JP2013158796A - Build-up welded steel sheet - Google Patents

Build-up welded steel sheet Download PDF

Info

Publication number
JP2013158796A
JP2013158796A JP2012022553A JP2012022553A JP2013158796A JP 2013158796 A JP2013158796 A JP 2013158796A JP 2012022553 A JP2012022553 A JP 2012022553A JP 2012022553 A JP2012022553 A JP 2012022553A JP 2013158796 A JP2013158796 A JP 2013158796A
Authority
JP
Japan
Prior art keywords
steel plate
thickness
base steel
holes
welding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012022553A
Other languages
Japanese (ja)
Inventor
Yuzo Imagawa
雄三 今川
紀幸 ▲榊▼原
Noriyuki Sakakibara
Masakazu Matsui
正数 松井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2012022553A priority Critical patent/JP2013158796A/en
Publication of JP2013158796A publication Critical patent/JP2013158796A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a build-up welding structure capable of forming a metal layer having physical property resistance on a base steel sheet accurately at a low cost.SOLUTION: A planar coating material 2 is provided, which is disposed on the surface of a base steel sheet 1, has a plurality of through-holes 3, and has a physical property resistance. The base steel sheet and the coating material are laser-welded via the through-holes. The through-holes of the coating material are sparsely arranged when its thickness is small, and densely arranged when its thickness is large.

Description

本発明は、母材鋼板の表面に耐物理特性を有した部材の金属層を形成するための肉盛溶接鋼板に関する。   The present invention relates to a build-up welded steel sheet for forming a metal layer of a member having physical resistance on the surface of a base steel sheet.

従来、流体である粉体、気体等が接触する部分には粉体、気体による摩耗、腐蝕が発生することが多々ある。夫々に対応した特性を持つ金属材料を使用すればよいが、このような特性を有する金属材料はコストが高くなる。
その対応として、母材鋼板の表面に耐摩耗、又は耐腐食性の物理特性を有した材料を肉盛溶接により形成することが知られている。
Conventionally, wear and corrosion due to powder and gas often occur in a portion where the powder or gas that is a fluid contacts. Although metal materials having properties corresponding to the respective materials may be used, the metal material having such properties is expensive.
As a countermeasure, it is known that a material having wear-resistant or corrosion-resistant physical characteristics is formed on the surface of the base steel plate by overlay welding.

肉盛溶接する場合、MIG溶接(Metal Inert Gas Welding)による溶接方法の場合は、消耗式電極であることから母材鋼板の表面に耐物理特性を有した溶接材料を送給装置によって自動的に送給されるので、物理特性を有した金属層の厚さ調整が難しい。   In the case of overlay welding, in the case of the welding method by MIG welding (Metal Inert Gas Welding), since it is a consumable electrode, a welding material having physical resistance characteristics on the surface of the base steel plate is automatically used by the feeding device. Since it is fed, it is difficult to adjust the thickness of the metal layer having physical characteristics.

また、第1の従来例として、母材鋼板(被溶接材)の表面に耐物理特性を有した薄板状の被覆材を配置してレーザビーム溶接で溶接した金属層を形成する方法が開示されている。
その一例として、図8に示すように、板厚が3mmのSUS材の母材鋼板に、30μmのSUS材の被覆材を配置し、半導体レーザ溶接機(出力;500W、溶接速度35m/min)で溶接した場合は、被覆部材の途中で切断する不具合が発生している。
これは、被覆部材は熱を十分に受けて溶融するが、被覆部材が母材鋼板へのレーザビームを妨げ、母材鋼板の溶け込みが不十分であったと考えられる。
As a first conventional example, a method of forming a metal layer welded by laser beam welding by disposing a thin plate-like coating material having physical resistance on the surface of a base steel plate (material to be welded) is disclosed. ing.
As an example, as shown in FIG. 8, a 30 μm SUS material covering material is disposed on a SUS material base steel plate having a thickness of 3 mm, and a semiconductor laser welding machine (output: 500 W, welding speed: 35 m / min) In the case where welding is performed at a point, there is a problem of cutting in the middle of the covering member.
This is probably because the covering member sufficiently receives heat and melts, but the covering member hinders the laser beam to the base steel plate, and the base steel plate has not sufficiently melted.

また、第2の従来例として、図9に示すように、板厚が1.2mmのアルミ材の母材(被溶接材)に、1.2mmのアルミ材の被覆材を配置し、半導体レーザ溶接機(出力;4kW、溶接速度0.8m/min)で溶接した場合は、被覆材に熱変形が生じて浮き上がりが生じる不具合が発生している。   As a second conventional example, as shown in FIG. 9, a 1.2 mm aluminum coating material is disposed on a 1.2 mm aluminum base material (material to be welded), and a semiconductor laser When welding is performed with a welding machine (output: 4 kW, welding speed: 0.8 m / min), there is a problem in that the coating material is thermally deformed and lifted.

また、別の第3の従来例として、図10に示すように、板厚が5.5mmの析出強化型Ni基精密鋳造合金の母材鋼板表面に、板厚が1.5mmのNi基超合金の被覆材を配置し、半導体レーザ溶接機(出力;3kW、溶接速度;65mm/sec)で溶接した場合は、母材との攪拌が少ないルート部に亀裂が発生していることが判った。   Further, as another third conventional example, as shown in FIG. 10, a Ni-based ultra-thickness of 1.5 mm is formed on the surface of a base steel plate of a precipitation-strengthened Ni-based precision cast alloy having a thickness of 5.5 mm. It was found that cracks occurred in the root portion where stirring with the base material was small when an alloy coating was placed and welding was performed with a semiconductor laser welder (output: 3 kW, welding speed: 65 mm / sec). .

また、母材鋼板に耐物理特性を有した金属層を形成する方法として、特開2002−137059号公報(特許文献1)が開示されている。
特許文献1によると、母材鋼板の表面に多数の貫通孔を有した打ち抜き鋼板を溶接接合する。打ち抜き鋼板の各貫通孔に耐摩耗性金属を溶接肉盛して、母材鋼板の表面に多数の肉盛部を形成している。
多数の肉盛部は打ち抜き鋼板のリブ部と溶融して合体し、母材鋼板の表面に耐摩耗性の硬化金属層を形成している。
Japanese Patent Laying-Open No. 2002-137059 (Patent Document 1) is disclosed as a method for forming a metal layer having physical resistance characteristics on a base steel plate.
According to Patent Document 1, a punched steel plate having a large number of through holes on the surface of a base steel plate is welded. A wear-resistant metal is welded to each through hole of the punched steel plate, and a large number of overlays are formed on the surface of the base steel plate.
A large number of the overlaid portions are melted and united with the rib portions of the punched steel plate to form an abrasion-resistant hardened metal layer on the surface of the base steel plate.

特開2002−137059号公報JP 2002-137059 A

しかしながら、第1、第2及び大3の従来例においては、レーザビームが被覆材からの熱によって母材鋼板を溶融させる構造なので、被覆材に熱が入りすぎて亀裂を生じる場合(第1従来例)、同一板厚で母材鋼板より多く被覆材に熱が入りすぎて変形する場合(第2従来例)及び、母材鋼板に十分に熱が伝わらなくて、溶融部に亀裂が生じる不具合がある。
また、特許文献1の開示技術は、耐摩耗性を有した溶接材をMIG溶接等の自動送給装置によって送給される方法なので、肉盛材の必要肉盛厚さの調整が難しく、厚さ精度及び、材料費のコスト高になる。
更に、打ち抜き鋼板を母材鋼板に溶接して、打ち抜き孔に耐摩耗性金属(溶接材)を溶融充填し、打ち抜き鋼板のリブ部と溶融して溶接させるので、溶接材が異なる溶接作業を2度行うもので、設備の移動に伴う工数等が増加する不具合を有している。
However, in the first, second, and third conventional examples, the laser beam is a structure that melts the base steel plate by the heat from the covering material. Ex.) When there is too much heat in the coating material with the same plate thickness than the base material steel plate and deforms (2nd conventional example), and the base material steel plate does not sufficiently transfer heat, causing cracks in the molten part There is.
In addition, since the disclosed technique of Patent Document 1 is a method in which a welding material having wear resistance is fed by an automatic feeding device such as MIG welding, it is difficult to adjust the necessary overlay thickness of the overlay material. High accuracy and material cost.
Furthermore, the punched steel plate is welded to the base steel plate, the wear-resistant metal (welding material) is melt-filled in the punched hole, and the rib portion of the punched steel plate is melted and welded. This is a problem that increases the man-hours associated with the movement of equipment.

本発明はこのような問題点を解決するためになされたもので、母材鋼板の表面に耐物理特性を備えた金属層を精度よく且つ、低コストで形成することを目的とする。   The present invention has been made to solve such problems, and an object of the present invention is to accurately and inexpensively form a metal layer having physical resistance characteristics on the surface of a base steel plate.

本発明はかかる課題を解決するため、被溶接部材である母材鋼板と、
前記母材鋼板の表面に配設され、複数の貫通孔を有する耐物理特性を有する平板状の被覆材とを備え、前記貫通孔を介して前記母材鋼板と前記被覆材とをレーザ溶接させることを特徴とする。
In order to solve this problem, the present invention provides a base steel plate that is a member to be welded,
A flat plate-shaped covering material having physical resistance, which is disposed on the surface of the base steel plate and has a plurality of through holes, and laser welding the base steel plate and the covering material through the through holes. It is characterized by that.

かかる発明によれば、被覆材の貫通孔に沿ってレーザビームを照射するので、母材鋼板及び、被覆材ともに溶融が確実になされ、相互の溶着が確実になると共に、貫通孔の周辺からの溶接だれにより貫通孔を閉塞し、全面に耐物理特性金属層が形成される。
また、平板状の被覆材としたので、耐物理特性金属層の成形厚さを要望通りに製作しやすく、材料費低減による低コストが可能となる。
According to this invention, since the laser beam is irradiated along the through hole of the covering material, both the base material steel plate and the covering material are surely melted, the mutual welding is ensured, and the periphery of the through hole is assured. The through hole is closed by welding dripping, and a physical resistance metal layer is formed on the entire surface.
Further, since the flat coating material is used, it is easy to manufacture the molding thickness of the physical property resistant metal layer as desired, and the cost can be reduced by reducing the material cost.

また、本発明において好ましくは、前記被覆鋼材の前記貫通孔は、板厚が薄い場合には前記貫通孔の配設数を疎にし、板厚が厚い場合には前記貫通孔の配設数を密にするとよい。   Preferably, in the present invention, the through holes of the coated steel material have a small number of through holes when the plate thickness is thin, and the number of through holes when the plate thickness is large. It is good to be dense.

かかる発明によれば、被覆材に配設する貫通孔数を、板厚が薄い場合には貫通孔の配設数を疎にし、板厚が厚い場合には貫通孔の配設数を密にすることにより、厚さが薄い場合は溶接熱が入りすぎて溶融材が弾かれ、又は溶けすぎて耐物理特性金属層の形成が薄くなるのを防止する。
一方、板厚が厚い場合は被覆材への熱が十分でなくなり、溶融不足による耐物理特性金属層の形成が薄くなると共に、母材鋼板との溶着(溶け込み)が不足するのを防止する。
According to this invention, when the plate thickness is thin, the number of through holes arranged in the covering material is sparse, and when the plate thickness is thick, the number of through holes arranged is dense. By doing so, when the thickness is small, the welding heat is excessively input and the molten material is repelled or melted so that the formation of the metal layer having a physical property resistant property is prevented from being thinned.
On the other hand, when the plate thickness is thick, heat to the covering material becomes insufficient, the formation of the physical property metal layer due to insufficient melting becomes thin, and the welding (penetration) with the base material steel plate is prevented from being insufficient.

また、本発明において好ましくは、前記被覆材の板厚Tbと、該被覆材の溶融後の必要肉盛厚さTa、前記貫通孔径Dhと、前記貫通孔間距離Lの関係は、
1.5×Ta≦Tb≦5mm
0<Dh≦1/3×Tb
Dh≦L≦3Dh
とするとよい。
In the present invention, preferably, the relationship between the plate thickness Tb of the covering material, the necessary build-up thickness Ta after melting of the covering material, the through-hole diameter Dh, and the distance L between the through-holes is as follows:
1.5 × Ta ≦ Tb ≦ 5mm
0 <Dh ≦ 1/3 × Tb
Dh ≦ L ≦ 3Dh
It is good to do.

かかる発明によれば、被覆材の板厚Tbと、該被覆材の溶融後の必要肉盛厚さTa、貫通孔径Dhと、貫通孔間距離Lの関係をきめることにより、母材鋼板と被覆材の溶着が確実になると共に、必要肉盛厚さTaの確保も容易となり、品質が安定する。   According to this invention, by determining the relationship between the plate thickness Tb of the coating material, the necessary build-up thickness Ta after melting of the coating material, the through-hole diameter Dh, and the distance L between the through-holes, The welding of the material is ensured, and the necessary build-up thickness Ta is easily secured, and the quality is stabilized.

また、本発明において好ましくは、前記被覆材はメッシュ状に編まれたメッシュ材とするとよい。   In the present invention, preferably, the covering material is a mesh material knitted in a mesh shape.

かかる発明によれば、被覆材をメッシュ状に編まれた板材とすることで、レーザビームの照射が被覆材及び、母材鋼板にきめこまかくいきわたり全域での溶着が確実となり、被覆材と母材鋼板との間に空気層が発生し難くなり、品質が安定する。   According to this invention, by making the coating material a plate material knitted in a mesh shape, the laser beam irradiation spreads over the coating material and the base material steel plate, and the welding in the entire region is ensured, and the coating material and the base material steel plate An air layer is less likely to be generated between and the quality is stabilized.

また、本発明において好ましくは、前記メッシュ材はメッシュを構成する素材間の距離は必要肉盛厚さに対し、前記素材の断面積が増大するに伴い、大きくなるようにするとよい。   In the present invention, it is preferable that the distance between the materials constituting the mesh is increased as the cross-sectional area of the material increases with respect to the required build-up thickness.

かかる発明によれば、メッシュを構成する素材間の距離は必要肉盛厚さに対し、前記素材の断面積が増大するに伴い、大きくなるようにすることで、耐物理特性金属層の必要肉盛厚さの精度が向上し、材料コストの低減が可能となる。   According to this invention, the distance between the materials constituting the mesh is increased as the cross-sectional area of the material increases with respect to the required build-up thickness. Accumulation accuracy is improved, and material costs can be reduced.

また、本発明において好ましくは、前記被覆材は該被覆材の端部を前記母材鋼板に固定してから前記レーザビームの照射を開始するようにするとよい。   In the present invention, it is preferable that the covering material is configured to start irradiation with the laser beam after fixing an end of the covering material to the base steel plate.

かかる発明によれば、被覆材の端部を母材鋼板に固定することにより、レーザビームの照射により溶融した部分が凝固する際に収縮し、端部の被覆材位置がずれるとともに、必要肉盛厚さが設定厚さより厚くなるのを防止でき、材料費の削減効果を得ることができる。   According to this invention, by fixing the end portion of the covering material to the base steel plate, the melted portion is solidified by the irradiation of the laser beam, so that the position of the covering material at the end portion is shifted and the necessary overlaying is performed. The thickness can be prevented from becoming thicker than the set thickness, and the effect of reducing the material cost can be obtained.

被覆材の貫通孔を介して被覆材の貫通孔周辺と母材鋼板とをレーザ溶接することで、母材鋼板及び、被覆材ともに溶融が確実になされ、相互の溶着が確実になると共に、貫通孔の周辺からの溶接だれにより貫通孔を閉塞し、全面に耐物理特性保有金属層が形成される。
また、平板状の被覆材としたので、耐物理特性保有金属層の成形厚さを要望通りに製作しやすく、材料費低減による低コスト化が可能となる。
Laser welding of the periphery of the through hole of the covering material and the base material steel plate through the through hole of the covering material ensures that both the base material steel plate and the covering material are melted to ensure mutual welding and penetration. The through hole is closed by welding dripping from the periphery of the hole, and a metal layer having physical property resistance is formed on the entire surface.
Further, since the flat coating material is used, the molding thickness of the metal layer having physical property resistance can be easily manufactured as desired, and the cost can be reduced by reducing the material cost.

本発明に係る第1実施形態の構成の概略平面図を示す。1 shows a schematic plan view of a configuration of a first embodiment according to the present invention. 図1のA−A矢視図を示す。The AA arrow line view of FIG. 1 is shown. 図2の溶接後のB部拡大図を示す。The B section enlarged view after the welding of FIG. 2 is shown. 本発明に係る第1実施形態の施工実施条件を示す。The construction implementation conditions of 1st Embodiment which concern on this invention are shown. 本発明に係る第2実施形態の構成の概略平面図を示す。The schematic plan view of the structure of 2nd Embodiment which concerns on this invention is shown. 本発明に係る第2実施形態の必要肉盛厚さTa=1の場合のメッシュワイヤ径に対するメッシュ間距離の関係を表に示す。The table shows the relationship between the mesh wire diameter and the mesh wire diameter in the case where the required overlay thickness Ta = 1 in the second embodiment according to the present invention. 図6におけるメッシュワイヤ断面積とメッシュ間距離の関係図を示す。FIG. 7 shows a relationship diagram between the mesh wire cross-sectional area in FIG. 第1の従来例を示す。A first conventional example is shown. 第2の従来例を示す。A second conventional example is shown. 第3の従来例を示す。A third conventional example will be described.

以下に本発明の実施形態を図面に沿って説明する。
但し、この実施形態に記載されている構成部品の寸法、材質、形状、その相対配置などは特に特定的な記載がない限り、この発明の範囲をそれのみに限定する趣旨ではなく、単なる説明例にすぎない。
Embodiments of the present invention will be described below with reference to the drawings.
However, the dimensions, materials, shapes, relative arrangements, and the like of the components described in this embodiment are not intended to limit the scope of the present invention only to specific examples unless otherwise specifically described. Only.

(第1実施形態)
図1は本発明に係る第1実施形態の構成の概略平面図を示す。
1は被溶接部材である母材鋼板であり、該母材鋼板1の表面には耐物理特性を有した平板状の被覆材2が固定されている。
図2に示すように、母材鋼板1の表面固定された被覆材2の上方にレーザ溶接ヘッド6が右方向へ(図2において)移動可能にセットされる。
被覆材2は母材鋼板1の表面に肉盛される材料となる。
耐物理特性とは、耐蝕性、耐摩耗性、耐熱性等の使用目的に優れた物理的特性を有した金属部材であり、耐蝕性に優れた部材としてはSUS、強靭性に優れた部材としてはチタン、耐蝕性、耐摩耗性、耐熱性、耐酸化性および耐クリープ性に優れた部材としてNi基超合金等のことを示す。
被覆材2は全体に多数の円形状の貫通孔3が配設されている。
(First embodiment)
FIG. 1 is a schematic plan view of the configuration of the first embodiment according to the present invention.
Reference numeral 1 denotes a base steel plate which is a member to be welded, and a flat coating material 2 having physical resistance is fixed to the surface of the base steel plate 1.
As shown in FIG. 2, the laser welding head 6 is set so as to be movable in the right direction (in FIG. 2) above the covering 2 fixed on the surface of the base steel plate 1.
The covering material 2 is a material built up on the surface of the base steel plate 1.
Physical resistance is a metal member with excellent physical properties such as corrosion resistance, wear resistance, heat resistance, etc., and as a member with excellent corrosion resistance, SUS, a member with excellent toughness Indicates titanium, a corrosion resistance, wear resistance, heat resistance, oxidation resistance and creep resistance as a Ni-based superalloy.
The covering material 2 is provided with a large number of circular through holes 3 throughout.

図4に基づいて被覆材2の形状について説明する。
母材鋼板1の表面に形成する耐物理特性金属層の必要肉盛厚さTaは要求仕様によって決まる。本実施形態においては必要肉盛厚さTa=1mmとした。
被覆材2は耐蝕性を有したステンレス(SUS)を使用して、被覆材2の厚さTb、貫通孔径Dh、貫通孔間距離Lの関係を次のようにした。
肉盛厚さ ;Ta=1mm
被覆材厚さTb;Tb=1.5×Ta=1.5mm
貫通孔径Dh ;Dh=1/3×Tb=0.5mm
貫通孔間距離L;L≧Dh=0.5mm
とした。
被覆材厚さTbはレーザ溶接により溶融した被覆材2が貫通孔3に流入する分と、溶融した金属が再凝固する際に生起する引け量を見込む必要がある。
貫通孔径Dhと貫通孔間距離Lは、被覆材厚さTbによっても異なるが、レーザビーム61が貫通孔3周辺を溶かし且つ、母材鋼板1も溶かし、被覆材2の溶融と母材鋼板1の溶融とが融合して、確実な溶接が実行されることと、必要肉盛厚さTaが確保されるように設定されることが必要である。
The shape of the coating | covering material 2 is demonstrated based on FIG.
The required build-up thickness Ta of the physical property resistant metal layer formed on the surface of the base steel plate 1 is determined by the required specifications. In this embodiment, the necessary build-up thickness Ta = 1 mm.
The covering material 2 was made of stainless steel (SUS) having corrosion resistance, and the relationship among the thickness Tb, the through hole diameter Dh, and the distance L between the through holes was as follows.
Overlay thickness; Ta = 1mm
Coating material thickness Tb; Tb = 1.5 × Ta = 1.5 mm
Through-hole diameter Dh; Dh = 1/3 × Tb = 0.5 mm
Distance between through holes L; L ≧ Dh = 0.5 mm
It was.
The coating material thickness Tb needs to allow for the amount of the coating material 2 melted by laser welding to flow into the through holes 3 and the amount of shrinkage that occurs when the molten metal resolidifies.
The through hole diameter Dh and the distance L between the through holes vary depending on the coating material thickness Tb. It is necessary to set so that reliable welding can be performed and the necessary build-up thickness Ta can be secured.

即ち、耐物理特性を有した被覆材2に貫通孔3を設けることにより、貫通孔3の周辺を溶融させると共に、レーザビーム61が貫通孔3を通って母材鋼板1に直接照射されて、確実な溶融を行わせるようになっている。
従って、母材鋼板1と被覆材2とは直接溶着する構造なので、被覆材としての信頼性が高くなる。
That is, by providing the through hole 3 in the covering material 2 having physical resistance, the periphery of the through hole 3 is melted, and the laser beam 61 is directly irradiated to the base steel plate 1 through the through hole 3. It is designed to ensure reliable melting.
Accordingly, since the base steel plate 1 and the covering material 2 are directly welded, the reliability as the covering material is increased.

また、被覆材2の外周端縁全周に略等間隔で半円形状の固定用切欠き5が複数個配設されている。
この固定用切欠き5は、貫通孔3を介して被覆材2を母材鋼板1にレーザ溶接する前に、該被覆材2の端部を母材鋼板1に固定するためのものである。
被覆材2の端部を母材鋼板に固定することにより、レーザ溶接により被覆材2の溶融した部分が凝固する際に収縮し、端部の被覆材被覆位置がずれることを防止して、必要肉盛厚さTaが設定厚さより厚くなるのを防止して、材料費の削減効果を得ると共に品質の安定性を確保し易くすることができる。
Further, a plurality of semicircular fixing cutouts 5 are arranged at substantially equal intervals on the entire outer peripheral edge of the covering material 2.
The fixing notch 5 is for fixing the end portion of the covering material 2 to the base material steel plate 1 before laser welding the covering material 2 to the base material steel plate 1 through the through hole 3.
By fixing the end of the covering material 2 to the base material steel plate, it is necessary to prevent shrinkage when the melted portion of the covering material 2 is solidified by laser welding and to shift the covering material covering position of the end portion. It is possible to prevent the build-up thickness Ta from becoming thicker than the set thickness, and to obtain the effect of reducing the material cost and to easily ensure the quality stability.

従って、上記の被覆材2の厚さTb、貫通孔径Dh、貫通孔間距離Lの関係にこだわることなく、被覆材2の貫通孔3は、板厚Tbが薄い場合には貫通孔3の配設数を疎にし、板厚Tbが厚い場合には貫通3孔の配設数を密にすることにより、母材鋼板1も溶かし、被覆材2の溶融と母材鋼板1の溶融とが融合して、確実な溶接が実行される。   Accordingly, without regard to the relationship between the thickness Tb of the covering material 2, the through hole diameter Dh, and the distance L between the through holes, the through hole 3 of the covering material 2 is arranged with the through hole 3 when the plate thickness Tb is thin. When the number of installations is sparse and the plate thickness Tb is thick, the base steel plate 1 is also melted by densely arranging the three through holes, and the melting of the covering material 2 and the melting of the base steel plate 1 are fused. Thus, reliable welding is performed.

図3は図2のB部拡大図を示し、レーザ溶接ヘッド6で貫通孔3と母材鋼板1とを溶融した部分である。被覆材2は貫通孔3の周辺が溶接ダレして、貫通孔3に流れ込んで、必要肉盛厚さTaを形成している。
そして、母材鋼板1には、母材鋼板1と被覆材2との融合部Mが形成され、貫通孔中心部が一番深く溶け込んでおり、貫通孔中心部から外周に向かって円錐形状に浅くなっていることが判る。
FIG. 3 is an enlarged view of part B of FIG. 2, and is a portion where the through hole 3 and the base steel plate 1 are melted by the laser welding head 6. The covering material 2 is welded at the periphery of the through hole 3 and flows into the through hole 3 to form a necessary build-up thickness Ta.
And the base material steel plate 1 is formed with a fusion part M of the base material steel plate 1 and the covering material 2, and the through hole center part is melted most deeply, and it has a conical shape from the through hole center part toward the outer periphery. You can see that it is shallow.

上記の実験結果から、被覆材2の板厚Tbと、該被覆材2の溶融後の必要肉盛厚さTa、貫通孔径Dhと、貫通孔間距離Lの関係は、
1.5×Ta≦Tb≦5mm
0<Dh≦1/3×Tb
Dh≦L≦3Dh
とした。
即ち、板厚Tb≦5mmとしたのは、肉盛量が多すぎて被覆材と母材鋼板1との溶け込みが十分に行われない場合が発生する。一方、板厚Tb≧1.5×必要肉盛厚さTaとしたのは貫通孔に溶融した被覆材が充填された時の必要肉盛厚Taを確実に確保するためである。
更に、貫通孔径Dhは大きすぎると、上述の通り必要肉盛厚さTaが確保し難くなり、貫通孔がない(貫通孔径Dh=0)場合、母材鋼板にレーザビームが直接照射されないので、母材鋼板1と被覆材2の溶融接合が十分に行われない。
貫通孔間距離Lについても、板厚Tb、貫通孔径Dhとの関係から、貫通孔間距離Lが大き過ぎると、必要肉盛厚さTaが厚くなり、材料の無駄が発生しコストが高くなり、小さ過ぎると必要肉盛厚さTaの確保が難しくなる。
貫通孔間距離Lを、Dh≦貫通孔間距離L≦3Dhとしたのは、貫通孔間距離Lが小さいと必要肉盛厚さTaが確保し難くなる。
一方、貫通孔距離Lが大きいと、母材鋼板1と被覆材2との溶着不具合発生の可能性が高くなる。
しかし、母材鋼板1と被覆材2との密着を確実にするためには貫通孔間距離Lは短くする必要がある。
従って、貫通孔間距離Lは、Dhは最小0.5mm以上で、最大が3Dhの範囲とした。
From the above experimental results, the relationship between the plate thickness Tb of the covering material 2, the necessary build-up thickness Ta after melting of the covering material 2, the through hole diameter Dh, and the distance L between the through holes is
1.5 × Ta ≦ Tb ≦ 5mm
0 <Dh ≦ 1/3 × Tb
Dh ≦ L ≦ 3Dh
It was.
That is, when the plate thickness Tb ≦ 5 mm is set, there is a case where there is too much buildup and the covering material and the base steel plate 1 are not sufficiently melted. On the other hand, the thickness Tb ≧ 1.5 × required buildup thickness Ta is set to ensure the necessary buildup thickness Ta when the molten coating material is filled in the through holes.
Furthermore, if the through-hole diameter Dh is too large, it becomes difficult to ensure the required build-up thickness Ta as described above, and when there is no through-hole (through-hole diameter Dh = 0), the base steel plate is not directly irradiated with a laser beam. The base material steel plate 1 and the covering material 2 are not sufficiently melt-bonded.
As for the distance L between the through holes, if the distance L between the through holes is too large due to the relationship between the plate thickness Tb and the through hole diameter Dh, the necessary build-up thickness Ta is increased, resulting in waste of material and high cost. If it is too small, it will be difficult to secure the necessary thickness Ta.
The distance L between the through holes is set to Dh ≦ distance between the through holes L ≦ 3Dh. When the distance L between the through holes is small, it is difficult to secure the necessary build-up thickness Ta.
On the other hand, when the through-hole distance L is large, the possibility of occurrence of a welding failure between the base material steel plate 1 and the covering material 2 increases.
However, in order to ensure the close contact between the base material steel plate 1 and the covering material 2, it is necessary to shorten the distance L between the through holes.
Accordingly, the distance L between the through-holes is set to a range in which Dh is a minimum of 0.5 mm or more and a maximum is 3Dh.

このような構造(方法)で溶接することにより、被覆材2の貫通孔3を介してレーザビーム61を照射するので、母材鋼板1及び、被覆材2ともに溶融が確実になされ、相互の溶着が確実になると共に、貫通孔3周辺からの溶接だれにより貫通孔3を閉塞し、全面に耐物理特性保有金属層が形成される。
また、平板状の被覆材2としたので、耐物理特性保有金属層の成形厚さを要望通りに製作しやすく、品質が安定し、材料費低減による低コスト化が可能となる。
また、
By welding with such a structure (method), the laser beam 61 is irradiated through the through hole 3 of the covering material 2, so that the base steel plate 1 and the covering material 2 are surely melted and welded to each other. And the through hole 3 is closed by welding from the periphery of the through hole 3, and a metal layer having physical property resistance is formed on the entire surface.
In addition, since the flat coating material 2 is used, it is easy to manufacture the molded thickness of the metal layer having physical property resistance as desired, the quality is stable, and the cost can be reduced by reducing the material cost.
Also,

(第2実施形態)
本実施形態を図5及び、図6に基づいて説明する。
尚、本第2実施形態は第1実施形態に対し、母材鋼板1と被覆材7との溶接方法は同じなので、溶接方法については省略し、被覆材7の形状について説明する。
また、同じ内容のものは同一符号を付して、説明は省略する。
(Second Embodiment)
This embodiment will be described with reference to FIG. 5 and FIG.
In addition, since the welding method of the base material steel plate 1 and the coating | covering material 7 is the same with this 1st Embodiment with respect to 1st Embodiment, it abbreviate | omits about a welding method and demonstrates the shape of the coating | covering material 7. FIG.
Moreover, the same content is attached | subjected the same code | symbol and description is abbreviate | omitted.

図5(A)は耐物理特性を有する金属素材71(以後「ワイヤ」と称する)を平板状に編みこんだ被覆材7であり、(B)はその部分拡大図を示す。
被覆材7はワイヤ71を格子状に編みこんであり、ワイヤ71とワイヤ71との間にはメッシュ間距離(隙間)Lmが設けられている。図5(B)においてメッシュ間距離Lmで囲まれたメッシュ空間72は正方形状になっている。
このメッシュ空間72を介してレーザビーム61にて母材鋼板1とワイヤ71とを溶接するものである。
尚、本実施形態ではメッシュ空間72は正方形状になっているが、長方形でもよく、要するに溶融したワイヤ71が溶け込むメッシュ空間72の断面積によって、必要肉盛厚さTaがきまるものである。
FIG. 5A shows a covering material 7 in which a metal material 71 having physical resistance (hereinafter referred to as “wire”) is knitted in a flat plate shape, and FIG. 5B shows a partially enlarged view thereof.
The covering material 7 is formed by braiding wires 71 in a lattice shape, and a distance (gap) Lm between meshes is provided between the wires 71. In FIG. 5B, the mesh space 72 surrounded by the inter-mesh distance Lm is square.
The base steel plate 1 and the wire 71 are welded by the laser beam 61 through the mesh space 72.
In this embodiment, the mesh space 72 has a square shape, but may have a rectangular shape. In short, the necessary build-up thickness Ta is determined by the cross-sectional area of the mesh space 72 into which the melted wire 71 is melted.

本実施形態における必要肉盛厚さTa=1mmを被覆する場合のワイヤ71とメッシュ間隔Lmとの関係を図6(表)に基づいて説明する。
第1実施例にて既述した通り、ワイヤ71のワイヤ径はレーザ溶接により溶融したワイヤ71の溶融材がメッシュ空間72に流入する分と、溶融した金属が再凝固する際に生起する引け量を見込む必要がある。
メッシュ間隔Lm(正方形の場合)とワイヤ径φDとの間には図6のような関係がある。
即ち、ワイヤ径φDが大きくなるとメッシュ間距離Lmは大きくなることが判る。レーザビーム61がワイヤ71を溶かし且つ、母材鋼板1も溶かし、ワイヤ71の溶融と母材鋼板1の溶融とが融合して、確実な溶接が行われる。
図7にメッシュ間距離Lmとワイヤ断面積mm2の関係を示したものである。
図7によるとワイヤ断面積mm2とメッシュ間距離Lmとは比例した関係にあることがわかる。
The relationship between the wire 71 and the mesh interval Lm when covering the necessary build-up thickness Ta = 1 mm in the present embodiment will be described with reference to FIG.
As already described in the first embodiment, the wire diameter of the wire 71 is such that the melted material of the wire 71 melted by laser welding flows into the mesh space 72 and the amount of shrinkage that occurs when the melted metal resolidifies. It is necessary to expect.
There is a relationship as shown in FIG. 6 between the mesh interval Lm (in the case of a square) and the wire diameter φD.
That is, it can be seen that the mesh distance Lm increases as the wire diameter φD increases. The laser beam 61 melts the wire 71 and also melts the base steel plate 1, and the melting of the wire 71 and the melt of the base steel plate 1 are fused to perform reliable welding.
FIG. 7 shows the relationship between the mesh distance Lm and the wire cross-sectional area mm2.
FIG. 7 shows that the wire cross-sectional area mm2 and the mesh distance Lm are in a proportional relationship.

また、本実施形態において、メッシュ状の被覆材7を母材鋼板1に固定する方法としては被覆材7の外周縁に沿ってレーザビーム61を走査(移動)させることにより容易に可能となる。   In the present embodiment, the mesh-shaped covering material 7 can be easily fixed to the base steel plate 1 by scanning (moving) the laser beam 61 along the outer peripheral edge of the covering material 7.

このような構造にすることにより、被覆材7をメッシュ状に編まれた板材とすることで、レーザビームの照射が被覆材及び、母材鋼板にきめこまかくいきわたり全域での溶着が確実となり、被覆材と母材鋼板との間に空気層が発生し難くなり、品質が安定する。
また、メッシュを構成する素材間の距離は必要肉盛厚さに対し、前記素材の断面積が増大するに伴い、大きくなるようにすることで、耐物理特性保有金属層の必要肉盛厚さの精度が向上し、材料コストの低減が可能となる。
By adopting such a structure, the coating material 7 is a plate knitted in a mesh shape, so that the laser beam irradiation is closely applied to the coating material and the base steel plate, and welding is ensured in the entire region. An air layer is less likely to be generated between the steel plate and the base steel plate, and the quality is stabilized.
In addition, the distance between the materials composing the mesh is increased as the cross-sectional area of the material increases with respect to the required build-up thickness. Accuracy can be improved, and the material cost can be reduced.

母材鋼板の表面に耐物理特性を有した部材の金属層を形成するための肉盛溶接鋼板として提供できる。   It can be provided as a build-up welded steel sheet for forming a metal layer of a member having physical resistance on the surface of the base steel sheet.

1 母材鋼板
2、7 被覆材
3 貫通孔
5 固定用切欠き
6 レーザ溶接ヘッド
71 金属素線
72 メッシュ空間
Ta 必要肉盛厚さ
Tb 被覆材厚さ
Dh 貫通孔径
L 貫通孔間距離
Lm メッシュ間距離
M 母材鋼板1と被覆材2との融合部
DESCRIPTION OF SYMBOLS 1 Base material steel plate 2, 7 Coating | covering material 3 Through-hole 5 Notch for fixation 6 Laser welding head 71 Metal strand 72 Mesh space Ta Required build-up thickness Tb Coating material thickness Dh Through-hole diameter L Distance between meshes Lm Between meshes Distance M Fusion part of base steel plate 1 and covering material 2

Claims (6)

被溶接部材である母材鋼板と、
前記母材鋼板の表面に配設され、複数の貫通孔を有する耐物理特性を有する平板状の被覆材とを備え、
前記貫通孔を介して前記母材鋼板と前記被覆材とをレーザ溶接させることを特徴とする肉盛溶接構造。
A base steel plate that is a member to be welded;
A flat coating material having physical resistance with a plurality of through-holes disposed on the surface of the base steel plate;
A build-up welding structure characterized by laser welding the base steel plate and the covering material through the through hole.
前記補強鋼材の前記貫通孔は、板厚が薄い場合には前記貫通孔の配設数を疎にし、板厚が厚い場合には前記貫通孔の配設数を密にしたことを特徴とする請求項1記載の肉盛溶接構造。   The through hole of the reinforcing steel material is characterized in that when the plate thickness is thin, the number of the through holes is made sparse, and when the plate thickness is thick, the number of the through holes is made dense. The overlay welding structure according to claim 1. 前記被覆材の板厚Tbと、該被覆材の溶融後の必要肉盛厚さTa、前記貫通孔径Dhと、前記貫通孔間距離Lの関係は、
1.5×Ta≦Tb≦5mm
0<Dh≦1/3×Tb
Dh≦L≦3Dh
としたことを特徴とする請求項1乃至2いずれの項に記載の肉盛溶接構造。
The relationship between the plate thickness Tb of the covering material, the necessary build-up thickness Ta after melting of the covering material, the through hole diameter Dh, and the distance L between the through holes is as follows.
1.5 × Ta ≦ Tb ≦ 5mm
0 <Dh ≦ 1/3 × Tb
Dh ≦ L ≦ 3Dh
The build-up welded structure according to any one of claims 1 to 2, wherein
前記被覆材はメッシュ状に編まれたメッシュ材としたことを特徴とする請求項1記載の肉盛溶接構造。   The overlay welding structure according to claim 1, wherein the covering material is a mesh material knitted in a mesh shape. 前記メッシュ材はメッシュを構成する素材間の距離は必要肉盛厚さに対し、前記素材の断面積が増大するに伴い、大きくなるようにしたことを特徴とする請求項4記載の肉盛溶接構造。   The overlay welding according to claim 4, wherein the mesh material is configured such that a distance between materials constituting the mesh increases as a cross-sectional area of the material increases with respect to a necessary overlay thickness. Construction. 前記被覆材は該被覆材の端部を前記母材鋼板に固定してから前記レーザビームの照射を開始するようにしたことを特徴とする請求項1乃至5のいずれかに記載の肉盛溶接構造。   The overlay welding according to any one of claims 1 to 5, wherein the coating material is configured to start irradiation with the laser beam after fixing an end of the coating material to the base steel plate. Construction.
JP2012022553A 2012-02-03 2012-02-03 Build-up welded steel sheet Pending JP2013158796A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012022553A JP2013158796A (en) 2012-02-03 2012-02-03 Build-up welded steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012022553A JP2013158796A (en) 2012-02-03 2012-02-03 Build-up welded steel sheet

Publications (1)

Publication Number Publication Date
JP2013158796A true JP2013158796A (en) 2013-08-19

Family

ID=49171502

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012022553A Pending JP2013158796A (en) 2012-02-03 2012-02-03 Build-up welded steel sheet

Country Status (1)

Country Link
JP (1) JP2013158796A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461530A (en) * 2017-01-10 2019-11-15 绍尔有限公司 Reduced by means of the material melted by laser deposition welder or be closed completely workpiece Internal periphery opening method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110461530A (en) * 2017-01-10 2019-11-15 绍尔有限公司 Reduced by means of the material melted by laser deposition welder or be closed completely workpiece Internal periphery opening method
KR20190138770A (en) * 2017-01-10 2019-12-16 싸우에르 게엠바하 Method of reducing or completely closing the opening of the inner contour of the workpiece using molten material by laser deposition welding apparatus
KR102224359B1 (en) * 2017-01-10 2021-03-09 싸우에르 게엠바하 A method of reducing the opening of the inner contour of the workpiece or completely closing it by using molten material by a laser deposition welding apparatus.
CN110461530B (en) * 2017-01-10 2021-11-05 绍尔有限公司 Method for reducing or completely closing an opening of an inner contour of a workpiece by means of a material melted by a laser deposition welding device
US11612953B2 (en) 2017-01-10 2023-03-28 Sauer Gmbh Method for reducing or completely closing an opening of an inner contour of a workpiece by means of a material melted by a laser deposition welding device

Similar Documents

Publication Publication Date Title
CN107530830A (en) Method for laser welding
CN104334349B (en) There is metal plate member of welding recess and forming method thereof
CN104822485B (en) The method that welding recess is formed in metal plate member
US10046416B2 (en) Method of weld cladding over openings
JP5449610B2 (en) Method of welding erosion resistant metal material and turbine blade
JP2013158796A (en) Build-up welded steel sheet
JP5615028B2 (en) Vented shim beam welding process
JP2018043279A (en) Dissimilar material joining body and dissimilar material joining method
JPWO2012164839A1 (en) Laser-joined component and manufacturing method thereof
JP6382593B2 (en) Welding method
CN111163896B (en) Soldering structure, wiring board with metal sheet, and soldering method
JP5117286B2 (en) Resistance welding method and welded structure
JP4793180B2 (en) Welding method of high nitrogen steel
US11440129B2 (en) Electrode for resistance spot welding
JP5253777B2 (en) Overlapping laser welding method and laser welded product
KR20220134657A (en) Welding method and welding device
JP7110907B2 (en) Lap welding method for dissimilar metal members
JP5231073B2 (en) Welded joint and manufacturing method thereof
JP2018061982A (en) Molding method for metal mold
KR20210009378A (en) Bonding method and bonding structure of plated steel plate
US10953495B2 (en) Building platform for additive manufacturing, and method
JP2020093285A (en) Method of joining dissimilar metals
JP2016036831A (en) Brazing structure
JP2006080146A (en) Manufacturing method of resistor
US20170221614A1 (en) Method for producing resistor