JP2013167477A - Method and device for measuring refractive index - Google Patents

Method and device for measuring refractive index Download PDF

Info

Publication number
JP2013167477A
JP2013167477A JP2012029607A JP2012029607A JP2013167477A JP 2013167477 A JP2013167477 A JP 2013167477A JP 2012029607 A JP2012029607 A JP 2012029607A JP 2012029607 A JP2012029607 A JP 2012029607A JP 2013167477 A JP2013167477 A JP 2013167477A
Authority
JP
Japan
Prior art keywords
refractive index
dove prism
light
incident
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012029607A
Other languages
Japanese (ja)
Inventor
Kuniharu Takizawa
國治 滝沢
Yasushi Haraguchi
康史 原口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SIGMAKOKI Co Ltd
Original Assignee
SIGMAKOKI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SIGMAKOKI Co Ltd filed Critical SIGMAKOKI Co Ltd
Priority to JP2012029607A priority Critical patent/JP2013167477A/en
Publication of JP2013167477A publication Critical patent/JP2013167477A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method and a device for measuring a refractive index capable of highly accurately measuring the refractive index of a colloid liquid.SOLUTION: The lower plane of a dielectric transparent flat plate 30 which has a higher refractive index than a colloid liquid 33 and whose upper plane is parallel to the lower plane thereof is brought into contact with the surface of the colloid liquid 33, the lower plane of a Dove prism 32 whose upper plane is parallel to the lower plane thereof is brought into contact with the upper plane of the dielectric transparent flat plate 30 through a matching liquid 38, P-wave light having a narrow spectral width which is suitable for refractive index measurement is made incident on one slope face of the Dove prism 32, an incident angle θis obtained which is minimized in intensity of non-scattered reflection light from the interface between the lower plane of the dielectric transparent flat plate 30 and the surface of the colloid liquid 33, and based on the incident angle θ, a refractive index nof the dielectric transparent flat plate 30, a refractive index nof the Dove prism 32, and a refractive index nof gas in contact with the Dove prism, a refractive index nof the colloid liquid 33 is obtained.

Description

本発明は、コロイド液の屈折率を測定する屈折率測定方法及び屈折率測定装置に関する。   The present invention relates to a refractive index measuring method and a refractive index measuring apparatus for measuring the refractive index of a colloidal liquid.

コロイド液は入射光の大半を散乱するため、コロイド液の精密な屈折率は殆ど知られていない。市販されている屈折率測定装置には、コロイド液の一種である牛乳の屈折率を測定できると記されているものもあるが、小数点以下1、2桁程度の測定精度である。   Since the colloidal liquid scatters most of the incident light, the precise refractive index of the colloidal liquid is hardly known. Some of the commercially available refractive index measuring devices are described as being able to measure the refractive index of milk, which is a kind of colloidal liquid, but have a measurement accuracy of about one or two digits after the decimal point.

牛乳の屈折率を測定した一例として、Michelson干渉計とスーパールミネッセントダイオード(SLD)を組み合わせた計測システムが知られている(非特許文献1参照)。この計測システムでは、SLDの出射光はビームスプリッタで分割され、一方の光は参照光ミラーで反射して参照光となり、他方の光は容器に入った牛乳液面に入射する。牛乳液面に入射した光は牛乳液面で反射するか容器の底面に配置したミラーで反射する。参照光ミラーの位置を調整すると、参照光は牛乳液面で反射した光と干渉し、更に参照光ミラーを移動させると、参照光は容器底のミラーで反射した光と干渉する。予め、牛乳の液厚を測定しておけば、参照光ミラーの走査距離を計測することで、牛乳の屈折率を求めることができる。   As an example of measuring the refractive index of milk, a measurement system combining a Michelson interferometer and a super luminescent diode (SLD) is known (see Non-Patent Document 1). In this measurement system, the outgoing light of the SLD is split by a beam splitter, one light is reflected by a reference light mirror to become reference light, and the other light is incident on the milk surface contained in the container. The light incident on the milk liquid surface is reflected by the milk liquid surface or by a mirror disposed on the bottom surface of the container. When the position of the reference light mirror is adjusted, the reference light interferes with the light reflected by the milk liquid surface, and when the reference light mirror is further moved, the reference light interferes with the light reflected by the mirror at the bottom of the container. If the milk thickness is measured in advance, the refractive index of the milk can be obtained by measuring the scanning distance of the reference light mirror.

白石知久、石田聡、井村俊彦、斎田吉裕、中島吉則、“白色懸濁液の濃度評価に関する研究”、[online]、埼玉県産業技術総合センター研究報告 第6巻(2008)、[平成23年5月30日検索]、インターネット<URL:http://www.saitec.pref.saitama.lg.jp/research/h19/soushutsu/sou-r/312a.pdf>Tomohisa Shiraishi, Atsushi Ishida, Toshihiko Imura, Yoshihiro Saida, Yoshinori Nakajima, “Study on Concentration Evaluation of White Suspension”, [online], Saitama Industrial Technology Center Research Report Vol. 6 (2008), [2011 May 30 search], Internet <URL: http: //www.saitec.pref.saitama.lg.jp/research/h19/soushutsu/sou-r/312a.pdf>

しかしながら、上記計測システムでは、コロイド液中を伝播するSLD光を測定するため、測定精度はコロイド液の散乱・吸収特性に大きく左右される。また、牛乳の体積、密度、及び重量を測定して牛乳の液厚を高精度に求める必要があるが、表面張力による体積変化を精密に求めることは困難である。液厚を大きくすれば表面張力の影響を軽減することができるが、機械的移動機構を用いて参照光ミラーを移動させなければならず、測定精度の確保が困難になる。また、牛乳を空気に曝して測定を行うため、空気の移動による牛乳表面の僅かな波立ちが測定精度を低下させる。また、低コヒーレント光干渉による測定では、光源、防振台、干渉計などが必須となりコスト高になる。更に、測定に大量のサンプルを必要とする、といった問題点がある。   However, since the measurement system measures SLD light propagating in the colloidal liquid, the measurement accuracy greatly depends on the scattering / absorption characteristics of the colloidal liquid. Moreover, although it is necessary to measure the volume, density, and weight of milk and to obtain | require the liquid thickness of milk with high precision, it is difficult to obtain | require the volume change by surface tension precisely. If the liquid thickness is increased, the influence of surface tension can be reduced, but the reference light mirror must be moved using a mechanical movement mechanism, and it is difficult to ensure measurement accuracy. Further, since measurement is performed by exposing milk to air, slight undulations on the milk surface due to air movement reduce measurement accuracy. Further, in measurement by low coherent optical interference, a light source, a vibration isolator, an interferometer, and the like are indispensable, resulting in high costs. Furthermore, there is a problem that a large amount of sample is required for measurement.

本発明は、以上のような課題に鑑みてなされたものであり、その目的とするところは、コロイド液の屈折率を高精度に測定することが可能な屈折率測定方法及び屈折率測定装置を提供することにある。   The present invention has been made in view of the above problems, and an object thereof is to provide a refractive index measuring method and a refractive index measuring apparatus capable of measuring the refractive index of a colloidal liquid with high accuracy. It is to provide.

(1)本発明は、コロイド液33の屈折率を測定する屈折率測定方法において、
コロイド液33の表面に、コロイド液33より高い屈折率を有し上平面と下平面が平行な誘電体透明平板30の下平面を接触させ、誘電体透明平板30の上平面に、互いに平行な上平面と下平面と、これらの平面と非平行な2つの平坦な斜面をもち、上平面と2つの斜面の交差角度(内角)が、ともに180°−ξであり、下平面と2つの斜面の内角が、ともにξであり、内角ξは0°より大きく、90°より小さいことを特徴とするダブプリズムの下平面をマッチング液38を介して接触させ、
さらに、ダブプリズムの法線と入射光の進行方向を含む入射面と直交する方向に光の電界が振動する光をP波光と定義し、屈折率測定に適したスペクトル幅の狭いP波光50を前記ダブプリズム32の一方の斜面35に入射させ、
前記誘電体透明平板30の下平面と前記コロイド液33表面との界面からの非散乱の反射光53の強度が最小になる入射角度θを求め、
前記入射角度θと、前記誘電体透明平板30の屈折率nと、前記ダブプリズム32の屈折率nと、前記ダブプリズム32と接触している気体の屈折率nとに基づいて、前記コロイド液33の屈折率nを求めることを特徴とする。
(1) The present invention provides a refractive index measurement method for measuring the refractive index of the colloidal liquid 33.
The lower surface of the dielectric transparent flat plate 30 having a higher refractive index than that of the colloid liquid 33 and parallel to the upper and lower surfaces is brought into contact with the surface of the colloid liquid 33, and the upper surfaces of the dielectric transparent flat plate 30 are parallel to each other. It has an upper plane and a lower plane, and two flat slopes that are not parallel to these planes. The intersection angle (inner angle) between the upper plane and the two slopes is 180 ° -ξ, and the lower plane and the two slopes. And the inner plane ξ is larger than 0 ° and smaller than 90 °, the lower surface of the Dove prism is brought into contact with the matching liquid 38, and
Furthermore, light in which the electric field of the light oscillates in a direction orthogonal to the incident plane including the normal line of the Dove prism and the traveling direction of the incident light is defined as P-wave light, and P-wave light 50 having a narrow spectral width suitable for refractive index measurement is defined. Incident on one slope 35 of the dove prism 32;
An incident angle θ 1 at which the intensity of non-scattered reflected light 53 from the interface between the lower flat surface of the dielectric transparent flat plate 30 and the surface of the colloidal liquid 33 is minimized is obtained.
And the incident angle theta 1, wherein a refractive index n c of the dielectric transparent plate 30, the refractive index and n p of the Dove prism 32, on the basis of the refractive index n a of the gas in contact with the Dove prism 32 , and obtains the refractive index n s of the colloidal liquid 33.

本発明によれば、コロイド液33の屈折率を高精度に測定することができる。   According to the present invention, the refractive index of the colloidal liquid 33 can be measured with high accuracy.

(2)また本発明において、
前記屈折率測定に適したスペクトル幅の狭いP波光50をダブプリズム32の上平面に入射し、回転ステージ12を調整してダブプリズム32の上平面からの反射光51の強度が最小となるときの回転ステージ12の角度θaを記録し、
屈折率測定に適したスペクトル幅の狭いP波光52をダブプリズム32の一方の斜面35に入射し、誘電体透明平板30とコロイド液33との界面からの非散乱の反射光53の強度が最小となるように回転ステージ12を調整し、そのときの回転ステージ12の角度θを記録し、
2つの角度の差θaと、ダブプリズム32の屈折率npとダブプリズム32と接触している気体の屈折率nとを用いて計算したブリュースター角θpを用いて、ダブプリズム32の一方の斜面35における入射角度θ1を求めてもよい。
(2) In the present invention,
When P-wave light 50 having a narrow spectral width suitable for the refractive index measurement is incident on the upper plane of the Dove prism 32, and the rotary stage 12 is adjusted so that the intensity of the reflected light 51 from the upper plane of the Dove prism 32 is minimized. Record the angle θ a of the rotary stage 12 of
A P-wave light 52 having a narrow spectral width suitable for refractive index measurement is incident on one inclined surface 35 of the Dove prism 32, and the intensity of the non-scattered reflected light 53 from the interface between the dielectric transparent flat plate 30 and the colloidal liquid 33 is minimized. The rotary stage 12 is adjusted so that the angle θ b of the rotary stage 12 at that time is recorded,
The difference theta a - [theta] b of the two angles, using a Brewster angle theta p refractive index was calculated using the n a of the gas in contact with the refractive index n p and Dove prism 32 Dove prism 32, The incident angle θ 1 on one inclined surface 35 of the dove prism 32 may be obtained.

(3)また本発明において、
前記誘電体透明平板30として1軸性結晶を用いて、その光学軸の方向(結晶内を伝搬する正常光線と異常光線の進行方向が一致する方向)が、ダブプリズムの斜面35に入射する屈折率測定に適したスペクトル幅の狭いP波光の電界成分の振動方向と直交するように配置してもよい。
(3) In the present invention,
A uniaxial crystal is used as the dielectric transparent flat plate 30, and the direction of the optical axis (the direction in which the normal light beam traveling in the crystal and the traveling direction of the extraordinary light coincide) is incident on the inclined surface 35 of the Dove prism. You may arrange | position so that it may orthogonally cross with the vibration direction of the electric field component of P wave light with a narrow spectral width suitable for a rate measurement.

(4)また本発明において、   (4) In the present invention,

Figure 2013167477
Figure 2013167477

に基づいて前記コロイド液33の屈折率nを求めるようにしてもよい。 It may be obtained refractive index n s of the colloidal liquid 33 based on.

(5)本発明は、コロイド液33の屈折率を測定する屈折率測定方法において、
コロイド液33の表面に、コロイド液33より高い屈折率を有し上平面と下平面が平行なダブプリズム34の下平面を接触させ、屈折率測定に適したスペクトル幅の狭いP波光50を前記ダブプリズム34の一方の斜面35に入射させ、前記ダブプリズム34の下平面と前記コロイド液33の表面との界面からの非散乱の反射光53の強度が最小になる入射角度θを求め、
前記入射角度θと、前記ダブプリズム34の屈折率nと、前記ダブプリズム34と接触している気体の屈折率nとに基づいて、前記コロイド液33の屈折率nを求めることを特徴とする。
(5) The present invention relates to a refractive index measurement method for measuring the refractive index of the colloidal liquid 33.
The surface of the colloidal liquid 33 is brought into contact with the lower plane of the Dove prism 34 having a higher refractive index than that of the colloidal liquid 33 and the upper and lower planes are parallel, and the P-wave light 50 having a narrow spectral width suitable for refractive index measurement is obtained. An incident angle θ 1 is obtained by making it incident on one inclined surface 35 of the Dove prism 34 and minimizing the intensity of the non-scattered reflected light 53 from the interface between the lower plane of the Dove prism 34 and the surface of the colloidal liquid 33,
Wherein the incident angle theta 1, the refractive index and n p of the Dove prism 34, on the basis of the refractive index n a of the gas in contact with the Dove prism 34, to obtain the refractive index n s of the colloidal liquid 33 It is characterized by.

本発明によれば、コロイド液33の屈折率を高精度に測定することができる。   According to the present invention, the refractive index of the colloidal liquid 33 can be measured with high accuracy.

(6)また本発明において、
前記屈折率測定に適したスペクトル幅の狭いP波光50をダブプリズム34の上平面に入射し、回転ステージ12を調整してダブプリズム34の上平面からの反射光51の強度が最小となるときの回転ステージ12の角度θaを記録し、
屈折率測定に適したスペクトル幅の狭いP波光52をダブプリズム34の一方の斜面35に入射し、ダブプリズム34とコロイド液33との界面からの非散乱の反射光53の強度が最小となるように回転ステージ12を調整し、そのときの回転ステージ12の角度θを記録し、
2つの角度の差θaと、ダブプリズム34の屈折率npとダブプリズム34と接触している気体の屈折率nとを用いて計算したブリュースター角θpを用いて、ダブプリズム32の斜面35における入射角度θ1を求めてもよい。
(6) In the present invention,
When the P-wave light 50 having a narrow spectral width suitable for the refractive index measurement is incident on the upper plane of the Dove prism 34, and the intensity of the reflected light 51 from the upper plane of the Dove prism 34 is minimized by adjusting the rotary stage 12. Record the angle θ a of the rotary stage 12 of
A P-wave light 52 having a narrow spectral width suitable for refractive index measurement is incident on one inclined surface 35 of the Dove prism 34, and the intensity of the non-scattered reflected light 53 from the interface between the Dove prism 34 and the colloid liquid 33 is minimized. the rotary stage 12 is adjusted so as to record the angle theta b of the rotary stage 12 at that time,
The difference theta a - [theta] b of the two angles, using a Brewster angle theta p refractive index was calculated using the n a of the gas in contact with the refractive index n p and Dove prism 34 of Dove prism 34, The incident angle θ 1 on the inclined surface 35 of the dove prism 32 may be obtained.

(7)また本発明において、
前記ダブプリズム34として1軸性結晶を用いて、その光学軸の方向が入射光の電界成分の振動方向と直交するように配置してもよい。
(7) In the present invention,
A uniaxial crystal may be used as the Dove prism 34 so that the direction of the optical axis is orthogonal to the vibration direction of the electric field component of the incident light.

(8)また本発明において、   (8) In the present invention,

Figure 2013167477
Figure 2013167477

に基づいて前記コロイド液33の屈折率nを求めるようにしてもよい。 It may be obtained refractive index n s of the colloidal liquid 33 based on.

(9)また、本発明において、   (9) In the present invention,

Figure 2013167477
Figure 2013167477

に基づいて前記入射角度θ1を求めてもよい。 The incident angle θ 1 may be obtained based on

(10)本発明は、コロイド液33の屈折率を測定する屈折率測定装置において、
コロイド液33の表面に接触し、コロイド液33より高い屈折率を有し上平面と下平面が平行な誘電体透明平板30と、
前記誘電体透明平板30の上平面にマッチング液38を介して接触し、互いに平行な上平面と下平面と、これらの平面と非平行な2つの平坦な斜面をもち、上平面と2つの斜面の交差角度(内角)が、ともに180°−ξであり、下平面と2つの斜面の内角が、ともにξであり、内角ξは0°より大きく、90°より小さいことを特徴とするダブプリズム32と、
屈折率測定に適したスペクトル幅の狭いP波光を前記ダブプリズム32の一方の斜面35に入射させる光照射部と、
前記誘電体透明平板30の下平面と前記コロイド液33表面との界面からの非散乱の反射光の強度を検出する光検出部と、
前記誘電体透明平板30の下平面と前記コロイド液33の表面との界面からの非散乱の反射光の強度が最小になる入射角度θと、前記誘電体透明平板30の屈折率nと、前記ダブプリズム32の屈折率nと、前記ダブプリズム32と接触している気体の屈折率nとに基づいて、前記コロイド液33の屈折率nを算出する演算処理を行う演算装置40とを含むことを特徴とする。
(10) The present invention provides a refractive index measuring apparatus for measuring the refractive index of the colloidal liquid 33.
A dielectric transparent flat plate 30 that is in contact with the surface of the colloidal liquid 33 and has a higher refractive index than the colloidal liquid 33 and whose upper and lower planes are parallel;
The upper surface of the dielectric transparent flat plate 30 is brought into contact with the upper surface of the dielectric transparent plate 30 via the matching liquid 38 and has an upper surface and a lower surface that are parallel to each other, and two flat slopes that are not parallel to these planes. The intersection angle (inner angle) of both is 180 ° -ξ, the inner angles of the lower plane and the two slopes are both ξ, and the inner angle ξ is larger than 0 ° and smaller than 90 °. 32,
A light irradiator that makes a P-wave light having a narrow spectral width suitable for refractive index measurement incident on one inclined surface 35 of the Dove prism 32;
A light detection unit for detecting the intensity of non-scattered reflected light from the interface between the lower flat surface of the dielectric transparent flat plate 30 and the surface of the colloidal liquid 33;
The incident angle theta 1 which the intensity of the reflected light of the unscattered is minimized from the interface between the dielectric bottom plane of the transparent plate 30 and the surface of the colloidal liquid 33, the refractive index n c of the dielectric transparent plate 30 , the refractive index and n p of the Dove prism 32, on the basis of the refractive index n a of the gas in contact with the Dove prism 32, a calculation device for performing arithmetic processing for calculating the refractive index n s of the colloidal liquid 33 40.

本発明によれば、コロイド液33の屈折率を高精度に測定することができる。   According to the present invention, the refractive index of the colloidal liquid 33 can be measured with high accuracy.

(11)本発明は、コロイド液33の屈折率を測定する屈折率測定装置において、
コロイド液33の表面に接触し、コロイド液33より高い屈折率を有し、かつ、互いに平行な上平面と下平面と、これらの平面と非平行な2つの平坦な斜面をもち、上平面と2つの斜面の交差角度(内角)が、ともに180°−ξであり、下平面と2つの斜面の内角が、ともにξであり、内角ξは0°より大きく、90°より小さいことを特徴とするダブプリズム34と、
屈折率測定に適したスペクトル幅の狭いP波光を前記ダブプリズム34の斜面35に入射させる光照射部と、
前記ダブプリズム34の下平面と前記コロイド液33表面との界面からの非散乱の反射光の強度を検出する光検出部と、
前記ダブプリズム34の下平面と前記コロイド液33の表面との界面からの非散乱の反射光の強度が最小になる入射角度θと、前記ダブプリズム34の屈折率nと、前記ダブプリズム34と接触している気体の屈折率nとに基づいて、前記コロイド液33の屈折率nを算出する演算処理を行う演算処理装置40とを含むことを特徴とする。
(11) The present invention provides a refractive index measuring apparatus for measuring the refractive index of the colloidal liquid 33.
The upper surface is in contact with the surface of the colloid liquid 33, has a higher refractive index than the colloid liquid 33, and has two upper and lower planes parallel to each other, and two flat slopes non-parallel to these planes. The intersection angle (inner angle) of the two slopes is 180 ° -ξ, the inner angle of the lower plane and the two slopes is both ξ, and the inner angle ξ is greater than 0 ° and less than 90 °. Dove prism 34,
A light irradiating unit that makes a P-wave light having a narrow spectral width suitable for refractive index measurement incident on the inclined surface 35 of the Dove prism 34;
A light detector for detecting the intensity of non-scattered reflected light from the interface between the lower plane of the Dove prism 34 and the surface of the colloidal liquid 33;
The incident angle θ 1 at which the intensity of non-scattered reflected light from the interface between the lower plane of the Dove prism 34 and the surface of the colloidal liquid 33 is minimized, the refractive index n p of the Dove prism 34, and the Dove prism 34 based on the refractive index n a of the gas in contact with, characterized in that it comprises a processing unit 40 for performing arithmetic processing for calculating the refractive index n s of the colloidal liquid 33.

本発明によれば、コロイド液33の屈折率を高精度に測定することができる。   According to the present invention, the refractive index of the colloidal liquid 33 can be measured with high accuracy.

本実施形態の第1の手法における屈折率測定装置の構成の一例を示す図。The figure which shows an example of a structure of the refractive index measuring apparatus in the 1st method of this embodiment. 一軸性結晶からなる誘電体透明平板の配置について説明するための図。The figure for demonstrating arrangement | positioning of the dielectric transparent flat plate which consists of a uniaxial crystal. 本実施形態の第2の手法における屈折率測定装置の構成の一例を示す図。The figure which shows an example of a structure of the refractive index measuring apparatus in the 2nd method of this embodiment. 小型セルとダブプリズムを圧着させる機構の一例を示す図。The figure which shows an example of the mechanism which crimps | bonds a small cell and a dove prism. 光照射部の構成の他の例を示す図。The figure which shows the other example of a structure of a light irradiation part. 第1の手法における、サンプルの準備から屈折率の測定までの手順について説明するための図。The figure for demonstrating the procedure from the preparation of a sample to the measurement of a refractive index in a 1st method. 第1の手法における、ダブプリズム斜面のP波光の入射角度の測定について説明するための図。The figure for demonstrating the measurement of the incident angle of the P wave light of the Dove prism slope in the 1st method. 第2の手法における、ダブプリズム斜面のP波光の入射角度の測定について説明するための図The figure for demonstrating the measurement of the incident angle of the P wave light of the Dove prism slope in the 2nd method ダブプリズムの外観を示す図。The figure which shows the external appearance of a dove prism. 誘電体透明平板の外観を示す図。The figure which shows the external appearance of a dielectric transparent flat plate. 精製水における光検出信号と入射角度θ1との関係を示す図。The figure which shows the relationship between the optical detection signal in purified water, and incident angle (theta) 1 . 中脂肪牛乳における光検出信号と入射角度θ1との関係を示す図。The figure which shows the relationship between the optical detection signal in medium fat milk, and incident angle (theta) 1 . 牛乳の屈折率と乳脂肪率との関係を示す測定結果。The measurement result which shows the relationship between the refractive index of milk and milk fat percentage.

以下、本実施形態について説明する。なお、以下に説明する本実施形態は、特許請求の範囲に記載された本発明の内容を不当に限定するものではない。また本実施形態で説明される構成の全てが、本発明の必須構成要件であるとは限らない。   Hereinafter, this embodiment will be described. In addition, this embodiment demonstrated below does not unduly limit the content of this invention described in the claim. In addition, all the configurations described in the present embodiment are not necessarily essential configuration requirements of the present invention.

1.測定原理、構成
本実施形態の屈折率測定方法及び屈折率測定装置が採用する測定原理を説明する。
1. Measurement Principle and Configuration A measurement principle employed by the refractive index measurement method and the refractive index measurement apparatus according to the present embodiment will be described.

1−1.第1の手法
まず、コロイド液33の屈折率を測定する第1の手法について説明する。図1は、本実施形態の屈折率測定装置の構成の一例を示す図である。
1-1. First Method First, a first method for measuring the refractive index of the colloidal liquid 33 will be described. FIG. 1 is a diagram illustrating an example of the configuration of the refractive index measurement apparatus according to the present embodiment.

図1に示す屈折率測定装置は、中心部に光源10を配置した回転ステージ12と、光電センサ(フォトディテクタ)からなる光検出器20と、演算装置40とを含む。光源10としては、半導体レーザをはじめ、多波長発振するArイオンレーザやHe−Neレーザ、広波長帯位置で連続発振する色素レーザやチタンサファイアレーザなどが適している。また、発光ダイオード、SLD、Xeランプやハロゲンランプなどで発光したインコヒーレント光を、波長フィルタ或いは分光器で狭帯域スペクトルを選択し、レーザ光の代わりに用いることも可能である。   The refractive index measuring apparatus shown in FIG. 1 includes a rotary stage 12 having a light source 10 disposed at the center, a photodetector 20 including a photoelectric sensor (photodetector), and an arithmetic unit 40. As the light source 10, a semiconductor laser, an Ar ion laser that oscillates multiple wavelengths, a He-Ne laser, a dye laser that oscillates continuously at a wide wavelength band position, a titanium sapphire laser, and the like are suitable. Further, incoherent light emitted from a light emitting diode, SLD, Xe lamp, halogen lamp, or the like can be used in place of laser light by selecting a narrow band spectrum by a wavelength filter or a spectroscope.

本実施形態の第1の手法では、コロイド液33を蓄えた小型セル36(容器)の上に、高屈折率の誘電体透明平板30と、ξと180°−ξの内角をもち上平面と下平面が平行なダブプリズム32を載せ、光源10(光照射部)からの屈折率測定に適したスペクトル幅の狭いP波のレーザ光を、ダブプリズム32の一方の斜面35に入射させて、誘電体透明平板30とコロイド液33との界面に照射し、当該界面からの非散乱の反射光(ダブプリズムの入射面と対向する斜面から出射する反射光)の強度が最小になる入射角度θを測定する。 In the first method of the present embodiment, on the small cell 36 (container) in which the colloidal liquid 33 is stored, the dielectric transparent flat plate 30 having a high refractive index, the upper plane having an internal angle of ξ and 180 ° −ξ, A dove prism 32 having a parallel lower plane is placed, and a P-wave laser beam having a narrow spectral width suitable for the refractive index measurement from the light source 10 (light irradiation unit) is incident on one inclined surface 35 of the dove prism 32. Incident angle θ that irradiates the interface between dielectric transparent flat plate 30 and colloidal liquid 33 and minimizes the intensity of non-scattered reflected light from the interface (reflected light emitted from a slope facing the incident surface of the Dove prism). 1 is measured.

ダブプリズムは、互いに向き合う平行な上平面および下平面と、これらの平面と非平行な2つの平坦な斜面からなる。上平面と2つの斜面の交差角度(内角)は、ともに180°−ξであり、下平面と2つの斜面の内角は、ともにξである。内角ξは、0°より大きく、90°より小さい範囲で、ダブプリズム32および誘電体透明平板30の屈折率に応じて定められる。   The Dove prism is composed of parallel upper and lower planes facing each other, and two flat slopes non-parallel to these planes. The intersection angle (inner angle) between the upper plane and the two slopes is 180 ° −ξ, and the inner angle between the lower plane and the two slopes is both ξ. The inner angle ξ is determined in accordance with the refractive indexes of the Dove prism 32 and the dielectric transparent flat plate 30 within a range larger than 0 ° and smaller than 90 °.

誘電体透明平板30の下平面はコロイド液33の表面に接触し、誘電体透明平板30の上平面は、マッチング液38を介してダブプリズム32の下面に接触している。誘電体透明平板30の上平面と下平面は平行になるように光学研磨され、その屈折率はコロイド液33の屈折率よりも大きい。誘電体透明平板30とコロイド液33との界面からの反射光の多くは散乱するため、屈折率の測定に必要な非散乱の反射光の強度が不足する。この現象を軽減するために、誘電体透明平板30の屈折率をコロイド液33の屈折率よりもはるかに大きくすることが望ましい。誘電体透明平板30の屈折率を十分に大きくすれば、コロイド液33の屈折率の大きさに関わらずその屈折率を測定することができる。   The lower plane of the dielectric transparent flat plate 30 is in contact with the surface of the colloidal liquid 33, and the upper plane of the dielectric transparent flat plate 30 is in contact with the lower surface of the Dove prism 32 through the matching liquid 38. The upper and lower planes of the dielectric transparent flat plate 30 are optically polished so as to be parallel, and the refractive index thereof is larger than the refractive index of the colloidal liquid 33. Since most of the reflected light from the interface between the dielectric transparent flat plate 30 and the colloidal liquid 33 is scattered, the intensity of the non-scattered reflected light necessary for measuring the refractive index is insufficient. In order to reduce this phenomenon, it is desirable to make the refractive index of the dielectric transparent flat plate 30 much larger than the refractive index of the colloidal liquid 33. If the refractive index of the dielectric transparent flat plate 30 is made sufficiently large, the refractive index can be measured regardless of the magnitude of the refractive index of the colloidal liquid 33.

誘電体透明平板30に適した光学材料は、可視光から赤外光領域においては、三方晶系、ポイントグループ3mのLiNbO結晶及びLiTaO結晶である。LiNbO結晶は、He−Neレーザ光波長(λ=632.8nm)において、正常屈折率n=2.2868、異常屈折率n=2.203という大きな屈折率を有し、大型で透明性、加工性に優れた単結晶を安価に入手できるという特徴をもつ。青色光や紫外線ではオブティカルダメージを受けやすいという欠点をもつが、酸化マグネシウムMgOを数%ドープした、MgO:LiNbO結晶を用いると、ダメージを大幅に軽減できる。LiTaO結晶は、λ=632.8nmにおいて、n=2.1774、n=2.1818という大きな屈折率を有し、大型で透明性、加工性に優れた単結晶を安価に入手できるという特徴をもつ。オプティカルダメージは、LiNbO結晶よりも小さい。その他、正方晶系、ポイントグループ422のTeO結晶と、正方晶系、ポイントグループ4/mのPbMoO結晶が誘電体透明平板30に適している。TeO結晶は、λ=632.8nmにおいて、n=2.260、n=2.142という大きな屈折率を有し、PbMoO結晶は、λ=632.8nmにおいて、n=2.262、n=2.386という大きな屈折率を有する。どちらも大型で高品質の結晶が実用化されている。更に赤外領域においては、等軸晶系、ポイントグループ43mのGaAs、GaP、InPなどの結晶も適当である。 An optical material suitable for the dielectric transparent flat plate 30 is a trigonal system, point group 3 m LiNbO 3 crystal and LiTaO 3 crystal in the visible light to infrared light region. The LiNbO 3 crystal has a large refractive index of normal refractive index n o = 2.2868 and extraordinary refractive index n e = 2.203 at the He—Ne laser light wavelength (λ = 632.8 nm), and is large, transparent and workable. It has the feature that excellent single crystals can be obtained at low cost. Blue light and ultraviolet light have a drawback of being easily damaged by optical damage, but if MgO: LiNbO 3 crystal doped with several percent of magnesium oxide MgO is used, the damage can be greatly reduced. The LiTaO 3 crystal has a large refractive index of n o = 2.1774 and n e = 2.1818 at λ = 632.8 nm, and is characterized in that a large single crystal having excellent transparency and workability can be obtained at low cost. The optical damage is smaller than that of LiNbO 3 crystal. In addition, tetragonal, point group 422 TeO 2 crystals and tetragonal, point group 4 / m PbMoO 4 crystals are suitable for the dielectric transparent flat plate 30. TeO 2 crystal is in λ = 632.8nm, n o = 2.260 , having a large refractive index of n e = 2.142, PbMoO 4 crystals in λ = 632.8nm, n o = 2.262 , significant that n e = 2.386 Has a refractive index. In both cases, large and high-quality crystals have been put into practical use. Furthermore, in the infrared region, equiaxed crystals and crystals of GaAs, GaP, InP, etc. having a point group of 43 m are also suitable.

LiNbO結晶、LiNbO結晶、TeO結晶及びPbMoO結晶は一軸性結晶であるから、複屈折により結晶に入射した光を常光線と異常光線に分離させる。この現象を発現させないため、図2に示すように、1軸性結晶の光学軸の方向(結晶内を伝搬する正常光線と異常光線の進行方向が一致する方向)がP波の入射光の電界成分の振動方向と直交するように配置する。一方、GaAs結晶、GaP結晶、InP結晶は、等軸晶系であるから、P波光の振動方向に関わらず自由に配置することができる。 Since the LiNbO 3 crystal, LiNbO 3 crystal, TeO 2 crystal, and PbMoO 4 crystal are uniaxial crystals, the light incident on the crystal is separated into an ordinary ray and an extraordinary ray by birefringence. In order to prevent this phenomenon from appearing, as shown in FIG. 2, the direction of the optical axis of the uniaxial crystal (the direction in which the normal ray propagating in the crystal and the traveling direction of the extraordinary ray coincide) is the electric field of the incident light of the P wave. It arrange | positions so that it may orthogonally cross with the vibration direction of a component. On the other hand, since GaAs crystal, GaP crystal, and InP crystal are equiaxed crystals, they can be arranged freely regardless of the vibration direction of P-wave light.

以下、第1の手法において、入射角度θに基づきコロイド液33の屈折率を求める測定原理について説明する。 Hereinafter, the measurement principle for obtaining the refractive index of the colloidal liquid 33 based on the incident angle θ 1 in the first method will be described.

誘電体透明平板30及びコロイド液33の屈折率を、それぞれ、n、nとして、誘電体透明平板30とコロイド液33との界面からの非散乱の反射光の強度が最小になる入射角度(誘電体透明平板30とコロイド液33との界面に入射するP波光の入射角度)をθとすると、コロイド液33の屈折率nは、ブリュースターの法則より、次式のように表される。 The incident angles at which the intensity of non-scattered reflected light from the interface between the dielectric transparent flat plate 30 and the colloid liquid 33 is minimized, with the refractive indexes of the dielectric transparent flat plate 30 and the colloid liquid 33 being n c and n s , respectively. When the theta 4 (incidence angle of the P wave light incident on the interface between the dielectric transparent flat plate 30 and the colloid solution 33), the refractive index n s of the colloidal liquid 33, from the law of Brewster, tables as follows Is done.

Figure 2013167477
Figure 2013167477

また、ダブプリズム32の入射面では、次式のスネルの法則が成立する。   On the incident surface of the Dove prism 32, the following Snell's law is established.

Figure 2013167477
Figure 2013167477

ここで、nは、ダブプリズム32の入射面と接触している空気(気体)の屈折率であり、nは、ダブプリズム32の屈折率である。また、θは、誘電体透明平板30とコロイド液33との界面からの非散乱の反射光の強度が最小になるときの、ダブプリズム32の入射面に入射する屈折率測定に適したスペクトル幅の狭いP波光の入射角度であり、θは屈折角度である。ダブプリズム32と誘電体透明平板30との間には、ダブプリズム32の屈折率に近い屈折率を有するマッチング液38が存在する。マッチング液38の上平面と下平面が平行であるとすると、この層の屈折率は、コロイド液33の屈折率に影響を及ぼさないため、以降の説明ではマッチング液38についての記述を省略する。 Here, n a is the refractive index of air (gas) in contact with the entrance surface of the Dove prism 32, n p is the refractive index of the dove prism 32. Θ 1 is a spectrum suitable for measuring the refractive index incident on the incident surface of the Dove prism 32 when the intensity of the non-scattered reflected light from the interface between the dielectric transparent flat plate 30 and the colloid liquid 33 is minimized. It is an incident angle of narrow P-wave light, and θ 2 is a refraction angle. A matching liquid 38 having a refractive index close to the refractive index of the Dove prism 32 exists between the Dove prism 32 and the dielectric transparent flat plate 30. If the upper plane and the lower plane of the matching liquid 38 are parallel, the refractive index of this layer does not affect the refractive index of the colloid liquid 33, and therefore the description of the matching liquid 38 is omitted in the following description.

ダブプリズム32と誘電体透明平板30との界面では、次式のスネルの法則が成立する。   At the interface between the dove prism 32 and the dielectric transparent flat plate 30, the following Snell's law is established.

Figure 2013167477
Figure 2013167477

ここで、θは、ダブプリズム32と誘電体透明平板30との界面に入射するP波光の入射角度である。 Here, θ 3 is an incident angle of the P wave light incident on the interface between the Dove prism 32 and the dielectric transparent flat plate 30.

また、図1では、ダブプリズム32の入射面と下平面で構成される内角がξであるから、θとθの間には、次の関係式が成立する。 In FIG. 1, the internal angle formed by the incident surface and the lower plane of the Dove prism 32 is ξ, so the following relational expression is established between θ 2 and θ 3 .

Figure 2013167477
Figure 2013167477

式(1)〜式(4)より、コロイド液33の屈折率nは、次式により求めることができる。 Equation (1) to equation (4), the refractive index n s of the colloidal liquid 33 may be obtained by the following equation.

Figure 2013167477
Figure 2013167477

すなわち、ダブプリズム32の一方の斜面35に入射する屈折率測定に適したスペクトル幅の狭いP波光の入射角度を変化させて、誘電体透明平板30とコロイド液33との界面(コロイド液33の表面)からの非散乱の反射光の強度が最小になる入射角度θを測定すれば、式(5)よりコロイド液33の屈折率nを求めることができる。 That is, by changing the incident angle of the P-wave light having a narrow spectral width suitable for the refractive index measurement incident on one inclined surface 35 of the Dove prism 32, the interface between the dielectric transparent flat plate 30 and the colloid liquid 33 (the colloid liquid 33 If the incident angle θ 1 at which the intensity of the non-scattered reflected light from the surface) is minimized, the refractive index n s of the colloidal liquid 33 can be obtained from the equation (5).

図1の光検出器20は、コロイド液33の表面で反射した非散乱反射光を光電変換して、光強度情報(光検出信号)として演算装置40に出力する。   The photodetector 20 in FIG. 1 photoelectrically converts the non-scattered reflected light reflected from the surface of the colloid liquid 33 and outputs the light intensity information (light detection signal) to the arithmetic unit 40.

コロイド液33の表面の反射点G(入射光と反射光の交点)では、散乱光が発生するため、受光面積が小さく高感度な光検出器20を用いることが好ましい。ここで、散乱光が全ての方向に均一に散乱する、非散乱光は広がらずに正反射する、光検出器20の受光面積は入射光の断面積と一致する、入射光量が大きく光検出器20の熱雑音は無視される、と仮定すると、検出信号のSN比(SNR)は、次式のように表される。   Since scattered light is generated at the reflection point G (intersection of incident light and reflected light) on the surface of the colloidal liquid 33, it is preferable to use the photodetector 20 having a small light receiving area and high sensitivity. Here, the scattered light is uniformly scattered in all directions, the non-scattered light is specularly reflected without spreading, the light receiving area of the photodetector 20 is equal to the cross-sectional area of the incident light, the incident light amount is large, and the photodetector Assuming that the thermal noise of 20 is ignored, the signal-to-noise ratio (SNR) of the detection signal is expressed by the following equation.

Figure 2013167477
Figure 2013167477

ここで、αは非散乱光量であり、βは全散乱光量であり、dはコロイド液33の表面の反射点Gから光検出器20までの距離であり、Sは光検出器20の受光面積である。例えば、S=0.5mm、d=150mmと仮定すると、α/β=0.01としても、検出信号のSN比(SNR)は、 Here, α is the non-scattered light amount, β is the total scattered light amount, d is the distance from the reflection point G on the surface of the colloidal liquid 33 to the photodetector 20, and S is the light receiving area of the photodetector 20. It is. For example, assuming that S = 0.5 mm 2 and d = 150 mm, even if α / β = 0.01, the SN ratio (SNR) of the detection signal is

Figure 2013167477
Figure 2013167477

となり、十分なSN比で非散乱光の強度を計測することができる。 Thus, the intensity of non-scattered light can be measured with a sufficient S / N ratio.

図1に示すように、ダブプリズム32の入射面に入射するP波光の入射角度が変化すると、ダブプリズム32の出射側斜面から出射する非散乱の反射光の反射角度も変化する。そこで、本実施形態では、回転ステージ12によってP波光の入射角度を変化させ、入射角度の変化に応じて、回転機構(図示せず)によって光検出器20を回転させることで、ダブプリズム32の出射側斜面から出射する非散乱の反射光(コロイド液33の表面で反射した非散乱の反射光)が光検出器20に入射するように構成している。   As shown in FIG. 1, when the incident angle of the P-wave light incident on the incident surface of the Dove prism 32 changes, the reflection angle of the non-scattered reflected light emitted from the exit side slope of the Dove prism 32 also changes. Therefore, in the present embodiment, the incident angle of the P wave light is changed by the rotary stage 12, and the photodetector 20 is rotated by a rotating mechanism (not shown) according to the change of the incident angle, whereby the Dove prism 32 is changed. Non-scattered reflected light (non-scattered reflected light reflected from the surface of the colloidal liquid 33) emitted from the exit-side slope is configured to enter the photodetector 20.

図1に示す演算装置40は、演算処理部42と記憶部44とを含む。演算処理部42は、コロイド液33の表面からの非散乱の反射光の強度が最小になる入射角度θと、誘電体透明平板30の屈折率nと、ダブプリズム32の屈折率nと、気体の屈折率nとに基づいて、式(5)によりコロイド液33の屈折率nを算出する演算処理を行う。また演算処理部42は、P波光の入射角度を変化させるたびに検出された反射光の強度情報に基づいて、入射角度θを求めるようにしてもよい。 The arithmetic device 40 shown in FIG. 1 includes an arithmetic processing unit 42 and a storage unit 44. Arithmetic processing unit 42, the incident angle theta 1 which the intensity of the reflected light of the non-scattering from the surface of the colloidal liquid 33 is minimized, and the refractive index n c of the dielectric transparent plate 30, the refractive index n p of the Dove prism 32 If, on the basis of the refractive index n a of the gas, it performs arithmetic processing for calculating the refractive index n s of the colloidal liquid 33 by equation (5). Further, the arithmetic processing unit 42 may obtain the incident angle θ 1 based on the intensity information of the reflected light detected every time the incident angle of the P wave light is changed.

記憶部44は、種々のデータを一時記憶する機能を有し、例えば、光検出器20から出力された光強度情報を、P波光の入射角度と対応付けて記憶してもよい。   The storage unit 44 has a function of temporarily storing various data. For example, the light intensity information output from the photodetector 20 may be stored in association with the incident angle of the P wave light.

1−2.第2の手法
次に、コロイド液33の屈折率を測定する第2の手法について図3を用いて説明する。
1-2. Second Method Next, a second method for measuring the refractive index of the colloidal liquid 33 will be described with reference to FIG.

本実施形態の第2の手法では、コロイド液33を蓄えた小型セル36の上に高屈折率の誘電体透明平板30を載せることに代えて、小型セル36の上に高屈折率のダブプリズム34(ξと180°−ξの内角をもち上平面と下平面が平行なダブプリズム)を載せる。ダブプリズム34の上平面と下平面は平行になるように光学研磨され、ダブプリズム34の下平面はコロイド液33の表面に接触している。ダブプリズム32とダブプリズム34の違いは、屈折率だけである。誘電体透明平板を除いたその他の構成は、図1に示した第1の手法における構成と同様である。そして、光源10(光照射部)からの屈折率測定に適したスペクトル幅の狭いP波のレーザ光を、ダブプリズム34の斜面35に入射させて、ダブプリズム34とコロイド液33との界面に照射し、当該界面からの非散乱の反射光(斜面35と対向する出射側斜面から出射する反射光)の強度が最小になる入射角度θを測定する。 In the second method of this embodiment, instead of placing the high refractive index dielectric transparent flat plate 30 on the small cell 36 in which the colloid liquid 33 is stored, the high refractive index Dove prism is placed on the small cell 36. 34 (a dove prism having an inner angle of ξ and 180 ° −ξ and whose upper and lower planes are parallel). The upper and lower planes of the Dove prism 34 are optically polished so that they are parallel, and the lower plane of the Dove prism 34 is in contact with the surface of the colloidal liquid 33. The only difference between the Dove prism 32 and the Dove prism 34 is the refractive index. The rest of the configuration excluding the dielectric transparent flat plate is the same as the configuration in the first method shown in FIG. Then, a P-wave laser beam having a narrow spectral width suitable for the refractive index measurement from the light source 10 (light irradiation unit) is incident on the inclined surface 35 of the Dove prism 34, and enters the interface between the Dove prism 34 and the colloid liquid 33. Irradiation is performed, and the incident angle θ 1 at which the intensity of the non-scattered reflected light from the interface (reflected light emitted from the outgoing side slope facing the slope 35) is minimized is measured.

ダブプリズム34の屈折率はコロイド液33の屈折率よりも大きい。ダブプリズム34とコロイド液33との界面からの反射光の多くは散乱するため、屈折率の測定に必要な非散乱光の強度が不足する。この現象を軽減するために、ダブプリズム34の屈折率をコロイド液33の屈折率よりもはるかに大きくすることが望ましい。ダブプリズム34の屈折率を十分に大きくすれば、コロイド液33の屈折率の大きさに関わらずその屈折率を測定することができる。ダブプリズム34の光学材料としては、図1の誘電体透明平板30と同様の誘電体材料を用いればよい。なお、ダブプリズム34の光学材料として、LiNbO結晶、LiNbO結晶、TeO結晶及びPbMoO結晶などの一軸性結晶を用いる場合には、P波の入射光の電界が振動する方向と、結晶の光学軸が直交するように、ダブプリズム34を配置する。 The refractive index of the dove prism 34 is larger than the refractive index of the colloidal liquid 33. Since most of the reflected light from the interface between the Dove prism 34 and the colloid liquid 33 is scattered, the intensity of the non-scattered light necessary for measuring the refractive index is insufficient. In order to reduce this phenomenon, it is desirable to make the refractive index of the Dove prism 34 much larger than the refractive index of the colloidal liquid 33. If the refractive index of the dove prism 34 is sufficiently increased, the refractive index can be measured regardless of the refractive index of the colloidal liquid 33. As the optical material of the dove prism 34, a dielectric material similar to that of the dielectric transparent flat plate 30 in FIG. 1 may be used. When a uniaxial crystal such as a LiNbO 3 crystal, a LiNbO 3 crystal, a TeO 2 crystal, or a PbMoO 4 crystal is used as the optical material of the Dove prism 34, the direction in which the electric field of the incident light of the P wave vibrates and the crystal The dove prism 34 is arranged so that the optical axes thereof are orthogonal to each other.

以下、第2の手法において、入射角度θに基づきコロイド液33の屈折率を求める測定原理について説明する。 Hereinafter, the measurement principle for obtaining the refractive index of the colloidal liquid 33 based on the incident angle θ 1 in the second method will be described.

ダブプリズム34及びコロイド液33の屈折率を、それぞれ、n、nとして、ダブプリズム34とコロイド液33との界面からの非散乱の反射光の強度が最小になる入射角度(ダブプリズム34とコロイド液33との界面に入射するP波光の入射角度)をθ5とすると、コロイド液33の屈折率nは、ブリュースターの法則より、次式のように表される。 The refractive angles of the Dove prism 34 and the colloid liquid 33 are n p and n s , respectively, and the incident angle at which the intensity of the non-scattered reflected light from the interface between the Dove prism 34 and the colloid liquid 33 is minimized (the Dove prism 34). If the incident angle of the P-wave light incident on the interface between the liquid and the colloid liquid 33 is θ 5 , the refractive index n s of the colloid liquid 33 is expressed by the following equation from Brewster's law.

Figure 2013167477
Figure 2013167477

また、ダブプリズム34の入射面では、次式のスネルの法則が成立する。   On the incident surface of the dove prism 34, the following Snell's law is established.

Figure 2013167477
Figure 2013167477

また、図3では、ダブプリズム34の斜面35と下平面で構成される内角がξであるから、θとθの間には、次の関係式が成立する。 In FIG. 3, since the inner angle formed by the slope 35 and the lower plane of the Dove prism 34 is ξ, the following relational expression is established between θ 2 and θ 5 .

Figure 2013167477
Figure 2013167477

式(8)〜式(10)より、コロイド液33の屈折率nは、次式により求めることができる。 Equation (8) to equation (10), the refractive index n s of the colloidal liquid 33 may be obtained by the following equation.

Figure 2013167477
Figure 2013167477

すなわち、ダブプリズム34の斜面35に入射する屈折率測定に適したスペクトル幅の狭いP波光の入射角度を変化させて、ダブプリズム34とコロイド液33との界面(コロイド液33の表面)からの非散乱の反射光の強度が最小になる入射角度θを測定すれば、式(11)よりコロイド液33の屈折率nを求めることができる。 That is, the incident angle of the P-wave light having a narrow spectral width suitable for the refractive index measurement incident on the inclined surface 35 of the Dove prism 34 is changed to change from the interface between the Dove prism 34 and the colloid liquid 33 (the surface of the colloid liquid 33). If the incident angle θ 1 at which the intensity of the non-scattered reflected light is minimized is measured, the refractive index n s of the colloidal liquid 33 can be obtained from the equation (11).

図4は、コロイド液33を蓄えた小型セル36とその上に載せるダブプリズム34を圧着させる機構の一例を示す図である。図4に示すように、コロイド液33を蓄えた小型セル36とダブプリズム34は、台座とブロックの間に配置され、ねじとばねを用いて、小型セル36及びダブプリズム34が一体となって保持される。この機構により、小型セル36とダブプリズム34を圧着し、ダブプリズム34の下面とコロイド液33の表面が完全に接触するようにしている。図1の構成においても同様の機構を用いて、小型セル36、誘電体透明平板30及びダブプリズム32を一体として保持し、小型セル36と誘電体透明平板30を圧着して、誘電体透明平板30の下面とコロイド液33の表面が完全に接触するようにする。   FIG. 4 is a view showing an example of a mechanism for pressure-bonding the small cell 36 storing the colloidal liquid 33 and the dove prism 34 placed thereon. As shown in FIG. 4, the small cell 36 storing the colloidal liquid 33 and the dove prism 34 are arranged between the pedestal and the block, and the small cell 36 and the dove prism 34 are integrated using screws and springs. Retained. By this mechanism, the small cell 36 and the dove prism 34 are pressure-bonded so that the lower surface of the dove prism 34 and the surface of the colloidal liquid 33 are in complete contact. In the configuration of FIG. 1 as well, the same mechanism is used to hold the small cell 36, the dielectric transparent flat plate 30 and the dove prism 32 as one body, and the small cell 36 and the dielectric transparent flat plate 30 are pressure-bonded to form a dielectric transparent flat plate. The lower surface of 30 and the surface of the colloidal liquid 33 are brought into full contact.

図5は、光照射部の構成の他の例を示す図である。図1、図3に示す例では、回転ステージ12の中心部に光源10を配置して光照射部を構成する場合について説明したが、図5に示すように、光源10に接続された光ファイバ14と、光ファイバ14から出射する光を平行光に変換する光学系16と、P波光を透過させる偏光板18とを、回転ステージ12に配置して、光照射部を構成してもよい。ここで、光ファイバ14の出射口は回転ステージ12の中心O(回転軸)に固定されている。また、回転ステージ12の回転運動の力が光ファイバ14の入出射口に加わらないように、光ファイバ14の出射口と出射口の間の少なくとも一部は非固定状態となっている。   FIG. 5 is a diagram illustrating another example of the configuration of the light irradiation unit. In the example shown in FIGS. 1 and 3, the case where the light source 10 is arranged at the center of the rotary stage 12 to configure the light irradiation unit has been described. However, as shown in FIG. 5, the optical fiber connected to the light source 10. 14, an optical system 16 that converts light emitted from the optical fiber 14 into parallel light, and a polarizing plate 18 that transmits P-wave light may be disposed on the rotary stage 12 to constitute a light irradiation unit. Here, the exit of the optical fiber 14 is fixed to the center O (rotary axis) of the rotary stage 12. In addition, at least a part between the exit port and the exit port of the optical fiber 14 is in an unfixed state so that the rotational movement force of the rotary stage 12 is not applied to the entrance / exit port of the optical fiber 14.

また、光源10或いは光ファイバ14を回転ステージ12に配置する構成に代えて、コロイド液33を蓄えた小型セル36とダブプリズム34を圧着させる機構(或いは、コロイド液33を蓄えた小型セル36、誘電体透明平板30及びダブプリズム34を圧着させる機構)を回転ステージ12に配置するようにしてもよい。この場合には、コロイド液33の表面が、回転ステージ12の中心Oを通る直線上に位置するように配置する。このようにすると、光源10を固定したまま、コロイド液33を水平回転させてP波光の入射角度を変化させることができ、測定系の構築が容易になる。   Further, in place of the configuration in which the light source 10 or the optical fiber 14 is disposed on the rotary stage 12, a mechanism for pressure-bonding the small cell 36 storing the colloid liquid 33 and the dove prism 34 (or the small cell 36 storing the colloid liquid 33, A mechanism for pressing the dielectric transparent flat plate 30 and the dove prism 34) may be arranged on the rotary stage 12. In this case, the colloid liquid 33 is arranged so that the surface of the colloid liquid 33 is located on a straight line passing through the center O of the rotary stage 12. In this way, while the light source 10 is fixed, the colloidal liquid 33 can be horizontally rotated to change the incident angle of the P wave light, and the measurement system can be easily constructed.

2.測定方法
本実施形態の第1の手法を例にとり、サンプルの準備から屈折率の測定までの手順について説明する。
2. Measurement Method Taking the first method of the present embodiment as an example, the procedure from sample preparation to refractive index measurement will be described.

まず、図6(A)、(B)に示すように、小型セル36から溢れる寸前までコロイド液33を小型セル36に入れる。次に、図6(C)に示すように、誘電体透明平板30の下平面を小型セル36に密着させ、コロイド液33を小型セル36から溢れさせる。なお、誘電体透明平板30での多重反射干渉を避けるため、誘電体透明平板30の厚さは入射光のビーム径に比べて十分厚いものとする。次に、図6(D)に示すように、マッチング液38を誘電体透明平板30の上平面に塗布する。次に、図6(E)に示すように、ダブプリズム32の下平面を誘電体透明平板30の上平面に密着させ、図4に示す機構を用いて圧着する(図示省略)。   First, as shown in FIGS. 6A and 6B, the colloidal liquid 33 is put into the small cell 36 just before overflowing from the small cell 36. Next, as shown in FIG. 6C, the lower plane of the dielectric transparent flat plate 30 is brought into close contact with the small cell 36, and the colloidal liquid 33 overflows from the small cell 36. In order to avoid multiple reflection interference on the dielectric transparent flat plate 30, the thickness of the dielectric transparent flat plate 30 is sufficiently thicker than the beam diameter of incident light. Next, as shown in FIG. 6D, the matching liquid 38 is applied to the upper plane of the dielectric transparent flat plate 30. Next, as shown in FIG. 6E, the lower plane of the dove prism 32 is brought into close contact with the upper plane of the dielectric transparent flat plate 30, and is crimped using the mechanism shown in FIG. 4 (not shown).

この状態で、図6(E)に示すように、回転ステージ12の中心に設置した半導体レーザ10からP波のレーザ光50をダブプリズム32の上平面に入射させ、反射光51の強度が最小となるように、回転ステージ12を調整し、そのときの角度θaを記録する。つぎにP波のレーザ光52をダブプリズム32の斜面35に入射し、誘電体透明平板30とコロイド液33との界面からの非散乱の反射光53の強度が最小となるように回転ステージ12を調整し、そのときの角度θを記録する。 In this state, as shown in FIG. 6E, the P-wave laser light 50 is incident on the upper plane of the Dove prism 32 from the semiconductor laser 10 installed at the center of the rotary stage 12, and the intensity of the reflected light 51 is minimized. and so that, by adjusting the rotary stage 12, to record the angle theta a at that time. Next, P-wave laser light 52 is incident on the inclined surface 35 of the dove prism 32, and the rotary stage 12 is set so that the intensity of the non-scattered reflected light 53 from the interface between the dielectric transparent flat plate 30 and the colloidal liquid 33 is minimized. And record the angle θ b at that time.

この2回の角度計測より、ダブプリズム32の斜面35に入射するレーザ光52の入射角度θ1を求めることができる。図6(E)の一部を拡大表示した図7を用いて入射角度θ1の導出過程を述べる。図7の点Oは、回転ステージ12の回転中心であり、半導体レーザ10の発光部の位置とも一致する。ダブプリズム32の上下平面および誘電体透明平板30の上下平面はすべて平行であるから、直線HKは、これら4面に共通の法線である。法線HKは、入射光線50とダブプリズム32の上平面との交点Aを通過するように選ばれる。∠OAH=θpとすると、θpは、ブリュースター角となり、次の式で与えられる。 From these two angle measurements, the incident angle θ 1 of the laser beam 52 incident on the inclined surface 35 of the Dove prism 32 can be obtained. The process of deriving the incident angle θ 1 will be described with reference to FIG. 7 in which a part of FIG. A point O in FIG. 7 is the rotation center of the rotary stage 12 and coincides with the position of the light emitting portion of the semiconductor laser 10. Since the upper and lower planes of the dove prism 32 and the upper and lower planes of the dielectric transparent flat plate 30 are all parallel, the straight line HK is a normal line common to these four surfaces. The normal line HK is selected so as to pass through the intersection A between the incident light beam 50 and the upper plane of the dove prism 32. When ∠OAH = θ p , θ p is a Brewster angle and is given by the following equation.

Figure 2013167477
Figure 2013167477

空気の屈折率nは、詳しく求められているから、ダブプリズム32の屈折率nを予め精密に測定しておけば、式(12)より、θpを求めることができる。 Refractive index n a of the air, because they sought detail, be previously accurately measure the refractive index n p of the Dove prism 32, the equation (12) can be obtained theta p.

つぎに、P波のレーザ光52とダブプリズム32の斜面35の交点をO’とし、交点O’を通る斜面35の法線とレーザ光50との交点をBとし、さらに法線BO’と法線HKの交点をCとする。法線BCと法線HKのなす角度は、∠BCH=ξであるから、   Next, the intersection of the P-wave laser beam 52 and the inclined surface 35 of the dove prism 32 is defined as O ′, the intersection of the normal of the inclined surface 35 passing through the intersection O ′ and the laser beam 50 is defined as B, and the normal line BO ′. Let C be the intersection of the normals HK. Since the angle between the normal line BC and the normal line HK is ∠BCH = ξ,

Figure 2013167477
Figure 2013167477

Figure 2013167477
Figure 2013167477

Figure 2013167477
Figure 2013167477

となる。式(13)〜(15)より、 It becomes. From the equations (13) to (15),

Figure 2013167477
Figure 2013167477

を得る。 Get.

以上を要約すると、P波のレーザ光50をダブプリズム32の上平面に入射し、回転ステージ12を調整してダブプリズム32の上平面からの反射光51の強度が最小となるときの回転ステージ12の角度θaを記録し、つぎにP波のレーザ光52をダブプリズム32の斜面35に入射し、誘電体透明平板30とコロイド液33との界面からの反射光53の強度が最小となるように回転ステージ12を調整し、そのときの回転ステージ12の角度θを記録し、2つの角度の差θaと、ダブプリズム32の屈折率npとダブプリズム32と接触している気体の屈折率nとを用いて計算したブリュースター角θpを用いて式(16)により、ダブプリズム32の斜面35における入射角度θ1を求めることができる。コロイド液33の屈折率nを算出する際には、式(16)を式(5)に代入すればよい。 In summary, the rotary stage when the P-wave laser beam 50 is incident on the upper plane of the Dove prism 32 and the intensity of the reflected light 51 from the upper plane of the Dove prism 32 is adjusted by adjusting the rotary stage 12. record the 12 angle theta a, then the incident laser beam 52 of the P-wave on the slope 35 of the Dove prism 32, and the intensity of the reflected light 53 from the interface between the dielectric transparent flat plate 30 and the colloidal liquid 33 minimum The rotary stage 12 is adjusted so that the angle θ b of the rotary stage 12 at that time is recorded, the difference between the two angles θ ab , the refractive index n p of the Dove prism 32 and the Dove prism 32 the equation (16) using the Brewster angle theta p calculated by using the refractive index n a of the gas that you are, it is possible to obtain the incident angle theta 1 at slope 35 of the dove prism 32. When calculating the refractive index n s of the colloidal liquid 33 may be substituted equation (16) into equation (5).

図6(F)に示す波長板21は、反射光強度を測定する光検出器20の位置合わせに用いる。入射角度がブリュースター角に近づくと、P波の非散乱反射光の強度はゼロに近づくため、光検出器20の位置合わせを行うことが困難になる。そこで、P波の入射光の一部又は大部分を波長板21でS波光に変換して、ピンホール22と光検出器20の位置合わせを行い、波長板21を撤去してP波の非散乱反射光の強度を測定する。   The wave plate 21 shown in FIG. 6F is used for alignment of the photodetector 20 that measures the reflected light intensity. As the incident angle approaches the Brewster angle, the intensity of the P-wave non-scattered reflected light approaches zero, making it difficult to align the photodetector 20. Therefore, a part or most of the P-wave incident light is converted into S-wave light by the wave plate 21, the pinhole 22 and the photodetector 20 are aligned, the wave plate 21 is removed, and the non-P wave is removed. Measure the intensity of scattered reflected light.

図3に示す本実施形態の第2の手法の場合には、図8に示すように、P波のレーザ光50をダブプリズム34の上平面に入射し、回転ステージ12を調整してダブプリズム34の上面からの非散乱の反射光51の強度が最小となるときの回転ステージ12の角度θaを記録し、つぎにP波のレーザ光52をダブプリズム34の斜面35に入射し、ダブプリズム34とコロイド液33との界面からの非散乱の反射光53の強度が最小となるように回転ステージ12を調整し、そのときの回転ステージ12の角度θを記録し、2つの角度の差θaと、ダブプリズム34の屈折率npとダブプリズム34と接触している気体の屈折率nとを用いて計算したブリュースター角θpを用いて式(16)により、ダブプリズム34の斜面35における入射角度θ1を求めることができる。コロイド液33の屈折率nを算出する際には、式(16)を式(11)に代入すればよい。 In the case of the second method of the present embodiment shown in FIG. 3, as shown in FIG. 8, a P-wave laser beam 50 is incident on the upper plane of the Dove prism 34, and the rotary stage 12 is adjusted to adjust the Dove prism. non-scattering intensity of the reflected light 51 from the upper surface 34 to record the angle theta a rotary stage 12 when the minimum, then the incident laser beam 52 of the P-wave on the slope 35 of the dove prism 34, double The rotary stage 12 is adjusted so that the intensity of the non-scattered reflected light 53 from the interface between the prism 34 and the colloid liquid 33 is minimized, and the angle θ b of the rotary stage 12 at that time is recorded, and the two angles are recorded. the difference θ ab, the equation (16) using the Brewster angle theta p calculated by using the refractive index n a of the gas in contact with the refractive index n p and Dove prism 34 of Dove prism 34 On the slope 35 of the dove prism 34 It is possible to obtain the incident angle theta 1. When calculating the refractive index n s of the colloidal liquid 33 may be substituted equation (16) into equation (11).

3.測定結果
図1の測定系を用いて、精製水の屈折率と、コロイド液33の一種である牛乳の屈折率を測定した。
3. Measurement Result Using the measurement system of FIG. 1, the refractive index of purified water and the refractive index of milk which is a kind of colloidal liquid 33 were measured.

光源10として、InGaAlP半導体レーザ(波長:670.0nm、出力:3mW)を用いた。半導体レーザを、4/1000°刻みで回転角度を遠隔制御可能な電動式回転ステージ12の中心に固定し、出射口にはP波光を選択する偏光フィルムを貼り付けた。   As the light source 10, an InGaAlP semiconductor laser (wavelength: 670.0 nm, output: 3 mW) was used. The semiconductor laser was fixed to the center of the electric rotary stage 12 whose rotation angle can be remotely controlled in increments of 4/1000 °, and a polarizing film for selecting P wave light was attached to the exit port.

また、BK7ガラスを用いてξ=45±0.05°のダブプリズム32を作成し、LiTaO(LT結晶)を用いて誘電体透明平板30を作成した。ダブプリズム32の外観を図9に示し、誘電体透明平板30の外観を図10に示す。 Further, a dove prism 32 with ξ = 45 ± 0.05 ° was made using BK7 glass, and a dielectric transparent flat plate 30 was made using LiTaO 3 (LT crystal). The appearance of the dove prism 32 is shown in FIG. 9, and the appearance of the dielectric transparent flat plate 30 is shown in FIG.

図9に示すように、ダブプリズムのAA’B’B面とCC’D’D面が平行であり、ABDC面とA’B’D’C’面が平行であり、∠ACD=∠A’C’D’=∠BDC=∠B’D’C’=45°±0.05°であり、∠CAB=∠C’A’B’=∠ABD=∠A’B’D’=135°±0.05°である。また、AA’C’C面、BB’D’D面、AA’B’B面及びCC’D’D面の4面は光学研磨されている。   As shown in FIG. 9, the AA'B'B surface and CC'D'D surface of the Dove prism are parallel, the ABDC surface and A'B'D'C 'surface are parallel, and ∠ACD = ∠A 'C'D' = ∠BDC = ∠B'D'C '= 45 ° ± 0.05 °, and ∠CAB = ∠C'A'B' = ∠ABD = ∠A'B'D '= 135 ° ± 0.05 °. Further, the four surfaces of the AA'C'C surface, the BB'D'D surface, the AA'B'B surface, and the CC'D'D surface are optically polished.

図10に示すように、誘電体透明平板30に用いたLT結晶は、結晶の主軸に沿って加工された直方体の形状であり、面の法線がZ軸(光学軸)と平行な2つの面が光学研磨されている。   As shown in FIG. 10, the LT crystal used for the dielectric transparent flat plate 30 has a rectangular parallelepiped shape processed along the main axis of the crystal, and has two normal planes parallel to the Z axis (optical axis). The surface is optically polished.

InGaAlP半導体レーザのP波光をダブプリズムの上平面であるAA’B’B面と、LT結晶(誘電体透明平板)の光学研磨した平面に入射して、ブリュースター角を測定し、それぞれの屈折率を求めた。ダブプリズムの屈折率nは1.51370であり、LT結晶の正常屈折率は、nc=2.17236であった。 The P wave light of the InGaAlP semiconductor laser is incident on the AA'B'B surface, which is the upper plane of the Dove prism, and the optically polished plane of the LT crystal (dielectric transparent flat plate), the Brewster angle is measured, and each refraction is measured. The rate was determined. The refractive index n p of the Dove prism was 1.51370, and the normal refractive index of the LT crystal was n c = 2.17236.

また、コロイド液33を入れる小型セル36は、外径10mm、内径8mm、高さ10mmの円形のガラスセルである。小型セル36に蓄えられるコロイド液33は約1mlである。   The small cell 36 into which the colloid liquid 33 is placed is a circular glass cell having an outer diameter of 10 mm, an inner diameter of 8 mm, and a height of 10 mm. The colloidal liquid 33 stored in the small cell 36 is about 1 ml.

まず、測定精度をチェックするため、精製水の屈折率を測定した。図11に、測定温度を18℃として精製水を測定したときの光検出信号(反射光を光電変換した光検出器の出力信号)と入射角度θ1との関係を示す。光検出信号が最小となる入射角度θ1は、50.380°であり、式(5)より、水の屈折率は1.33050であった。測定結果は、公表値(理科年表、波長670nm、温度18°において1.33054)とよく一致しており、本実施形態の測定系で水の屈折率を精度よく測定できることを確認した。 First, in order to check the measurement accuracy, the refractive index of purified water was measured. FIG. 11 shows the relationship between the light detection signal (output signal of the light detector obtained by photoelectrically converting the reflected light) and the incident angle θ 1 when purified water is measured at a measurement temperature of 18 ° C. The incident angle θ 1 at which the light detection signal is minimized is 50.380 °, and the refractive index of water is 1.33050 from the equation (5). The measurement result was in good agreement with the published value (Science Chronology, 1.36704 at a wavelength of 670 nm and a temperature of 18 °), and it was confirmed that the refractive index of water can be accurately measured with the measurement system of this embodiment.

次に、乳脂肪率がそれぞれ0.1%(無脂肪)、1.8%(低脂肪)、2.3%(中脂肪)、3.0%(中脂肪)、3.7%(高脂肪)である5種類の牛乳の屈折率を、18℃の環境において測定した。   Next, the milk fat percentage is 0.1% (no fat), 1.8% (low fat), 2.3% (medium fat), 3.0% (medium fat), 3.7% (high), respectively. The refractive index of five types of milk (fat) was measured in an environment of 18 ° C.

図12に、乳脂肪2.3%の中脂肪牛乳を測定したときの光検出信号と入射角度θ1との関係を示す。5種類の牛乳のそれぞれについて測定した光検出信号が最小となる入射角度θに基づき求めた屈折率を表1に示す。 FIG. 12 shows the relationship between the light detection signal and the incident angle θ 1 when measuring medium fat milk of 2.3% milk fat. Table 1 shows the refractive index obtained based on the incident angle θ 1 at which the light detection signal measured for each of the five types of milk is minimized.

Figure 2013167477
Figure 2013167477

図13は、乳脂肪率と牛乳の屈折率との関係を示す測定結果である。図13の測定結果は、本実施形態の屈折率測定装置及び屈折率測定方法が、コロイド液33の一種である牛乳の屈折率を精度よく測定できることを示している。また、本実施形態の手法によれば、コロイド液33表面からの反射光の強度を測定するため、大きな吸収率をもつコロイド液33も測定することができる。また、コロイド液33の蓋の役目をする誘電体透明平板30(図1参照)或いはダブプリズム32(図3参照)として屈折率の大きな誘電体材料を用いれば、全てのコロイド液33の屈折率を測定することができる。   FIG. 13 is a measurement result showing the relationship between the milk fat percentage and the refractive index of milk. The measurement results in FIG. 13 indicate that the refractive index measurement device and the refractive index measurement method of this embodiment can accurately measure the refractive index of milk, which is a kind of colloidal liquid 33. Further, according to the method of the present embodiment, since the intensity of the reflected light from the surface of the colloidal liquid 33 is measured, the colloidal liquid 33 having a large absorption rate can also be measured. Further, if a dielectric material having a large refractive index is used as the dielectric transparent flat plate 30 (see FIG. 1) or the dove prism 32 (see FIG. 3) serving as a lid for the colloid liquid 33, the refractive indexes of all the colloid liquids 33 are used. Can be measured.

本発明の技術範囲は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で適宜変更を加えることができる。   The technical scope of the present invention is not limited to the above-described embodiment, and appropriate modifications can be made without departing from the spirit of the present invention.

10 光源、12 回転ステージ、14 光ファイバ、16 光学系、18 偏光板、20 光検出器、21 波長板、22 ピンホール、30 誘電体透明平板、32 ダブプリズム、33 コロイド液、34 ダブプリズム、35 斜面、36 小型セル、38 マッチング液、40 演算装置、42 演算処理部、44 記憶部 10 light source, 12 rotating stage, 14 optical fiber, 16 optical system, 18 polarizing plate, 20 photodetector, 21 wave plate, 22 pinhole, 30 dielectric transparent flat plate, 32 dove prism, 33 colloidal liquid, 34 dove prism, 35 slopes, 36 small cells, 38 matching liquids, 40 arithmetic units, 42 arithmetic processing units, 44 storage units

Claims (11)

コロイド液の屈折率を測定する屈折率測定方法において、
コロイド液の表面に、コロイド液より高い屈折率を有し上平面と下平面が平行な誘電体透明平板の下平面を接触させ、前記誘電体透明平板の上平面に、互いに平行な上平面と下平面と、これらの平面と非平行な2つの平坦な斜面をもち、上平面と2つの斜面の交差角度(内角)が、ともに180°−ξであり、下平面と2つの斜面の内角が、ともにξであり、内角ξは0°より大きく、90°より小さいことを特徴とするダブプリズムの下平面をマッチング液を介して接触させ、ダブプリズムの法線と入射光の進行方向を含む入射面と直交する方向に光の電界が振動する光をP波光と定義し、屈折率測定に適したスペクトル幅の狭いP波光を前記ダブプリズムの一方の斜面に入射させ、
前記誘電体透明平板の下平面と前記コロイド液表面との界面からの非散乱の反射光の強度が最小になる入射角度θを求め、
前記入射角度θと、前記誘電体透明平板の屈折率nと、前記ダブプリズムの屈折率nと、前記ダブプリズムと接触している気体の屈折率nとに基づいて、前記コロイド液の屈折率nを求める、屈折率測定方法。
In a refractive index measurement method for measuring the refractive index of a colloidal liquid,
The lower surface of the dielectric transparent plate having a refractive index higher than that of the colloid solution and parallel to the upper and lower surfaces is brought into contact with the surface of the colloid solution, and upper surfaces parallel to each other are formed on the upper surface of the dielectric transparent plate. It has a lower plane and two flat slopes that are not parallel to these planes. The intersection angle (inner angle) between the upper plane and the two slopes is 180 ° -ξ, and the inner angle between the lower plane and the two slopes is , Both of which are ξ and the inner angle ξ is larger than 0 ° and smaller than 90 °, the lower surface of the Dove prism is brought into contact with the matching liquid, and includes the normal line of the Dove prism and the traveling direction of the incident light. Light whose electric field of light oscillates in a direction perpendicular to the incident surface is defined as P-wave light, and P-wave light having a narrow spectral width suitable for refractive index measurement is incident on one inclined surface of the Dove prism,
Obtaining an incident angle θ 1 at which the intensity of non-scattered reflected light from the interface between the lower flat surface of the dielectric transparent plate and the surface of the colloidal liquid is minimized;
Wherein the incident angle theta 1, the refractive index n c of the dielectric transparent plate, a refractive index and n p of the Dove prism, on the basis of the refractive index n a of the gas in contact with the Dove prism, the colloidal A refractive index measurement method for obtaining a refractive index ns of a liquid.
請求項1において、
前記屈折率測定に適したスペクトル幅の狭いP波光をダブプリズムの上平面に入射し、前記P波光の入射角度を変化させるための回転ステージを調整してダブプリズム上平面からの反射光の強度が最小となるときの回転ステージの角度θaを記録し、つぎに前記屈折率測定に適したスペクトル幅の狭いP波光をダブプリズムの一方の斜面に入射し、誘電体透明平板とコロイド液との界面からの非散乱の反射光の強度が最小となるように回転ステージを調整し、そのときの回転ステージの角度θを記録し、2つの角度の差θaと、ダブプリズムの屈折率npとダブプリズムと接触している気体の屈折率nとを用いて計算したブリュースター角θpを用いて、ダブプリズムの一方の斜面における入射角度θ1を求める、屈折率測定方法。
In claim 1,
The P-wave light with a narrow spectral width suitable for the refractive index measurement is incident on the upper plane of the Dove prism, and the intensity of the reflected light from the upper plane of the Dove prism is adjusted by adjusting the rotation stage for changing the incident angle of the P-wave light. There was recorded the angle theta a rotary stage when the minimum, a narrow P-wave optical spectral width suitable to the refractive index measurement is incident on one of the slopes of Dove prism then, a dielectric transparent flat plate and the colloidal liquid The rotation stage is adjusted so that the intensity of the non-scattered reflected light from the interface of the substrate is minimized, the angle θ b of the rotation stage at that time is recorded, the difference between the two angles θ ab, and the Dove prism using Brewster angle theta p calculated by using the refractive index n a of the gas in contact with the refractive index n p and Dove prism of obtaining the incident angle theta 1 at one slope Dove prism, the refractive index Measuring method.
請求項1又は2において、
前記誘電体透明平板は1軸性結晶であり、その光学軸の方向(結晶内を伝搬する正常光線と異常光線の進行方向が一致する方向)が屈折率測定に適したスペクトル幅の狭いP波の入射光の電界成分の振動方向と直交するように配置する、屈折率測定方法。
In claim 1 or 2,
The dielectric transparent flat plate is a uniaxial crystal, and the direction of the optical axis (the direction in which the normal ray and the extraordinary ray propagating in the crystal coincide with each other) has a narrow spectral width suitable for refractive index measurement. The refractive index measurement method arrange | positions so that it may orthogonally cross with the vibration direction of the electric field component of incident light.
請求項1乃至3のいずれかにおいて、
Figure 2013167477
に基づいて前記コロイド液の屈折率nを求める、屈折率測定方法。
In any one of Claims 1 thru | or 3,
Figure 2013167477
Determining the refractive index n s of the colloidal solution on the basis of the refractive index measurement method.
コロイド液の屈折率を測定する屈折率測定方法において、
コロイド液の表面に、コロイド液より高い屈折率を有し、かつ、互いに平行な上平面と下平面と、これらの平面と非平行な2つの平坦な斜面をもち、上平面と2つの斜面の交差角度(内角)が、ともに180°−ξであり、下平面と2つの斜面の内角が、ともにξであり、内角ξは0°より大きく、90°より小さいことを特徴とするダブプリズムの下平面を接触させ、ダブプリズムの法線と入射光の進行方向を含む入射面と直交する方向に光の電界が振動する光をP波光と定義し、屈折率測定に適したスペクトル幅の狭いP波光を前記ダブプリズムの一方の斜面に入射させ、
前記ダブプリズムの下平面と前記コロイド液表面との界面からの非散乱の反射光の強度が最小になる入射角度θを求め、
前記入射角度θと、前記ダブプリズムの屈折率nと、前記ダブプリズムと接触している気体の屈折率nとに基づいて、前記コロイド液の屈折率nを求める、屈折率測定方法。
In a refractive index measurement method for measuring the refractive index of a colloidal liquid,
The surface of the colloid liquid has a higher refractive index than that of the colloid liquid, and has an upper plane and a lower plane that are parallel to each other, and two flat slopes that are not parallel to these planes. An intersection angle (inner angle) is 180 ° -ξ, an inner angle between the lower plane and the two slopes is ξ, and the inner angle ξ is larger than 0 ° and smaller than 90 °. Light whose electric field oscillates in a direction perpendicular to the incident surface including the normal line of the Dove prism and the incident light traveling direction is defined as P-wave light with a lower plane in contact, and has a narrow spectral width suitable for refractive index measurement. P-wave light is incident on one slope of the Dove prism,
Obtaining an incident angle θ 1 at which the intensity of non-scattered reflected light from the interface between the lower plane of the Dove prism and the colloidal liquid surface is minimized;
And the incident angle theta 1, the refractive index and n p of the Dove prism, on the basis of the refractive index n a of the gas in contact with the Dove prism, determining the refractive index n s of the colloidal solution, the refractive index measurement Method.
請求項5において、
前記屈折率測定に適したスペクトル幅の狭いP波光をダブプリズムの上平面に入射し、前記P波光の入射角度を変化させるための回転ステージを調整してダブプリズム上平面からの反射光の強度が最小となるときの回転ステージの角度θaを記録し、つぎに前記屈折率測定に適したスペクトル幅の狭いP波光をダブプリズムの一方の斜面に入射し、ダブプリズムとコロイド液との界面からの非散乱の反射光の強度が最小となるように回転ステージを調整し、そのときの回転ステージの角度θを記録し、2つの角度の差θaと、ダブプリズムの屈折率npとダブプリズムと接触している気体の屈折率nとを用いて計算したブリュースター角θpを用いて、ダブプリズムの一方の斜面における入射角度θ1を求める、屈折率測定方法。
In claim 5,
The P-wave light with a narrow spectral width suitable for the refractive index measurement is incident on the upper plane of the Dove prism, and the intensity of the reflected light from the upper plane of the Dove prism is adjusted by adjusting the rotation stage for changing the incident angle of the P-wave light. interface but to record the angle theta a rotary stage when the minimum, then the narrow P-wave optical spectral width suitable to the refractive index measurement is incident on one of the slopes of Dove prism, the Dove prism and colloidal liquid The rotary stage is adjusted so that the intensity of the non-scattered reflected light from the light is minimized, the angle θ b of the rotary stage at that time is recorded, the difference between the two angles θ ab and the refraction of the Dove prism Refractive index measurement method for obtaining an incident angle θ 1 on one inclined surface of a Dove prism using a Brewster angle θ p calculated using a refractive index n p and a refractive index na of a gas in contact with the Dove prism .
請求項5又は6において、
前記ダブプリズムは1軸性結晶であり、その光学軸の方向が入射光の電界成分の振動方向と直交するように配置する、屈折率測定方法。
In claim 5 or 6,
The dove prism is a uniaxial crystal, and is arranged so that the direction of its optical axis is orthogonal to the vibration direction of the electric field component of incident light.
請求項5乃至7のいずれかにおいて、
Figure 2013167477
に基づいて前記コロイド液の屈折率nを求める、屈折率測定方法。
In any of claims 5 to 7,
Figure 2013167477
Determining the refractive index n s of the colloidal solution on the basis of the refractive index measurement method.
請求項2又は6において、
Figure 2013167477
に基づいて前記入射角度θ1を求める、屈折率測定方法。
In claim 2 or 6,
Figure 2013167477
The refractive index measurement method for obtaining the incident angle θ 1 based on
コロイド液の屈折率を測定する屈折率測定装置において、
コロイド液の表面に接触し、コロイド液より高い屈折率を有し上平面と下平面が平行な誘電体透明平板と、
前記誘電体透明平板の上平面にマッチング液を介して接触し、互いに平行な上平面と下平面と、これらの平面と非平行な2つの平坦な斜面をもち、上平面と2つの斜面の交差角度(内角)が、ともに180°−ξであり、下平面と2つの斜面の内角が、ともにξであり、内角ξは0°より大きく、90°より小さいことを特徴とするダブプリズムと、
ダブプリズムの法線と入射光の進行方向を含む入射面と直交する方向に光の電界が振動する光をP波光と定義し、屈折率測定に適したスペクトル幅の狭いP波光を前記ダブプリズムの斜面に入射させる光照射部と、
前記誘電体透明平板の下平面と前記コロイド液表面との界面からの非散乱の反射光の強度を検出する光検出部と、
前記誘電体透明平板の下平面と前記コロイド液表面との界面からの非散乱の反射光の強度が最小になる入射角度θと、前記誘電体透明平板の屈折率nと、前記ダブプリズムの屈折率nと、前記ダブプリズムと接触している気体の屈折率nとに基づいて、前記コロイド液の屈折率nを算出する演算処理を行う演算処理部とを含む、屈折率測定装置。
In a refractive index measuring device that measures the refractive index of a colloidal liquid,
A dielectric transparent flat plate that is in contact with the surface of the colloidal liquid and has a higher refractive index than the colloidal liquid and whose upper and lower planes are parallel;
The upper surface of the dielectric transparent flat plate is contacted via a matching liquid, has an upper surface and a lower surface that are parallel to each other, and two flat slopes that are not parallel to these planes. An angle (inner angle) is 180 ° -ξ, an inner angle between the lower plane and the two slopes is ξ, and the inner angle ξ is greater than 0 ° and less than 90 °,
Light whose electric field of light oscillates in a direction orthogonal to the incident plane including the normal of the Dove prism and the incident light traveling direction is defined as P-wave light, and P-wave light having a narrow spectral width suitable for refractive index measurement is defined as the Dove prism. A light irradiator that is incident on the slope of
A light detection unit for detecting the intensity of non-scattered reflected light from the interface between the lower flat surface of the dielectric transparent plate and the colloidal liquid surface;
Wherein the incident angle theta 1 which the intensity of the reflected light of the unscattered is minimized from the interface between the lower plane of the dielectric transparent plate and said colloidal liquid surface, and the refractive index n c of the dielectric transparent plate, the Dove prism including refractive index and n p of, based on the refractive index n a of the gas in contact with the Dove prism, and a processing unit for performing arithmetic processing for calculating the refractive index n s of the colloidal solution, the refractive index measuring device.
コロイド液の屈折率を測定する屈折率測定装置において、
コロイド液の表面に接触し、コロイド液より高い屈折率を有し、かつ、互いに平行な上平面と下平面と、これらの平面と非平行な2つの平坦な斜面をもち、上平面と2つの斜面の交差角度(内角)が、ともに180°−ξであり、下平面と2つの斜面の内角が、ともにξであり、内角ξは0°より大きく、90°より小さいことを特徴とするダブプリズムと、
ダブプリズムの法線と入射光の進行方向を含む入射面と直交する方向に光の電界が振動する光をP波光と定義し、屈折率測定に適したスペクトル幅の狭いP波光を前記ダブプリズムの斜面に入射させる光照射部と、
前記ダブプリズムの下平面と前記コロイド液表面との界面からの非散乱の反射光の強度を検出する光検出部と、
前記ダブプリズムの下平面と前記コロイド液表面との界面からの非散乱の反射光の強度が最小になる入射角度θと、前記ダブプリズムの屈折率nと、前記ダブプリズムと接触している気体の屈折率nとに基づいて、前記コロイド液の屈折率nを算出する演算処理を行う演算処理部とを含む、屈折率測定装置。
In a refractive index measuring device that measures the refractive index of a colloidal liquid,
Contact with the surface of the colloidal liquid, have a higher refractive index than the colloidal liquid, and have an upper plane and a lower plane that are parallel to each other, and two flat slopes that are not parallel to these planes. A dub characterized in that the angle of intersection (inner angle) of the slope is 180 ° -ξ, the inner angle of the lower plane and the two slopes are both ξ, and the inner angle ξ is greater than 0 ° and less than 90 °. Prism,
Light whose electric field of light oscillates in a direction orthogonal to the incident plane including the normal of the Dove prism and the incident light traveling direction is defined as P-wave light, and P-wave light having a narrow spectral width suitable for refractive index measurement is defined as the Dove prism. A light irradiator that is incident on the slope of
A light detector for detecting the intensity of non-scattered reflected light from the interface between the lower surface of the Dove prism and the colloidal liquid surface;
The incident angle θ 1 at which the intensity of the non-scattered reflected light from the interface between the lower plane of the Dove prism and the colloidal liquid surface is minimized, the refractive index n p of the Dove prism, and the Dove prism in contact with each other. And a calculation processing unit that performs a calculation process for calculating the refractive index n s of the colloidal liquid based on the refractive index n a of the gas.
JP2012029607A 2012-02-14 2012-02-14 Method and device for measuring refractive index Pending JP2013167477A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012029607A JP2013167477A (en) 2012-02-14 2012-02-14 Method and device for measuring refractive index

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012029607A JP2013167477A (en) 2012-02-14 2012-02-14 Method and device for measuring refractive index

Publications (1)

Publication Number Publication Date
JP2013167477A true JP2013167477A (en) 2013-08-29

Family

ID=49177993

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012029607A Pending JP2013167477A (en) 2012-02-14 2012-02-14 Method and device for measuring refractive index

Country Status (1)

Country Link
JP (1) JP2013167477A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630514A (en) * 2013-11-05 2014-03-12 杭州陆恒生物科技有限公司 Multifunctional digital display refractometer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103630514A (en) * 2013-11-05 2014-03-12 杭州陆恒生物科技有限公司 Multifunctional digital display refractometer

Similar Documents

Publication Publication Date Title
US20110144505A1 (en) Optical device and method for shape and gradient detection and/or measurement and associated device
TWI384213B (en) Method and device for measuring optical anisotropy parameter
Quinten A practical guide to optical metrology for thin films
CN107561007B (en) Thin film measuring device and method
US20120140235A1 (en) Method for measuring the film element using optical multi-wavelength interferometry
TWI498540B (en) Localized surface plasmon resonance detection system having asymmetric particle shape
CN109115690A (en) Real-time polarization sensitive terahertz time-domain ellipsometer and optical constant measuring method
US20210181090A1 (en) Normal incidence ellipsometer and method for measuring optical properties of sample by using same
Joerger et al. Influence of incoherent superposition of light on ellipsometric coefficients
JP2018096984A (en) Photo-detection system, and light-emitting device
Beaudry et al. Dielectric tensor measurement from a single Mueller matrix image
Negara et al. Simplified Stokes polarimeter based on division-of-amplitude
Dignam et al. Azimuthal misalignment and surface anisotropy as sources of error in ellipsometry
JP2013167477A (en) Method and device for measuring refractive index
Chen et al. Optimization of off-null ellipsometry for air/solid interfaces
CN208847653U (en) Real-time polarization sensitive terahertz time-domain ellipsometer
JP2012052998A (en) Optical measurement method and optical measurement device for measuring refraction factor of solid body having rough surface
Dib et al. Immersed diffraction grating refractometers of liquids
JP2012052997A (en) Optical measurement method and optical measurement device for measuring apparent refraction factor of rough surface of solid body
CN206531782U (en) A kind of device for being used to measure high-temperature fusant refractive index
JP2013167478A (en) Method and device for measuring refractive index
He et al. Determining the refractive index, absolute thickness and local slope of a thin transparent film using multi-wavelength and multi-incident-angle interference
JP2011106920A (en) Rotation/inclination measuring device and method thereof
RU2660764C2 (en) Sensor based on surface plasmonic resonance with element of plane optics
JP3885998B2 (en) Method for measuring refractive index of light scatterer