JP2013159675A - Long carbon fiber reinforced polyamide resin prepreg and molding - Google Patents

Long carbon fiber reinforced polyamide resin prepreg and molding Download PDF

Info

Publication number
JP2013159675A
JP2013159675A JP2012021531A JP2012021531A JP2013159675A JP 2013159675 A JP2013159675 A JP 2013159675A JP 2012021531 A JP2012021531 A JP 2012021531A JP 2012021531 A JP2012021531 A JP 2012021531A JP 2013159675 A JP2013159675 A JP 2013159675A
Authority
JP
Japan
Prior art keywords
polyamide resin
polyamide
carbon fiber
fiber
peak temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012021531A
Other languages
Japanese (ja)
Other versions
JP5987335B2 (en
Inventor
Nori Yoshihara
法 葭原
Satoshi Nago
聡 名合
Hitoshi Kitamura
北村仁志
Hidetoshi Sonoda
園田秀利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=49172213&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP2013159675(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2012021531A priority Critical patent/JP5987335B2/en
Publication of JP2013159675A publication Critical patent/JP2013159675A/en
Application granted granted Critical
Publication of JP5987335B2 publication Critical patent/JP5987335B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a structural material excellent in moldability and mechanical property, with high flexural strength and high fluidity by improving resin impregnation performance to a fiber bundle, in a composite material composed of long carbon fiber and polyamide resin composition with a crystallization rate from a molten state in a specified range.SOLUTION: There are provided long carbon fiber reinforced polyamide resin prepreg and/or molding, each of which contains a carbon fiber of 40 to 80 mass%, and has, as a base material, a polyamide resin in which a difference between a melting peak temperature Tm and a crystallization peak temperature Tc is 20 to 60°C.

Description

本発明は、炭素長繊維とポリアミド樹脂からなる複合材料に関する。詳しくは、炭素長繊維と、溶融状態からの結晶化速度が特定範囲にあるポリアミド樹脂組成物からなる複合材料に関する。更に詳しくは、繊維束への樹脂含浸性がよく、高い曲げ強度と高い流動性を持ち、成形性と機械的性質に優れた構造材用複合材料に関する。   The present invention relates to a composite material composed of long carbon fibers and a polyamide resin. Specifically, the present invention relates to a composite material comprising a carbon long fiber and a polyamide resin composition having a crystallization rate from a molten state in a specific range. More specifically, the present invention relates to a composite material for a structural material that has good resin impregnation into a fiber bundle, high bending strength and high fluidity, and excellent moldability and mechanical properties.

従来、電線被覆法を応用したガラス長繊維強化ポリアミド樹脂複合材料は知られていた(例えば、非特許文献1参照)。しかし、従来技術では、ガラス繊維とポリアミド樹脂からなる長繊維強化ポリアミド樹脂複合材料を射出成形して成形品を得ていた。複合化するコンパウンド化工程や射出成形工程でガラス繊維の折損が著しく、ガラス繊維の強度や弾性率への補強効果が低下し、構造材としての実用性能には不満足であった。ガラス繊維の折損を抑制するために、低粘性ポリアミドと平らなガラス繊維の組み合わせについて開示されているが、構造材としての高い要求には全く未達であった(特許文献1)。     Conventionally, a long glass fiber reinforced polyamide resin composite material using an electric wire coating method has been known (see, for example, Non-Patent Document 1). However, in the prior art, a molded product is obtained by injection molding a long fiber reinforced polyamide resin composite material made of glass fiber and polyamide resin. In the compounding process and the injection molding process for compounding, breakage of the glass fiber was remarkable, the reinforcing effect on the strength and elastic modulus of the glass fiber was lowered, and the practical performance as a structural material was unsatisfactory. In order to suppress breakage of glass fibers, a combination of low-viscosity polyamide and flat glass fibers has been disclosed, but the high demand as a structural material has not been achieved at all (Patent Document 1).

高強度・高剛性成形品を得るために、ガラス繊維より強度や弾性率の高い炭素繊維とポリアミド樹脂の複合材料も研究開発された(非特許文献2 参照)。しかし、やはりコンパウンド化工程や射出成形工程で炭素繊維が折損し、その効果は要求に大幅に未達であった。
また、強化繊維の折損を避けるために、成形時のせん断応力が低い圧縮成形についても検討された。しかし、強化繊維が長くなると繊維のからみ合いが起こり、流動性が著しく低下して、大型成形品や細いリブやボス構造を有する成形品は、欠肉が起こり良好な成形品が得られなかった。
繊維の絡み合いが起こらないように、繊維のロービングを単繊維状に開繊した後、ポリアミド樹脂を含浸して、強化繊維とポリアミド樹脂からなる一軸のテープ状プリプレグを予備成形した後、加熱圧縮成形する方法も開示された(例えば、非特許文献3参照)。しかし、一般のポリアミド樹脂の場合、繊維束への含浸性がおとり、ボイド含有が多くなり、強度や剛性が期待値とはかけ離れた複合材となり構造材の要求には未達であった。
In order to obtain a high-strength and high-rigidity molded product, a composite material of carbon fiber and polyamide resin having higher strength and elastic modulus than glass fiber has been researched and developed (see Non-Patent Document 2). However, the carbon fiber was broken in the compounding process and the injection molding process, and the effect was far below the requirement.
In order to avoid breakage of the reinforcing fibers, compression molding with low shear stress during molding was also examined. However, when the reinforcing fiber becomes longer, the fibers are entangled and the fluidity is remarkably lowered, and a large molded product or a molded product having a thin rib or boss structure is thinned and a good molded product cannot be obtained. .
To prevent fiber entanglement, fiber roving is opened into a single fiber, then impregnated with polyamide resin, pre-molded with a uniaxial tape-shaped prepreg composed of reinforcing fibers and polyamide resin, and then heat compression molded The method of doing is also disclosed (for example, refer nonpatent literature 3). However, in the case of a general polyamide resin, the impregnation property into the fiber bundle is reduced, the void content increases, and the strength and rigidity are far from the expected values, so that the demand for the structural material has not been achieved.

含浸性を改善するために、低粘度のポリアミド樹脂を使用することや、樹脂温度を高めることや、含浸工程で高いせん断力を付与することが検討されたが、その効果は小さく、ボイドは抑制されず、含浸性は殆ど向上しなかった。その上、低粘度のポリアミド樹脂の使用や高せん断力により、繊維の破断し、毛羽が発生しやすく、引き抜き成形によるプリプレグが安定して生産できないとう問題があった。特に、単繊維径が細く折れやすい炭素繊維の場合、毛羽が発生しやすく、含浸性のよいプリプレグの安定生産とは両立は困難であった。 In order to improve the impregnation property, it was studied to use a low-viscosity polyamide resin, to increase the resin temperature, and to apply a high shear force in the impregnation process, but the effect was small and voids were suppressed. The impregnation property was hardly improved. In addition, the use of a low-viscosity polyamide resin and a high shearing force have a problem in that fibers are easily broken and fluff is easily generated, and a prepreg by pultrusion cannot be stably produced. In particular, in the case of a carbon fiber having a single fiber diameter that is easy to break, fluff is likely to occur, and it is difficult to achieve both stable production of a prepreg with good impregnation properties.

また母相となる樹脂についても検討された。ポリアミド6と芳香族ポリアミドを母相とし、重量繊維長が1mm〜15mmであるガラス繊維強化ポリアミド樹脂が特許文献2について開示されている。芳香族ポリアミドのポリアミド6より高い強度の効果により、複合材の強度が改善されることを開示している。特許文献2には、繊維長を限定する理由として、強化繊維が15mmを超えると成形性が低下するので好ましくないとしている。成形性を保持するために、繊維長を限定しており、母相の樹脂組成による成形性改善効果については全く言及していない。より細く、より弾性率が高い炭素繊維強化の場合も、成形時の流動性のための繊維長の限界はより長くなることは当業界では想定できないことであった。また脂肪族ジアミンとテレフタル酸からなるポリアミド樹脂の共重合の連鎖分布制御により、半結晶化時間が調整できることは開示されている(特許文献3)。しかし、特許文献3では、繊維束への含浸性に適切な結晶化挙動については全く意図せず、検討もされていない。また、高融解熱ポリアミドと低融解熱ポリアミドと液晶樹脂と炭素繊維からなる組成物が開示されている(特許文献4)。特許文献4は、射出成形用の組成物を目的としており、プリプレグ作製に重要な繊維束への含浸性や構造材用のスタンピング成形性の改善については全く意図されておらず、検討もされていない。射出成形品において、高結晶性のポリアミド66にポリアミド6を共重合することにより、成形品のソリが改善されることは知られている。これは、到達する結晶化度を抑制したもので、繊維束への含浸性や流動性については全く想定していない。脂環族ポリアミドにポリアミド以外の結晶性樹脂を組み合わせて射出成形性を改善することが開示されている(特許文献5)。しかし、特許文献5では、ポリアミド樹脂の組み合わせによる改善は全く言及していない。また、ポリアミド樹脂とポリアミド樹脂のアロイは、微分散できるが、目的とする物性改善項目は殆ど見出せていない。改善効果として、ポリアミド6やポリアミド66にポリアミド6Tのような高融点ポリアミドの微粉末を添加して結晶核剤としての応用が開示されている(特許文献6)。また、ポリアミド6やポリアミド66のストレスクラッキング性改善として、高級脂肪族ポリアミド(特許文献7)をブレンドすることが開示されている。しかし、結晶性を制御して含浸性や流動性のような加工性を改善することについては全く意図されていない。   In addition, the resin used as a matrix was also examined. Patent Document 2 discloses a glass fiber reinforced polyamide resin having polyamide 6 and aromatic polyamide as a parent phase and a weight fiber length of 1 mm to 15 mm. It is disclosed that the strength of the composite is improved by the effect of higher strength than the polyamide 6 of the aromatic polyamide. In Patent Document 2, as the reason for limiting the fiber length, if the reinforcing fiber exceeds 15 mm, the moldability deteriorates, which is not preferable. In order to maintain moldability, the fiber length is limited, and no mention is made of the effect of improving moldability by the resin composition of the matrix. Even in the case of carbon fiber reinforcement that is thinner and has a higher elastic modulus, it has been impossible for the industry to assume that the limit of the fiber length for fluidity during molding is longer. Further, it is disclosed that the half-crystallization time can be adjusted by controlling the chain distribution of the copolymerization of a polyamide resin composed of an aliphatic diamine and terephthalic acid (Patent Document 3). However, in Patent Document 3, the crystallization behavior suitable for the impregnation property to the fiber bundle is not intended at all and is not studied. Also disclosed is a composition comprising a high melting heat polyamide, a low melting heat polyamide, a liquid crystal resin, and carbon fibers (Patent Document 4). Patent Document 4 aims at a composition for injection molding, and is not intended or studied at all for improvement of impregnation into fiber bundles and stamping moldability for structural materials, which are important for prepreg production. Absent. It is known that the warpage of a molded article is improved by copolymerizing polyamide 6 with a highly crystalline polyamide 66 in an injection molded article. This suppresses the reached crystallinity, and does not assume any impregnation property or fluidity to the fiber bundle. It has been disclosed to improve injection moldability by combining an alicyclic polyamide with a crystalline resin other than polyamide (Patent Document 5). However, Patent Document 5 does not mention any improvement due to the combination of polyamide resins. In addition, polyamide resin and polyamide resin alloy can be finely dispersed, but almost no improvement in physical properties has been found. As an improvement effect, an application as a crystal nucleating agent by adding fine powder of high melting point polyamide such as polyamide 6T to polyamide 6 or polyamide 66 is disclosed (Patent Document 6). Further, blending a higher aliphatic polyamide (Patent Document 7) is disclosed as an improvement in the stress cracking properties of polyamide 6 and polyamide 66. However, there is no intention to control crystallinity to improve workability such as impregnation and fluidity.

特開2008−163340号公報JP 2008-163340 A 特許第4535772号公報Japanese Patent No. 4535772 特開平9−221592号公報JP-A-9-221592 特開2000−313803号公報JP 2000-313803 A 特開2011−57975号公報JP 2011-57975 A 特開昭57−80448号公報JP-A-57-80448 特開昭58−53949号公報JP 58-53949 A

Composites,July, 150 (1973)Composites, July, 150 (1973) ポリアミド樹脂ハンドブック,p204,日刊工業新聞社(昭和63年)Polyamide resin handbook, p204, Nikkan Kogyo Shimbun (1988) SPI(Society of Plastics Industry) 30th 11−C (1975)SPI (Society of Plastics Industry) 30th 11-C (1975)

本発明は、かかる従来技術の課題を背景になされたものである。すなわち、本発明の目的は、繊維束への樹脂含浸性がよくすることで、高い曲げ強度と高い流動性を持ち、成形性と機械的性質に優れた構造材用複合材料を提供することにある。   The present invention has been made against the background of such prior art problems. That is, an object of the present invention is to provide a composite material for a structural material that has high bending strength and high fluidity and is excellent in moldability and mechanical properties by improving resin impregnation into a fiber bundle. is there.

本発明者らは鋭意検討した結果、含浸性が劣る理由は、ポリアミド樹脂の固化による溶融粘度上昇速度が速すぎることによるものであることが主要因であることが分かり、以下に示す手段により、上記課題を解決できることを見出し、本発明に到達した。
すなわち、本発明は、以下の構成からなる。
1.ポリアミド樹脂と炭素繊維を含有してなり、該炭素繊維を40〜80質量%含有し、該ポリアミド樹脂は融解ピーク温度Tmと降温結晶化ピーク温度Tcの差が20〜60℃である炭素長繊維強化ポリアミド樹脂プリプレグ。
2.前記ポリアミド樹脂が結晶性のポリアミド樹脂共重合体を含有する1.に記載の炭素繊維強化ポリアミド樹脂プリプレグ。
3.前記ポリアミド樹脂が2種類以上の結晶性ポリアミド樹脂を含有する1.又は2.のいずれかに記載の炭素繊維強化ポリアミド樹脂プリプレグ。
4.前記ポリアミド樹脂が1種類以上の結晶性ポリアミド樹脂と1種以上の非晶性ポリアミド樹脂を含有する1.〜2.のいずれかに記載の炭素繊維強化ポリアミド樹脂プリプレグ。
5.前記ポリアミド樹脂の主成分としてポリアミド6が含有されていることを特徴とする1.〜4.のいずれか記載の炭素繊維強化ポリアミド樹脂プリプレグ。
6.ポリアミド樹脂と炭素繊維を含有してなり、該炭素繊維を40〜80質量%含有し、該ポリアミド樹脂は融解ピーク温度Tmと降温結晶化ピーク温度Tcの差が20〜60℃である炭素長繊維強化ポリアミド樹脂成形品。
7.前記ポリアミド樹脂が結晶性のポリアミド樹脂共重合体を含有する6.に記載の炭素繊維強化ポリアミド樹脂成形品。
8.前記ポリアミド樹脂が2種類以上の結晶性ポリアミド樹脂を含有する6.又は7.のいずれかに記載の炭素繊維強化ポリアミド樹脂成形品。
9.前記ポリアミド樹脂が1種類以上の結晶性ポリアミド樹脂と1種以上の非晶性ポリアミド樹脂を含有する6.〜7.のいずれかに記載の炭素繊維強化ポリアミド樹脂成形品。
10.前記ポリアミド樹脂の主成分としてポリアミド6が含有されている6.〜9.のいずれか記載の炭素繊維強化ポリアミド樹脂成形品。
As a result of intensive studies, the present inventors have found that the reason why the impregnation property is inferior is mainly due to the fact that the melt viscosity increase rate due to the solidification of the polyamide resin is too fast, by means shown below, The present inventors have found that the above problems can be solved and have reached the present invention.
That is, this invention consists of the following structures.
1. A carbon long fiber comprising a polyamide resin and carbon fiber, the carbon fiber being contained in an amount of 40 to 80% by mass, wherein the polyamide resin has a difference between a melting peak temperature Tm and a cooling crystallization peak temperature Tc of 20 to 60 ° C. Reinforced polyamide resin prepreg.
2. 1. The polyamide resin contains a crystalline polyamide resin copolymer The carbon fiber reinforced polyamide resin prepreg described in 1.
3. The polyamide resin contains two or more crystalline polyamide resins. Or 2. The carbon fiber reinforced polyamide resin prepreg according to any one of the above.
4). 1. The polyamide resin contains one or more crystalline polyamide resins and one or more amorphous polyamide resins. ~ 2. The carbon fiber reinforced polyamide resin prepreg according to any one of the above.
5. 1. Polyamide 6 is contained as a main component of the polyamide resin. ~ 4. The carbon fiber reinforced polyamide resin prepreg according to any one of the above.
6). A carbon long fiber comprising a polyamide resin and carbon fiber, the carbon fiber being contained in an amount of 40 to 80% by mass, wherein the polyamide resin has a difference between a melting peak temperature Tm and a cooling crystallization peak temperature Tc of 20 to 60 ° C. Reinforced polyamide resin molded product.
7). 5. The polyamide resin contains a crystalline polyamide resin copolymer The carbon fiber reinforced polyamide resin molded product described in 1.
8). 5. The polyamide resin contains two or more crystalline polyamide resins. Or 7. The carbon fiber reinforced polyamide resin molded product according to any one of the above.
9. 5. The polyamide resin contains one or more crystalline polyamide resins and one or more amorphous polyamide resins. ~ 7. The carbon fiber reinforced polyamide resin molded product according to any one of the above.
10. 5. Polyamide 6 is contained as a main component of the polyamide resin. ~ 9. The carbon fiber reinforced polyamide resin molded product according to any one of the above.

本発明により、繊維束へのポリアミド樹脂の含浸性が高く、繊維束中のボイドが抑制され、その効果で曲げ強度や圧縮強度が飛躍的に高く、いろいろなモードの変形を受ける構造材の要求を満たすことができる複合材料を工業的に提供することができる。
また、本発明の効果により、母相の樹脂組成物の結晶化による固化速度は、繊維束への含浸前や圧縮成形時金型内で複合材が流動充填前は遅く、その後高度の結晶化が起こることから、高い流動長と高い物性を示す複合材料が提供される。本発明が可能となった理由は、未だ明確ではないが、母相の結晶化による剛性アップが抑制されるが、炭素長繊維の効果で複合系の剛性が高く保てる効果により、離型が可能となる。樹脂の固化速度抑制と繊維補強効果の組み合わせにより、相反する特性である含浸性と離型性の両立が可能になったものと考察される。
本発明により得られた炭素長繊維強化ポリアミド樹脂複合材料を成形して得られる成形品は、自動車のフレーム部品や機械器具の構造部材やスポーツ器具などに使用される。
According to the present invention, the polyamide resin is highly impregnated into the fiber bundle, the voids in the fiber bundle are suppressed, and the bending material and the compressive strength are drastically high due to the effect. The composite material which can satisfy | fill can be provided industrially.
Also, due to the effects of the present invention, the solidification rate by crystallization of the resin composition of the matrix phase is slow before impregnation into the fiber bundle and before the fluid is filled in the mold during compression molding, and then high crystallization. Therefore, a composite material having a high flow length and high physical properties is provided. The reason why the present invention has become possible is not yet clear, but the increase in rigidity due to crystallization of the matrix phase is suppressed, but release is possible due to the effect of keeping the rigidity of the composite system high due to the effect of carbon long fibers. It becomes. It is considered that the combination of impregnation property and releasability, which are contradictory properties, is made possible by the combination of resin solidification rate suppression and fiber reinforcement effect.
A molded product obtained by molding the carbon long fiber reinforced polyamide resin composite material obtained by the present invention is used for a frame part of an automobile, a structural member of a mechanical instrument, a sports instrument, and the like.

以下、本発明を詳述する。
本発明には、炭素長繊維が40〜80質量%、好ましくは45〜70質量%含有する。40質量%未満では、構造材として本発明の目的とする強度や弾性率の要求に未達となることや、結晶性が抑制された母相では離型性が劣り、このましくない。また、80質量%を超えると。含浸性や成形時の流れ性が極度に低下するので好ましくない。また炭素長繊維40〜80質量%を含有する複合材料の場合は、本発明による繊維束への樹脂含浸性や複合材の流動性の低下の抑制効果は顕著であり、本発明の効果が発揮される。本発明に使用される炭素繊維の繊維長は、7.5mm以上であれば特に限定されない。連続繊維においても本発明の含浸性改善効果が有効である。高い機械的性質、特に高い耐衝撃性が必要な場合は、長い方が好ましく。また高い流動性が必要な場合は、短い方が好ましい。本発明の効果が特に発揮する強度と成形性の両立が必要な場合には、15mm〜70mm、好ましくは25〜50mmの炭素長繊維が使用される。
The present invention is described in detail below.
In the present invention, the carbon long fiber is contained in an amount of 40 to 80% by mass, preferably 45 to 70% by mass. If it is less than 40% by mass, the structural material will not meet the required strength and elastic modulus of the present invention, and the mother phase with suppressed crystallinity is inferior in releasability, which is not preferable. Moreover, when it exceeds 80 mass%. It is not preferable because the impregnation property and the flow property during molding are extremely reduced. In the case of a composite material containing 40 to 80% by mass of carbon long fibers, the effect of suppressing the decrease in resin impregnation into the fiber bundle and the fluidity of the composite material according to the present invention is remarkable. Is done. The fiber length of the carbon fiber used for this invention will not be specifically limited if it is 7.5 mm or more. The impregnation improving effect of the present invention is also effective for continuous fibers. If high mechanical properties, especially high impact resistance, are required, the longer one is preferred. Moreover, when high fluidity is required, the shorter one is preferable. When it is necessary to satisfy both the strength and formability at which the effects of the present invention are particularly exerted, carbon long fibers of 15 mm to 70 mm, preferably 25 to 50 mm are used.

炭素繊維としては、特に製造法に制限されないが、ポリアクリロニトル繊維やセルロース繊維などの繊維を空気中で200〜300℃にて処理した後、不活性ガス中で1000〜3000℃以上で焼成され炭化製造された引張り強度20t/cm以上、引張り弾性率200GPa以上の炭素繊維が好ましい。本発明に使用される単繊維径は、特に制限されないが、複合化の製造ライン工程から3〜25μmが好ましく、特に4〜15μmが好ましい。3μm未満では、含浸や脱泡が難しく、25μmを超えると、比表面積が小さくなり、複合化の効果が小さくなり好ましくない。本発明に使用される炭素繊維は、空気や硝酸による湿式酸化、乾式酸化、ヒートクリーニング、ウイスカライジングなどによる接着性改良のための処理されたものが好ましい。また本発明の複合材料製造に使用される炭素繊維は、作業工程の取り扱い性から、100℃以下で軟化する集束剤により集束されていることが好ましい。集束フィラメント数には特に制限ないが、1000〜30000フィラメント、好ましくは、3000〜25000フィラメントが好ましい。本発明に使用される炭素繊維の集束剤は特に限定されないが、炭素繊維と母相のポリアミド樹脂に高い接着力を有するウレタン系やエポキシ系集束剤が好ましい。 The carbon fiber is not particularly limited by the production method, but after the fibers such as polyacrylonitrile fiber and cellulose fiber are treated at 200 to 300 ° C. in the air, they are fired at 1000 to 3000 ° C. or more in an inert gas. Carbon fibers produced by carbonization and having a tensile strength of 20 t / cm 2 or more and a tensile modulus of 200 GPa or more are preferred. Although the diameter of the single fiber used in the present invention is not particularly limited, it is preferably 3 to 25 μm, particularly preferably 4 to 15 μm, from the production line process of the composite. If it is less than 3 μm, impregnation and defoaming are difficult, and if it exceeds 25 μm, the specific surface area becomes small and the effect of compositing becomes unfavorable. The carbon fiber used in the present invention is preferably treated for improving adhesion by wet oxidation with air or nitric acid, dry oxidation, heat cleaning, whiskerizing, or the like. Moreover, it is preferable that the carbon fiber used for composite material manufacture of this invention is bundled by the bundling agent which softens at 100 degrees C or less from the handleability of a work process. Although there is no restriction | limiting in particular in the number of focusing filaments, 1000-30000 filaments, Preferably 3000-25000 filaments are preferable. The carbon fiber sizing agent used in the present invention is not particularly limited, but a urethane-based or epoxy-based sizing agent having high adhesion to the carbon fiber and the polyamide resin of the parent phase is preferable.

本発明には、母相として、融解ピーク温度Tmと結晶化ピーク温度Tcの差が20〜60℃、好ましくは、20〜50℃であるポリアミド樹脂組成物が使用される。その差が、20℃未満では、含浸性や流動性が小さく好ましくない。またその差が60℃を超えると固化速度が遅く、成形時の生産性が低下するので好ましくない。本発明に使用されるポリアミド樹脂は、母相の組成物として、結晶の融解ピーク温度と降温結晶化ピーク温度を有すれば特に限定されない。即ち、1種以上の結晶性ポリアミド樹脂または結晶性ポリアミド共重合体を含有すればよく、1種の結晶性ポリアミド樹脂や複数の結晶性ポリアミド樹脂の組み合わせ、1種以上の結晶性ポリアミド樹脂と1種以上の非晶性ポリアミド樹脂の組み合わせでもよい。本発明においては、20〜60質量%、好ましくは30〜55質量%のポリアミド樹脂を含有する。20質量%未満では、炭素繊維間にボイドを含みやすく好ましくない。また60質量%を超えると強度や剛性が目標とする要求に到達しないから好ましくない。
本発明における融解ピーク温度とは、示差走査熱量計(DSC)を使用し、ISO11357−3に準拠して20℃/minにて測定したピーク温度である、また結晶化ピーク温度とは、DSCを使用して前記融解ピーク温度より30℃高い温度まで加熱した後、ISO11357−3に準拠して、10℃/minで降温したときのピーク発熱温度である。複数の結晶性ポリアミド樹脂からなる場合、融解熱や結晶化熱のそれぞれの中で高い方のピーク温度から求めたTmとTcの差が、20〜60℃であればよい。
In the present invention, a polyamide resin composition having a difference between the melting peak temperature Tm and the crystallization peak temperature Tc of 20 to 60 ° C., preferably 20 to 50 ° C. is used as the parent phase. If the difference is less than 20 ° C., the impregnation property and fluidity are small, which is not preferable. On the other hand, if the difference exceeds 60 ° C., the solidification rate is slow, and the productivity at the time of molding decreases, which is not preferable. The polyamide resin used in the present invention is not particularly limited as long as it has a crystal melting peak temperature and a cooling crystallization peak temperature as a matrix composition. That is, it suffices to contain one or more crystalline polyamide resins or crystalline polyamide copolymers, a combination of one crystalline polyamide resin or a plurality of crystalline polyamide resins, one or more crystalline polyamide resins and 1 A combination of more than one kind of amorphous polyamide resin may be used. In this invention, 20-60 mass%, Preferably it contains 30-55 mass% polyamide resin. If it is less than 20% by mass, voids are likely to be contained between the carbon fibers, which is not preferable. On the other hand, if it exceeds 60% by mass, the strength and rigidity do not reach the target requirements.
The melting peak temperature in the present invention is a peak temperature measured at 20 ° C./min in accordance with ISO11357-3 using a differential scanning calorimeter (DSC), and the crystallization peak temperature is DSC. It is a peak exothermic temperature when it is heated to a temperature 30 ° C. higher than the melting peak temperature and then cooled at 10 ° C./min in accordance with ISO11357-3. In the case of a plurality of crystalline polyamide resins, the difference between Tm and Tc determined from the higher peak temperature in the heat of fusion and the heat of crystallization may be 20 to 60 ° C.

本発明に使用される結晶性ポリアミド樹脂は、特に限定されない。ISO11357−3に準拠し測定した融点が180℃〜330℃が好ましく、特に200℃〜300℃が特に好ましい。融点が180℃未満の場合、耐熱性が低いことや剛性が低いことから好ましくなく、330℃を超えると製造上好ましくない。具体的には、ポリアミド6、ポリアミド66、ポリアミド11、ポリアミド12、ポリアミドMXD6、ポリアミド46、ポリアミド610、ポリアミド612、ポリアミド9T,ポリアミド10T、ポリアミド11Tのようなホモポリマーや、ポリアミド6/66、ポリアミド6/12、ポリアミド66/10,ポリアミド66/12、ポリアミド6T/6,ポリアミド6T/66,ポリアミド6T/6I、ポリアミド66/6Iのような共重合体等があげられる。これらのポリアミド樹脂に使用される共重合成分は特に限定されない。共重合されるジアミン成分としては、パラキシリレンジアミン、メタキシリレンジアミン、フェニレンジアミン、トルエンジアミン、テトラメチレンジアミン、ヘキサメチレンジアミン、ノナメチレンジアミン、2−メチルペンタメチレンジアミン、ウンデカメチレンジアミン、ドデカメチレンジアミンなどが例示される。これらの中では、ヘキサメチレンジアミン、ノナメチレンジアミンが好ましい。また、共重合されるジカルボン酸成分としては、アジピン酸、スペリン酸、アゼライン酸、セバシン酸、ドデカン酸、テレフタル酸、イソフタル酸、ナフタレンジカルボン酸、2−メチルテレフタル酸等が挙げられる。これらの中では、アジピン酸、セバシン酸、テレフタル酸が好ましい。また6−アミノカプロン酸、11−アミノウンデカン酸、12−アミノドデカン酸、p−アミノメチル安息香酸などのアミノ酸や、ω―ラウロラクタムなどのラクタムなどが挙げられる。
これらの中で、好ましい結晶性ホモポリマーとしてはポリアミド6、ポリアミド66、ポリアミドMXD6が、好ましい結晶性共重合体としては、ポリアミド6/66、ポリアミド66/6、ポリアミド66/6I,ポリアミド6T/6,ポリアミド6T/66などが上げられる。特に、加工性と物性を両立するという面からポリアミド6を含むことが好ましい。共重合することにより、融点と結晶化温度は共に低下するが、同じ共重合比では結晶化温度の方の低下が大きいから、融解ピーク温度と降温結晶化ピーク温度の差は、共重合比ほぼ1に近くなるほど大きい。
The crystalline polyamide resin used in the present invention is not particularly limited. The melting point measured according to ISO11357-3 is preferably 180 ° C. to 330 ° C., particularly preferably 200 ° C. to 300 ° C. When the melting point is less than 180 ° C., it is not preferable because of low heat resistance and low rigidity, and when it exceeds 330 ° C., it is not preferable for production. Specifically, homopolymers such as polyamide 6, polyamide 66, polyamide 11, polyamide 12, polyamide MXD6, polyamide 46, polyamide 610, polyamide 612, polyamide 9T, polyamide 10T, polyamide 11T, polyamide 6/66, polyamide Examples thereof include copolymers such as 6/12, polyamide 66/10, polyamide 66/12, polyamide 6T / 6, polyamide 6T / 66, polyamide 6T / 6I, and polyamide 66 / 6I. The copolymerization component used for these polyamide resins is not particularly limited. Examples of diamine components to be copolymerized include paraxylylenediamine, metaxylylenediamine, phenylenediamine, toluenediamine, tetramethylenediamine, hexamethylenediamine, nonamethylenediamine, 2-methylpentamethylenediamine, undecamethylenediamine, dodeca Examples include methylenediamine. Among these, hexamethylenediamine and nonamethylenediamine are preferable. Examples of the dicarboxylic acid component to be copolymerized include adipic acid, peric acid, azelaic acid, sebacic acid, dodecanoic acid, terephthalic acid, isophthalic acid, naphthalenedicarboxylic acid, and 2-methylterephthalic acid. Of these, adipic acid, sebacic acid, and terephthalic acid are preferable. Further, amino acids such as 6-aminocaproic acid, 11-aminoundecanoic acid, 12-aminododecanoic acid and p-aminomethylbenzoic acid, and lactams such as ω-laurolactam can be mentioned.
Of these, polyamide 6, polyamide 66, and polyamide MXD6 are preferable as crystalline homopolymers, and polyamide 6/66, polyamide 66/6, polyamide 66 / 6I, and polyamide 6T / 6 are preferable as crystalline copolymers. , Polyamide 6T / 66 and the like. In particular, it is preferable to include polyamide 6 from the viewpoint of achieving both workability and physical properties. By copolymerization, both the melting point and the crystallization temperature are lowered, but at the same copolymerization ratio, the decrease in the crystallization temperature is larger, so the difference between the melting peak temperature and the cooling crystallization peak temperature is almost the same as the copolymerization ratio. The closer to 1, the bigger.

本発明でいう非晶ポリアミド樹脂とは、結晶化速度が非常に遅い結晶性ポリアミド樹脂を含む。DSCを使用して溶融状態から10℃/minで冷却した場合、ヒートフローにおいて結晶化ピーク温度が検知されないか、20℃/minで昇温した場合、ヒートフローにおいて融解ピーク温度が検知されないポリアミド樹脂も非晶ポリアミド樹脂に含めている。非晶ポリアミド樹脂としては、ポリアミド(PA)6T/6I,ポリアミドMXD6/PXD6,ポリアミドNDT/NDI,ポリアミド6/66,ポリアミド6/6Iなどが上げられる。   The amorphous polyamide resin referred to in the present invention includes a crystalline polyamide resin having a very low crystallization rate. When the DSC is used to cool from a molten state at 10 ° C./min, the crystallization peak temperature is not detected in the heat flow, or when the temperature is increased at 20 ° C./min, the melting peak temperature is not detected in the heat flow Is also included in the amorphous polyamide resin. Examples of the amorphous polyamide resin include polyamide (PA) 6T / 6I, polyamide MXD6 / PXD6, polyamide NDT / NDI, polyamide 6/66, polyamide 6 / 6I, and the like.

ポリアミド樹脂の溶融状態からの降温結晶化温度は、結晶核剤効果を有する無機塩やタルクやクレイのような鉱物により高められることは知られている。一方,塩化リチウムや塩化ナトリウムのように水素結合に配位結合性を有する化合物により低下することは知られている。
本発明に使用される融解ピーク温度Tmと降温結晶化ピーク温度Tcの差が20〜60℃であるポリアミド樹脂組成物は、結晶性のポリアミド樹脂に予め結晶核剤および/または水素結合への配位性を有する化合物を配合することで結晶化ピーク温度は調節される。
また本発明において、結晶性ポリアミドの結晶化速度を調節するために、他の結晶化速度の遅い結晶性ポリアミド樹脂や結晶性共重合ポリアミド、非晶性ポリアミド共重合体が使用することもできる。この場合、結晶化速度を調節するには、複数のポリアミド樹脂が溶融状態において部分的に相溶することが必要であると考察される。使用される非晶性ポリアミド共重合体は、溶融状態において部分相溶性があれば特に限定されない。非晶性ポリアミドとしては、例えば、ポリアミド6T/6I,ポリアミド6/66,ポリアミド6/6I、ポリアミド6I、ポリアミド6/12などが上げられる。非晶性ポリアミド共重合体としては、結晶融点を有しないので、構造材として高い機械的な耐熱性を保持するため、ガラス転移点が100℃より高い樹脂が好ましいから、ポリアミド6T/6Iのように芳香族環を含有する方が好ましい。
It is known that the temperature-falling crystallization temperature from the molten state of the polyamide resin can be increased by an inorganic salt having a crystal nucleating agent effect or a mineral such as talc or clay. On the other hand, it is known that it is lowered by a compound having a coordination bond to a hydrogen bond such as lithium chloride and sodium chloride.
The polyamide resin composition in which the difference between the melting peak temperature Tm and the temperature-falling crystallization peak temperature Tc used in the present invention is 20 to 60 ° C. is applied to the crystalline polyamide resin in advance to the crystal nucleating agent and / or hydrogen bond. The crystallization peak temperature is adjusted by adding a compound having a potential.
In the present invention, in order to adjust the crystallization speed of the crystalline polyamide, other crystalline polyamide resins, crystalline copolymer polyamides, and amorphous polyamide copolymers having a low crystallization speed can be used. In this case, in order to adjust the crystallization rate, it is considered that a plurality of polyamide resins must be partially compatible in the molten state. The amorphous polyamide copolymer used is not particularly limited as long as it is partially compatible in the molten state. Examples of the amorphous polyamide include polyamide 6T / 6I, polyamide 6/66, polyamide 6 / 6I, polyamide 6I, polyamide 6/12, and the like. As an amorphous polyamide copolymer, since it does not have a crystalline melting point, a resin having a glass transition point higher than 100 ° C. is preferable to maintain high mechanical heat resistance as a structural material. It is preferable to contain an aromatic ring.

融解ピーク温度と降温結晶化ピーク温度の差は、ポリアミドの共重合モノマーの選択と共重合比の選択によっても調節が可能である。共重合によりポリアミドの融解ピーク温度の降下と、降温結晶化ピーク温度の降下する度合いが異なるためである。共重合は、融解ピーク温度と降温結晶化ピーク温度の差を大きくする効果がある。
2種類以上のポリアミド樹脂を含有するポリアミド樹脂組成物は溶融加工時、一部アミド交換反応により共重合化することで、わずか融点降下を示すが、本発明の効果は、組成物の結晶化ピーク温度が、融点降下した融解ピーク温度から20〜60℃低温の範囲にあれば発揮される。
好ましいポリアミド樹脂組成としては、PA6+PA6T/6I,PA6+PANDT/NDI,PA6+PA6/66,PA6+PAMXD6,PA6+PA12,PA6+PA610などが例示される。これらの配合比を、融解ピーク温度と降温結晶化ピーク温度の差を20〜60℃になるように選択される。
The difference between the melting peak temperature and the temperature-falling crystallization peak temperature can be adjusted by selecting the copolymerization monomer of polyamide and the copolymerization ratio. This is because the degree of decrease in the melting peak temperature of polyamide and the decrease in temperature-falling crystallization peak temperature are different due to copolymerization. Copolymerization has the effect of increasing the difference between the melting peak temperature and the cooling crystallization peak temperature.
The polyamide resin composition containing two or more kinds of polyamide resins shows a slight melting point drop due to copolymerization by partial amide exchange reaction during melt processing, but the effect of the present invention is the crystallization peak of the composition. It is exhibited if the temperature is in the range of 20 to 60 ° C. lower than the melting peak temperature at which the melting point has dropped.
Preferred polyamide resin compositions include PA6 + PA6T / 6I, PA6 + PANDT / NDI, PA6 + PA6 / 66, PA6 + PAMXD6, PA6 + PA12, PA6 + PA610, and the like. These mixing ratios are selected so that the difference between the melting peak temperature and the cooling crystallization peak temperature is 20 to 60 ° C.

本発明に使用されるポリアミド樹脂の分子量は特に限定されないが、JISK6920−2に準拠し、25℃において測定した98質量%硫酸の0.05g/l濃度における相対粘度が1.8〜2.8、好ましくは1.9〜2.65の範囲にある。やや低分子量のものが、炭素繊維への含浸性から好ましい。相対粘度が1.8未満では樹脂が脆く、本発明の効果を発揮しにくい。また2.8を超えると、溶融粘度が高くなり、炭素繊維への含浸性が低下するので好ましくない。 Although the molecular weight of the polyamide resin used in the present invention is not particularly limited, the relative viscosity at a concentration of 0.05 g / l of 98 mass% sulfuric acid measured at 25 ° C. in accordance with JISK6920-2 is 1.8 to 2.8. , Preferably in the range of 1.9 to 2.65. Slightly low molecular weight is preferable from the viewpoint of impregnation into carbon fiber. If the relative viscosity is less than 1.8, the resin is brittle and the effects of the present invention are hardly exhibited. On the other hand, if it exceeds 2.8, the melt viscosity becomes high and the impregnation property to the carbon fiber is lowered, which is not preferable.

本発明の炭素長繊維複合材料の成形方法は限定されないが、炭素長繊維分率が高く、流動性が低いことや、成形中の炭素繊維の折損を抑制するためにスタンピング成形されることが好ましい態様である。本発明の効果を発揮するには、示差走査熱量計おける20℃/minでの昇温過程において、発現する融解ピーク温度の中で、構成するポリアミド樹脂の最も高い融点に相当する温度より、5〜50℃、好ましくは、10〜40℃高い温度に加熱した後、金型に投入し、スタンピング成形することが好ましい。5℃未満では成形品の欠肉や、炭素長繊維が成形品表面に浮き出し好ましくない。また50℃を超えると、成形品にバリの発生が著しくなり二次加工が必要になるので好ましくない。   The method for molding the carbon long fiber composite material of the present invention is not limited, but it is preferable that the carbon long fiber fraction is high, the fluidity is low, and stamping molding is performed in order to suppress breakage of the carbon fiber during molding. It is an aspect. In order to exert the effect of the present invention, the temperature corresponding to the highest melting point of the constituting polyamide resin among the melting peak temperatures expressed in the temperature rising process at 20 ° C./min in the differential scanning calorimeter is 5 After heating to a temperature of -50 ° C., preferably 10-40 ° C., it is preferably put into a mold and stamped. When the temperature is lower than 5 ° C., it is not preferable that the molded product lacks thickness or the long carbon fiber is raised on the surface of the molded product. On the other hand, if it exceeds 50 ° C., burrs are remarkably generated in the molded product and secondary processing is required, which is not preferable.

本発明の複合材料を成形して得られる肉厚2mm以上の繊維が一軸配向した成形品の繊維軸方向の曲げ強度(UD:0度曲げ強度)は1200MPa以上,好ましくは1400MPa以上あり、かつ繊維軸に対して横方向の曲げ強度(UD:90度曲げ強度)は、100MPa以上、好ましくは120MPa以上である。また擬似等方性に構成した成形品の曲げ強度(RS:曲げ強度)は、800MPa以上、好ましくは1100MPa以上である。 The bending strength in the fiber axis direction (UD: 0 degree bending strength) of a molded product in which fibers having a thickness of 2 mm or more obtained by molding the composite material of the present invention are uniaxially oriented is 1,200 MPa or more, preferably 1,400 MPa or more. The bending strength transverse to the axis (UD: 90 degree bending strength) is 100 MPa or more, preferably 120 MPa or more. Moreover, the bending strength (RS: bending strength) of the molded product configured to be pseudo-isotropic is 800 MPa or more, preferably 1100 MPa or more.

本発明の樹脂組成物には、上記の必須成分の他に物性改良・成形性改良、耐久性改良を目的として、滑剤、酸化防止剤、難燃剤、耐光剤、耐候剤などが配合できる。
本発明の複合材料の製造法は特に限定されない。例えば、構成するポリアミド樹脂の最も高い融点以上に温度調節されたスクリュータイプ押出機のホッパーにポリアミド樹脂および/またはポリアミド樹脂共重合体を所定割合に予備混合して供給する。溶融樹脂をギアポンプの回転数にて計量して、樹脂の融点以上に温度調節された含浸用押出機の上流に供給する。一方、ロービング状の炭素繊維を拡張開繊し、含浸用押出機の下流に供給する。下流先端に開口部を絞ったスリットダイを備えた含浸用押出機中で樹脂圧により、炭素繊維ロービングに樹脂を含浸・脱泡する。下流開口部から吐出されたテープ状の炭素繊維とポリアミド樹脂からなる複合材料を冷却してかせに巻き取る。さらに、このテープ状複合材料(プレプリグ)を20mm以上にカットすることや、テープ状複合材料をカットせずに織物状に織って成形用に提供される。また押出機下流の出口ダイにロービング状炭素繊維を供給して、繊維の送り速度と樹脂の吐出量を調節して、所定の繊維含有率からなるストランド状の炭素繊維の樹脂被覆材を得る。このストランドを冷却してかせに巻き取る。このストランドを20mm以上にカットするか、あるいは織物状に織って成形用に提供される。
In addition to the above essential components, the resin composition of the present invention may contain a lubricant, an antioxidant, a flame retardant, a light resistance agent, a weather resistance agent, and the like for the purpose of improving physical properties, moldability, and durability.
The method for producing the composite material of the present invention is not particularly limited. For example, a polyamide resin and / or a polyamide resin copolymer are premixed at a predetermined ratio and supplied to a hopper of a screw type extruder whose temperature is controlled to be equal to or higher than the highest melting point of the constituting polyamide resin. The molten resin is measured at the number of revolutions of the gear pump and supplied upstream of the impregnation extruder whose temperature is adjusted to be equal to or higher than the melting point of the resin. On the other hand, roving-like carbon fibers are expanded and supplied downstream of the impregnation extruder. Carbon fiber roving is impregnated and defoamed with resin pressure in an extruder for impregnation equipped with a slit die having a narrowed opening at the downstream end. The composite material composed of the tape-like carbon fiber and the polyamide resin discharged from the downstream opening is cooled and wound up. Further, the tape-like composite material (prepreg) is cut into 20 mm or more, or the tape-like composite material is woven into a woven shape without being cut and provided for molding. Further, a roving carbon fiber is supplied to an exit die downstream of the extruder, and a fiber coating speed and a resin discharge amount are adjusted to obtain a strand-like carbon fiber resin coating material having a predetermined fiber content. The strand is cooled and wound into skeins. The strand is cut into 20 mm or more, or woven into a woven shape and provided for molding.

本発明の複合材料を、赤外線加熱や高周波加熱やハロゲン電球加熱して、樹脂を加熱溶融して、圧縮成形機にセットした、好ましくは、ポリアミド樹脂の結晶化温度より高い150〜280℃の金型に供給して、賦形冷却後脱型して構造材の部品が成形される。   The composite material of the present invention was heated by infrared heating, high-frequency heating or halogen light bulb, the resin was heated and melted, and set in a compression molding machine, preferably gold having a temperature of 150 to 280 ° C. higher than the crystallization temperature of the polyamide resin It is supplied to a mold, and after forming cooling, it is demolded to form a structural material part.

本発明の複合材料から得られた成形部品は、自動車のフレーム、バンパーフェースバーサポート材、シャシーシェル、座席フレーム、サスペンジョン支持部、サンルーフフレーム、バンパービーム、2輪車のフレーム、農機具のフレーム、OA機器のフレーム、機械部品など高い強度と剛性の必要な部品に利用される。   Molded parts obtained from the composite material of the present invention include automobile frames, bumper face bar support materials, chassis shells, seat frames, suspension supports, sunroof frames, bumper beams, two-wheeled vehicle frames, farm equipment frames, OA. Used for parts that require high strength and rigidity, such as equipment frames and machine parts.

以下に実施例を示して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。
(実施例 1〜10)
ポリアミド樹脂を表1に示した質量部に配合し、シリンダー温度が280℃に温度調節された2軸スクリュー式押し出し機(東芝機械社製TEM35)のホッパーに投入し、溶融混練し、ノズルから押し出されたストランドを水冷後、ペレタイズして、母相となるポリアミド樹脂ペレットを得た。
得られたペレットを100℃にて17時間真空乾燥後、シリンダー温度を280℃に温度制御した2軸押し出し機(日本製鋼所製TEX30)のホッパーに投入し、溶融し、時間当たり一定質量部を押出した。一方、表1に示した炭素繊維のロービングを100質量部になる速度で拡張開繊して押出機のダイヘッドに供給した。幅10mm・高さ0.2mmのダイから含浸被覆されたテープ状プリプレグを引き抜いて固化した後、枷に巻き取った。
テープ状プリプレグを、繊維軸を1方向に揃えて、間隔200mm,幅150mmの枷に巻き取り12層重ねた。これをIRヒータにより、280℃に予熱した後、温度200℃に温度調節された200mm×150mm×2mmの金型にセットして、5分間30MPa圧縮保持した。金型を圧縮成形機から取り出した。30分放冷後、金型を開き、厚さ約2mmの平板を得た。さらに同様に繰り返して、繊維が一軸配向した平板(UD材)を得た。
また、回転刃をセットとしたテープカッターを使用して、枷に巻き取ったテープ状プリプレグを長さ40mmにカットして短冊を得た。得られた短冊を200mm×150mm×10mmのキャビティ中にランダムに散布し、その上に195mm×145mm×6mmのステンレス板2枚を載せ、上下版共280℃に温度調節したハンドプレスにセットした。3分後から上下版の間隔を狭めていき20秒後に3MPaの圧力を2分掛けた後、キャビティにステンレス板を載荷した状態で取り出した後、表面温度が80℃になるまで放冷し、繊維が擬似等方性に配向した平板(RS材)を取り出した。
得られたUD平板とRS平板それぞれの中央部から、繊維軸方向に10mm×100mmに5本切り出し0度方向曲げ試験用テストピースを得た。また別の平板から、繊維軸と直交する方向に10mm×100mmに5本切り出し、90度曲げ試験用テストピースを得た。
EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to the examples.
(Examples 1 to 10)
Polyamide resin is blended in the mass parts shown in Table 1, and charged into the hopper of a twin screw type extruder (TEM35 manufactured by Toshiba Machine Co., Ltd.) whose cylinder temperature is adjusted to 280 ° C., melt kneaded and extruded from the nozzle. The strands thus obtained were cooled with water and pelletized to obtain polyamide resin pellets as a mother phase.
The obtained pellets were vacuum-dried at 100 ° C. for 17 hours, and then charged into a hopper of a twin screw extruder (TEX30 manufactured by Nippon Steel) with a cylinder temperature controlled to 280 ° C., and melted. Extruded. On the other hand, the carbon fiber roving shown in Table 1 was expanded and opened at a speed of 100 parts by mass and supplied to the die head of the extruder. The tape-shaped prepreg coated with impregnation was pulled out of a die having a width of 10 mm and a height of 0.2 mm, solidified, and then wound up on a ridge.
The tape-shaped prepreg was wound up and stacked in 12 layers on a ridge having a spacing of 200 mm and a width of 150 mm with the fiber axis aligned in one direction. This was preheated to 280 ° C. by an IR heater, then set in a 200 mm × 150 mm × 2 mm mold whose temperature was adjusted to 200 ° C., and compressed and held at 30 MPa for 5 minutes. The mold was removed from the compression molding machine. After cooling for 30 minutes, the mold was opened to obtain a flat plate having a thickness of about 2 mm. Furthermore, it repeated similarly and the flat plate (UD material) in which the fiber uniaxially oriented was obtained.
Moreover, the tape-shaped prepreg wound up with the scissors was cut into 40 mm in length using the tape cutter which set the rotary blade, and the strip was obtained. The obtained strips were randomly scattered in a 200 mm × 150 mm × 10 mm cavity, and two stainless steel plates of 195 mm × 145 mm × 6 mm were placed thereon, and set on a hand press whose temperature was adjusted to 280 ° C. for both the upper and lower plates. After 3 minutes, the interval between the upper and lower plates was narrowed, and after 20 seconds, a pressure of 3 MPa was applied for 2 minutes, and after removing the stainless steel plate loaded in the cavity, it was allowed to cool until the surface temperature reached 80 ° C. A flat plate (RS material) in which fibers were oriented in a pseudo isotropic manner was taken out.
From the central part of each of the obtained UD flat plate and RS flat plate, 5 pieces were cut into 10 mm × 100 mm in the fiber axis direction to obtain a test piece for 0 ° direction bending test. Further, 5 pieces of 10 mm × 100 mm were cut out from another flat plate in a direction orthogonal to the fiber axis, and a 90-degree bending test test piece was obtained.

(1)融解ピーク温度
上述の曲げ試験片テストピースの表層から試料10mgをDSC用サンプル容器に採取し、SEIKO INSTRUMENTS製SSC5200型DSCを使用して、ISO11357−3に準拠し、窒素40ml/min流動下で350℃まで20℃/minで昇温し、ヒートフローが最大吸熱ピークを示す温度を融解ピーク温度とした。
(2)降温結晶化ピーク温度
上述の曲げ試験片テストピースの表層から試料10mgをDSC用サンプル容器に採取し、SEIKO INSTRUMENTS製SSC5200型DSCを使用して、ISO11357−3に準拠し、窒素40ml/min流動下で350℃まで20℃/minで昇温し、350℃にて0.5分保持後、20℃/minで降温し、ヒートフローが発熱ピークを示す温度を測定し、結晶化ピーク温度とした。
(3)含浸度
上記の引く抜き成形されたプリプレグテープについて、エポキシ樹脂(シェル化学社製エポン812)で包埋した。エポキシ樹脂が硬化したあと、この上面をリファインテック社製APU138型を使用して、繊維の長さ方向からみた断面を回転砥石で研磨後、キーエンス社製ディジタルマイクロスコープVH−Z100R型を使用して、300倍にて、断面を観察した。炭素繊維束の外周を結んで求めた繊維束断面積に対する、樹脂が炭素単繊維の周囲の1/2未満である炭素繊維の外周を結んで求めたボイド断面積の和をボイド率として求めた。
(4)流動性
上記の繊維が擬似等方性に配向したRS材から直径50mm、厚さ4mmの円盤を切り出した。これを予め遠赤外線ヒータで表面を260℃まで加熱した後、表面温度を180℃に調節したヒートプレスの面盤間の中央にセットし、油圧により10MPaまで加圧して、3分保持した後、成形品を取り出した。投影機を使用して成形品の投影図得た。その投影図の面積を算定し、50mmφの面積で規格化して流動面積比から流動性を評価した。
(5)離型性 (4)にて、流動性評価として円盤を3分加圧成形した後、面盤からの剥離性から離型性を次のように評価した。◎:力を加えなくても離型、○:バーで軽く押すだけで容易に離型、△:バーでせん断力をかければ離型、×:離型困難か材料破壊
(6)曲げ特性
スタンピング成形して得られた平板から、繊維軸方向と繊維軸に垂直方向にそれぞれ切削して得た曲げテストピースを、デシケータ中で23℃にて48時間保管後、ISO178に準拠した3点曲げ試験機(オリエンテック社製テンシロン4L型)を使用して、スパン長80mm、クロスヘッド速度1mm/minによる曲げ試験を行ない、次式により、〇度方向曲げ強度を算出した。
σ=3PL/ 2bd2
ここで、σ:曲げ強度(MPa)、L:スパン長(m)、b:幅(m)、d:厚さ(m)、P:最大荷重(N)
(1) Melting peak temperature 10 mg of a sample is taken from the surface layer of the above-mentioned bending test piece test piece into a DSC sample container, and SEIKO INSTRUMENTS SSC5200 type DSC is used, conforming to ISO11357-3, flowing nitrogen at 40 ml / min. The temperature was raised to 350 ° C. at 20 ° C./min, and the temperature at which the heat flow showed the maximum endothermic peak was taken as the melting peak temperature.
(2) Temperature drop crystallization peak temperature 10 mg of sample from the surface layer of the above-mentioned bending test piece test piece is collected in a DSC sample container, and SEIKO INSTRUMENTS SSC5200 type DSC is used, conforming to ISO11357-3, nitrogen 40 ml / The temperature was raised to 350 ° C. at a rate of 20 ° C./min under a flow of min, held at 350 ° C. for 0.5 minutes, then cooled at 20 ° C./min, the temperature at which the heat flow showed an exothermic peak was measured, It was temperature.
(3) Degree of impregnation The above-described pultruded prepreg tape was embedded with an epoxy resin (Epon 812 manufactured by Shell Chemical Co., Ltd.). After the epoxy resin is cured, the upper surface is polished with a rotating grindstone using APU138 type made by Refinetech, and a cross section viewed from the length direction of the fiber is used, and then digital microscope VH-Z100R type made by Keyence Corporation is used. The cross section was observed at 300 times. The sum of void cross-sectional areas obtained by tying the outer periphery of the carbon fiber whose resin is less than half the circumference of the carbon single fiber relative to the fiber bundle cross-sectional area obtained by tying the outer circumference of the carbon fiber bundle was obtained as the void ratio. .
(4) Fluidity A disk having a diameter of 50 mm and a thickness of 4 mm was cut out from an RS material in which the above fibers were oriented in a quasi-isotropic manner. After heating the surface to 260 ° C. with a far-infrared heater in advance, the surface temperature was set at the center between the face plates of the heat press adjusted to 180 ° C., pressurized to 10 MPa by hydraulic pressure, and held for 3 minutes. The molded product was taken out. A projection of the molded product was obtained using a projector. The area of the projection was calculated, normalized with an area of 50 mmφ, and the fluidity was evaluated from the flow area ratio.
(5) Releasability In (4), after press-molding the disk for 3 minutes as fluidity evaluation, the releasability was evaluated as follows from the releasability from the face plate. ◎: Release without applying force, ○: Release easily by lightly pressing with a bar, △: Release by applying shear force with a bar, ×: Difficult to release or material destruction (6) Bending property stamping Bending test pieces obtained by cutting from the flat plate obtained by molding in the fiber axis direction and the direction perpendicular to the fiber axis, respectively, are stored in a desiccator at 23 ° C. for 48 hours, and then a three-point bending test in accordance with ISO 178. Using a machine (Tensilon 4L, manufactured by Orientec Co., Ltd.), a bending test was performed with a span length of 80 mm and a crosshead speed of 1 mm / min, and the 0-degree direction bending strength was calculated according to the following equation.
σ = 3PL / 2bd 2
Where σ: bending strength (MPa), L: span length (m), b: width (m), d: thickness (m), P: maximum load (N)

(比較例1〜8)
ポリアミド樹脂の種類と配合比および繊維含有率を表2のように変更した以外は、表2に示した実施例と全く同様にプリプレグを作製した後、RS板とテストピースを成形した。

実施例と全く同様に、プリプレグテープ断面のボイド率、RS板の流動面積比、0度方向曲げ強度と90度方向曲げ強度を測定した。得られた試験データを表2に合わせて示した。
(Comparative Examples 1-8)
Except for changing the type and blending ratio of the polyamide resin and the fiber content as shown in Table 2, a prepreg was prepared in the same manner as in the examples shown in Table 2, and then an RS plate and a test piece were molded.

In exactly the same manner as in the example, the void ratio of the prepreg tape cross section, the flow area ratio of the RS plate, the 0 degree direction bending strength and the 90 degree direction bending strength were measured. The obtained test data is shown in Table 2 together.

実験に使用した原料と記号(下記割合はモル単位での割合をさす)
PA−A:PA6(東洋紡績製、相対粘度2.5)
PA−B:PA6T/6I=50/50(東洋紡績製試作品、相対粘度2.8)
PA−C:PAMXD6(東洋紡績製、相対粘度2.2)
PA−D:PANDT/NDI= 60/40 (東洋紡績製試作品、相対粘度2.6)
PA−E:PA6/66=95/5(東洋紡績製、相対粘度2.5)
PA−F:PA66/6=85/15,(東洋紡績製試作品、相対粘度2.6)
PA−G:PA66(東洋紡績製、相対粘度2.8)
CF(炭素繊維):帝人社製東邦テナックス IMS40(単繊維径6.4μm、6000フィラメント)
Raw materials and symbols used in the experiment (the following ratios are in moles)
PA-A: PA6 (Toyobo, relative viscosity 2.5)
PA-B: PA6T / 6I = 50/50 (Toyobo prototype, relative viscosity 2.8)
PA-C: PAMXD6 (Toyobo, relative viscosity 2.2)
PA-D: PANDT / NDI = 60/40 (Toyobo prototype, relative viscosity 2.6)
PA-E: PA6 / 66 = 95/5 (Toyobo, relative viscosity 2.5)
PA-F: PA66 / 6 = 85/15 (Toyobo prototype, relative viscosity 2.6)
PA-G: PA66 (manufactured by Toyobo, relative viscosity 2.8)
CF (carbon fiber): Toho Tenax IMS40 manufactured by Teijin Ltd. (single fiber diameter: 6.4 μm, 6000 filament)

本発明の効果により、母相の樹脂組成物の結晶化による固化速度は、繊維束への含浸前や圧縮成形時金型内で複合材が流動充填前は遅く、その後高度の結晶化が起こるから、高い流動長と高い物性を有する複合材料が提供される。自動車のフレーム部品や機械器具の構造部材やスポーツ器具などに使用される。 Due to the effect of the present invention, the solidification rate due to crystallization of the resin composition of the matrix phase is slow before the fiber bundle is impregnated into the fiber bundle or before compression filling in the mold during compression molding, and then high crystallization occurs. Therefore, a composite material having a high flow length and high physical properties is provided. Used for frame parts of automobiles, structural members of machinery, sports equipment, etc.

Claims (10)

ポリアミド樹脂と炭素繊維を含有してなり、該炭素繊維を40〜80質量%含有し、該ポリアミド樹脂は融解ピーク温度Tmと降温結晶化ピーク温度Tcの差が20〜60℃であることを特徴とする炭素長繊維強化ポリアミド樹脂プリプレグ。     A polyamide resin and carbon fiber are contained, and the carbon fiber is contained in an amount of 40 to 80% by mass. The polyamide resin has a difference between a melting peak temperature Tm and a cooling crystallization peak temperature Tc of 20 to 60 ° C. Carbon long fiber reinforced polyamide resin prepreg. 前記ポリアミド樹脂が結晶性のポリアミド樹脂共重合体を含有することを特徴とする請求項1に記載の炭素繊維強化ポリアミド樹脂プリプレグ。 The carbon fiber reinforced polyamide resin prepreg according to claim 1, wherein the polyamide resin contains a crystalline polyamide resin copolymer. 前記ポリアミド樹脂が2種類以上の結晶性ポリアミド樹脂を含有することを特徴とする請求項1又は2のいずれかに記載の炭素繊維強化ポリアミド樹脂プリプレグ。 The carbon fiber reinforced polyamide resin prepreg according to claim 1, wherein the polyamide resin contains two or more types of crystalline polyamide resins. 前記ポリアミド樹脂が1種類以上の結晶性ポリアミド樹脂と1種以上の非晶性ポリアミド樹脂を含有することを特徴とする請求項1〜2のいずれかに記載の炭素繊維強化ポリアミド樹脂プリプレグ。 The carbon fiber reinforced polyamide resin prepreg according to claim 1, wherein the polyamide resin contains one or more crystalline polyamide resins and one or more amorphous polyamide resins. 前記ポリアミド樹脂の主成分としてポリアミド6が含有されていることを特徴とする請求項1〜4のいずれか記載の炭素繊維強化ポリアミド樹脂プリプレグ。 The carbon fiber reinforced polyamide resin prepreg according to any one of claims 1 to 4, wherein polyamide 6 is contained as a main component of the polyamide resin. ポリアミド樹脂と炭素繊維を含有してなり、該炭素繊維を40〜80質量%含有し、該ポリアミド樹脂は融解ピーク温度Tmと降温結晶化ピーク温度Tcの差が20〜60℃であることを特徴とする炭素長繊維強化ポリアミド樹脂成形品。     A polyamide resin and carbon fiber are contained, and the carbon fiber is contained in an amount of 40 to 80% by mass. The polyamide resin has a difference between a melting peak temperature Tm and a cooling crystallization peak temperature Tc of 20 to 60 ° C. Carbon long fiber reinforced polyamide resin molded product. 前記ポリアミド樹脂が結晶性のポリアミド樹脂共重合体を含有することを特徴とする請求項6に記載の炭素繊維強化ポリアミド樹脂成形品。 The carbon fiber-reinforced polyamide resin molded article according to claim 6, wherein the polyamide resin contains a crystalline polyamide resin copolymer. 前記ポリアミド樹脂が2種類以上の結晶性ポリアミド樹脂を含有することを特徴とする請求項6又は7のいずれかに記載の炭素繊維強化ポリアミド樹脂成形品。 The carbon fiber-reinforced polyamide resin molded article according to any one of claims 6 and 7, wherein the polyamide resin contains two or more crystalline polyamide resins. 前記ポリアミド樹脂が1種類以上の結晶性ポリアミド樹脂と1種以上の非晶性ポリアミド樹脂を含有することを特徴とする請求項6〜7のいずれかに記載の炭素繊維強化ポリアミド樹脂成形品。 The carbon fiber reinforced polyamide resin molded article according to any one of claims 6 to 7, wherein the polyamide resin contains one or more crystalline polyamide resins and one or more amorphous polyamide resins. 前記ポリアミド樹脂の主成分としてポリアミド6が含有されていることを特徴とする請求項6〜9のいずれか記載の炭素繊維強化ポリアミド樹脂成形品。 The molded article of carbon fiber reinforced polyamide resin according to any one of claims 6 to 9, wherein polyamide 6 is contained as a main component of the polyamide resin.
JP2012021531A 2012-02-03 2012-02-03 Carbon long fiber reinforced polyamide resin prepreg and molded product Active JP5987335B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012021531A JP5987335B2 (en) 2012-02-03 2012-02-03 Carbon long fiber reinforced polyamide resin prepreg and molded product

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012021531A JP5987335B2 (en) 2012-02-03 2012-02-03 Carbon long fiber reinforced polyamide resin prepreg and molded product

Publications (2)

Publication Number Publication Date
JP2013159675A true JP2013159675A (en) 2013-08-19
JP5987335B2 JP5987335B2 (en) 2016-09-07

Family

ID=49172213

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012021531A Active JP5987335B2 (en) 2012-02-03 2012-02-03 Carbon long fiber reinforced polyamide resin prepreg and molded product

Country Status (1)

Country Link
JP (1) JP5987335B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203811A1 (en) 2013-06-21 2014-12-24 三菱エンジニアリングプラスチックス株式会社 Crystalline thermoplastic resin composition and molded article
WO2015046290A1 (en) * 2013-09-26 2015-04-02 東レ株式会社 Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article
CN106675015A (en) * 2016-12-27 2017-05-17 上海普利特复合材料股份有限公司 High-strength and high-toughness long carbon fiber reinforced nylon composite and preparation method thereof
CN106751805A (en) * 2016-12-29 2017-05-31 上海普利特复合材料股份有限公司 A kind of high fluidity long glass fibres reinforced plastic PA66 composite and its manufacture method
WO2018083985A1 (en) * 2016-11-04 2018-05-11 クオドラント・プラスチック・コンポジット・ジャパン株式会社 Fiber reinforced stampable sheet, fiber reinforced stampable sheet molded article, and method for manufacturing same
KR20180132048A (en) 2016-03-30 2018-12-11 도레이 카부시키가이샤 Fiber-reinforced polyamide resin base material, a method for producing the same, a molded article and an integrated molded article comprising the same
JP2019500449A (en) * 2015-12-18 2019-01-10 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. tape
WO2019017057A1 (en) * 2017-07-18 2019-01-24 東レ株式会社 Unidirectionally-oriented tape-shaped prepreg, and molded article thereof
KR20190055797A (en) 2016-09-29 2019-05-23 도레이 카부시키가이샤 Fiber-reinforced thermoplastic resin substrate and molded article using the same
JP2019099603A (en) * 2017-11-29 2019-06-24 東レ株式会社 Continuous fiber reinforced polyamide resin substrate and molded article thereof
JP2019151711A (en) * 2018-03-01 2019-09-12 三菱ケミカル株式会社 Fiber-reinforced thermoplastic resin prepreg and molded body
WO2020017392A1 (en) 2018-07-17 2020-01-23 東レ株式会社 Fiber-reinforced polymer alloy substrate and molded article using same
EP3763860A4 (en) * 2018-03-05 2021-08-25 Asahi Kasei Kabushiki Kaisha Thermoplastic resin-coated reinforcing fiber composite yarn, production method for said composite yarn, continuous fiber reinforced resin molding, and production method for composite material molding
WO2021231590A1 (en) * 2020-05-14 2021-11-18 Ascend Performance Materials Operations Llc Polyamide formulations for improved noise vibration and harshness

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200384704A1 (en) 2018-04-25 2020-12-10 Asahi Kasei Kabushiki Kaisha Continuous-Fiber-Reinforced Resin Molding and Method for Manufacturing Same
WO2022102676A1 (en) 2020-11-10 2022-05-19 旭化成株式会社 Continuous fiber-reinforced resin composite material and method for producing same

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114952A (en) * 1997-10-13 1999-04-27 Yamaha Corp Frtp molding material
JP2010070638A (en) * 2008-09-18 2010-04-02 Mitsubishi Gas Chemical Co Inc Polyamide resin
JP2010202759A (en) * 2009-03-03 2010-09-16 Unitika Ltd Polyamide resin composition pellet and method for producing the same
JP2011102360A (en) * 2009-11-11 2011-05-26 Mitsubishi Gas Chemical Co Inc Fiber-reinforced polyamide resin composition
JP2011105836A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Carbon filament reinforced polyamide composite material
WO2011118441A1 (en) * 2010-03-26 2011-09-29 ユニチカ株式会社 Semiaromatic polyamide and method for producing same
WO2011136263A1 (en) * 2010-04-30 2011-11-03 宇部興産株式会社 Polyamide resin
WO2013080820A1 (en) * 2011-11-29 2013-06-06 東レ株式会社 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof
JP2015501360A (en) * 2011-10-25 2015-01-15 アルケマ フランス Synthetic fiber reinforced thermoplastic composite material and manufacturing method

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11114952A (en) * 1997-10-13 1999-04-27 Yamaha Corp Frtp molding material
JP2010070638A (en) * 2008-09-18 2010-04-02 Mitsubishi Gas Chemical Co Inc Polyamide resin
JP2010202759A (en) * 2009-03-03 2010-09-16 Unitika Ltd Polyamide resin composition pellet and method for producing the same
JP2011102360A (en) * 2009-11-11 2011-05-26 Mitsubishi Gas Chemical Co Inc Fiber-reinforced polyamide resin composition
JP2011105836A (en) * 2009-11-17 2011-06-02 Toyobo Co Ltd Carbon filament reinforced polyamide composite material
WO2011118441A1 (en) * 2010-03-26 2011-09-29 ユニチカ株式会社 Semiaromatic polyamide and method for producing same
WO2011136263A1 (en) * 2010-04-30 2011-11-03 宇部興産株式会社 Polyamide resin
JP2015501360A (en) * 2011-10-25 2015-01-15 アルケマ フランス Synthetic fiber reinforced thermoplastic composite material and manufacturing method
WO2013080820A1 (en) * 2011-11-29 2013-06-06 東レ株式会社 Carbon fiber-reinforced thermoplastic resin composition, and pellets and molded article thereof

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10619031B2 (en) 2013-06-21 2020-04-14 Mitsubishi Engineering-Plastics Corporation Crystallizable thermoplastic resin composition and molded article
WO2014203811A1 (en) 2013-06-21 2014-12-24 三菱エンジニアリングプラスチックス株式会社 Crystalline thermoplastic resin composition and molded article
WO2015046290A1 (en) * 2013-09-26 2015-04-02 東レ株式会社 Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article
JP7031808B2 (en) 2015-12-18 2022-03-08 ディーエスエム アイピー アセッツ ビー.ブイ. tape
JP2019500449A (en) * 2015-12-18 2019-01-10 ディーエスエム アイピー アセッツ ビー.ブイ.Dsm Ip Assets B.V. tape
US11155686B2 (en) 2016-03-30 2021-10-26 Toray Industries, Inc. Fiber-reinforced polyamide resin base, method for producing same, molded article containing same, and composite molded article
KR20180132048A (en) 2016-03-30 2018-12-11 도레이 카부시키가이샤 Fiber-reinforced polyamide resin base material, a method for producing the same, a molded article and an integrated molded article comprising the same
US10723088B2 (en) 2016-09-29 2020-07-28 Toray Industries, Inc. Fiber-reinforced thermoplastic-resin base and molded article obtained therefrom
KR20190055797A (en) 2016-09-29 2019-05-23 도레이 카부시키가이샤 Fiber-reinforced thermoplastic resin substrate and molded article using the same
WO2018083985A1 (en) * 2016-11-04 2018-05-11 クオドラント・プラスチック・コンポジット・ジャパン株式会社 Fiber reinforced stampable sheet, fiber reinforced stampable sheet molded article, and method for manufacturing same
CN106675015A (en) * 2016-12-27 2017-05-17 上海普利特复合材料股份有限公司 High-strength and high-toughness long carbon fiber reinforced nylon composite and preparation method thereof
CN106751805A (en) * 2016-12-29 2017-05-31 上海普利特复合材料股份有限公司 A kind of high fluidity long glass fibres reinforced plastic PA66 composite and its manufacture method
WO2019017057A1 (en) * 2017-07-18 2019-01-24 東レ株式会社 Unidirectionally-oriented tape-shaped prepreg, and molded article thereof
JP2019099603A (en) * 2017-11-29 2019-06-24 東レ株式会社 Continuous fiber reinforced polyamide resin substrate and molded article thereof
JP2019151711A (en) * 2018-03-01 2019-09-12 三菱ケミカル株式会社 Fiber-reinforced thermoplastic resin prepreg and molded body
JP7192219B2 (en) 2018-03-01 2022-12-20 三菱ケミカル株式会社 Fiber-reinforced thermoplastic resin prepreg and molding
EP3763860A4 (en) * 2018-03-05 2021-08-25 Asahi Kasei Kabushiki Kaisha Thermoplastic resin-coated reinforcing fiber composite yarn, production method for said composite yarn, continuous fiber reinforced resin molding, and production method for composite material molding
KR20210032308A (en) 2018-07-17 2021-03-24 도레이 카부시키가이샤 Fiber-reinforced polymer alloy substrate and molded article using the same
WO2020017392A1 (en) 2018-07-17 2020-01-23 東レ株式会社 Fiber-reinforced polymer alloy substrate and molded article using same
US11739185B2 (en) 2018-07-17 2023-08-29 Toray Industries, Inc. Fiber-reinforced polymer alloy substrate and molded article using same
WO2021231590A1 (en) * 2020-05-14 2021-11-18 Ascend Performance Materials Operations Llc Polyamide formulations for improved noise vibration and harshness
CN115551919A (en) * 2020-05-14 2022-12-30 奥升德功能材料运营有限公司 Polyamide formulations for improving noise vibration and harshness

Also Published As

Publication number Publication date
JP5987335B2 (en) 2016-09-07

Similar Documents

Publication Publication Date Title
JP5987335B2 (en) Carbon long fiber reinforced polyamide resin prepreg and molded product
CN103221208B (en) Polyamide composite structures and processes for their preparation
JP5667168B2 (en) Overmolded polyamide composite structure and manufacturing method thereof
JP5509756B2 (en) Carbon long fiber reinforced polyamide composite material
JP5938299B2 (en) Fiber reinforced resin composition
JP5564839B2 (en) Stamping molded products
JPH0657407B2 (en) Fiber reinforced pellet structure
US20120238164A1 (en) Composite polyamide article
WO2015046290A1 (en) Unidirectional fiber-reinforced tape and method for manufacturing same, molded article using same, and method for manufacturing molded article
JP2013203941A (en) Carbon fiber prepreg, carbon fiber prepreg tape, carbon fiber-reinforced composite material and automobile part that uses the carbon fiber-reinforced composite material
WO2019189820A1 (en) Thermoplastic resin composition, fiber-reinforced-plastic molding material, and molded article
JP7384197B2 (en) Fiber-reinforced resin material, roll, molded product, and method for producing fiber-reinforced resin material
JP5471338B2 (en) Carbon long fiber reinforced polyamide composite material
JP5789933B2 (en) Compression molding method for fiber reinforced thermoplastic resin sheet
JP6146063B2 (en) Carbon long fiber reinforced polyamide composite for compression molding
KR20220107258A (en) Fiber-reinforced resin composite sheet, fiber-reinforced resin composite, and resin molded article comprising the same
JP6031884B2 (en) Long fiber reinforced polyamide resin molded product
JP5402584B2 (en) Carbon long fiber reinforced polyamide composite material
JP5850298B2 (en) Carbon long fiber reinforced polyamide resin composite material
KR102029382B1 (en) Composite material and method of manufacturing the same
JP6160095B2 (en) Carbon fiber reinforced thermoplastic resin prepreg sheet or molded product
JP6488584B2 (en) Carbon fiber reinforced thermoplastic resin molded product and metal welded joint
JP6146062B2 (en) Carbon long fiber reinforced polyamide composite for compression molding
JP2018131572A (en) Method for producing carbon fiber/polyamide resin composite prepreg, and carbon fiber/polyamide resin composite material
JP5958360B2 (en) Manufacturing method of FRP sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150113

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20151224

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160105

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160226

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160712

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160725

R151 Written notification of patent or utility model registration

Ref document number: 5987335

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350