃95%RH環境に2週間放置した後、取り出して外観を観察した。元の金属光沢を保ち外観変化は見られなかった。
Example 16
After washing the copper plate (150 × 150 × 3 mm) with 0.1M oxalic acid and then with pure water, the niobium nanosheet coating agent (II-2) obtained in Reference Example 6 was cured to have a film thickness of 20 nm. A plasma is generated under the conditions of plasma carrier gas: argon gas, process vacuum 0.5 Pa, RF power source 13.56 MHz 1800 W, electrode area 3600 cm 2 and irradiated on the surface of the coated stainless steel plate for 20 minutes. And cured to obtain a copper laminate. Table 1 shows the results of measuring the steel wool hardness of the obtained copper laminate. Moreover, after leaving the obtained copper laminated body in a 60 degreeC95% RH environment for 2 weeks, it took out and observed the external appearance. The original metallic luster was maintained and no change in appearance was observed.

実施例17〜24
表1に示す条件でプラズマ照射した以外は実施例1と同様にしてPC樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Examples 17-24
A PC resin laminate was obtained in the same manner as in Example 1 except that plasma irradiation was performed under the conditions shown in Table 1. The evaluation results of the obtained laminate are shown in Table 1.

比較例1
PC樹脂製シート(150×150×5mm)の各評価結果を表1に示した。
Comparative Example 1
Each evaluation result of the PC resin sheet (150 × 150 × 5 mm) is shown in Table 1.

比較例2
PC樹脂製シート(150×150×5mm)にアクリルプライマーコート剤(A−1)を、熱硬化後の膜厚が5.0μmになるようにディップコート法によって両面塗布し、25℃で20分静置後、130℃で1時間熱硬化させた。次いで、該成形板の被膜表面上に参考例2で得られたシリコーン樹脂系ハードコート剤(I−1)を熱硬化後の膜厚が4.0μmになるようにディップコート法で塗布し、25℃で20分静置後、120℃で1時間熱硬化させてPC樹脂積層体を得た。得られた積層体の各評価結果を表1に示した。
Comparative Example 2
Acrylic primer coating agent (A-1) is coated on both sides of a PC resin sheet (150 × 150 × 5 mm) by a dip coating method so that the film thickness after thermosetting is 5.0 μm, and 20 minutes at 25 ° C. After standing, it was thermoset at 130 ° C. for 1 hour. Next, the silicone resin hard coat agent (I-1) obtained in Reference Example 2 was applied on the surface of the molded plate by a dip coating method so that the film thickness after thermosetting was 4.0 μm, After standing at 25 ° C. for 20 minutes, thermosetting was performed at 120 ° C. for 1 hour to obtain a PC resin laminate. The evaluation results of the obtained laminate are shown in Table 1.

比較例3
銅板(150×150×3mm)を0.1Mシュウ酸次いで純水で洗浄して表面の不純物を除去した。スチールウール硬度を測定した結果を表1に示す。該銅板を60℃95%RH環境に2週間放置した後、取り出して外観を観察したところ腐蝕が進行して金属光沢を失い、緑青色に変色していた。
Comparative Example 3
The copper plate (150 × 150 × 3 mm) was washed with 0.1 M oxalic acid and then with pure water to remove surface impurities. The results of measuring steel wool hardness are shown in Table 1. The copper plate was left in an environment of 60 ° C. and 95% RH for 2 weeks, and then taken out and observed for appearance. As a result, corrosion progressed, the metallic luster was lost, and the color turned greenish blue.

比較例4
PC樹脂製シート(150×150×5mm)にアクリルプライマーコート剤(A−1)を、熱硬化後の膜厚が5.0μmになるようにディップコート法によって両面塗布し、25℃で20分静置後、130℃で1時間熱硬化させた。次いで、該成形板の被膜表面上に参考例2で得られたシリコーン樹脂系ハードコート剤(I−1)を熱硬化後の膜厚が4.0μmになるようにディップコート法で塗布し、25℃で20分静置後、120℃で1時間乾燥させた。該被覆シート表面にキセノンエキシマランプからの照射光(40nW/cm)をランプからの距離0.5mmで30秒照射して親水化した。
その後、ニオビアナノシートコート剤(II−2)を、固定化後の膜厚が15nmになるようにディップコート法で塗布、25℃で5分静置してPC樹脂積層体を得た。ニオビアナノシートはハードコート層上で固定化されておらず、布で拭き取ることで容易に除去できた。耐摩耗性の評価ではナノシート層が容易に剥れて除去されるので下地のハードコート層の性能がそのまま反映された結果になった。得られた積層体の各評価結果を表1に示した。
Comparative Example 4
Acrylic primer coating agent (A-1) is coated on both sides of a PC resin sheet (150 × 150 × 5 mm) by a dip coating method so that the film thickness after thermosetting is 5.0 μm, and 20 minutes at 25 ° C. After standing, it was thermoset at 130 ° C. for 1 hour. Next, the silicone resin hard coat agent (I-1) obtained in Reference Example 2 was applied on the surface of the molded plate by a dip coating method so that the film thickness after thermosetting was 4.0 μm, The mixture was allowed to stand at 25 ° C. for 20 minutes and then dried at 120 ° C. for 1 hour. The surface of the coated sheet was made hydrophilic by irradiating light (40 nW / cm 2 ) from a xenon excimer lamp at a distance of 0.5 mm from the lamp for 30 seconds.
Thereafter, the niobia nanosheet coating agent (II-2) was applied by a dip coating method so that the film thickness after immobilization was 15 nm, and allowed to stand at 25 ° C. for 5 minutes to obtain a PC resin laminate. The niobia nanosheet was not immobilized on the hard coat layer and could be easily removed by wiping with a cloth. In the evaluation of wear resistance, the nanosheet layer was easily peeled off and removed, so that the performance of the underlying hard coat layer was reflected as it was. The evaluation results of the obtained laminate are shown in Table 1.

比較例5
PC樹脂製シート(150×150×5mm)にアクリルプライマーコート剤(A−1)を、熱硬化後の膜厚が5.0μmになるようにディップコート法によって両面塗布し、25℃で20分静置後、130℃で1時間熱硬化させた。次いで、該成形板の被膜表面上に参考例2で得られたシリコーン樹脂系ハードコート剤(I−1)を熱硬化後の膜厚が4.0μmになるようにディップコート法で塗布し、25℃で20分静置後、120℃で1時間熱硬化させた。該被覆シート表面にキセノンエキシマランプからの照射光(40nW/cm)をランプからの距離0.5mmで30秒照射して親水化した。
その後、ニオビアナノシートコート剤(II−2)を、固定化後の膜厚が15nmになるようにディップコート法で塗布、25℃で5分静置後、400℃の電気炉中で2分間加熱した。加熱中、PC樹脂中の水分が急激に気化して発泡した。
Comparative Example 5
Acrylic primer coating agent (A-1) is coated on both sides of a PC resin sheet (150 × 150 × 5 mm) by a dip coating method so that the film thickness after thermosetting is 5.0 μm, and 20 minutes at 25 ° C. After standing, it was thermoset at 130 ° C. for 1 hour. Next, the silicone resin hard coat agent (I-1) obtained in Reference Example 2 was applied on the surface of the molded plate by a dip coating method so that the film thickness after thermosetting was 4.0 μm, After standing at 25 ° C. for 20 minutes, it was thermoset at 120 ° C. for 1 hour. The surface of the coated sheet was made hydrophilic by irradiating light (40 nW / cm 2 ) from a xenon excimer lamp at a distance of 0.5 mm from the lamp for 30 seconds.
Thereafter, the niobium nanosheet coating agent (II-2) was applied by dip coating so that the film thickness after immobilization was 15 nm, allowed to stand at 25 ° C. for 5 minutes, and then in an electric furnace at 400 ° C. for 2 minutes. Heated. During heating, the water in the PC resin was rapidly vaporized and foamed.

Figure 2013169710
Figure 2013169710

本発明の基体に鱗片状の金属酸化物微粒子を用いてなる層を硬化する方法は、ハードコート被覆プラスチックに極めて高い耐摩耗性、優れた防汚性を付与できる。従って、航空機、車輛、自動車の窓、建設機械の窓、ビル、家、ガレージ、温室、アーケードの窓、前照灯レンズ、光学用のレンズ、ミラー、眼鏡、ゴーグル、遮音壁、信号機灯のレンズ、カーブミラー、風防、銘板、その他各種シート、フィルム等に好適に使用することができる。
The method of curing a layer comprising scaly metal oxide fine particles on the substrate of the present invention can impart extremely high wear resistance and excellent antifouling property to the hard coat-coated plastic. Therefore, aircraft, vehicle, automobile window, construction machine window, building, house, garage, greenhouse, arcade window, headlight lens, optical lens, mirror, glasses, goggles, sound insulation wall, traffic light lens, It can be suitably used for curved mirrors, windshields, nameplates, other various sheets, films and the like.

Claims (8)

基体上に鱗片状の金属酸化物微粒子を含む硬化層を形成する方法であって、
(工程−i)基体を準備する工程、
(工程−ii)基体上に鱗片状の金属酸化物微粒子分散液を塗布して塗布層を形成する工程、
(工程−iii)塗布層を乾燥して乾燥層を形成する工程、並びに
(工程−iv)乾燥層中の鱗片状の金属酸化物微粒子を、電離物質線照射、電離放射線照射、赤外線照射、マイクロ波照射および高温水蒸気曝露よりなる群から選ばれる少なくとも1種の方法で硬化して硬化層を形成する工程、
を含む前記方法。
A method of forming a cured layer containing scaly metal oxide fine particles on a substrate,
(Step-i) a step of preparing a substrate,
(Step-ii) A step of applying a scaly metal oxide fine particle dispersion on a substrate to form a coating layer,
(Step-iii) Step of drying the coating layer to form a dry layer, and (Step-iv) Scale-like metal oxide fine particles in the dry layer are irradiated with ionizing substance beam, ionizing radiation, infrared irradiation, micro A step of curing by at least one method selected from the group consisting of wave irradiation and high-temperature water vapor exposure to form a cured layer;
Including said method.
工程−ivは、電離物質線照射で行う請求項1に記載の方法。   The method according to claim 1, wherein step-iv is performed by ionizing substance beam irradiation. 工程−ivは、プラズマ照射で行う請求項1または2に記載の方法。   The method according to claim 1, wherein step-iv is performed by plasma irradiation. 基体は、ガラス、金属、セラミック、プラスチックよりなる群から選ばれる一種である請求項1〜3のいずれか一項に記載の方法。   The method according to any one of claims 1 to 3, wherein the substrate is one kind selected from the group consisting of glass, metal, ceramic, and plastic. 基体は、透明基体である請求項1〜4のいずれか一項に記載の方法。   The method according to any one of claims 1 to 4, wherein the substrate is a transparent substrate. 請求項1〜5のいずれか一項記載の方法により製造された部材。   The member manufactured by the method as described in any one of Claims 1-5. 部材が窓用途である請求項6記載の部材。   The member according to claim 6, wherein the member is used for a window. 部材が車両窓用途である請求項6記載の部材。   The member according to claim 6, wherein the member is used for a vehicle window.
JP2012034868A 2012-02-21 2012-02-21 Method for forming a cured layer containing scaly metal oxide fine particles Expired - Fee Related JP5919028B2 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2012034868A JP5919028B2 (en) 2012-02-21 2012-02-21 Method for forming a cured layer containing scaly metal oxide fine particles
US14/377,303 US10280272B2 (en) 2012-02-21 2013-02-20 Laminate having a top coat layer containing flaky metal oxide fine particles
EP13752448.4A EP2818313B1 (en) 2012-02-21 2013-02-20 Laminate including top coating layer comprising scaly metal oxide fine particles
PT13752448T PT2818313T (en) 2012-02-21 2013-02-20 Laminate including top coating layer comprising scaly metal oxide fine particles
PCT/JP2013/055026 WO2013125724A1 (en) 2012-02-21 2013-02-20 Laminate including top coating layer comprising scaly metal oxide fine particles
KR1020147023168A KR20150002591A (en) 2012-02-21 2013-02-20 Laminate including top coating layer comprising scaly metal oxide fine particles
CN201380010399.5A CN104203557B (en) 2012-02-21 2013-02-20 There is the duplexer of the top coat formed by lepidiod metal oxide microparticle
TW102105985A TWI617458B (en) 2012-02-21 2013-02-21 a laminate having a top coat composed of scaly metal oxide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012034868A JP5919028B2 (en) 2012-02-21 2012-02-21 Method for forming a cured layer containing scaly metal oxide fine particles

Publications (2)

Publication Number Publication Date
JP2013169710A true JP2013169710A (en) 2013-09-02
JP5919028B2 JP5919028B2 (en) 2016-05-18

Family

ID=49263988

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012034868A Expired - Fee Related JP5919028B2 (en) 2012-02-21 2012-02-21 Method for forming a cured layer containing scaly metal oxide fine particles

Country Status (1)

Country Link
JP (1) JP5919028B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116998A (en) * 2014-12-18 2016-06-30 国立研究開発法人物質・材料研究機構 Colloidal solution, silica nanosheet network structure-covered base material, base material for gene transfection, and method for producing the colloidal solution
JP2016128157A (en) * 2015-01-09 2016-07-14 リコーイメージング株式会社 Production method of silica aerogel film

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111348A (en) * 2002-07-24 2004-04-08 Kansai Paint Co Ltd Semiconductor fine particle dispersion liquid, manufacturing method of semiconductor fine particule dispersion liquid, forming method of semiconductor fine particle film, and photoelectrode
JP2005290369A (en) * 2004-03-10 2005-10-20 Central Japan Railway Co Titanium oxide-coating agent, and forming method for titanium oxide-coating film
JP2006047720A (en) * 2004-08-05 2006-02-16 Sumitomo Osaka Cement Co Ltd Method of forming transparent conductive film and transparent conductive film
JP2010219075A (en) * 2009-03-12 2010-09-30 Dainippon Printing Co Ltd Printed wiring board and method of manufacturing the same
JP2011068122A (en) * 2009-06-05 2011-04-07 Sumitomo Chemical Co Ltd Inorganic particle composite, and method for manufacturing the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004111348A (en) * 2002-07-24 2004-04-08 Kansai Paint Co Ltd Semiconductor fine particle dispersion liquid, manufacturing method of semiconductor fine particule dispersion liquid, forming method of semiconductor fine particle film, and photoelectrode
JP2005290369A (en) * 2004-03-10 2005-10-20 Central Japan Railway Co Titanium oxide-coating agent, and forming method for titanium oxide-coating film
JP2006047720A (en) * 2004-08-05 2006-02-16 Sumitomo Osaka Cement Co Ltd Method of forming transparent conductive film and transparent conductive film
JP2010219075A (en) * 2009-03-12 2010-09-30 Dainippon Printing Co Ltd Printed wiring board and method of manufacturing the same
JP2011068122A (en) * 2009-06-05 2011-04-07 Sumitomo Chemical Co Ltd Inorganic particle composite, and method for manufacturing the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016116998A (en) * 2014-12-18 2016-06-30 国立研究開発法人物質・材料研究機構 Colloidal solution, silica nanosheet network structure-covered base material, base material for gene transfection, and method for producing the colloidal solution
JP2016128157A (en) * 2015-01-09 2016-07-14 リコーイメージング株式会社 Production method of silica aerogel film

Also Published As

Publication number Publication date
JP5919028B2 (en) 2016-05-18

Similar Documents

Publication Publication Date Title
JP5877086B2 (en) Plastic laminate and manufacturing method thereof
JP5944069B2 (en) Polymer substrate with hard coat layer and method for producing the same
WO2012173040A1 (en) Water-vapor barrier film, process for producing same, and electronic appliance including same
TW201411177A (en) Anti-reflective hard coat and anti-reflective article
JP6820354B2 (en) Coating composition, antireflection film and its manufacturing method, laminate, and solar cell module
JP2011000723A (en) Heat shielding article, method for manufacturing heat shielding article, and outdoor building member
JP6524261B2 (en) Method of manufacturing laminate
WO2012073685A1 (en) Anti-fog coated article
JP2012131194A (en) Gas barrier film
WO2014178332A1 (en) Gas barrier film and method for producing same
CN110475619B (en) Coated metal plate and method for producing same
JP6073549B2 (en) Gas barrier film, electronic device, and method for producing gas barrier film
JP2020501948A (en) Articles with hard coat
JP5919028B2 (en) Method for forming a cured layer containing scaly metal oxide fine particles
TWI617458B (en) a laminate having a top coat composed of scaly metal oxide fine particles
JP2002346393A (en) Photocatalyst and method for manufacturing the same
JP5919027B2 (en) Process for producing plastic laminate for curing scale-like metal oxide fine particles
JP2010538816A (en) Method for transparent coating of substrate with plasma at atmospheric pressure
KR100763741B1 (en) Manufacturing methods of ultra hydrophilic surface
JP2015072429A (en) Porous silica film
JP2003329805A (en) Antireflection film and method for manufacturing antireflection film
JP2010024367A (en) Water-repellent goods, window glass for architecture and glass window for vehicle
JP2019130889A (en) Laminate and resin film
JP5111792B2 (en) Coating agent for optical equipment
JP2008069263A (en) Method for producing laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150805

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160323

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R150 Certificate of patent or registration of utility model

Ref document number: 5919028

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees