JP2013169621A - Method for machining gear and device for creating nc data - Google Patents

Method for machining gear and device for creating nc data Download PDF

Info

Publication number
JP2013169621A
JP2013169621A JP2012035045A JP2012035045A JP2013169621A JP 2013169621 A JP2013169621 A JP 2013169621A JP 2012035045 A JP2012035045 A JP 2012035045A JP 2012035045 A JP2012035045 A JP 2012035045A JP 2013169621 A JP2013169621 A JP 2013169621A
Authority
JP
Japan
Prior art keywords
tooth
section
order
machining
gear
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012035045A
Other languages
Japanese (ja)
Other versions
JP5887987B2 (en
Inventor
Masayuki Tsukihara
昌之 月原
Tadashi Osanawa
忠史 長縄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2012035045A priority Critical patent/JP5887987B2/en
Publication of JP2013169621A publication Critical patent/JP2013169621A/en
Application granted granted Critical
Publication of JP5887987B2 publication Critical patent/JP5887987B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method for machining a gear by which such a gear can be machined that an adjacent pitch error caused by wear of a tool is made small, without correcting a depth of cut according to wear of the tool.SOLUTION: When two adjacent desired tooth grooves of a gear W are defined as a first tooth groove 1g and a second tooth groove 2g, a tooth groove machining order 1c to 16c is allotted in such a way that: in a first rotative direction, odd machining order numbers are allotted to the tooth grooves starting from the first tooth groove 1g to the adjacent tooth grooves in an ascending order; and in a second rotative direction, even machining order numbers are allotted to the tooth grooves starting from the second tooth groove 2g to the adjacent tooth grooves in an ascending order. The tooth grooves are machined in accordance with the allotted tooth groove machining order.

Description

本発明は、工作機械を用いて歯車を加工する歯車加工方法及びNCデータ作成装置に関するものである。   The present invention relates to a gear machining method and NC data creation device for machining a gear using a machine tool.

歯車のピッチ誤差は、歯車の回転作動時に振動、騒音などを発生する原因となるため所定の値以下にする必要がある。なかでも、隣接する単一ピッチ寸法の差である隣接ピッチ誤差が大きいと、歯の噛み合いが隣の歯へスムースに移行しないため過大な衝撃や騒音を発生するので、隣接ピッチ誤差を小さくすることが重要である。
図8に示すように、歯車の歯溝を1歯溝ずつ順番に加工した場合には、1番目に加工した歯溝1cと最後の16番目に加工した歯溝16cが隣接する。工具7は加工量に応じて摩耗するから、工具の磨耗量だけ歯溝が徐々に狭く加工される。図9に示すように、歯溝1cの加工終了時から歯溝16cの加工終了時までの工具の半径摩耗量をuとすると、歯面a方向の歯溝1cと歯溝16cの間の単一ピッチPr16は、歯溝1cと歯溝2cの間の単一ピッチPrや歯溝15cと歯溝16cの間の単一ピッチPr15よりuだけ大きくなり、歯面b方向では単一ピッチPr16´がuだけ小さくなる。すなわち隣接ピッチ誤差が大きくなる。この工具の磨耗に起因する隣接ピッチ誤差を低減するため、工具の切込量を工具の磨耗に応じて変えることでピッチ誤差を低減する従来技術がある。(特許文献1参照)
Since the gear pitch error causes vibration, noise, and the like during the rotation of the gear, it is necessary to set the gear pitch error below a predetermined value. In particular, if the adjacent pitch error, which is the difference between adjacent single pitch dimensions, is large, the tooth meshing does not move smoothly to the adjacent tooth, which generates excessive impact and noise. is important.
As shown in FIG. 8, when the gear teeth are processed in order, one tooth groove 1c and the last 16th tooth groove 16c are adjacent to each other. Since the tool 7 is worn according to the amount of machining, the tooth gap is gradually narrowed by the amount of wear of the tool. As shown in FIG. 9, when the radial wear amount of the tool from the end of the processing of the tooth groove 1c to the end of the processing of the tooth groove 16c is u, a single space between the tooth groove 1c and the tooth groove 16c in the tooth surface a direction is shown. The single pitch Pr 16 is larger than the single pitch Pr 1 between the tooth groove 1c and the tooth groove 2c and the single pitch Pr 15 between the tooth groove 15c and the tooth groove 16c, and is single in the tooth surface b direction. The pitch Pr 16 ′ is reduced by u. That is, the adjacent pitch error increases. In order to reduce the adjacent pitch error due to the wear of the tool, there is a conventional technique for reducing the pitch error by changing the cutting depth of the tool according to the wear of the tool. (See Patent Document 1)

特開2000−280119号公報JP 2000-280119 A

従来技術ではあらかじめ工具の磨耗量を予測し、その値に対応して加工量の増加に合わせて工具の切込量を補正する必要がある。工具の磨耗量は加工条件や工作物の材質により異なり、正確な磨耗量を予測するには事前にテスト加工をする必要があり、工数を要している。また、加工数が少ない場合はテスト加工を省略して、標準化されたデータから磨耗量を予測するがその精度は悪くなる。
本発明は上記事情に鑑みてなされたものであり、工具磨耗に応じて切込み量の補正をすることなく隣接ピッチ誤差の小さな歯車加工ができる加工方法を提供することを目的とする。
In the prior art, it is necessary to predict the amount of wear of the tool in advance and to correct the amount of cutting of the tool in accordance with the increase in the amount of machining. The amount of wear of the tool varies depending on the machining conditions and the material of the workpiece, and it is necessary to perform test processing in advance in order to predict the accurate amount of wear, which requires man-hours. If the number of machining is small, the test machining is omitted and the wear amount is predicted from the standardized data, but the accuracy is deteriorated.
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a machining method capable of gear processing with a small adjacent pitch error without correcting the depth of cut according to tool wear.

上記の課題を解決するための請求項1に係る発明の特徴は、被加工歯車と工具を相対的に移動させ前記被加工歯車の歯溝を1歯溝ずつ加工する歯車加工方法において、
前記歯溝の総数をnとし、1からnまでの昇順に連続する整数の数列を、2個以上の数を含む所望のm個の区間に区分し、含まれる数字の小さいものから順に第1区間、第2区間、・・第m区間とし、所望の隣接する歯溝を第1歯溝と第2歯溝とし、第1歯溝から第2歯溝の方向の回転方向を第2回転方向とし、第2歯溝から第1歯溝の方向の回転方向を第1回転方向とするとき、
前記歯溝の加工する順番である歯溝加工順番を、
第1歯溝から第1回転方向の歯溝へ第1区間の奇数を昇順に割付け、
第2歯溝から第2回転方向の歯溝へ第1区間の偶数を昇順に割付け、
第2区間の奇数を、一方の第1区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付け、
第2区間の偶数を、他方の第1区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付け、
以下同様にして、同一区間の奇数と偶数を、前の区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けることを第m区間まで実施する、
ように前記被加工歯車に対して割付ける加工順番割付け工程と、
前記加工順番割付け工程で割付けられた順番で前記被加工歯溝を加工する歯車加工工程を備えることである。
A feature of the invention according to claim 1 for solving the above-described problem is that in a gear machining method for machining a tooth groove of the gear to be machined one by one by moving a workpiece gear and a tool relatively,
The total number of the tooth gaps is n, and an integer number sequence that is continuous in ascending order from 1 to n is divided into desired m sections including two or more numbers, and the first number in order from the smallest number is included. Section, second section,... M section, desired adjacent tooth gaps as first tooth groove and second tooth groove, and the rotation direction from the first tooth groove to the second tooth groove is the second rotation direction. When the rotation direction from the second tooth gap to the first tooth gap is the first rotation direction,
The tooth gap processing order, which is the order in which the tooth grooves are processed,
Assign the odd number of the first section from the first tooth gap to the tooth groove in the first rotation direction in ascending order,
Allocating the even number of the first section from the second tooth gap to the tooth groove in the second rotational direction in ascending order,
Assign the odd number of the second section in ascending order from the tooth gap adjacent to the tooth groove assigned the maximum number of the number of the first section of one,
Assign the even number of the second section in ascending order from the tooth gap adjacent to the tooth groove that assigned the maximum number of the number of the first section of the other,
In the same manner, the odd and even numbers in the same section are assigned up to the m-th section in ascending order from the tooth gap adjacent to the tooth gap to which the maximum number of the previous section is assigned.
A processing order allocating step for allocating to the gear to be processed,
It is provided with the gear processing process which processes the said to-be-processed tooth space in the order allocated by the said process order allocation process.

本請求項の歯車加工方法によれば、隣接する歯溝の加工順番が3以上離れないため、加工に伴う工具摩耗に起因する隣接ピッチ誤差が少ない。   According to the gear machining method of this claim, since the machining order of adjacent tooth gaps is not separated by 3 or more, there is little adjacent pitch error due to tool wear associated with machining.

請求項2に係る発明の特徴は、請求項1に係る発明において、前記第1回転方向の歯溝へは奇数のみを割付け、前記第2回転方向の歯溝へは偶数のみを割付けることである。   The invention according to claim 2 is characterized in that, in the invention according to claim 1, only odd numbers are assigned to the tooth grooves in the first rotation direction, and only even numbers are assigned to the tooth grooves in the second rotation direction. is there.

本請求項の歯車加工方法によれば、隣接する歯溝の加工順番が2以上離れないため、加工に伴う工具摩耗に起因する隣接ピッチ誤差が少ない。   According to the gear machining method of the present claim, since the machining order of adjacent tooth gaps is not separated by two or more, the adjacent pitch error due to tool wear accompanying machining is small.

請求項3に係る発明の特徴は、被加工歯車の歯溝を1歯溝ずつ順番に割出し加工するNCデータを作成するNCデータ作成装置において、
前記被加工歯車及び工具の形状、加工条件等を示すデータを入力する入力手段と、
前記歯溝の加工する順番である歯溝加工順番を、
前記歯溝の総数をnとし、1からnまでの昇順に連続する整数の数列を、2個以上の数を含む所望のm個の区間に区分し、含まれる数字の小さいものから順に第1区間、第2区間、・・第m区間とし、所望の隣接する歯溝を第1歯溝と第2歯溝とし、第1歯溝から第2歯溝の方向の回転方向を第2回転方向とし、第2歯溝から第1歯溝の方向の回転方向を第1回転方向とするとき、
第1歯溝から第1回転方向の歯溝へ前記第1区間の奇数を昇順に割付けし、
第2歯溝から第2回転方向の歯溝へ前記第1区間の偶数を昇順に割付けし、
第2区間の奇数を、一方の第1区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けし、
第2区間の偶数を、他方の第1区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けし、
以下同様にして、同一区間の奇数と偶数を、前の区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けることを第m区間まで実施する、
ことで決める加工順番演算手段と
前記加工順番演算手段により演算された前記歯溝加工順番に基づき、所定の歯溝を加工するときの前記被加工歯車の割出し角度を演算する角度演算手段と、
1個の前記歯溝を加工するための加工NCデータである歯溝加工NCデータを、前記被加工歯車及び前記工具の形状に基づき作成する歯溝加工NCデータ作成手段と
前記加工順番演算手段により演算された前記歯溝加工順番と、前記角度演算手段により演算された前記被加工歯車の割出し角度と、前記歯溝加工データ作成手段により作成された歯溝加工NCデータに基づき前記被加工歯車を加工するNCデータを作成するNCデータ作成手段と、を備えることである。
A feature of the invention according to claim 3 is an NC data creating apparatus for creating NC data for indexing and processing the tooth grooves of the gear to be processed one by one in the order of gear teeth.
Input means for inputting data indicating the shape of the gear to be processed and the tool, processing conditions, and the like;
The tooth gap processing order, which is the order in which the tooth grooves are processed,
The total number of the tooth gaps is n, and an integer number sequence that is continuous in ascending order from 1 to n is divided into desired m sections including two or more numbers, and the first number in order from the smallest number is included. Section, second section,... M section, desired adjacent tooth gaps as first tooth groove and second tooth groove, and the rotation direction from the first tooth groove to the second tooth groove is the second rotation direction. When the rotation direction from the second tooth gap to the first tooth gap is the first rotation direction,
Assign the odd number of the first section from the first tooth gap to the tooth groove in the first rotation direction in ascending order,
Assign the even number of the first section from the second tooth gap to the tooth groove in the second rotational direction in ascending order,
The odd number of the second section is assigned in ascending order from the tooth gap adjacent to the tooth gap assigned the maximum number of one first section,
Assign the even number of the second section in ascending order from the tooth gap adjacent to the tooth groove that assigned the maximum number of the number of the other first section,
In the same manner, the odd and even numbers in the same section are assigned up to the m-th section in ascending order from the tooth gap adjacent to the tooth gap to which the maximum number of the previous section is assigned.
A processing order calculating means determined by the above, and an angle calculating means for calculating an index angle of the gear to be processed when processing a predetermined tooth gap based on the tooth groove processing order calculated by the processing order calculating means;
Tooth gap machining NC data creation means for creating tooth gap machining NC data, which is machining NC data for machining one tooth gap, based on the shape of the gear to be machined and the tool, and the machining order calculation means The gear to be machined based on the calculated tooth gap machining order, the index angle of the gear to be machined computed by the angle computing means, and the tooth gap machining NC data created by the tooth groove machining data creating means And NC data creating means for creating NC data for processing.

請求項1および請求項2に係る発明によれば、隣接する歯溝の加工順番が3以上離れることがないため、隣接する歯溝間の工具磨耗の差が2溝の加工による工具磨耗の差より大きくなることがない。このため、工具磨耗に起因する隣接ピッチ誤差が小さな歯車を加工できる。   According to the first and second aspects of the present invention, since the processing order of adjacent tooth spaces is not separated by 3 or more, the difference in tool wear between adjacent tooth spaces is the difference in tool wear due to processing of two grooves. It won't get bigger. For this reason, a gear having a small adjacent pitch error due to tool wear can be machined.

請求項3に係る発明によれば、隣接する歯溝の加工順番が3以上離れることがないため、隣接する歯溝間の工具磨耗の差が2溝の加工による工具磨耗の差より大きくなることがない。このため、工具磨耗に起因する隣接ピッチ誤差が小さな歯車の加工が可能な歯車加工NCデータを作成できるNCデータ作成装置を提供できる。   According to the third aspect of the present invention, since the processing order of adjacent tooth spaces is not separated by 3 or more, the difference in tool wear between adjacent tooth spaces is larger than the difference in tool wear due to processing of two grooves. There is no. For this reason, it is possible to provide an NC data creation device capable of creating gear machining NC data capable of machining a gear with a small adjacent pitch error caused by tool wear.

本発明の実施形態における工作機械を示す全体図である。1 is an overall view showing a machine tool in an embodiment of the present invention. 本発明の実施形態におけるNCデータ作成装置を示すブロック図である。It is a block diagram which shows the NC data production apparatus in embodiment of this invention. 本発明の歯車加工方法の工程を示すフローチャートである。It is a flowchart which shows the process of the gear processing method of this invention. 本発明の実施形態における歯溝の加工順番と割出し角度の演算を示すフローチャートである。It is a flowchart which shows the calculation of the processing order and index angle of a tooth gap in embodiment of this invention. 本発明の実施形態における歯溝の加工順番を示す図である。It is a figure which shows the processing order of the tooth gap in embodiment of this invention. 本発明の変形態様における歯溝の加工順番と割出し角度の演算を示すフローチャートである。It is a flowchart which shows the calculation of the tooth groove processing order and index angle in the deformation | transformation aspect of this invention. 本発明の変形態様における歯溝の加工順番を示す図である。It is a figure which shows the processing order of the tooth gap in the deformation | transformation aspect of this invention. 従来の歯溝の加工順番を示す図である。It is a figure which shows the processing order of the conventional tooth space. 工具摩耗と隣接ピッチ誤差の関係を示す図である。It is a figure which shows the relationship between tool wear and an adjacent pitch error.

図1に示すように、工作機械1は、ベッド2を備え、ベッド2上にX軸方向に往復可能なテーブル3と、X軸に直交するZ軸方向に往復可能なコラム4を備えている。コラム4は、主軸台5をY軸方向に往復可能に支持しており、Y軸はX軸、Z軸に直交している。主軸台5は、主軸回転モータ(図示省略する)により回転駆動される主軸6を備え、主軸6の先端に工具7を保持している。テーブル3上には、割出し装置10を備え、割出し装置10の上端部には、Y軸に平行な軸(B軸)の周りに回転自在に支持された割出し板11を備えている。割出し板11は被加工歯車Wの下端を把持する把持部(図示省略する)を備え、割出しモータ(図示省略する)により所望の回転角度に割出すことができる。   As shown in FIG. 1, the machine tool 1 includes a bed 2, and includes a table 3 that can reciprocate in the X-axis direction on the bed 2 and a column 4 that can reciprocate in the Z-axis direction orthogonal to the X-axis. . The column 4 supports the headstock 5 so as to be able to reciprocate in the Y-axis direction, and the Y-axis is orthogonal to the X-axis and the Z-axis. The headstock 5 includes a main shaft 6 that is rotationally driven by a main shaft rotating motor (not shown), and holds a tool 7 at the tip of the main shaft 6. An indexing device 10 is provided on the table 3, and an indexing plate 11 that is rotatably supported around an axis (B axis) parallel to the Y axis is provided at the upper end of the indexing device 10. . The index plate 11 includes a grip portion (not shown) that grips the lower end of the gear W to be processed, and can be indexed to a desired rotation angle by an index motor (not shown).

制御装置30は、内部にNCデータ記憶部301、テーブル3の送りを制御するX軸制御部302、主軸台5の送りを制御するY軸制御部303、コラム4の送りを制御するZ軸制御部304、割出し装置7の割出し板8の回転を制御するB軸制御部305、工具の回転を制御する主軸制御部306を備えており、入力されるNCデータに基づき、X軸、Y軸、Z軸、B軸、主軸を制御する。   The control device 30 includes an NC data storage unit 301, an X-axis control unit 302 that controls the feed of the table 3, a Y-axis control unit 303 that controls the feed of the headstock 5, and a Z-axis control that controls the feed of the column 4. Unit 304, a B-axis control unit 305 for controlling the rotation of the indexing plate 8 of the indexing device 7, and a spindle control unit 306 for controlling the rotation of the tool. Based on the input NC data, the X-axis, Y-axis Controls the axis, Z axis, B axis, and main axis.

NCデータ作成装置50は図2に示すように、内部にデータ入力部501(入力手段)、加工順番演算部502(加工順番演算手段)、角度演算部503(角度演算手段)、歯溝加工NCデータ作成部504(歯溝加工NCデータ作成手段)、歯車加工NCデータ作成部505(NCデータ作成手段)を備えており、入力されたデータに基づき所定のプログラムを起動することで所定のNCデータを作成する。   As shown in FIG. 2, the NC data creation device 50 includes a data input unit 501 (input unit), a processing order calculation unit 502 (processing order calculation unit), an angle calculation unit 503 (angle calculation unit), and a tooth gap processing NC. A data creation unit 504 (tooth gap machining NC data creation means) and a gear machining NC data creation unit 505 (NC data creation means) are provided, and predetermined NC data is started by starting a predetermined program based on the input data. Create

本事例の歯車加工工程について図3のフローチャートに基づき説明する。
はじめに、あらかじめNCデータ作成装置50により作成された歯車加工NCデータを読み込むことで、歯溝加工NCデータと加工順番別割出し角度データ(詳細は後述する)を機械制御装置30のNCデータ記憶部301へ記録する(S1)。被加工歯車Wを搬入する。このとき、所望の歯溝が割出し装置10の回転基準位置と一致するように被加工歯車Wを割出し板11で把持することにより、X軸方向において回転基準位置と工具7は対向する位置に位置決めされる(S2)。主軸6を駆動して工具7を回転させる(S3)。機械制御装置30内に備えた、歯溝の加工数をカウントするカウンターQの値を1とする(S4)。割出し装置10を駆動して、Q番目に加工する歯溝の割出し角度ΘQ1に被加工歯車Wを割出す(S5)。歯溝加工NCデータの工具パスの指示に従い、X、Y、Z軸を移動させることで、工具7を歯溝の輪郭に沿って相対的に移動させることにより1個の歯溝の加工を実施する(S6)。カウンターQの値に1を加算する(S7)。全ての歯溝の加工が終了したか判定する。カウンターQの値が歯溝の総数であるnより大きいか判定する。Q>nならばステップS9へ移動、そうでないならステップS5へ移動し、次の歯溝の加工を繰り返す(S8)。X、Y、Z、B軸を移動させて、あらかじめ定められた加工源位置に復帰する(S9)。工具7の回転を停止させる(S10)。被加工歯車Wを搬出する(S11)。
The gear machining process of this example will be described based on the flowchart of FIG.
First, by reading the gear machining NC data created in advance by the NC data creation device 50, the tooth gap machining NC data and indexing angle data (details will be described later) are stored in the NC data storage unit of the machine control device 30. 301 is recorded (S1). The work gear W is carried in. At this time, the rotation reference position and the tool 7 are opposed to each other in the X-axis direction by gripping the gear W to be processed by the indexing plate 11 so that the desired tooth gap matches the rotation reference position of the indexing device 10. (S2). The spindle 6 is driven to rotate the tool 7 (S3). With the machine control device 30, and 1 counter values Q 1 for counting the number of executions of working tooth (S4). The indexing device 10 is driven, indexing the work gear W to tooth grooves of the indexing angle theta Q1 of processing in the first Q (S5). In accordance with the tool path instructions of the tooth gap machining NC data, the tool 7 is moved along the tooth groove contour by moving the X, Y, and Z axes to process one tooth groove. (S6). 1 is added to the value of the counter Q 1 (S7). It is determined whether all the tooth gaps have been processed. Determines whether n is larger than the value of the counter Q 1 is the total number of tooth spaces. If Q 1 > n, the process moves to step S9. If not, the process moves to step S5, and the next tooth gap processing is repeated (S8). The X, Y, Z, and B axes are moved to return to a predetermined processing source position (S9). The rotation of the tool 7 is stopped (S10). The work gear W is unloaded (S11).

1個の歯溝を加工する歯溝加工NCデータは、被加工歯車Wのモジュールや歯幅等で規定される歯溝の加工形状と工具7の形状から決まる加工パスを用いて、従来から実施されている通常の方法で歯溝加工NCデータ作成部504において作成される。   Tooth gap machining NC data for machining one tooth groove is conventionally performed using a machining path determined from the tooth groove machining shape and tool 7 shape defined by the module and tooth width of the gear W to be machined. It is created in the tooth gap machining NC data creation unit 504 by the usual method.

次に、加工順番割付け工程として、NCデータ作成装置50により実施される、加工順番別割出し角度データを演算する工程を説明する。加工順番別割出し角度データは被加工歯車Wの歯溝の加工順番と各歯溝の加工時の割出し角度を示すデータである。ここでは、時計回り(第1回転方向)に奇数の加工順番を配置し、反時計回り(第2回転方向)に偶数の加工順番を配置する事例で、図4のフローチャートに基づき説明する。   Next, a process for calculating indexing angle data for each processing order, which is performed by the NC data creation device 50, will be described as a processing order allocation process. The indexing angle data according to the processing order is data indicating the processing order of the tooth grooves of the gear W to be processed and the indexing angle at the time of processing each tooth groove. Here, an example in which an odd-numbered machining order is arranged clockwise (first rotation direction) and an even-numbered machining order is arranged counterclockwise (second rotation direction) will be described based on the flowchart of FIG.

はじめに、被加工歯車Wの歯数(歯溝の数と同じ)nの値をデータ入力部501で読み込む(S21)。歯溝番号kg毎の割出し角度Θkgを演算する。ここで、歯溝番号は添え字gをそなえ、図5に示す1gから反時計回りで16gまで付与された番号である。歯溝1gの割出し角度を0として、反時計回りに角度を増大させる。1歯溝毎の増加角度は、歯溝数をnとすると360/n度となるので、歯溝kgの割出し角度Θkgは、Θkg=(kg−1)・360/nで演算できる。(S22)。各歯溝に奇数番の歯溝加工順番を割付ける。加工順番の数には添え字cを付け、図5に示すように、奇数の順番を1g歯溝(第1歯溝)から時計回り方向(第1回転方向)へ隣接する歯溝に対して昇順に割付ける。(S23)。偶数の順番を、2g歯溝(第2歯溝)から反時計回り方向(第2回転方向)へ隣接する歯溝に対して昇順に割付ける(S24)。歯溝の加工順番に対して、歯溝番号と割出し角度を対応付ける。ステップS22で演算された歯溝番号に対する割出し角度と、ステップS23、ステップS24で割付けられた歯溝番号に対する加工順番を統合して、所定の加工順番に対して、対応する歯溝番号と、割出し角度を割付けることで加工順番別割出し角度データを作成する(S31)。 First, the value of the number of teeth (same as the number of tooth gaps) n of the work gear W is read by the data input unit 501 (S21). Calculate the index angle Θ kg for each tooth number kg. Here, the tooth gap number is a number assigned from 1 g shown in FIG. 5 to 16 g counterclockwise with a subscript g. The index angle of the tooth gap 1g is set to 0, and the angle is increased counterclockwise. Since the increment angle for each tooth gap is 360 / n degrees where n is the number of tooth grooves, the index angle Θ kg of the tooth gap kg can be calculated by Θ kg = (kg−1) · 360 / n. . (S22). Assign an odd number of tooth gap machining order to each tooth groove. The number c of the processing order is attached with a subscript c, and as shown in FIG. 5, the odd-numbered order is changed from the 1 g tooth groove (first tooth groove) to the tooth groove adjacent in the clockwise direction (first rotation direction). Assign in ascending order. (S23). The even order is assigned in ascending order from the 2g tooth space (second tooth space) to the tooth space adjacent in the counterclockwise direction (second rotation direction) (S24). The tooth gap number and the index angle are associated with the processing order of the tooth gap. By integrating the indexing angle for the tooth gap number calculated in step S22 and the processing order for the tooth groove number assigned in step S23 and step S24, the corresponding tooth gap number for a predetermined processing order, By assigning an index angle, index angle data for each processing order is created (S31).

以上のようにして、歯数nが16である歯車に加工順番を割付けると、図5に示すように奇数の加工順番である1cから15cが歯溝1gから時計回りで昇順に歯溝10gまで割付けられ、偶数の加工順番である2cから16cが歯溝2gから反時計回りで昇順に歯溝9gまで割付けられる。この場合の、隣接する歯溝の加工順番の差は2以内となる。   As described above, when the processing order is assigned to the gear having n of 16 teeth, the odd processing order 1c to 15c is changed from the tooth groove 1g to the tooth groove 10g in the ascending order as shown in FIG. 2c to 16c, which are even machining orders, are assigned from the tooth gap 2g to the tooth gap 9g in ascending order counterclockwise. In this case, the difference in the processing order of adjacent tooth gaps is within 2.

歯車Wの割出し精度の影響を除いた場合、上記の順番で歯溝を加工すると、全ての隣接する歯溝の単一ピッチの差は2個の歯溝の加工による工具の半径摩耗量以下となる。
すなわち、本発明によれば、隣接ピッチ誤差が2個の歯溝の加工による工具の半径摩耗量以下となる歯車加工方法を実現できる。
When the influence of the indexing accuracy of the gear W is removed, if the tooth gaps are machined in the above order, the difference in the single pitch of all adjacent tooth gaps is less than the radial wear amount of the tool due to the machining of the two tooth grooves. It becomes.
That is, according to the present invention, it is possible to realize a gear machining method in which the adjacent pitch error is equal to or less than the radial wear amount of the tool due to machining of two tooth spaces.

<本実施形態の変形態様>
上記の溝加工順番は全ての奇数の加工順番を昇順に隣接し、全ての偶数の加工順番を昇順に隣接させたが、奇数番と偶数番を交互に隣接するように配置してもよい。このような加工順番を決める演算工程を図6のフローチャートに基づき説明する。
<Deformation of this embodiment>
In the above groove processing order, all odd-numbered processing orders are adjacent to each other in ascending order, and all even-numbered processing orders are adjacent to each other in ascending order. However, odd-numbered numbers and even-numbered numbers may be alternately adjacent to each other. The calculation process for determining the processing order will be described with reference to the flowchart of FIG.

はじめに、被加工歯車Wの歯数nの値と区分数mの値をデータ入力部501で読み込む(S51)。歯溝番号kg毎の割出し角度Θkgを演算する。ここで、歯溝番号は図7に示す1gから反時計回りで16gまで付与された番号であり、歯溝1gの割出し角度を0として、反時計回りに角度を増大させる。1歯溝毎の増加角度は、歯数をnとすると360/n度となるので、歯溝kgの割出し角度Θkgは、Θkg=(kg−1)・360/nで演算できる。(S52)。1からnまでの整数列をm個に区分けする。1からm−1までの区分の1区分に含まれる数の個数はn/mの整数部であるSとし、m個目の区分の個数をn−S・m個とする(S53)。 First, the value of the number of teeth n and the value of the number of divisions m of the gear W to be processed are read by the data input unit 501 (S51). Calculate the index angle Θ kg for each tooth number kg. Here, the tooth gap number is a number assigned from 1 g shown in FIG. 7 to 16 g counterclockwise. The index angle of the tooth groove 1 g is set to 0, and the angle is increased counterclockwise. Since the increment angle for each tooth gap is 360 / n degrees where n is the number of teeth, the index angle Θ kg of the tooth gap kg can be calculated as Θ kg = (kg−1) · 360 / n. (S52). The integer sequence from 1 to n is divided into m. The number included in one of the 1 to m-1 sections is S, which is an integer part of n / m, and the number of the mth section is nS · m (S53).

歯溝に奇数番の歯溝加工順番を割付ける。第1の区分の奇数を歯溝1gから時計回り方向へ隣接する歯溝に対して昇順に割付ける(S54)。第1の区分の偶数を歯溝2gから反時計回り方向へ隣接する歯溝に対して昇順に割付ける(S55)。区分番号を示すカウンターQの値を2とする(S56)。割付が終了したか判定する。Q>mならばステップS60へ移動し、そうでなければステップS58へ移動する(S57)。第Q区分の奇数を、第(Q−1)区分の偶数の最大数が割付けられた歯溝に隣接する歯溝から昇順に割付け、第Q区分の偶数を、第(Q−1)区分の奇数の最大数が割付けられた歯溝に隣接する歯溝から昇順に割付ける(S58)。カウンターQの値に1を加算する。Q=Q+1を実行する(S59)。歯溝の加工順番に対して、歯溝番号と割出し角度を対応付ける。ステップS52で演算された歯溝番号に対する割出し角度と、ステップS53からステップS59で割付けられた歯溝番号に対する加工順番を統合して、所定の加工順番に対応する歯溝番号と割出し角度を割付ける(S60)。 Assign an odd number of tooth gap processing order to the tooth gap. The odd number of the first section is assigned in ascending order to the tooth gap adjacent in the clockwise direction from the tooth gap 1g (S54). The even number of the first section is assigned in ascending order from the tooth gap 2g to the tooth gap adjacent in the counterclockwise direction (S55). The value of counter Q 2 to which indicate the segment number and 2 (S56). Determine whether the assignment is complete. If Q 2 > m, the process moves to step S60, and if not, the process moves to step S58 (S57). Odd first Q 2 segment, the (Q 2 -1) allocated from the tooth groove in ascending order the maximum number of even segment is adjacent to the tooth that is allocated, an even number of first Q 2 segment, the (Q 2 - 1) Allocating in ascending order from the tooth gap adjacent to the tooth gap to which the odd maximum number of sections is assigned (S58). It adds 1 to the value of the counter Q 2. Q 2 = Q 2 +1 is executed (S59). The tooth gap number and the index angle are associated with the processing order of the tooth gap. By integrating the indexing angle for the tooth number calculated in step S52 and the processing order for the tooth number assigned in steps S53 to S59, the tooth number and indexing angle corresponding to the predetermined processing order are obtained. Assign (S60).

ここで、歯数n=16、区分数m=3の場合の、数列の区分と加工順番の割付け例を図7に示す。数列の区分は図7の下部に示すように3区分に区分され、隣接する歯溝の加工順番の差は3以内となる。この場合、隣接する歯溝の加工順番の差は、全ての奇数の加工順番を昇順に隣接し、全ての偶数の加工順番を昇順に隣接させた場合より大きいが、各歯溝の割差しに必要な割出し装置10の回転角度の総計は小さくなり、加工に要する時間が短縮できる。   Here, FIG. 7 shows an example of assignment of the division of the sequence and the processing order when the number of teeth n = 16 and the number of divisions m = 3. As shown in the lower part of FIG. 7, the numerical sequence is divided into three sections, and the difference in the processing order of adjacent tooth spaces is within three. In this case, the difference in the processing order of the adjacent tooth gaps is larger than when all odd processing orders are adjacent in ascending order and all even processing orders are adjacent in ascending order, but the difference between each tooth gap is The total required rotation angle of the indexing device 10 is reduced, and the time required for processing can be shortened.

上記の実施形態では、奇数の順番を時計回りに昇順となるように配置したが、反時計回りに昇順としてもよい。
また、加工方法としては、工具として砥石を用いる研削加工など、歯溝の加工により工具の摩耗が発生する加工方法の全てに適用できる。
In the above embodiment, the odd-numbered order is arranged in ascending order clockwise, but may be in ascending order counterclockwise.
Moreover, as a processing method, it can apply to all the processing methods in which wear of a tool generate | occur | produces by processing of a tooth gap, such as the grinding process which uses a grindstone as a tool.

1:工作機械 2:ベッド 3:テーブル 4:コラム 5:主軸台 6:主軸 7:工具 10:割出し装置 11:割出し板 W:被加工歯車 30:機械制御装置 50:NCデータ作成装置 501:データ入力部 502:加工順番演算部 503:角度演算部 504:歯溝加工NCデータ作成部 505:歯車加工NCデータ作成部 1: Machine tool 2: Bed 3: Table 4: Column 5: Spindle 6: Spindle 7: Tool 10: Indexing device 11: Indexing plate W: Gear to be processed 30: Machine control device 50: NC data creation device 501 : Data input unit 502: Machining order calculation unit 503: Angle calculation unit 504: Tooth gap machining NC data creation unit 505: Gear machining NC data creation unit

Claims (3)

被加工歯車と工具を相対的に移動させ、前記被加工歯車の歯溝を1歯溝ずつ加工する歯車加工方法において、
前記歯溝の総数をnとし、1からnまでの昇順に連続する整数の数列を、2個以上の数を含む所望のm個の区間に区分し、含まれる数字の小さいものから順に第1区間、第2区間、・・第m区間とし、所望の隣接する歯溝を第1歯溝と第2歯溝とし、第1歯溝から第2歯溝の方向の回転方向を第2回転方向とし、第2歯溝から第1歯溝の方向の回転方向を第1回転方向とするとき、
前記歯溝の加工する順番である歯溝加工順番を、
第1歯溝から第1回転方向の歯溝へ第1区間の奇数を昇順に割付けし、
第2歯溝から第2回転方向の歯溝へ第1区間の偶数を昇順に割付けし、
第2区間の奇数を、一方の第1区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けし、
第2区間の偶数を、他方の第1区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けし、
以下同様にして、同一区間の奇数と偶数を、前の区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けることを第m区間まで実施する、
ように前記被加工歯車に対して割付ける加工順番割付け工程と、
前記加工順番割付け工程で割付けられた順番で前記被加工歯溝を加工する歯車加工工程を備える歯車加工方法。
In the gear processing method of moving the gear to be processed and the tool relatively, and processing the tooth groove of the gear to be processed one tooth groove at a time,
The total number of the tooth gaps is n, and an integer number sequence that is continuous in ascending order from 1 to n is divided into desired m sections including two or more numbers, and the first number in order from the smallest number is included. Section, second section,... M section, desired adjacent tooth gaps as first tooth groove and second tooth groove, and the rotation direction from the first tooth groove to the second tooth groove is the second rotation direction. When the rotation direction from the second tooth gap to the first tooth gap is the first rotation direction,
The tooth gap processing order, which is the order in which the tooth grooves are processed,
Assign the odd number of the first section from the first tooth gap to the tooth groove in the first rotation direction in ascending order,
Allocating the even number of the first section from the second tooth gap to the tooth groove in the second rotational direction in ascending order,
The odd number of the second section is assigned in ascending order from the tooth gap adjacent to the tooth gap assigned the maximum number of one first section,
Assign the even number of the second section in ascending order from the tooth gap adjacent to the tooth groove that assigned the maximum number of the number of the other first section,
In the same manner, the odd and even numbers in the same section are assigned up to the m-th section in ascending order from the tooth gap adjacent to the tooth gap to which the maximum number of the previous section is assigned.
A processing order allocating step for allocating to the gear to be processed,
A gear machining method comprising a gear machining process for machining the tooth grooves to be machined in the order assigned in the machining order assignment process.
前記第1回転方向の歯溝へは奇数のみを割付け、前記第2回転方向の歯溝へは偶数のみを割付ける請求項1に記載の歯車加工方法。   The gear machining method according to claim 1, wherein only odd numbers are assigned to the tooth grooves in the first rotation direction, and only even numbers are assigned to the tooth grooves in the second rotation direction. 被加工歯車の歯溝を1歯溝ずつ順番に割出し加工するNCデータを作成するNCデータ作成装置において、
前記被加工歯車及び工具の形状、加工条件等を示すデータを入力する入力手段と、
前記歯溝の加工する順番である歯溝加工順番を、
前記歯溝の総数をnとし、1からnまでの昇順に連続する整数の数列を、2個以上の数を含む所望のm個の区間に区分し、含まれる数字の小さいものから順に第1区間、第2区間、・・第m区間とし、所望の隣接する歯溝を第1歯溝と第2歯溝とし、第1歯溝から第2歯溝の方向の回転方向を第2回転方向とし、第2歯溝から第1歯溝の方向の回転方向を第1回転方向とするとき、
第1歯溝から第1回転方向の歯溝へ前記第1区間の奇数を昇順に割付けし、
第2歯溝から第2回転方向の歯溝へ前記第1区間の偶数を昇順に割付けし、
第2区間の奇数を、一方の第1区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けし、
第2区間の偶数を、他方の第1区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けし、
以下同様にして、同一区間の奇数と偶数を、前の区間の数の最大数を割付けた歯溝に隣接する歯溝から昇順に割付けることを第m区間まで実施する、
ことで決める加工順番演算手段と
前記加工順番演算手段により演算された前記歯溝加工順番に基づき、所定の歯溝を加工するときの前記被加工歯車の割出し角度を演算する角度演算手段と、
1個の前記歯溝を加工するための加工NCデータである歯溝加工NCデータを、前記被加工歯車及び前記工具の形状を示すデータに基づき作成する歯溝加工NCデータ作成手段と
前記加工順番演算手段により演算された前記歯溝加工順番と、前記角度演算手段により演算された前記被加工歯車の割出し角度と、前記歯溝加工データ作成手段により作成された歯溝加工NCデータに基づき前記被加工歯車を加工するNCデータを作成するNCデータ作成手段と、を備えるNCデータ作成装置。
In the NC data creation device that creates NC data for indexing and processing the tooth grooves of the gear to be processed one by one,
Input means for inputting data indicating the shape of the gear to be processed and the tool, processing conditions, and the like;
The tooth gap processing order, which is the order in which the tooth grooves are processed,
The total number of the tooth gaps is n, and an integer number sequence that is continuous in ascending order from 1 to n is divided into desired m sections including two or more numbers, and the first number in order from the smallest number is included. Section, second section,... M section, desired adjacent tooth gaps as first tooth groove and second tooth groove, and the rotation direction from the first tooth groove to the second tooth groove is the second rotation direction. When the rotation direction from the second tooth gap to the first tooth gap is the first rotation direction,
Assign the odd number of the first section from the first tooth gap to the tooth groove in the first rotation direction in ascending order,
Assign the even number of the first section from the second tooth gap to the tooth groove in the second rotational direction in ascending order,
The odd number of the second section is assigned in ascending order from the tooth gap adjacent to the tooth gap assigned the maximum number of one first section,
Assign the even number of the second section in ascending order from the tooth gap adjacent to the tooth groove that assigned the maximum number of the number of the other first section,
In the same manner, the odd and even numbers in the same section are assigned up to the m-th section in ascending order from the tooth gap adjacent to the tooth gap to which the maximum number of the previous section is assigned.
A processing order calculating means determined by the above, and an angle calculating means for calculating an index angle of the gear to be processed when processing a predetermined tooth gap based on the tooth groove processing order calculated by the processing order calculating means;
Tooth gap machining NC data creation means for creating tooth gap machining NC data, which is machining NC data for machining one tooth gap, based on data indicating the shape of the gear to be machined and the tool, and the machining order Based on the tooth gap machining order computed by the computing means, the index angle of the gear to be machined computed by the angle computing means, and the tooth gap machining NC data created by the tooth gap machining data creating means An NC data creation device comprising: NC data creation means for creating NC data for machining a workpiece gear.
JP2012035045A 2012-02-21 2012-02-21 Gear machining method and NC data creation device Active JP5887987B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012035045A JP5887987B2 (en) 2012-02-21 2012-02-21 Gear machining method and NC data creation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012035045A JP5887987B2 (en) 2012-02-21 2012-02-21 Gear machining method and NC data creation device

Publications (2)

Publication Number Publication Date
JP2013169621A true JP2013169621A (en) 2013-09-02
JP5887987B2 JP5887987B2 (en) 2016-03-16

Family

ID=49263926

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012035045A Active JP5887987B2 (en) 2012-02-21 2012-02-21 Gear machining method and NC data creation device

Country Status (1)

Country Link
JP (1) JP5887987B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114088A1 (en) 2016-07-01 2018-01-04 Jtekt Corporation GEAR CUTTING TOOL, GEAR TREATMENT DEVICE AND GEAR TREATMENT PROCESS
JP2018001343A (en) * 2016-07-01 2018-01-11 株式会社ジェイテクト Gear processing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218533A (en) * 1989-02-16 1990-08-31 Osaka Seimitsu Kikai Kk Bias grinding for helical gear with numerically-controlled gear grinding machine
JP2000280119A (en) * 1999-03-31 2000-10-10 Sumitomo Heavy Ind Ltd Gear grinding
JP2001334413A (en) * 2000-05-24 2001-12-04 Denso Corp Gear grinding device and method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02218533A (en) * 1989-02-16 1990-08-31 Osaka Seimitsu Kikai Kk Bias grinding for helical gear with numerically-controlled gear grinding machine
JP2000280119A (en) * 1999-03-31 2000-10-10 Sumitomo Heavy Ind Ltd Gear grinding
JP2001334413A (en) * 2000-05-24 2001-12-04 Denso Corp Gear grinding device and method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102017114088A1 (en) 2016-07-01 2018-01-04 Jtekt Corporation GEAR CUTTING TOOL, GEAR TREATMENT DEVICE AND GEAR TREATMENT PROCESS
CN107552893A (en) * 2016-07-01 2018-01-09 株式会社捷太格特 Gear cutting tool, gear machining equipment and gear working method
JP2018001343A (en) * 2016-07-01 2018-01-11 株式会社ジェイテクト Gear processing method
US10618125B2 (en) 2016-07-01 2020-04-14 Jtekt Corporation Gear cutting tool, gear machining device, and gear machining method
CN107552893B (en) * 2016-07-01 2021-08-31 株式会社捷太格特 Gear cutting tool, gear machining device and gear machining method

Also Published As

Publication number Publication date
JP5887987B2 (en) 2016-03-16

Similar Documents

Publication Publication Date Title
EP2839914B1 (en) Gear machining apparatus
JP6620393B2 (en) Gear machining method
JP7383982B2 (en) Tool life prediction system
CN102481648A (en) Internal gear machining method and internal gear machining device
US8838265B2 (en) Machine tool, machining method, program and NC data generation device
CN1854952A (en) Digital controller
CN112805108B (en) Machine tool and control device
US20150286206A1 (en) Method for grinding machining of bevel gears in the single-indexing method
JP6064723B2 (en) Gear processing equipment
JP6606967B2 (en) Gear processing apparatus and gear processing method
US9952582B2 (en) Method of controlling feed axes in machine tool, and machine tool performing machining by using the method of controlling feed axes
CN1603043A (en) Process and device for the aligning of workpiece with pre-cut teeth on gear finishing machines
JP5887987B2 (en) Gear machining method and NC data creation device
JP5929065B2 (en) NC data correction device
JP2017019034A (en) Gear processing device
JP2016155175A (en) Gear processor and gear processing method
JP2009142915A (en) Machine tool and machining method using the same
US10747191B2 (en) Method for creating or machining toothings on workpieces by gear shaping with regulation of spindle rotation setpoints
CN106681269A (en) Cutted thread processing method based on dynamic moving average step number
JP7073721B2 (en) Gear processing equipment and gear processing method
JP3696805B2 (en) Machine tool moving position setting method
JP6495682B2 (en) Method for controlling feed axis in machine tool and machine tool
JP6871675B2 (en) Gear processing equipment and gear processing method
JP5786436B2 (en) Numerical control apparatus and processing method
CN106041223B (en) A kind of Gear Processing monodentate indexing technique

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150121

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160201

R150 Certificate of patent or registration of utility model

Ref document number: 5887987

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150