JP2013159987A - Ground liquefaction prevention and consolidation method - Google Patents

Ground liquefaction prevention and consolidation method Download PDF

Info

Publication number
JP2013159987A
JP2013159987A JP2012023568A JP2012023568A JP2013159987A JP 2013159987 A JP2013159987 A JP 2013159987A JP 2012023568 A JP2012023568 A JP 2012023568A JP 2012023568 A JP2012023568 A JP 2012023568A JP 2013159987 A JP2013159987 A JP 2013159987A
Authority
JP
Japan
Prior art keywords
ground
casing
crushed stone
rod
rolling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012023568A
Other languages
Japanese (ja)
Other versions
JP5011456B1 (en
Inventor
Tomiyuki Kamogawa
富幸 鴨川
Takashi Nagashima
隆志 永島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GROUND SYSTEM CORP
Original Assignee
GROUND SYSTEM CORP
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GROUND SYSTEM CORP filed Critical GROUND SYSTEM CORP
Priority to JP2012023568A priority Critical patent/JP5011456B1/en
Application granted granted Critical
Publication of JP5011456B1 publication Critical patent/JP5011456B1/en
Publication of JP2013159987A publication Critical patent/JP2013159987A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a ground liquefaction prevention and consolidation method having both the functions of strong support on a ground and drainage.SOLUTION: Blocking rods 14 each of which is housed in a casing 10 and is equipped with a drilling bit 14c at its tip and the casings 10 are rotated and pressed into a ground 1 to form drilled holes. After the drilled holes are formed, the blocking rods 14 are pulled out from the casings 10, crushed stones 2 are charged into each of the casings 10, and the charged crushed stones 2 are rolled by a rolling rod 11 and pressed out from the casing to form a foot protection part 3A. A hoop-shaped belt 21 is inserted into the casing 10 and installed above the foot protection part 3A, the casing 10 is pulled out from the drilled hole, the crushed stones 2 are newly charged into a hollow part of the installed hoop-shaped belt 21, and the crushed stones in the hoop-shaped belt 21 are rolled by the rolling rod to form a crushed stone pillar 3.

Description

本発明は、建築物が立つ土地の地盤強化を図るための軟弱地盤の強化方法に関し、特に、戸建住宅の土地地盤強化を低コストで実現すると共に地盤の液状化を低減化するための地盤強化方法に関する。   The present invention relates to a soft ground strengthening method for strengthening the ground where a building stands, and in particular, a ground for realizing land strengthening of a detached house at a low cost and reducing liquefaction of the ground. It relates to the strengthening method.

ビルディングやマンション等の比較的大規模な鉄筋コンクリート建築物や鉄骨建築物は、立脚する土地の地中深くの強固な地盤基礎層に届く基礎杭構造物を埋設し、当該基礎杭構造物の上に構築される。これらの大規模建築物の基礎杭構造物の施工法としては、鋼管杭、PHC杭等の種々の基礎杭材を、土地を切削または打撃や油圧によって地中に埋め込む種々の埋設工法により構築する。   For relatively large-scale reinforced concrete buildings and steel buildings such as buildings and condominiums, a foundation pile structure that reaches a solid ground foundation layer deep in the ground of the erected land is buried, and the foundation pile structure is placed on the foundation pile structure. Built. As construction methods of foundation pile structures of these large-scale buildings, various foundation pile materials such as steel pipe piles and PHC piles are constructed by various embedment methods that embed the land into the ground by cutting or hammering or hydraulic pressure. .

一方、戸建住宅や比較的小規模のアパートメント用住宅等の建設においては、上記のような本格的な基礎杭工事の施工は、多くの場合コストの問題からも困難であり、土地の地盤調査によって一定の基準を満たしていないと判定された軟弱地盤の場合には、土地の表層改良工事(土の置換等)を行いその上に簡単な鉄筋コンクリートの住宅用基礎が施されて住宅建設が行われるのが通常である。   On the other hand, in the construction of detached houses and relatively small apartment houses, full-scale foundation pile construction as described above is often difficult due to cost problems. In the case of soft ground that is determined not to meet certain standards, the ground surface improvement work (soil replacement, etc.) is carried out, and then a simple reinforced concrete housing foundation is applied to build the house. It is normal.

一方、近年頻発する大きな地震や大雨による土砂災害等による家屋地盤の崩壊は、むかし田や河川又は海の埋立地であった軟弱な地盤上や傾斜地に建設された場所に多く発生している。   On the other hand, large-scale earthquakes and landslide disasters caused by heavy rains have frequently caused the collapse of house ground in places that were constructed on soft ground or slopes that were landfills of fields, rivers, or seas.

軟弱地盤の上に住宅を建設する場合、従来から行われてきた土地の表層改良工事による地盤強化策だけでは、一定規模以上の地震によって生じる地盤の陥没や隆起又は液状化に対応できないことが明らかになっている。   When building a house on soft ground, it is clear that conventional ground reinforcement measures by surface improvement of land cannot cope with ground depression, uplift or liquefaction caused by earthquakes of a certain scale or larger. It has become.

傾斜地における地震や大雨によって生じる崖崩れ等に対する補強土壁工法としては、従来から、多数アンカー式補強土壁、テールアルメ工法、ジオテキスタイル補強壁(例えば、特許文献1を参照)等が知られている。   As reinforced soil wall construction methods for landslides caused by earthquakes or heavy rains on slopes, a number of anchor type reinforced soil walls, tail armure construction methods, geotextile reinforcement walls (see, for example, Patent Document 1), and the like are known.

そして、戸建住宅の土地が所定の基準を満たさない軟弱地盤である場合には、土地の表層改良工事(土の置換等)のみならず、低コストの補強土杭工事を施すことも行われるようになり、そのような簡易な補強土杭工法の一例として、切削土、ガラス廃材又は解体ガラス等にセメント系(カルシウム又は石灰系)の吸水によって膨張材を混ぜた中詰材をジオテキスタイル(高分子化学繊維材により構成された通水性シート)で円筒状に密に巻きつけてこれを補強杭とする技術が知られている(例えば、特許文献2を参照)。   And when the land of a detached house is soft ground that does not meet the prescribed criteria, not only surface improvement work (such as soil replacement) of the land, but also low-cost reinforced soil pile construction is performed As an example of such a simple reinforced soil pile method, geotextile (high-textured) is obtained by mixing expansive material with cement-based (calcium or lime-based) water absorption into cutting soil, waste glass or demolition glass, etc. There is known a technique in which a water-permeable sheet made of molecular chemical fiber material) is tightly wound in a cylindrical shape and used as a reinforcing pile (for example, see Patent Document 2).

また、軟弱地盤に造成された太径の砂砂利の外周面をメッシュシートの如き所定の強度と耐久性を有する材料にて包覆してなる地盤改良杭が知られている(例えば、特許文献3を参照)。   In addition, a ground improvement pile is known in which an outer peripheral surface of a large-diameter gravel formed on a soft ground is covered with a material having a predetermined strength and durability such as a mesh sheet (for example, a patent document) 3).

特開2010−90592号公報JP 2010-90592 A 特開平7−305334号公報JP-A-7-305334 特開平6−294136号公報JP-A-6-294136

しかし、N値(標準貫入試験で求められる地盤の強さを示す値であり、ボーリング孔を利用し、ロッドrod(鋼製の棒)の先に直径5.1センチメートル、長さ81センチメートルの中空円筒形試料採取器をつけたものを、重さ63.5キログラムのハンマーで75センチメートルの高さから自由落下させ、貫入深さ30センチメートル当りの貫入に要する打撃回数)で4以下の軟弱地盤の場合では、剛性の強い杭又は補強杭工法は、地震により地盤に与えられる変形歪力によって座屈してしまう可能性がある。特に、杭頭部のN値が4以下の場合は、座屈の危険性が特に高くなる。従って、戸建住宅の地盤の場合は、ある程度までの変形歪に対しては柔構造を持つことにより地盤の変形に追従しつつ所定の程度を超える変形歪に対しては座屈することなく持ちこたえるフレキシブルな構造を持たなければならない。   However, N value (value indicating the strength of the ground required in the standard penetration test, using a boring hole, the tip of the rod rod (steel rod) is 5.1 cm in diameter and 81 cm in length. A sample with a hollow cylindrical sampler was dropped freely from a height of 75 centimeters with a hammer weighing 63.5 kilograms and the number of impacts required for penetration per 30 centimeters of penetration depth was 4 or less. In the case of a soft ground, a highly rigid pile or reinforced pile construction method may be buckled by a deformation strain force applied to the ground by an earthquake. In particular, when the N value of the pile head is 4 or less, the risk of buckling is particularly high. Therefore, in the case of the ground of a detached house, it has a flexible structure for deformation strains up to a certain extent, and can withstand deformation strains exceeding a predetermined level without buckling while following the deformation of the ground. It must have a flexible structure.

また、戸建住宅の地盤の場合、地震動による地盤の液状化を防止又は低減化するためには、地下水位が上昇して地盤内に押し上げられてきた場合には、水を通過させる排水ドレーンの機能を持つ必要がある。   In addition, in the case of the ground of a detached house, in order to prevent or reduce the liquefaction of the ground due to earthquake motion, if the groundwater level rises and is pushed up into the ground, a drainage drain that allows water to pass through Must have function.

また、セメント系固化剤に含まれる六価クロムが地盤の土質によっては土地の中に溶出する危険性があり、地盤土壌を汚染させてしまう。   In addition, hexavalent chromium contained in the cement-based solidifying agent has a risk of leaching into the land depending on the soil quality, and contaminates the ground soil.

しかし、特許文献2に記載の補強土杭及び補強土杭の作製方法は、筒状のジオテキスタイルの中詰部材は、地盤の掘削土、ガラス廃材、又は解体ガラス等を用いて、膨張材にて体積を膨張させるために構成のため排水性が悪く排水ドレーンとしての機能を有していない。   However, in the method for producing the reinforced soil pile and the reinforced soil pile described in Patent Document 2, the tubular geotextile filling member is made of ground excavated soil, glass waste material, demolition glass, etc. Due to the construction to expand the volume, the drainage is poor and it does not have a function as a drainage drain.

特許文献3に記載の地盤改良杭は排水性を有するものの、施工後の建物荷重により押し固められて沈下と締め固めを繰り返して徐々に強度を上げる工法のために、安定するまでには相当な時間を要し、それまでの沈下量を考えると地盤の強化としては不十分である。   Although the ground improvement pile described in Patent Document 3 has drainage properties, it is pressed by the building load after construction, and due to the construction method of gradually increasing the strength by repeatedly subsidence and compaction, it is considerable to stabilize It takes time, and considering the amount of settlement before that, it is not sufficient for ground strengthening.

上記点から本発明は、地盤への強固な支持と共に地盤の変形にも追随して座屈しにくい変形性を有する杭による地盤強化方法を提供することを課題としている。   In view of the above, it is an object of the present invention to provide a ground reinforcement method using a pile having a deformability that is not easily buckled by following the deformation of the ground as well as supporting the ground firmly.

そして、この杭は埋設した周囲の土との密着性を高めることで、杭の沈下量を少なくした地盤強化方法を提供することを課題としている。   And this pile makes it the subject to provide the ground reinforcement method which reduced the amount of settlement of a pile by improving the adhesiveness with the surrounding soil buried.

また、この杭は排水ドレーンの機能をも併せ持つことで液状化にも対応する地盤強化方法を提供することを課題としている。   Moreover, this pile has also the function of the drainage drain, and is making it the subject to provide the ground reinforcement method corresponding also to liquefaction.

前記課題を解決するために、本発明による地盤強化方法は、地盤に砕石柱を埋設することで地盤を強化する地盤強化方法であって、ケーシング内に収納されており先端に掘削用のビットを備えた閉塞ロッドと前記ケーシングとを前記地盤に回転圧入して掘孔を形成する第1の工程と、前記掘孔の形成後、前記閉塞ロッドを前記ケーシングから引き抜いて、前記ケーシング内に砕石を投入する第2の工程と、前記ケーシングに転圧ロッドを挿入して、前記第2の工程で投入した前記砕石を前記転圧ロッドにて転圧することで前記ケーシングから押し出して根固め部を形成する第3の工程と、筒状のせん断補強帯を前記ケーシング内に挿入して前記根固め部の上方に設置する第4の工程と、前記ケーシングを前記掘孔から引き抜き、設置した前記せん断補強帯の中空部に前記砕石を新たに投入し、前記せん断補強帯内の前記砕石を前記転圧ロッドにて転圧して、前記砕石柱を形成する第5の工程と、を有する地盤強化方法を提供する。   In order to solve the above-mentioned problems, a ground strengthening method according to the present invention is a ground strengthening method for strengthening the ground by embedding a crushed stone pillar in the ground, and is housed in a casing and has a bit for excavation at the tip. A first step of rotationally press-fitting the provided blocking rod and the casing into the ground to form a digging hole; and after the formation of the digging hole, the blocking rod is pulled out of the casing, and crushed stone is put into the casing. Inserting a rolling rod into the casing and inserting the rolling rod into the casing, and rolling out the crushed stone charged in the second step with the rolling rod to form a rooted portion. A third step of performing, a fourth step of inserting a cylindrical shear reinforcement band into the casing and installing it above the root-solidifying portion, and extracting and installing the casing from the digging hole A fifth step of newly introducing the crushed stone into the hollow part of the shear reinforcement band, and rolling the crushed stone in the shear reinforcement band with the rolling rod to form the crushed stone column. Provide a strengthening method.

そして、前記せん断補強帯はフープ状帯であることを特徴としている。更に、前記せん断補強帯の素材は、高密度ポリエチレンであることを特徴としている。   The shear reinforcement band is a hoop-shaped band. Further, the material of the shear reinforcement band is high density polyethylene.

また、前記閉塞ロッドは、前記ケーシングの先端開口部を閉塞するプレートを有し、前記プレートの下方に前記ビットを設けていることを特徴としている。   Further, the closing rod has a plate for closing the front end opening of the casing, and the bit is provided below the plate.

そして、前記ケーシングと前記閉塞ロッドと前記転圧ロッドの上下移動を駆動する施工機は2通りの駆動軸を有し、前記ケーシングと前記閉塞ロッドとは一方の駆動軸に取り付けられて、前記転圧ロッドは他方の軸に取り付けられていることを特徴としている。このとき、前記ケーシングと前記閉塞ロッドとは、切り離しが可能な連結部を介して接続されていることを特徴としている。   The construction machine that drives the vertical movement of the casing, the closing rod, and the rolling rod has two types of drive shafts. The casing and the closing rod are attached to one drive shaft, and the rolling machine The pressure rod is attached to the other shaft. At this time, the said casing and the said obstruction | occlusion rod are connected through the connection part which can be isolate | separated.

また、前記根固め部は、前記掘孔の径よりも大きく球状に張り出すよう締め固めることを特徴としている。   Further, the root hardening portion is characterized in that it is compacted so as to protrude in a spherical shape larger than the diameter of the digging hole.

また、前記砕石柱の頭部を形成するために目漬砂利を投入する工程を更に含むことを特徴としている。これに加えて、前記目漬砂利の投入後、前記掘孔の上部開口面を転圧板にて転圧する工程を含むことを特徴としている。   In addition, the method further includes a step of adding pickled gravel to form the head of the crushed stone pillar. In addition to this, the method includes a step of rolling the upper opening surface of the digging hole with a rolling plate after the addition of the pickled gravel.

上記のように、本発明は、砕石柱による杭を形成することにより、砕石とせん断補強帯との組み合わせによる座屈しにくい構造の地盤強化方法が提供される。   As described above, the present invention provides a ground strengthening method having a structure that is difficult to buckle by combining a crushed stone and a shear reinforcement band by forming a pile made of crushed stone columns.

そして、転圧ロッドによる転圧を加えながら砕石柱を形成することで、砕石がせん断補強帯を掘孔の壁面に押圧するために、砕石柱の周囲の土への密着性が高まり沈下量を少なくすることができる。   Then, by forming the crushed stone column while applying the rolling pressure by the rolling rod, the crushed stone presses the shear reinforcement band against the wall surface of the digging hole, so that the adhesion to the soil around the crushed stone column increases and the amount of settlement is reduced. Can be reduced.

また、砕石柱は、砕石が排水のドレーンとして機能するために、地盤の液状化を低減できる。   Moreover, since the crushed stone functions as a drain for drainage, the crushed stone column can reduce liquefaction of the ground.

本発明による地盤強化方法の工法の例を断面図にて示す。The example of the construction method of the ground reinforcement method by this invention is shown with sectional drawing. 図1に続き本発明による地盤強化方法の工法の例を断面図にて示す。The example of the construction method of the ground reinforcement method by this invention is shown with sectional drawing following FIG. 施工機の構成を正面図にて示す。The construction of the construction machine is shown in front view. (a)部はケーシングと閉塞ロッドの構成を側断面図にて示し、(b)部は閉塞ロッドの先端を平面図にて示し、(c)部はプレートの構成を側断面図にて示す。(A) shows the configuration of the casing and the closing rod in a side sectional view, (b) shows the tip of the closing rod in a plan view, and (c) shows the configuration of the plate in a side sectional view. . (a)部は転圧板の構成を側断面図にて示し、(b)部は転圧板の構成を平面図にて示す。Part (a) shows the configuration of the compaction plate in a side sectional view, and part (b) shows the configuration of the compaction plate in a plan view. せん断補強帯としてのフープ状帯の構成を斜視図にて示す。A configuration of a hoop-like band as a shear reinforcement band is shown in a perspective view.

以下、図面に基づき本発明に係る地盤強化方法の実施の形態を詳細に説明する。   Hereinafter, an embodiment of a ground strengthening method according to the present invention will be described in detail with reference to the drawings.

図1及び図2は、本発明の工法を断面にて示す説明図であり、図3に示す施工機5を用いて地盤1に掘孔を形成し、形成した掘孔に挿入した砕石2をせん断補強帯にて拘束して砕石柱3を形成する。この場合、砕石2は同じサイズのものを使用するのが良く、この実施例では、サイズが20mm乃至40mmの範囲内の砕石群か、60mm乃至100mmの範囲内の砕石群の何れかが用いられる。   FIG.1 and FIG.2 is explanatory drawing which shows the construction method of this invention in a cross section, forms a digging hole in the ground 1 using the construction machine 5 shown in FIG. 3, and shows the crushed stone 2 inserted in the formed digging hole. The crushed stone pillar 3 is formed by restraining with a shear reinforcement band. In this case, the crushed stone 2 is preferably the same size, and in this embodiment, either a crushed stone group having a size within a range of 20 mm to 40 mm or a crushed stone group having a size within a range of 60 mm to 100 mm is used. .

先ず、施工機5について説明すると、図3に示すように、施工機5は、昇降運動を行う駆動部6と、駆動部6を鉛直方向にガイドする略10mの高さを有するリーダ7とを備えている。駆動部6は、2つの駆動軸6A、6Bを有して、駆動軸6Aには、断面の直径が355mmの円筒体であるケーシング10と閉塞ロッド14とが取り付けられ、駆動軸6Bには転圧ロッド11が取り付けられている。   First, the construction machine 5 will be described. As shown in FIG. 3, the construction machine 5 includes a drive unit 6 that moves up and down and a reader 7 having a height of about 10 m that guides the drive unit 6 in the vertical direction. I have. The drive unit 6 has two drive shafts 6A and 6B. The drive shaft 6A is attached with a casing 10 and a closing rod 14 which are cylindrical bodies having a cross-sectional diameter of 355 mm. A pressure rod 11 is attached.

駆動部6は、駆動軸6A、6Bに対しそれぞれ個別に、上下に往復運動させながら同時に回転力も付与する。そして、駆動部6は、駆動軸6A、6Bを水平面上の所定の周回軌道上を動かすことで、地表との水平方向での駆動軸6A、6Bの位置を変える。   The drive unit 6 applies rotational force simultaneously to the drive shafts 6A and 6B while reciprocating up and down individually. And the drive part 6 changes the position of drive shaft 6A, 6B in the horizontal direction with the ground surface by moving drive shaft 6A, 6B on the predetermined | prescribed circular orbit on a horizontal surface.

閉塞ロッド14は、ケーシング10の内側に長手方向に沿って配置されており、連結部15にてケーシング10と接続される。そして、閉塞ロッド14は、駆動軸6Aに接続されて、駆動軸6Aの回転運動及び上下運動が閉塞ロッド14に伝達されると、連結部15を介してケーシング10にも伝達されて両者が共に駆動する。連結部15は、閉塞ロッド14とケーシング10との接続及び切離しが自在であり、切り離されたときは閉塞ロッド14のみが駆動する。   The closing rod 14 is arranged along the longitudinal direction inside the casing 10, and is connected to the casing 10 at the connecting portion 15. Then, the closing rod 14 is connected to the drive shaft 6A, and when the rotational movement and vertical movement of the drive shaft 6A are transmitted to the closing rod 14, they are also transmitted to the casing 10 via the connecting portion 15 and both of them are transmitted. To drive. The connecting portion 15 can freely connect and disconnect the closing rod 14 and the casing 10, and when disconnected, only the closing rod 14 is driven.

ケーシング10と閉塞ロッド14の構成を図4にて詳しく説明する。図4の(a)部はケーシング10と閉塞ロッド14の側断面図を示し、閉塞ロッド14は断面が角パイプ口(100mm×100mm)のロッド軸14aとロッド軸収容部14bとから構成され、伸縮自在なようロッド軸14aとロッド軸収容部14bとを入れ子構造にてつなげている。閉塞ロッド14のロッド軸14aには、先端に円錐形状を有する掘削用のビット14cと、ビット14cの上部に円形のプレート24とが設けられ、伸縮自在な閉塞ロッド14は、図4の(b)部に示すように、ケーシング10の先端開口部をプレート24で閉塞し、ビット14cがケーシング10から突出している状態を、ストッパ19の操作によりロック状態に保持することができる。このときのストッパ19への操作は、ケーシング10に設けた操作窓9を通じて行う。そして、ビット14cがケーシング10から突出している状態でケーシング10を地盤1内に回転圧入することで掘削が行われる。   The configuration of the casing 10 and the closing rod 14 will be described in detail with reference to FIG. 4A shows a side sectional view of the casing 10 and the closing rod 14, and the closing rod 14 is composed of a rod shaft 14a whose cross section is a square pipe port (100 mm × 100 mm) and a rod shaft accommodating portion 14b. The rod shaft 14a and the rod shaft accommodating portion 14b are connected in a nested structure so that they can be expanded and contracted. The rod shaft 14a of the closing rod 14 is provided with a drilling bit 14c having a conical shape at the tip, and a circular plate 24 on the top of the bit 14c. The retractable closing rod 14 is shown in FIG. ) Portion, the tip opening of the casing 10 is closed by the plate 24, and the state in which the bit 14c protrudes from the casing 10 can be held in a locked state by operating the stopper 19. The operation to the stopper 19 at this time is performed through the operation window 9 provided in the casing 10. Then, excavation is performed by rotationally press-fitting the casing 10 into the ground 1 with the bit 14 c protruding from the casing 10.

ビット14cとプレート24の構成を説明すると、ビット14cは基部25を介して閉塞ロッド14に固定されている。プレート24は分離自在な2枚の半円板24a、24bにて構成されており、半円板24a、24bの直線部分の縁部には凹部がそれぞれ形成されて、両者を組み合わせてプレート24を構成したとき、これら凹部にて形成される孔部にビット14cの基部25が嵌合することで、プレート24を閉塞ロッド14に取り付けることができる。   The configuration of the bit 14 c and the plate 24 will be described. The bit 14 c is fixed to the closing rod 14 through the base portion 25. The plate 24 is composed of two separable semi-circular plates 24a and 24b. A concave portion is formed at each edge of the straight portions of the semi-circular plates 24a and 24b. When configured, the plate 24 can be attached to the closing rod 14 by fitting the base portion 25 of the bit 14c into the holes formed by these recesses.

そして、各半円板24a、24bは、それぞれ適当な厚みを備えた半円形のゴム部材28を上下一対の6.0mmの厚みを有する鉄板26、27にて挟持して成り、半円板24a、24bを組み合わせたプレート24の直径は346mmで、ゴム部材28の周縁部は半円板24a、24bよりもケーシング10の内周壁に向けて突出している。これにより、プレート24がケーシング10内をビット14cと共に長手方向に移動するとき、ケーシング10の内壁とはゴム部材28で接して移動することになる。   The semicircular plates 24a and 24b are each formed by sandwiching a semicircular rubber member 28 having an appropriate thickness between a pair of upper and lower iron plates 26 and 27 having a thickness of 6.0 mm. 24b has a diameter of 346 mm, and the peripheral edge of the rubber member 28 protrudes toward the inner peripheral wall of the casing 10 rather than the semicircular plates 24a and 24b. Thereby, when the plate 24 moves in the longitudinal direction together with the bit 14 c in the casing 10, it moves in contact with the inner wall of the casing 10 by the rubber member 28.

また、ケーシング10の側部には圧縮空気送気管30が取り付けられており、ケーシング10を地盤1内へ挿入してから引き抜くときに、圧縮空気送気管30は、バルブ31を通して導入される圧縮空気を下端の噴出口から噴射する。   A compressed air supply pipe 30 is attached to the side of the casing 10, and the compressed air supply pipe 30 is introduced through a valve 31 when the casing 10 is inserted into the ground 1 and then pulled out. Is ejected from the bottom outlet.

図1の説明に戻って施工機5を用いた地盤強化方法の工程について説明する。最初に駆動部6にて駆動軸6Aを水平移動させて、ケーシング10及び閉塞ロッド14を地盤1の対象ポイント上にセットする。このとき、閉塞ロッド14は、プレート24がケーシング10の先端開口部を閉塞し、ビット14cがケーシング10から突出している状態でストッパ19にてロックされている。また、閉塞ロッド14とケーシング10とは、連結部15にて連結された状態にある。   Returning to the description of FIG. 1, the steps of the ground strengthening method using the construction machine 5 will be described. First, the drive shaft 6 </ b> A is horizontally moved by the drive unit 6, and the casing 10 and the closing rod 14 are set on the target point of the ground 1. At this time, the closing rod 14 is locked by the stopper 19 with the plate 24 closing the tip opening of the casing 10 and the bit 14c protruding from the casing 10. Further, the closing rod 14 and the casing 10 are in a state of being connected by a connecting portion 15.

この状態で、駆動部6が駆動軸6Aを回転させながら下方へ移動させると、ケーシング10と閉塞ロッド14とは地盤1へ回転圧入して掘孔動作を行う(図1の(a)部)。この掘削においてビット14cの回転により削られた土は、ケーシング10の先端開口部はプレート24にて閉塞されているために、ケーシング10内に移動することなくケーシング10の周囲の方向に押し出されて、回転するケーシング10の側部により周囲の土に押し固められていく。このように、地盤1へケーシング10を回転圧入して掘孔を形成するときに、掘削した土を地表に排出するのではなく、この土にてケーシング10の周囲を締め固めて圧密状態とするために、強固な壁面を有する掘孔が形成される。   When the drive unit 6 moves downward while rotating the drive shaft 6A in this state, the casing 10 and the closing rod 14 are rotationally pressed into the ground 1 to perform a digging operation (part (a) in FIG. 1). . The soil cut by the rotation of the bit 14c in this excavation is pushed out in the direction around the casing 10 without moving into the casing 10 because the tip opening of the casing 10 is closed by the plate 24. The side of the rotating casing 10 is pressed against the surrounding soil. Thus, when the casing 10 is rotationally press-fitted into the ground 1 to form a digging hole, the excavated soil is not discharged to the ground surface, but the periphery of the casing 10 is compacted with this soil to form a consolidated state. Therefore, a digging hole having a strong wall surface is formed.

図1の(b)部は、ケーシング10の下端部が地表面から2.5m程度まで達して、掘孔が終了した状態を示している。この状態で、ケーシング10と閉塞ロッド14との連結部15での連結を切り離し、その後、駆動部6が駆動軸6Aを上方に移動させると、閉塞ロッド14だけが掘孔の上方に引き上げられて、ケーシング10は掘孔に取り残される(図1の(c)部)。そして、閉塞ロッド14をケーシング10から引き出した状態において、矢印で示すように砕石2を投入する(図1の(d)部)。また、この際、半円板24a、24bを分離して、プレート24を閉塞ロッド14から取り外す。   Part (b) of FIG. 1 shows a state in which the lower end of the casing 10 reaches about 2.5 m from the ground surface, and the digging hole has been completed. In this state, when the connection between the casing 10 and the closing rod 14 at the connecting portion 15 is disconnected, and then the driving portion 6 moves the drive shaft 6A upward, only the closing rod 14 is pulled up above the digging hole. The casing 10 is left behind in the digging hole (part (c) in FIG. 1). And in the state which pulled out the obstruction | occlusion rod 14 from the casing 10, as shown by the arrow, the crushed stone 2 is thrown in ((d) part of FIG. 1). At this time, the semicircular plates 24 a and 24 b are separated and the plate 24 is removed from the closing rod 14.

そして、駆動部6にて駆動軸6Bを水平移動させて、ケーシング10が残留している掘孔上に転圧ロッド11をセットし、砕石2を追加投入しながら駆動軸6Bを上下動させて、転圧ロッド11をケーシング10内で往復移動させる(図1の(e)部)。これにより、ケーシング10の下端に保持されている砕石2及び追加投入の砕石2は、ケーシング10から押し出されて地盤1中に拡散して根固め部3Aが形成され砕石柱3の根固めが行われる。   Then, the drive shaft 6B is horizontally moved by the drive unit 6, the rolling rod 11 is set on the pit where the casing 10 remains, and the drive shaft 6B is moved up and down while the crushed stone 2 is additionally charged. Then, the rolling rod 11 is reciprocated within the casing 10 (portion (e) in FIG. 1). As a result, the crushed stone 2 held at the lower end of the casing 10 and the crushed stone 2 added to the casing 10 are pushed out of the casing 10 and diffused into the ground 1 to form a root consolidation portion 3A, whereby the crushed stone pillar 3 is consolidated. Is called.

転圧ロッド11による転圧の結果、根固め部3Aはこの後に形成する砕石柱3の軸部3Bの径よりも大きく球状に張り出すまで締め固められることになる。このような根固め部3Aを形成することで、砕石柱3は、地盤1の地表面に構築される建築物の荷重に対しての先端支持力を確保できる。   As a result of the rolling pressure by the rolling rod 11, the root-solidified portion 3A is compacted until it protrudes into a spherical shape larger than the diameter of the shaft portion 3B of the crushed stone column 3 to be formed later. By forming such a solidified part 3 </ b> A, the crushed stone pillar 3 can ensure the tip support force against the load of the building constructed on the ground surface of the ground 1.

根固め部3Aを形成すると、筒状のせん断補強帯をケーシング10内に挿入して根固め部3A部の上方に設置する(図1の(f)部)。せん断補強帯としては、Rc造(鉄筋コンクリート造)の柱筋等において、座屈防止のために従来から用いられているフープ状帯やスパイラル状帯が使用できる。本実施例においてはフープ状帯21を用いており、図6に示すように、フープ21aを、例えば22mmのピッチ間隔で2mの高さまで積層して筒状に構成している。このとき、フープ21aは円状に配置した複数の支持体21bにて鉛直方向に支持されている。   When the root consolidation part 3A is formed, a cylindrical shear reinforcement band is inserted into the casing 10 and installed above the root consolidation part 3A (part (f) in FIG. 1). As the shear reinforcement band, a hoop-shaped band or a spiral-shaped band conventionally used for preventing buckling can be used in an Rc (reinforced concrete) column reinforcement or the like. In this embodiment, a hoop-like band 21 is used, and as shown in FIG. 6, hoops 21a are laminated to a height of 2 m at a pitch interval of 22 mm, for example, and are configured in a cylindrical shape. At this time, the hoop 21a is supported in the vertical direction by a plurality of support bodies 21b arranged in a circle.

フープ状帯21の素材は、土木用に使用される引張強度が大きい高密度ポリエチレンが使用され、その中でも地盤補強の分野において耐引張り特性や耐クリープ特性に特に優れたテンサー(登録商標)が最適であり、座屈に対する一層の強化が図れる。   The hoop-shaped band 21 is made of high-density polyethylene with a high tensile strength used for civil engineering. Among them, Tensor (registered trademark), which is particularly excellent in tensile resistance and creep resistance, is optimal in the field of ground reinforcement. Therefore, further strengthening against buckling can be achieved.

フープ状帯21をケーシング10内へ挿入後、フープ状帯21内に砕石2を充填する(図1の(g)部)。そして、駆動部6にて駆動軸6Aを水平移動させて、プレート24が取り外されている状態の閉塞ロッド14を掘孔上に位置するようセットする。   After inserting the hoop-like band 21 into the casing 10, the crushed stone 2 is filled in the hoop-like band 21 (part (g) in FIG. 1). And the drive shaft 6A is horizontally moved by the drive part 6, and the obstruction | occlusion rod 14 of the state from which the plate 24 is removed is set so that it may be located on a digging hole.

次に、駆動軸6Aを駆動して、閉塞ロッド14をフープ状帯21内に挿入し(図1の(h)部)、ビット14cがフープ状帯21の下方に達するまで下降させる(図1の(i)部)。   Next, the drive shaft 6A is driven, and the closing rod 14 is inserted into the hoop-like band 21 (part (h) in FIG. 1), and is lowered until the bit 14c reaches below the hoop-like band 21 (FIG. 1). (I) part).

そして、閉塞ロッド14が連結部15でケーシング10と当接した状態で両者を連結部15で連結し、連結後、駆動部6にて駆動軸6Aを上方へ移動させて、閉塞ロッド14とケーシング10とを共に掘孔から引き上げる(図2の(j)部)。このとき、圧縮空気送気管30は、バルブ31を通して導入される圧縮空気を下端の噴出口から噴射する。   Then, in a state where the closing rod 14 is in contact with the casing 10 at the connecting portion 15, both are connected by the connecting portion 15, and after the connection, the drive shaft 6 </ b> A is moved upward by the driving portion 6, 10 are pulled up from the burrow together (portion (j) in FIG. 2). At this time, the compressed air supply pipe 30 injects the compressed air introduced through the valve 31 from the lower end outlet.

閉塞ロッド14とケーシング10の掘孔からの引き上げが終了すると、ストッパ19を操作して閉塞ロッド14のロック状態を解除して、ロッド軸14aをフリーな状態とする。そして、半円板24a、24bを組み合わせ、この組み合わせの際、半円板24a、24bの直線部分の縁部の凹部で基部25を挟み込むことで、プレート24を閉塞ロッド14に取り付ける(図2の(k)部)。このとき、フリーな状態にある閉塞ロッド14のロッド軸14aが自重にて掘孔へ落下するのを阻止するために、遮蔽板27にて一時的に掘孔の開口部を覆う。   When the pulling up of the closing rod 14 and the casing 10 from the digging hole is completed, the stopper 19 is operated to release the locking state of the closing rod 14, and the rod shaft 14a is made free. Then, the semicircular plates 24a and 24b are combined, and at the time of this combination, the plate 24 is attached to the closing rod 14 by sandwiching the base portion 25 with the concave portion at the edge of the straight portion of the semicircular plates 24a and 24b (see FIG. (K) part). At this time, in order to prevent the rod shaft 14a of the closing rod 14 in a free state from dropping into the digging hole due to its own weight, the shielding plate 27 temporarily covers the opening of the digging hole.

プレート24の閉塞ロッド14への取り付け後、再びストッパ19を操作して、ケーシング10の先端開口部をプレート24で閉塞し、ビット14cがケーシング10から突出している状態に戻してロックする(図2の(l)部)。   After the plate 24 is attached to the closing rod 14, the stopper 19 is operated again to close the tip opening of the casing 10 with the plate 24, and the bit 14c is returned to the state protruding from the casing 10 and locked (FIG. 2). (L) part).

続いて、図6で示すような砕石柱3の軸部3Bを形成する工程となるが、先ず駆動部6にて駆動軸6Bを水移動させて転圧ロッド11を掘孔上にセットし、駆動軸6Bを上下動させて転圧ロッド11を掘孔内で往復移動させる(図2の(m)部)。このとき転圧ロッド11は、25kNの圧力にてフープ状帯21内の砕石2を転圧する。   Subsequently, it becomes a step of forming the shaft portion 3B of the crushed stone pillar 3 as shown in FIG. 6, but first the drive shaft 6B is moved by water in the drive portion 6 to set the rolling rod 11 on the digging hole, The drive shaft 6B is moved up and down to reciprocate the rolling rod 11 within the borehole (part (m) in FIG. 2). At this time, the rolling rod 11 rolls the crushed stone 2 in the hoop-shaped band 21 at a pressure of 25 kN.

そして、フープ状帯21に砕石2を追加投入しながら転圧ロッド11を上下移動させて転圧動作を続ける(図2の(n)部)。転圧により、フープ状帯21は、砕石2にて三角矢印で示すように掘孔の周壁の方向に押し拡げられて密着する。一方、砕石2は、転圧ロッド11による転圧にて三角矢印方向に広がろうとする動きがフープ状帯21の張力で制限されることから、砕石柱3の軸部3Bの内部摩擦角が大きくなり、上方からの建築物の荷重に対して大きな強度を有し沈下量を少なくすることができる。   Then, the rolling rod 11 is moved up and down while adding the crushed stone 2 to the hoop-like band 21 and the rolling operation is continued ((n) part in FIG. 2). By the rolling, the hoop-like band 21 is pushed and expanded in the direction of the peripheral wall of the digging hole as indicated by the triangular arrow in the crushed stone 2. On the other hand, the crushed stone 2 is restricted by the tension of the hoop-shaped band 21 due to the rolling force applied by the rolling rod 11, so that the internal friction angle of the shaft portion 3 </ b> B of the crushed stone column 3 is limited. It becomes large and has a large strength against the load of the building from above, and the amount of settlement can be reduced.

フープ状帯21への砕石2の投入と転圧ロッド11の上下移動による転圧が終了すると、砕石柱3の頭部3Cを形成するための目漬砂利23を矢印で示すように上方から投入し(図2の(o)部)、続いて、転圧板20にてフープ状帯21の上部開口を覆い、その上から転圧ロッド11にて450kN/m程度の圧力で転圧する(図2の(p)部)。転圧板20は、図5で示すように、厚さが25mm、上面の直径が316mm、下面の直径が250mmの台形の断面形状をした円盤で、設置用ワイヤー26を備えている。 When the rolling of the crushed stone 2 into the hoop-shaped band 21 and the rolling by the vertical movement of the rolling rod 11 are finished, the pickled gravel 23 for forming the head 3C of the crushed stone column 3 is loaded from above as indicated by the arrow. Next, the upper opening of the hoop-like band 21 is covered with the rolling plate 20 and then rolled with a rolling rod 11 at a pressure of about 450 kN / m 3 (see FIG. 2 (o)). (P) part 2). As shown in FIG. 5, the rolling plate 20 is a disc having a trapezoidal cross-sectional shape with a thickness of 25 mm, an upper surface diameter of 316 mm, and a lower surface diameter of 250 mm, and includes an installation wire 26.

転圧ロッド11による転圧板20を介しての転圧により、目漬砂利23が砕石2の隙間に食い込み突き固められ、設置用ワイヤー26を掴み転圧板22を掘孔から取り出して、根固め部3Aと軸部3Bと頭部3Cとから成る砕石柱3が完成する(図2の(q)部)。   By the rolling pressure through the rolling plate 20 by the rolling rod 11, the pickled gravel 23 bites into the gap between the crushed stones 2, and the installation wire 26 is grasped, the rolling plate 22 is taken out from the burrow, and the root consolidation portion The crushed stone pillar 3 which consists of 3A, the axial part 3B, and the head 3C is completed ((q) part of FIG. 2).

砕石柱3は、直径が355mmのケーシング10の地盤1への挿入にて形成される掘孔に対して、砕石2を転圧することでフープ状帯21の直径は最大360mmに程度まで拡張するため、掘孔の壁面にフープ状帯21が密着して摩擦力が大きくなる。また、フープ状帯21においては、各フープ21aの間から砕石2がはみ出すことでも掘孔の壁面との密着度が高まる。   In the crushed stone pillar 3, the diameter of the hoop-shaped band 21 is expanded to a maximum of about 360 mm by rolling the crushed stone 2 against a pit formed by inserting the casing 10 having a diameter of 355 mm into the ground 1. The hoop-like band 21 comes into close contact with the wall surface of the digging hole, and the frictional force increases. Moreover, in the hoop-shaped belt | band | zone 21, the adhesion degree with the wall surface of a digging hole increases also by the crushed stone 2 protruding from between each hoop 21a.

上記工法にて形成される鉛直方向に細長形状をした砕石柱3を、水平方向へ互いに間隔を置いて縦横方向に地盤1の軟弱度に応じて複数体配することにより、建築物が立つ土地の地盤強化が図れる。すなわち、砕石柱3は、地盤1の上に構築された基礎及び建築物の荷重が伝達されると根固め部3Aの周面摩擦で支持するが、中詰めの砕石2はせん断強度が大きく、砕石柱3としては、フープ状帯21で外側から拘束補強されているために砕石柱3はその形状変化を抑えられる。よって、内部圧力を高めてせん断強度を維持することで、上方からの荷重に対して地盤1を確実に支持することができる。さらに、フープ状帯21は、フープ21aを積層した構成であるために地震動による水平力に対する強度も備える。   Land where a building stands by arranging a plurality of crushed stone pillars 3 elongated in the vertical direction formed by the above construction method in the horizontal and vertical directions according to the softness of the ground 1 in the vertical and horizontal directions The ground can be strengthened. That is, the crushed stone pillar 3 is supported by the circumferential friction of the root consolidation part 3A when the load of the foundation and the building constructed on the ground 1 is transmitted, but the crushed stone 2 filled in the middle has a large shear strength, Since the crushed stone pillar 3 is restrained and reinforced from the outside by the hoop-like band 21, the crushed stone pillar 3 can be prevented from changing its shape. Therefore, by increasing the internal pressure and maintaining the shear strength, the ground 1 can be reliably supported against the load from above. Furthermore, since the hoop-like band 21 has a structure in which the hoops 21a are laminated, the hoop-like band 21 also has strength against horizontal force due to earthquake motion.

また、上記したように、砕石柱3は、フープ状帯21の各フープ21aの隙間から砕石2の一部が突出するために砕石柱3と地盤1との摩擦力が大きくなり、この面からも砕石柱3の沈下が抑制される。   In addition, as described above, the crushed stone pillar 3 has a large frictional force between the crushed stone pillar 3 and the ground 1 because a part of the crushed stone 2 protrudes from the gaps between the hoops 21a of the hoop-like band 21, and from this surface. Also, the settlement of the crushed stone pillar 3 is suppressed.

そして、砕石柱3は、個々に独立した砕石2をフープ状帯21にて拘束する構成の柔構造なことから、地盤1の変形に対して追随し得る柔軟性を有しており、砕石柱3の一ヶ所に強い力を受けても、この力を全体に拡散するために中折れすることがなく、優れた耐衝撃性を有する。よって、地震動の力を受けたときは、地盤1と一体となって変形するために座屈することがなく、上からの荷重に対する支持を維持することができる。   And the crushed stone pillar 3 has the softness | flexibility which can follow the deformation | transformation of the ground 1 from the soft structure of the structure which restrains the individual crushed stone 2 by the hoop-shaped belt | band | zone 21, and the crushed stone pillar 3 Even if a strong force is applied to one of the three places, the force does not break in order to spread this force throughout, and it has excellent impact resistance. Therefore, when receiving the force of seismic motion, since it deforms integrally with the ground 1, it does not buckle and can support the load from above.

例えば、フープ状帯21の中身部材を膨張材や固化材にて固めて形成した場合には柔構造を有しておらず、地震動の強さによっては破壊されて建築物の荷重に対する地盤1の支持力を一挙に喪失し、建築物に障害を引き起こす恐れがある。   For example, when the contents of the hoop-like belt 21 are formed by hardening with an expanding material or a solidifying material, the hoop-shaped belt 21 does not have a flexible structure and is destroyed depending on the strength of seismic motion. Sudden loss of support capacity can cause damage to the building.

同様に、地震動等で間隙水圧が上昇したときも、砕石柱3は砕石ドレーンとして機能し、間隙水を地盤1の表面に排水するために地盤1の液状化が防止される。   Similarly, when the pore water pressure rises due to seismic motion or the like, the crushed stone column 3 functions as a crushed stone drain and drains the pore water to the surface of the ground 1 so that the ground 1 is prevented from being liquefied.

本発明は、建築物が立つ土地の地盤を強化する地盤強化方法を提供するものであり、産業上の利用可能性を有する。   The present invention provides a ground strengthening method for strengthening the ground on which a building stands, and has industrial applicability.

1 地盤
2 砕石
3 砕石柱
3A 根固め部
5 施工機
6 駆動部
6A、6B 駆動軸
10 ケーシング
11 転圧ロッド
14 閉塞ロッド
14c ビット
20 転圧板
21 フープ状帯(せん断補強帯)
23 目漬砂利
DESCRIPTION OF SYMBOLS 1 Ground 2 Crushed stone 3 Crushed stone pillar 3A Rooting part 5 Construction machine 6 Drive part 6A, 6B Drive shaft 10 Casing 11 Rolling rod 14 Blocking rod 14c Bit 20 Rolling plate 21 Hoop-shaped band (shear reinforcement band)
23 Mezuke gravel

本発明は、建築物が立つ土地の地盤強化を図るための軟弱地盤の強化方法に関し、特に、戸建住宅の土地地盤強化を低コストで実現すると共に地盤の液状化を低減化するための地盤液状化防止及び強化方法に関する。 The present invention relates to a soft ground strengthening method for strengthening the ground where a building stands, and in particular, a ground for realizing land strengthening of a detached house at a low cost and reducing liquefaction of the ground. The present invention relates to a liquefaction prevention and strengthening method.

上記点から本発明は、地盤への強固な支持と共に地盤の変形にも追随して座屈しにくい変形性を有する杭による地盤液状化防止及び強化方法を提供することを課題としている。 In view of the above, it is an object of the present invention to provide a ground liquefaction prevention and strengthening method using a pile having a deformability that is hard to buckle by following the deformation of the ground as well as firmly supporting the ground.

そして、この杭は埋設した周囲の土との密着性を高めることで、杭の沈下量を少なくした地盤液状化防止及び強化方法を提供することを課題としている。 And this pile makes it the subject to provide the ground liquefaction prevention and the reinforcement | strengthening method which reduced the amount of subsidence of the pile by improving the adhesiveness with the surrounding soil buried.

また、この杭は排水ドレーンの機能をも併せ持つことで液状化にも対応する地盤液状化防止及び強化方法を提供することを課題としている。 Moreover, this pile has also the function of the drainage drain, and is making it a subject to provide the ground liquefaction prevention and reinforcement method corresponding to liquefaction .

前記課題を解決するために、本発明による地盤液状化防止及び強化方法は、地盤に砕石柱を埋設することで地盤を強化する地盤強化方法であって、ケーシング内に収納されており先端に掘削用のビットを備えた閉塞ロッドと前記ケーシングとを前記地盤に回転圧入して掘孔を形成する第1の工程と、前記掘孔の形成後、前記閉塞ロッドを前記ケーシングから引き抜いて、前記ケーシング内に砕石を投入する第2の工程と、前記ケーシングに転圧ロッドを挿入して、前記第2の工程で投入した前記砕石を前記転圧ロッドによる転圧にて前記ケーシングから押し出し、前記砕石柱の軸部の径よりも大きく球状に張り出すよう締め固めることで根固め部を形成する第3の工程と、筒状のせん断補強帯を前記ケーシング内に挿入して前記根固め部の上方に設置する第4の工程と、前記ケーシングを前記掘孔から引き抜き、設置した前記せん断補強帯の中空部に前記砕石を新たに投入し、前記せん断補強帯内の前記砕石を前記転圧ロッドにて転圧して、前記砕石柱を形成する第5の工程と、を有する。 In order to solve the above-mentioned problems, the ground liquefaction prevention and strengthening method according to the present invention is a ground strengthening method for strengthening the ground by embedding a crushed stone pillar in the ground, which is housed in a casing and excavated at the tip. A first step of rotationally press-fitting a closing rod provided with a bit for use and the casing into the ground to form a digging hole; and after the formation of the digging hole, pulling out the closing rod from the casing; a second step of turning on the crushed stone within, by inserting the compacting rod to said casing, extruding the crushed stone which supplied in the second step from the casing by compacting by the compacting rod, wherein A third step of forming a root-solidified portion by compacting so as to project in a spherical shape larger than the diameter of the shaft portion of the crushed stone pillar; and inserting a cylindrical shear reinforcement band into the casing to Up A fourth step of installing the crushed stone, pulling out the casing from the digging hole, newly introducing the crushed stone into the hollow portion of the installed shear reinforcing band, and using the crushed stone in the shear reinforcing band to the rolling rod And a fifth step of forming the crushed stone pillar by rolling.

上記のように、本発明に係る地盤液状化防止及び強化方法は、根固め部を有した砕石柱による杭を形成することにより、根固め部にて先端支持力の強化が図れ、砕石とせん断補強帯との組み合わせによる内部圧力の向上にて、地盤の支持力が増大する。しかも、砕石柱は柔構造のため地盤変動に対して座屈しにくいAs described above, the ground liquefaction prevention and strengthening method according to the present invention is capable of strengthening the tip support force at the root consolidation part by forming a pile of crushed stone columns having a root consolidation part. By improving the internal pressure by combining with the reinforcing band , the supporting force of the ground increases. Moreover, the crushed stone pillar is not easily buckled against ground fluctuation because of its soft structure .

Claims (9)

地盤に砕石柱を埋設することで地盤を強化する地盤強化方法であって、
ケーシング内に収納されており先端に掘削用のビットを備えた閉塞ロッドと前記ケーシングとを前記地盤に回転圧入して掘孔を形成する第1の工程と、
前記掘孔の形成後、前記閉塞ロッドを前記ケーシングから引き抜いて、前記ケーシング内に砕石を投入する第2の工程と、
前記ケーシングに転圧ロッドを挿入して、前記第2の工程で投入した前記砕石を前記転圧ロッドにて転圧することで前記ケーシングから押し出して根固め部を形成する第3の工程と、
筒状のせん断補強帯を前記ケーシング内に挿入して前記根固め部の上方に設置する第4の工程と、
前記ケーシングを前記掘孔から引き抜き、設置した前記せん断補強帯の中空部に前記砕石を新たに投入し、前記せん断補強帯内の前記砕石を前記転圧ロッドにて転圧して、前記砕石柱を形成する第5の工程と、
を有する地盤強化方法。
A ground strengthening method for strengthening the ground by burying crushed stone pillars in the ground,
A first step of forming a digging hole by rotationally press-fitting a closing rod, which is housed in a casing and provided with a bit for excavation at the tip, and the casing into the ground;
After the formation of the digging hole, a second step of pulling out the closing rod from the casing and putting crushed stone into the casing;
A third step of inserting a rolling rod into the casing and extruding the crushed stone introduced in the second step with the rolling rod to push out from the casing to form a solidified portion;
A fourth step of inserting a cylindrical shear reinforcement band into the casing and installing it above the rooting part;
The casing is pulled out from the digging hole, the crushed stone is newly introduced into the hollow portion of the installed shear reinforcement band, the crushed stone in the shear reinforcement band is rolled with the rolling rod, and the crushed stone column is A fifth step of forming;
A ground strengthening method comprising:
前記閉塞ロッドは、前記ケーシングの先端開口部を閉塞するプレートを有し、前記プレートの下方に前記ビットを設けていることを特徴とする請求項1に記載の地盤強化方法。   The ground reinforcing method according to claim 1, wherein the closing rod has a plate that closes a front end opening of the casing, and the bit is provided below the plate. 前記せん断補強帯は、フープ状帯であることを特徴とする請求項1に記載の地盤強化方法。   The ground reinforcing method according to claim 1, wherein the shear reinforcement band is a hoop-shaped band. 前記せん断補強帯の素材は高密度ポリエチレンであることを特徴とする請求項1に記載の地盤強化方法。   The ground reinforcement method according to claim 1, wherein the material of the shear reinforcement band is high-density polyethylene. 前記ケーシングと前記閉塞ロッドと前記転圧ロッドの上下移動を駆動する施工機は2通りの駆動軸を有し、前記ケーシングと前記閉塞ロッドとは一方の駆動軸に取り付けられて、前記転圧ロッドは他方の軸に取り付けられていることを特徴とする請求項1に記載の地盤強化方法。   The construction machine for driving the casing, the closing rod and the rolling rod to move up and down has two driving shafts, and the casing and the closing rod are attached to one driving shaft, and the rolling rod The ground reinforcement method according to claim 1, wherein is attached to the other shaft. 前記ケーシングと前記閉塞ロッドとは、切り離しが可能な連結部を介して接続されていることを特徴とする請求項5に記載の地盤強化方法。   The ground reinforcing method according to claim 5, wherein the casing and the closing rod are connected to each other through a detachable connecting portion. 前記根固め部は、前記掘孔の径よりも大きく球状に張り出すよう締め固めることを特徴とする請求項1に記載の地盤強化方法。   The ground reinforcement method according to claim 1, wherein the root consolidation portion is compacted so as to project in a spherical shape larger than the diameter of the digging hole. 前記砕石柱の頭部を形成するために目漬砂利を投入する工程を更に含む請求項1に記載の地盤強化方法。   The ground strengthening method according to claim 1, further comprising a step of introducing pickled gravel to form the head of the crushed stone pillar. 前記目漬砂利の投入後、前記掘孔の上部開口面を転圧板にて転圧する工程を更に含む請求項8に記載の地盤強化方法。   The ground strengthening method according to claim 8, further comprising a step of rolling the upper opening surface of the digging hole with a rolling plate after feeding the pickled gravel.
JP2012023568A 2012-02-07 2012-02-07 Ground liquefaction prevention and strengthening method Expired - Fee Related JP5011456B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012023568A JP5011456B1 (en) 2012-02-07 2012-02-07 Ground liquefaction prevention and strengthening method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012023568A JP5011456B1 (en) 2012-02-07 2012-02-07 Ground liquefaction prevention and strengthening method

Publications (2)

Publication Number Publication Date
JP5011456B1 JP5011456B1 (en) 2012-08-29
JP2013159987A true JP2013159987A (en) 2013-08-19

Family

ID=46844523

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012023568A Expired - Fee Related JP5011456B1 (en) 2012-02-07 2012-02-07 Ground liquefaction prevention and strengthening method

Country Status (1)

Country Link
JP (1) JP5011456B1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069967A (en) * 2014-09-30 2016-05-09 兼松日産農林株式会社 Tool for constructing crushed stone improvement body and method for constructing crushed stone improvement body
US10487468B2 (en) * 2017-12-02 2019-11-26 Bahman Niroumand Mandrel and a method for soil compaction
JP2020193535A (en) * 2019-05-30 2020-12-03 會澤高圧コンクリート株式会社 Ground reinforcement method
KR20210001058A (en) * 2019-06-26 2021-01-06 삼신건설산업 주식회사 Cast-in-place pile and construction method thereof
JP2021031915A (en) * 2019-08-22 2021-03-01 株式会社日水コン Underground buried object floating prevention method and underground buried object floating prevention structure

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06294136A (en) * 1993-04-08 1994-10-21 Fujita Corp Soil improvement pile
JP2743055B2 (en) * 1993-12-09 1998-04-22 成和機工株式会社 Liquefaction prevention method for sand ground
JP2009275448A (en) * 2008-05-16 2009-11-26 Marui Kiso:Kk Foot protection method for foundation concrete pile

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016069967A (en) * 2014-09-30 2016-05-09 兼松日産農林株式会社 Tool for constructing crushed stone improvement body and method for constructing crushed stone improvement body
US10487468B2 (en) * 2017-12-02 2019-11-26 Bahman Niroumand Mandrel and a method for soil compaction
JP2020193535A (en) * 2019-05-30 2020-12-03 會澤高圧コンクリート株式会社 Ground reinforcement method
JP7136425B2 (en) 2019-05-30 2022-09-13 會澤高圧コンクリート株式会社 Ground reinforcement method
KR20210001058A (en) * 2019-06-26 2021-01-06 삼신건설산업 주식회사 Cast-in-place pile and construction method thereof
KR102220211B1 (en) * 2019-06-26 2021-02-25 삼신건설산업 주식회사 Cast-in-place pile and construction method thereof
JP2021031915A (en) * 2019-08-22 2021-03-01 株式会社日水コン Underground buried object floating prevention method and underground buried object floating prevention structure
JP7265451B2 (en) 2019-08-22 2023-04-26 株式会社日水コン Floating prevention method for underground buried objects

Also Published As

Publication number Publication date
JP5011456B1 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
US8221033B2 (en) Extensible shells and related methods for constructing a support pier
US10513831B2 (en) Open-end extensible shells and related methods for constructing a support pier
KR100964796B1 (en) Method for constructing the steel pipe-concrete composite pile structurized of burying and unifying into the bedrock, and a pile construction
WO2000047826A1 (en) Short aggregate pier techniques
JP5011456B1 (en) Ground liquefaction prevention and strengthening method
JP5984085B2 (en) Foundation structure and foundation construction method
JP4915827B1 (en) Ground strengthening system and ground strengthening method
KR100762991B1 (en) Precast piling method injected with high-strength mortar
JP5427285B1 (en) Ground strengthening system and ground strengthening method
US11479935B2 (en) Extensible shells and related methods for constructing a ductile support pier
Rollins et al. Jet grouting to increase lateral resistance of pile group in soft clay
AU2018285912B2 (en) Extensible shells and related methods for constructing a ductile support pier
CA2993469C (en) Open-bottom extensible shells and related methods for constructing a support pier
Rollins et al. Ground improvement for increasing lateral pile group resistance
Rollins et al. Use of Jet Grouting to Increase Lateral Pile Group Resistance in Sofy Clay
Nikitenko et al. Features of Piling and Their Interaction with Soil
JP2024012932A (en) Pile foundation accompanied with foundation improvement and construction method thereof
CN116427407A (en) Construction method of controllable rigidity high bearing capacity composite foundation
Dip ANALYSIS AND DESIGN OF SAND DRAINS AND PREFABRICATED VERTICAL DRAINS FOR THE RUNWAY OF KHAN JAHAN ALI AIRPORT AT BAGERHAT
Al-Robay et al. MAIN PROPERTIES OF PILE INSTALLATION AND INFLUENCE OF VARIOUS PILES WITH SOILS
Farrell et al. Liquefaction mitigation of three projects in California
JPH051849B2 (en)

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120604

R150 Certificate of patent or registration of utility model

Ref document number: 5011456

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150608

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees