JP2013158221A - Electric vehicle control device, and electric vehicle using the same - Google Patents

Electric vehicle control device, and electric vehicle using the same Download PDF

Info

Publication number
JP2013158221A
JP2013158221A JP2012019414A JP2012019414A JP2013158221A JP 2013158221 A JP2013158221 A JP 2013158221A JP 2012019414 A JP2012019414 A JP 2012019414A JP 2012019414 A JP2012019414 A JP 2012019414A JP 2013158221 A JP2013158221 A JP 2013158221A
Authority
JP
Japan
Prior art keywords
electric vehicle
road surface
cooling device
surface gradient
motor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012019414A
Other languages
Japanese (ja)
Other versions
JP5846943B2 (en
Inventor
Shiro Yamaoka
士朗 山岡
Hideki Miyazaki
英樹 宮崎
Kazuto Oyama
和人 大山
Takashi Okada
隆 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Astemo Ltd
Original Assignee
Hitachi Automotive Systems Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Automotive Systems Ltd filed Critical Hitachi Automotive Systems Ltd
Priority to JP2012019414A priority Critical patent/JP5846943B2/en
Publication of JP2013158221A publication Critical patent/JP2013158221A/en
Application granted granted Critical
Publication of JP5846943B2 publication Critical patent/JP5846943B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility

Abstract

PROBLEM TO BE SOLVED: To avoid abnormal high-temperature states of a motor and an inverter and prevent malfunction of these devices, even when high outputs are required for these devices.SOLUTION: An electric vehicle control device used together with a motor, an inverter, and a cooling device that cools the motor and the inverter includes: a road surface gradient estimating section that estimates a road surface gradient angle of a road surface on which an electric vehicle stops or cruises based on inputted accelerator opening, brake position, own vehicle speed, and selector position; and a cooling device power calculating section that calculates a power command value of the cooling device based on the road surface gradient angle estimated by the road surface gradient estimating section and temperatures of the motor and a motor driving device. Here, a power command value of the cooling device based on the road surface gradient angle in case the electric vehicle stops or cruises on an ascending slope becomes a value larger than a power command value of the cooling device based on the vehicle speed and the road surface gradient angle in case the electric vehicle stops or cruises on a flat road.

Description

電動車両を制御する電動車両制御装置、及びそれを用いた電動車両に関する。   The present invention relates to an electric vehicle control device that controls an electric vehicle, and an electric vehicle using the same.

環境負荷の小さな車両として、電気駆動によって車両を走行させる電気自動車やプラグインハイブリッド自動車などの電動車両が注目されている。   As vehicles with a small environmental load, electric vehicles such as electric vehicles and plug-in hybrid vehicles that drive vehicles by electric drive are attracting attention.

しかしながら、電動車両に用いられる蓄電池であるバッテリは、従来の内燃機関に用いる燃料と比べてエネルギー密度が小さく、航続距離が短いという欠点がある。バッテリの搭載量をなるべく上げずに航続距離を延ばすためには、車両重量を軽くする、パワートレインの駆動効率を上げるなどの対応が有効であり、電動車両用の駆動モータの小型化が重要になる。   However, a battery, which is a storage battery used in an electric vehicle, has the disadvantages that it has a lower energy density and a shorter cruising distance than the fuel used in a conventional internal combustion engine. In order to extend the cruising distance without increasing the battery load as much as possible, it is effective to reduce the vehicle weight, increase the powertrain drive efficiency, etc., and downsizing the drive motor for electric vehicles is important Become.

しかし、モータ体格を小型化すると、高速走行や追越し等の高負荷条件などの高電力要求時に、モータまたはこれを駆動する駆動装置(以降、インバータ)が過度に高温となり、故障の原因となるという課題があった。   However, if the size of the motor is reduced, the motor or the driving device (hereinafter referred to as an inverter) that drives the motor becomes excessively hot when a high power requirement such as a high load condition such as high speed driving or overtaking is caused, which may cause a failure. There was a problem.

本課題を解決する施策として、例えば特許文献1では、電気自動車のモータおよびインバータのスイッチング素子の温度を検出し、この検出結果に応じて冷却装置を制御することで、モータやインバータを冷却する技術が記載されている。   As a measure for solving this problem, for example, in Patent Document 1, the temperature of a switching element of a motor and an inverter of an electric vehicle is detected, and the cooling device is controlled according to the detection result, thereby cooling the motor and the inverter. Is described.

特開2008−72818号公報JP 2008-72818 A

しかし、モータやインバータのスイッチング素子や駆動回路などの温度を下げるには、筐体の熱伝導などに起因して一定の時間が必要であり、例えばこれらを搭載した車両が急かつ継続的な登坂状態にある場合、車両のドライバのアクセル操作に律速されるスイッチング素子や駆動回路の温度上昇は、冷却系の温度低減作用よりも早い時定数で作用する。その結果、冷却が追い付かず、これらの装置を破損してしまう可能性があった。   However, it takes a certain amount of time to reduce the temperature of the switching elements and drive circuits of motors and inverters due to the heat conduction of the housing. When in the state, the temperature rise of the switching element and the drive circuit, which is controlled by the accelerator operation of the driver of the vehicle, acts with a time constant faster than the temperature reduction action of the cooling system. As a result, cooling could not catch up, and these devices could be damaged.

本発明は、上記課題に鑑み、その目的は、モータやインバータに高出力が要求される場合でも、異常な高温状態を避けることができ、当該機器の故障を防止することである。   In view of the above problems, an object of the present invention is to avoid an abnormally high temperature state even when a high output is required for a motor or an inverter, and to prevent failure of the device.

上記課題を解決するために、本発明は、電動車両を駆動するモータと、モータを駆動するモータ駆動装置と、モータ及びモータ駆動装置を冷却する冷却装置と、共に用いられる電動車両を制御する電動車両制御装置において、入力されたアクセル開度と、ブレーキポジションと、自車速と、セレクタポジションと、に基づいて前記電動車両が停止又は走行する路面の路面勾配角を推定する路面勾配推定部と、路面勾配推定部で推定された路面勾配角と、モータ及びモータ駆動装置の温度と、に基づいて、冷却装置の電力指令値を演算する冷却装置電力演算部と、を有し、電動車両が登坂で停止中又は走行中の場合の路面勾配角における冷却装置の電力指令値が、電動車両が平坦路で停止中又は走行中の場合の車速及び路面勾配角における冷却装置の電力指令値よりも大きい値となる構成とする。   In order to solve the above problems, the present invention provides a motor for driving an electric vehicle, a motor driving device for driving the motor, a cooling device for cooling the motor and the motor driving device, and an electric motor for controlling the electric vehicle used together. In the vehicle control device, a road surface gradient estimation unit that estimates a road surface gradient angle of the road surface on which the electric vehicle stops or travels based on the input accelerator opening, brake position, host vehicle speed, and selector position; A cooling device power calculation unit that calculates a power command value of the cooling device based on the road surface gradient angle estimated by the road surface gradient estimation unit and the temperature of the motor and the motor driving device, and the electric vehicle climbs up The cooling power command value at the road surface gradient angle when the vehicle is stopped or traveling is the cooling at the vehicle speed and road surface gradient angle when the electric vehicle is stopped or traveling on a flat road. A structure in which a value larger than the power instruction value of location.

また、本発明の電動車両制御装置を備えた電動車両は、電動車両を駆動するモータと、モータを駆動するモータ駆動装置と、モータ及びモータ駆動装置を冷却する冷却装置と、電動車両を制御する電動車両制御装置と、を有し、電動車両制御装置は、入力されたアクセル開度と、ブレーキポジションと、自車速と、セレクタポジションと、に基づいて前記電動車両が停止又は走行する路面の路面勾配角を推定する路面勾配推定部と、路面勾配推定部で推定された路面勾配角と、モータ及びモータ駆動装置の温度と、に基づいて、冷却装置の電力指令値を演算する冷却装置電力演算部と、を有し、電動車両制御装置は、電動車両が登坂で停止中又は走行中の場合の路面勾配角における冷却装置の電力指令値が、電動車両が平坦路で停止中又は走行中の場合の車速及び路面勾配角における冷却装置の電力指令値よりも大きい値となる構成とする。   An electric vehicle including the electric vehicle control device of the present invention controls a motor that drives the electric vehicle, a motor drive device that drives the motor, a cooling device that cools the motor and the motor drive device, and the electric vehicle. An electric vehicle control device, the electric vehicle control device is a road surface of the road surface on which the electric vehicle stops or travels based on the input accelerator opening, brake position, own vehicle speed, and selector position Cooling device power calculation that calculates the power command value of the cooling device based on the road surface gradient estimation unit that estimates the gradient angle, the road surface gradient angle estimated by the road surface gradient estimation unit, and the temperature of the motor and the motor drive device The electric vehicle control device has an electric power command value of the cooling device at a road surface gradient angle when the electric vehicle is stopped or running on an uphill, while the electric vehicle is stopped or running on a flat road. A structure in which a value larger than the power command value of the cooling device in the vehicle speed and the road surface slope angle in the case in.

モータやインバータに高出力が要求される場合でも、異常な高温状態を避けることができ、当該機器の故障を防止することができる。   Even when a high output is required for a motor or an inverter, an abnormally high temperature state can be avoided and a failure of the device can be prevented.

本発明に係る電動車両制御装置を有する電動車両の第一の実施例を示す図である。It is a figure which shows the 1st Example of the electric vehicle which has the electric vehicle control apparatus which concerns on this invention. 本発明の電動車両の運転範囲とモータ回転数−トルクの関係の一例を示す図である。It is a figure which shows an example of the driving | running | working range of the electric vehicle of this invention, and the relationship between motor rotation speed-torque. 所定運転条件で電動車両を連続運転した場合のモータの代表点温度履歴の一例を示す図である。It is a figure which shows an example of the representative point temperature log | history of a motor at the time of driving an electric vehicle continuously on predetermined driving conditions. 本発明に係る電動車両制御装置の第一の実施例を示す制御ブロック図である。It is a control block diagram which shows the 1st Example of the electric vehicle control apparatus which concerns on this invention. 電動車両が平坦路及び登坂路を走行中に働く力や抵抗を示す図である。It is a figure which shows the force and resistance which work while an electric vehicle drive | works a flat road and an uphill road. 本発明の第一の実施例を適用した場合の推定車重、推定勾配、冷却装置電力、冷却水温の履歴の一例を示す図である。It is a figure which shows an example of the log | history of the estimated vehicle weight at the time of applying the 1st Example of this invention, an estimated gradient, cooling device electric power, and cooling water temperature. 本発明に係る電動車両制御装置を有する電動車両の第二の実施例を示す図である。It is a figure which shows the 2nd Example of the electric vehicle which has the electric vehicle control apparatus which concerns on this invention. 本発明に係る電動車両制御装置の第二の実施例を示す制御ブロック図である。It is a control block diagram which shows the 2nd Example of the electric vehicle control apparatus which concerns on this invention. 本発明の第一の実施例を適用した場合の推定勾配、冷却装置電力、冷却水温の履歴の一例を示す図である。It is a figure which shows an example of the log | history of the estimation gradient at the time of applying the 1st Example of this invention, cooling device electric power, and cooling water temperature. 本発明に係る電動車両制御装置の第三の実施例を示す制御ブロック図である。It is a control block diagram which shows the 3rd Example of the electric vehicle control apparatus which concerns on this invention. 本発明の第三の実施例を適用した場合の推定勾配、冷却装置電力、冷却水温の履歴の一例を示す図である。It is a figure which shows an example of the log | history of the estimation gradient at the time of applying the 3rd Example of this invention, cooling device electric power, and cooling water temperature. 本発明の第三の実施例において、走行履歴を活用した場合の制御ブロック図である。It is a control block diagram at the time of utilizing a travel history in the 3rd example of the present invention.

以下、本発明の実施形態について図面と共に説明する。
図1は本発明の第一の実施例に係る電動車両101の構成図を示している。
図1の電動車両101は、電動車両101を制御する電動車両制御装置である車両ECU102を有し、アクセル開度、ブレーキポジション、車両のドライバが意図するギアや走行モードを指令するセレクタのポジション、ハンドル等のステアリングポジション、自車速、モータ温度、バッテリ状態を示すバッテリ情報のようなセンサ信号が入力される。これらのセンサ信号から、車両状態を判定及び制御状態を演算し、各アクチュエータやパーツの制御装置であるECUに指令を送る。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 shows a configuration diagram of an electric vehicle 101 according to a first embodiment of the present invention.
An electric vehicle 101 in FIG. 1 includes a vehicle ECU 102 that is an electric vehicle control device that controls the electric vehicle 101, and includes an accelerator opening, a brake position, a gear position intended by a driver of the vehicle, and a selector position that commands a travel mode. Sensor signals such as a steering position such as a steering wheel, own vehicle speed, motor temperature, and battery information indicating a battery state are input. From these sensor signals, the vehicle state is determined and the control state is calculated, and a command is sent to the ECU which is a control device for each actuator or part.

また、電動車両101を駆動するモータ104に対して電力ハーネスを通じて駆動電力を供給するモータ駆動装置であるインバータ103と、このインバータ103に電力を供給する蓄電池であるバッテリ106と、を有する。バッテリ106の制御はバッテリ制御装置であるバッテリECU107で行い、車両ECU102との通信により、バッテリ情報を電動車両制御装置である車両ECU102に伝達するのと同時に、モータ104の駆動のためのバッテリ制御情報を受信する。   Moreover, it has the inverter 103 which is a motor drive device which supplies drive electric power to the motor 104 which drives the electric vehicle 101 through an electric power harness, and the battery 106 which is a storage battery which supplies electric power to this inverter 103. The battery 106 is controlled by a battery ECU 107, which is a battery control device, and battery information is transmitted to the vehicle ECU 102, which is an electric vehicle control device, through communication with the vehicle ECU 102. At the same time, battery control information for driving the motor 104 is used. Receive.

また減速ギア105は、モータ104の軸回転力を減速比に応じた回転数とトルクを電動車両101のタイヤへ伝達する。   The reduction gear 105 transmits the rotational speed and torque corresponding to the reduction ratio of the shaft rotational force of the motor 104 to the tire of the electric vehicle 101.

ブレーキ制御装置であるブレーキECU108は、車両ECU102から受けた制動指令に基づき、各タイヤに搭載されたブレーキ状態を制御する。   A brake ECU 108 serving as a brake control device controls a brake state mounted on each tire based on a braking command received from the vehicle ECU 102.

冷却装置109は、車両ECU102からの指令に基づいて電気駆動し、インバータ103およびモータ104を冷却する冷却水(冷媒でも可)を、冷却水通路111aおよび冷却水通路111bを通じて循環させる。   Cooling device 109 is electrically driven based on a command from vehicle ECU 102, and circulates cooling water (which may be a refrigerant) for cooling inverter 103 and motor 104 through cooling water passage 111a and cooling water passage 111b.

本実施例において、この冷却装置109は、インバータ103とモータ104を冷却水通路111aおよび冷却水通路111bを介してそれぞれ独立に冷却しているが、インバータ103とモータ104の間をつなぐ冷却水通路を設けて、冷却装置109からインバータ103、モータ104を順に循環する形で冷却してもよい。また冷却装置109の駆動電力は、バッテリ106から直接もしくは間接的に供給されるものであるが、本発明の電動車両制御装置である車両ECU102を、エンジンを搭載したプラグインハイブリッド車に搭載する場合は、その他の補機バッテリから電力供給される方式も、本発明の範疇の技術である。   In this embodiment, the cooling device 109 cools the inverter 103 and the motor 104 independently via the cooling water passage 111 a and the cooling water passage 111 b, but the cooling water passage connecting the inverter 103 and the motor 104. May be provided, and cooling may be performed by circulating the inverter 103 and the motor 104 sequentially from the cooling device 109. The driving power of the cooling device 109 is supplied directly or indirectly from the battery 106, but the vehicle ECU 102 which is the electric vehicle control device of the present invention is mounted on a plug-in hybrid vehicle equipped with an engine. The method of supplying power from other auxiliary battery is also within the scope of the present invention.

図2は、本発明の電動車両101の運転範囲とモータ104の回転数−トルクの関係を示している。この電動車両101は、市街地走行領域204および高出力領域203で囲まれる力行の領域と、回生領域205で囲まれる領域とで、走行領域が構成されている。この走行領域は、電動車両101を運転するユーザが指示するアクセル開度、セレクタポジション、ブレーキポジションなどに応じて、運転状態(走行状態)を決定する。   FIG. 2 shows the relationship between the operating range of the electric vehicle 101 of the present invention and the rotational speed-torque of the motor 104. In this electric vehicle 101, a traveling region is configured by a power running region surrounded by the urban traveling region 204 and the high output region 203 and a region surrounded by the regeneration region 205. This travel region determines a driving state (running state) according to an accelerator opening, a selector position, a brake position, and the like that are instructed by a user who drives the electric vehicle 101.

電動車両101のモータ104は、車両が要求するトルクや回転数を満たすように電力が供給され、駆動する。この電動車両101の走行状態の大部分は、市街地走行領域204で示される領域で占められることが多く、市街地走行を多用する領域にモータ104の高効率域を合わせて設計すると、モータ104の体格を小さくする必要がある。この場合、高速走行や登坂走行等の高出力要求を満足しようとすると、高い電力によって、モータ104やインバータ103が過度に高温となり、故障の原因となる。モータ104を、なるべく市街地走行領域204で高効率動作できるように小型化する場合、それ以外の力行領域、例えば登坂走行の代表点201や高速走行の代表点206を含む高出力領域203の走行時には、モータ104やインバータ103を、冷却装置109によって好適に冷却する必要がある。   Electric power is supplied to drive the motor 104 of the electric vehicle 101 so as to satisfy the torque and the rotational speed required by the vehicle. Most of the traveling state of the electric vehicle 101 is often occupied by the area indicated by the urban traveling area 204. If the high efficiency area of the motor 104 is designed in an area where urban traveling is frequently used, the physique of the motor 104 Need to be small. In this case, if an attempt is made to satisfy a high output requirement such as high-speed traveling or uphill traveling, the motor 104 and the inverter 103 become excessively hot due to high electric power, causing a failure. When the motor 104 is miniaturized as much as possible so that it can operate in the urban traveling region 204 as much as possible, when traveling in a high power region 203 including the other powering regions, for example, the representative point 201 for uphill traveling and the representative point 206 for high speed traveling. The motor 104 and the inverter 103 need to be suitably cooled by the cooling device 109.

図3は、所定運転条件で電動車両を連続運転した場合のモータ104の代表点温度の履歴の一例を示している。   FIG. 3 shows an example of the history of the representative point temperature of the motor 104 when the electric vehicle is continuously operated under a predetermined operation condition.

線301は図2の登坂走行の代表点201で運転した場合、線302は図2の市街地走行の代表点202で運転した場合の履歴である。   Line 301 is a history when driving at the representative point 201 of the uphill traveling in FIG. 2, and line 302 is a history when driving at the representative point 202 of the urban traveling in FIG.

本発明のモータ104は登坂走行の代表点201で長時間運転した場合、モータ104の限界温度を超えてモータ104を破損する、すなわちステータコイルの絶縁破壊を起こしたり、ロータ等に永久磁石を使用している場合にはこの減磁を引き起こしたりする可能性がある。   When the motor 104 of the present invention is operated for a long time at the representative point 201 of the uphill running, the motor 104 exceeds the limit temperature of the motor 104, and the motor 104 is damaged, that is, the stator coil is dielectrically broken, or a permanent magnet is used for the rotor or the like. If it is, there is a possibility of causing this demagnetization.

よって、登坂走行の代表点201のような高負荷域で長時間運転する場合には、図1の冷却装置109を用いて、点線303のような履歴となるよう、制御することが特徴である。これにより、本発明のモータ104において、高負荷運転を続けても破損を防ぐことができるものである。   Therefore, when driving for a long time in a high load region such as the representative point 201 of uphill running, the cooling device 109 in FIG. 1 is used to control the history as shown by the dotted line 303. . Thereby, in the motor 104 of the present invention, it is possible to prevent damage even if the high load operation is continued.

図4は、本発明の電動車両制御装置である車両ECU102の第一の実施例を示す制御ブロック図であり、冷却装置109の駆動電力の決定システムフローの一例である。   FIG. 4 is a control block diagram showing a first embodiment of the vehicle ECU 102 that is the electric vehicle control device of the present invention, and is an example of a system flow for determining the driving power of the cooling device 109.

電動車両制御装置である車両ECU102には、図4に示されるように、電動車両101のユーザが示すアクセル開度、ブレーキポジション、ステアリングポジション(ハンドル)、電動車両101の車速、車両のドライバが意図するギアや走行モードを指令するセレクタのポジションなどが入力され、これらの値から当該車両が走行する路面の勾配を推定する路面勾配推定部401を有している。この路面勾配推定部401は、少なくとも、入力されたアクセル開度と、ブレーキポジションと、自車速と、セレクタポジションと、に基づいて電動車両101が停止又は走行する路面の路面勾配角を推定するものである。   As shown in FIG. 4, the vehicle ECU 102, which is an electric vehicle control device, includes an accelerator opening, a brake position, a steering position (handle), a vehicle speed of the electric vehicle 101, and a vehicle driver indicated by the user of the electric vehicle 101. A road surface gradient estimation unit 401 that estimates the gradient of the road surface on which the vehicle travels from these values is input. The road surface gradient estimation unit 401 estimates the road surface gradient angle of the road surface on which the electric vehicle 101 stops or travels based on at least the input accelerator opening, brake position, host vehicle speed, and selector position. It is.

また、この路面勾配推定部401で演算された推定勾配角、およびモータ104およびインバータ103の温度(冷却水温でも可)を入力して、冷却装置109を駆動する電力量を決定し、冷却装置電力指令を出力する冷却装置電力演算部402を有している。すなわち、この制御ブロック図が意図するところは、電動車両が走行する路面勾配をリアルタイム推定し、これを用いてこの先車両が走行する路面におけるモータやインバータの温度上昇を予見して冷却装置を駆動するものであり、冷却装置の使用電力を抑えながら、モータインバータの異常な高温状態の継続を避けることができるという効果がある。   Further, the estimated gradient angle calculated by the road surface gradient estimation unit 401 and the temperatures of the motor 104 and the inverter 103 (cooling water temperature is also acceptable) are input to determine the amount of electric power for driving the cooling device 109, and the cooling device power It has a cooling device power calculation unit 402 that outputs a command. That is, this control block diagram is intended to estimate the road surface gradient on which the electric vehicle travels in real time, and use this to drive the cooling device in anticipation of the temperature rise of the motor and inverter on the road surface on which the vehicle ahead travels. Therefore, there is an effect that it is possible to avoid the continuation of the abnormally high temperature state of the motor inverter while suppressing the power consumption of the cooling device.

この路面勾配推定部における路面勾配角の推定方法の一例について図5を用いて以下に示す。図5(a)は平坦路を走行する電動車両501が平坦路を走行している場合であり、車両には駆動力Fおよび走行抵抗(ころがり抵抗Rr+速度抵抗Rv)が働いて平坦路加速度αfが発生している。また、図5(b)は登坂路を走行する電動車両502が勾配路を走行している場合であり、車両には駆動力F、走行抵抗に加えて勾配抵抗Riが働いて推定加速度αsが発生している。ここで、Mは車両重量、gは重力加速度、θは勾配の傾斜角である。高速道路の道路勾配は5[%]以下が多く、山岳路においても7〜10[%]程度のため、その傾斜角θは十分小さい。したがって、勾配路のころがり抵抗は平坦路の場合と等しいと仮定すると、図5(a)の平坦路と図5(b)の勾配路における車両の前後方向の運動方程式はそれぞれ(1)、(2)式で表される。   An example of the road surface slope angle estimation method in this road surface slope estimation unit will be described below with reference to FIG. FIG. 5A shows a case in which an electric vehicle 501 traveling on a flat road is traveling on a flat road, and the driving force F and the traveling resistance (rolling resistance Rr + speed resistance Rv) act on the vehicle and the flat road acceleration αf. Has occurred. FIG. 5B shows a case where an electric vehicle 502 traveling on an uphill road is traveling on a gradient road. In addition to the driving force F and the traveling resistance, the gradient resistance Ri acts on the vehicle and the estimated acceleration αs is increased. It has occurred. Here, M is the vehicle weight, g is the gravitational acceleration, and θ is the inclination angle of the gradient. The road gradient of highways is often 5% or less, and the mountain road is about 7 to 10%, so the inclination angle θ is sufficiently small. Therefore, assuming that the rolling resistance of the gradient road is equal to that of the flat road, the equations of motion in the longitudinal direction of the vehicle on the flat road of FIG. 5A and the gradient road of FIG. 5B are (1) and ( 2) It is expressed by the formula.

M×αf=F−Rr−Rv (1)
M×αs=F−Rr−Rv−Ri (2)
(2)式から(1)式を引くと(3)式を得る。
M × αf = F−Rr−Rv (1)
M × αs = F−Rr−Rv−Ri (2)
Subtracting equation (1) from equation (2) yields equation (3).

M×(αs−αf)=−Ri (3)
また、勾配抵抗Riは傾斜角θを用いて(4)式で表される。
M × (αs−αf) = − Ri (3)
Further, the gradient resistance Ri is expressed by the equation (4) using the inclination angle θ.

Ri=M×g×sinθ (4)
(3)式に(4)式を代入して整理すると(5)式を得る。
Ri = M × g × sin θ (4)
Substituting (4) into (3) and rearranging results in (5).

sinθ=(−1)×(αs−αf)÷g (5)
一般に車両走行路面における傾斜角θは十分小さいことからtanθ≒sinθとなるので、道路勾配i[%]として(6)式が得られる。
sinθ = (− 1) × (αs−αf) ÷ g (5)
In general, since the inclination angle θ on the road surface of the vehicle is sufficiently small, tan θ≈sin θ is satisfied, so that the equation (6) is obtained as the road gradient i [%].

i=tanθ×100
≒sinθ×100=(−1)×(αs−αf)÷g×100 (6)
すなわち、走行する車両の所定時間における加速度差を利用することで、道路勾配が演算可能である。なお、平坦路加速度αfは駆動力の関数として(1)式の運動方程式から求め、推定加速度αsは車速を擬似微分して求める。但し、このαsおよびαfを式(1)および(2)から求める際、一旦、同じような路面勾配角において車両重量Mを収束演算させる必要があるため、車重推定開始から、一定の時間後(数分後)に路面勾配角の推定が可能となる。
i = tan θ × 100
≈ sin θ × 100 = (− 1) × (αs−αf) ÷ g × 100 (6)
That is, the road gradient can be calculated by using the acceleration difference of the traveling vehicle at a predetermined time. The flat road acceleration αf is obtained from the equation of motion (1) as a function of the driving force, and the estimated acceleration αs is obtained by pseudo-differentiating the vehicle speed. However, when αs and αf are obtained from the equations (1) and (2), the vehicle weight M needs to be converged once at the same road surface gradient angle. The road slope angle can be estimated (after several minutes).

図6には、本発明の第一の実施例を適用した場合の電動車両101の走行中の推定車重、推定勾配、冷却装置電力、冷却水温の履歴の一例を示している。   FIG. 6 shows an example of a history of estimated vehicle weight, estimated gradient, cooling device power, and cooling water temperature during travel of the electric vehicle 101 when the first embodiment of the present invention is applied.

線601は前述した路面勾配推定部401で推定される車重Mの履歴、点線602はその車両の実際の重量、線603は線601に基づいて推定勾配角θの履歴、点線604はその車両が実際に走行している路面勾配角の履歴、線605は冷却装置109の電力Pc、点線606は冷却装置109の上限電力値、線608はモータ104の冷却水温Twの履歴、線607は本実施例の電動車両における設定冷却水温の上限値、点線609は、冷却装置109の電力を点線606付近で運転し続けた場合の冷却水温の履歴である。   The line 601 is the history of the vehicle weight M estimated by the road surface gradient estimation unit 401 described above, the dotted line 602 is the actual weight of the vehicle, the line 603 is the history of the estimated gradient angle θ based on the line 601, and the dotted line 604 is the vehicle. Is the actual road surface slope angle history, line 605 is the power Pc of the cooling device 109, dotted line 606 is the upper limit power value of the cooling device 109, line 608 is the history of the cooling water temperature Tw of the motor 104, and line 607 is this An upper limit value of the set cooling water temperature in the electric vehicle of the embodiment, a dotted line 609 is a history of the cooling water temperature when the electric power of the cooling device 109 is continuously operated near the dotted line 606.

まず時刻t0において、電動車両101をキーONし、走行をスタートする。この時、まず冷却装置電力Pcは一旦上限電力に近いところに設定し、冷却水温Twを下げる(もしくは上昇を抑制する)。つまり、電動車両がキーONした直後の冷却装置109の電力指令値が、電動車両101が平坦路で停止中又は走行中の場合の車速及び路面勾配角における冷却装置109の電力指令値よりも大きい値となる。これは、上述のように、冷却装置が機器冷却する時定数は、モータ104やインバータ103の急峻な温度上昇に対応できないため、なるべく起動初期の冷却水温Twを低く保っておくことで、走行中のモータ104やインバータ103の温度上昇を抑えることを目的としている。車両走行後に図4および図5で述べたフローによって車重推定を開始し、推定車重Mの演算が収束する時刻t1において、勾配推定を開始し、冷却装置電力Pcを制御する。時刻t1において、推定勾配は平坦路に近いため、冷却装置電力Pcを下げて(もしくは停止して)、電力消費を抑制する。時刻t2以降、電動車両101は線604にあるように登り勾配に入る。時刻t3までは推定勾配θが大きくなるので、これに合わせて線605のように冷却装置電力Pcの値が大きくなり、冷却水温Twの上昇を抑える。時刻t3以降、推定勾配θはマイナス、すなわち下り勾配に入るため、このθと冷却水温の状態に基づき、冷却装置電力Pcを下げるように制御し、この後時刻t4までは比較的平坦路を走行するので、冷却装置電力Pcは水温Twの状態を見ながら、低い値となるように制御する。時刻t4からは再び登り勾配に入るため、推定勾配θの値に応じて冷却装置電力Pcを大きくして、水温Twの上昇を抑制するように制御する。すなわち、この図6の示す本実施例の効果は、推定勾配θおよびモータ104やインバータ103の冷却水温Twの値に基づいて、冷却装置電力Pcの値を制御することで、継続的な高電力化(高温化)に起因するモータ104やインバータ103の異常状態や故障を避けつつ、電力消費を抑制することができるところにある。   First, at time t0, the electric vehicle 101 is turned on to start running. At this time, first, the cooling device power Pc is once set near the upper limit power, and the cooling water temperature Tw is lowered (or the rise is suppressed). That is, the power command value of the cooling device 109 immediately after the electric vehicle is key-on is larger than the power command value of the cooling device 109 at the vehicle speed and road surface gradient angle when the electric vehicle 101 is stopped or traveling on a flat road. Value. This is because, as described above, the time constant for cooling the equipment by the cooling device cannot cope with the rapid increase in temperature of the motor 104 or the inverter 103. Therefore, by keeping the cooling water temperature Tw as early as possible as low as possible, This is intended to suppress the temperature rise of the motor 104 and the inverter 103. The vehicle weight estimation is started by the flow described in FIG. 4 and FIG. 5 after the vehicle travels. At time t1 when the calculation of the estimated vehicle weight M converges, the gradient estimation is started and the cooling device power Pc is controlled. Since the estimated gradient is close to a flat road at time t1, the cooling device power Pc is lowered (or stopped) to suppress power consumption. After time t2, electric vehicle 101 enters an ascending slope as shown by line 604. Since the estimated gradient θ increases until time t3, the value of the cooling device power Pc increases as shown by the line 605, and the rise in the cooling water temperature Tw is suppressed. After time t3, since the estimated gradient θ is negative, that is, enters a downward gradient, the cooling device power Pc is controlled to be lowered based on the state of θ and the cooling water temperature, and then travels on a relatively flat road until time t4. Therefore, the cooling device power Pc is controlled to be a low value while observing the state of the water temperature Tw. Since the climb slope is entered again from time t4, the cooling device power Pc is increased in accordance with the value of the estimated slope θ, and control is performed to suppress the rise in the water temperature Tw. That is, the effect of this embodiment shown in FIG. 6 is that the value of the cooling device power Pc is controlled on the basis of the estimated gradient θ and the cooling water temperature Tw of the motor 104 and the inverter 103, so that the continuous high power The power consumption can be suppressed while avoiding the abnormal state or failure of the motor 104 or the inverter 103 due to the increase in temperature (high temperature).

なお、冷却装置109が、線605のような連続的な電力制御が不可能で、例えば電力のON・OFFのみを制御するタイプの場合でも、推定勾配θの値に基づき、例えば登り勾配で冷却装置電力PcをON、下りもしくは平坦路で水温Twが所定値以下の場合にOFF、といった制御をすればよく、これも本発明の範疇の技術であることは言うまでもない。また、登り勾配だけでなく、車速が所定値以上(例えば図2の領域206)の場合も、継続的な高電力化が必要な領域である。よって、車速に応じて冷却装置電力Pcを制御し、モータ104やインバータ103の異常状態や故障を避けつつ、電力消費を抑制することができることから、これも本発明の範疇の技術であることは言うまでもない。   Even when the cooling device 109 is not capable of continuous power control as shown by the line 605, for example, it is a type that controls only ON / OFF of power, for example, cooling based on the value of the estimated gradient θ, for example, cooling with an ascending gradient. It is only necessary to control the apparatus power Pc to be ON or OFF when the water temperature Tw is below a predetermined value on a down or flat road, and it goes without saying that this is also a technique within the scope of the present invention. Further, not only the climb slope but also the vehicle speed is a predetermined value or higher (for example, the area 206 in FIG. 2) is an area that requires continuous high power. Therefore, it is possible to control the cooling device power Pc according to the vehicle speed and suppress the power consumption while avoiding the abnormal state or failure of the motor 104 or the inverter 103. Therefore, this is also a technology within the scope of the present invention. Needless to say.

本発では、電動車両101が登坂で停止中又は走行中の場合の路面勾配角における冷却装置109の電力指令値が、電動車両101が平坦路で停止中又は走行中の場合の車速及び路面勾配角における冷却装置109の電力指令値よりも大きい値となるようにしていることで、継続的な高電力化(高温化)に起因するモータ104やインバータ103の異常状態や故障を避けつつ、電力消費を抑制することができる。   In the present invention, the electric power command value of the cooling device 109 at the road surface gradient angle when the electric vehicle 101 is stopped or traveling on an uphill is the vehicle speed and road surface gradient when the electric vehicle 101 is stopped or traveling on a flat road. By making the value larger than the power command value of the cooling device 109 at the corner, it is possible to avoid the abnormal state or failure of the motor 104 or the inverter 103 due to continuous high power (high temperature) and Consumption can be suppressed.

なお、電動車両101が停止中又は走行中の路面の路面勾配角と、冷却装置109の電力指令値とは、比例の関係にある。   Note that the road surface gradient angle of the road surface when the electric vehicle 101 is stopped or traveling and the power command value of the cooling device 109 are in a proportional relationship.

図7は本発明の第二の実施例に係る電動車両101の構成図を示している。   FIG. 7 shows a block diagram of an electric vehicle 101 according to the second embodiment of the present invention.

図1に示した第一の実施例との違いは、図1の構成に加えて、電動車両101には加速度センサ112を備えていることである。この出力値を路面勾配推定部801の演算に用いることで、勾配推定精度を向上する狙いがある。   A difference from the first embodiment shown in FIG. 1 is that the electric vehicle 101 includes an acceleration sensor 112 in addition to the configuration of FIG. By using this output value for the calculation of the road surface gradient estimation unit 801, there is an aim of improving the gradient estimation accuracy.

図8は、本発明の電動車両制御装置の第二の実施例を示す制御ブロック図であり、冷却装置109の駆動電力の決定システムフローの一例である。図4で説明した本発明の第一の実施例との違いは、当該車両が走行する路面の勾配を推定する路面勾配推定部801に対して、ユーザが示すアクセル開度、ブレーキポジション、ステアリングポジション(ハンドル)、電動車両101の車速、車両のドライバが意図するギアや走行モードを指令するセレクタのポジションに加え、加速度センサ109の出力値が入力されるところである。加速度センサを用いることで、キーON(システムスタート)直後から、車両の加速度を計測することができるため、特に車両が停止中であれば、式(6)にαf=0となり、αsにこの加速度センサから求められる演算値を代入すれば、道路勾配iを求めることができる。この値を元に、走行開始後に車速の微分値と加速度センサの値を演算することで推定車重Mを求めることなく、推定勾配θを演算できる。すなわち、第一の実施例にあるような、走行開始後の車重推定や勾配推定の時間が必要なくなり、また勾配推定精度も高くなる、という効果がある。この路面勾配推定部801で演算された推定勾配角、およびモータ104およびインバータ103の温度(冷却水温でも可)を冷却装置電力演算部802に入力し、冷却装置電力演算部802で冷却装置109を駆動する電力を決定し、冷却装置電力指令を出力する。   FIG. 8 is a control block diagram showing a second embodiment of the electric vehicle control device of the present invention, and is an example of a drive power determination system flow of the cooling device 109. The difference from the first embodiment of the present invention described with reference to FIG. 4 is that the accelerator opening, brake position, and steering position indicated by the user with respect to the road surface gradient estimation unit 801 that estimates the gradient of the road surface on which the vehicle travels are described. (The steering wheel), the vehicle speed of the electric vehicle 101, the gear intended by the driver of the vehicle, and the position of the selector that commands the travel mode, as well as the output value of the acceleration sensor 109 is input. By using the acceleration sensor, the acceleration of the vehicle can be measured immediately after the key is turned on (system start). Therefore, when the vehicle is stopped, αf = 0 in Equation (6), and this acceleration is expressed as αs. If the calculated value obtained from the sensor is substituted, the road gradient i can be obtained. Based on this value, the estimated gradient θ can be calculated without calculating the estimated vehicle weight M by calculating the differential value of the vehicle speed and the value of the acceleration sensor after the start of traveling. That is, there is an effect that the vehicle weight estimation and the gradient estimation time after the start of traveling are not required as in the first embodiment, and the gradient estimation accuracy is increased. The estimated gradient angle calculated by the road surface gradient estimation unit 801 and the temperatures of the motor 104 and the inverter 103 (cooling water temperature is acceptable) are input to the cooling device power calculation unit 802, and the cooling device power calculation unit 802 controls the cooling device 109. The power to be driven is determined and a cooling device power command is output.

図9は、本発明の第二の実施例を適用した場合の電動車両101の走行中の推定車重、推定勾配、冷却装置電力、冷却水温の履歴の一例を示している。図6に示した本発明の第一の実施例との違いは、上述のように、走行開始直後から推定勾配角θの演算が可能となること、また勾配推定精度が高くなることで、キーON時の冷却装置電力Pcの電力消費を抑制し、また車両スタート直後に勾配変化がある場合でも、高精度な勾配推定が可能となり、継続的な高電力化(高温化)に起因するモータ104やインバータ103の異常状態や故障を避けることができるところにある。なお、冷却装置109が、線904のような連続的な電力制御が不可能で、例えば電力のON・OFFのみを制御するタイプの場合でも、推定勾配角θの値に基づき、例えば登り勾配で冷却装置電力PcをON、下りもしくは平坦路で水温Twが所定値以下の場合にOFF、といった制御を実施すればよく、これも本発明の範疇の技術であることは言うまでもない。また、登り勾配だけでなく、車速が所定値以上(例えば図2の領域206)の場合も、継続的な高電力化が必要な領域である。よって、車速に応じて冷却装置電力Pcを制御し、モータ104やインバータ103の異常状態や故障を避けつつ、電力消費を抑制することができることから、これも本発明の範疇の技術である。   FIG. 9 shows an example of a history of estimated vehicle weight, estimated gradient, cooling device power, and cooling water temperature during travel of the electric vehicle 101 when the second embodiment of the present invention is applied. The difference from the first embodiment of the present invention shown in FIG. 6 is that, as described above, the estimated gradient angle θ can be calculated immediately after the start of traveling, and the gradient estimation accuracy is increased. The power consumption of the cooling device power Pc at the time of ON is suppressed, and even when there is a gradient change immediately after the start of the vehicle, highly accurate gradient estimation is possible, and the motor 104 caused by continuous high power (high temperature) And the inverter 103 can avoid an abnormal state or failure. Even when the cooling device 109 is not capable of continuous power control as shown by the line 904, for example, in a type that controls only ON / OFF of power, for example, based on the value of the estimated gradient angle θ, Control may be performed such that the cooling device power Pc is turned on and turned off when the water temperature Tw is equal to or lower than a predetermined value on a down or flat road, and it goes without saying that this is also a technique within the scope of the present invention. Further, not only the climb slope but also the vehicle speed is a predetermined value or higher (for example, the area 206 in FIG. 2) is an area that requires continuous high power. Therefore, the cooling device power Pc is controlled in accordance with the vehicle speed, and power consumption can be suppressed while avoiding abnormal states and failures of the motor 104 and the inverter 103. This is also a technique within the scope of the present invention.

図10は本発明の第三の実施例に係る電動車両101の構成図を示している。   FIG. 10 shows a configuration diagram of an electric vehicle 101 according to the third embodiment of the present invention.

この第三の実施例の特徴は、第一の実施例および第二の実施例に対して、道路の制限速度情報など含む地図情報を外部から受信する受信部、又は地図情報を記憶する記憶装置(図示していない)や電動車両101の周囲の画像情報を取得できる車載カメラ(図示していない)の画像情報を路面勾配推定部1001に入力することで、電動車両101が現在および将来に走行もしくは停止する路面勾配の詳細情報を、演算に用いることができ、より精密な冷却制御が実施できるところにある。   The feature of the third embodiment is that, with respect to the first embodiment and the second embodiment, a receiving unit for receiving map information including road speed limit information from the outside, or a storage device for storing the map information By inputting image information of an in-vehicle camera (not shown) that can acquire image information around the electric vehicle 101 (not shown) or the electric vehicle 101 to the road surface gradient estimation unit 1001, the electric vehicle 101 travels now and in the future. Alternatively, detailed information of the road surface gradient to be stopped can be used for calculation, and more precise cooling control can be performed.

つまり、これらの地図情報や画像情報から、電動車両101の走行予定ルートが把握できる。本発明では、路面勾配推定部801で推定された走行予定ルートの路面勾配角が所定値以上、且つ走行時間が所定値以上と判断される場合の冷却装置109の電力指令値が、電動車両101が平坦路で停止中又は走行中の場合の車速及び路面勾配角における冷却装置109の電力指令値よりも大きい値とする。よって、電動車両101が現在および将来に走行もしくは停止する路面勾配の詳細情報を、演算に用いることができ、より精密な冷却制御が実施できる。   That is, the travel schedule route of the electric vehicle 101 can be grasped from these map information and image information. In the present invention, the power command value of the cooling device 109 when the road surface slope angle of the planned travel route estimated by the road surface slope estimation unit 801 is greater than or equal to a predetermined value and the travel time is greater than or equal to a predetermined value is Is set to a value larger than the power command value of the cooling device 109 at the vehicle speed and road surface gradient angle when the vehicle is stopped or running on a flat road. Therefore, detailed information on the road surface gradient at which the electric vehicle 101 travels or stops at present and in the future can be used for the calculation, and more precise cooling control can be performed.

図11は本発明の第三の実施例を適用した場合の電動車両101の走行中の推定車重、推定勾配、冷却装置電力、冷却水温の履歴の一例を示している。図6および図9に示した本発明の第一、第二の実施例に対して、地図情報や路面勾配情報を直接路面勾配推定の演算に用いることで、現在の走行路面の勾配が登坂状態になくても、将来の登坂状況を鑑みて、予め冷却装置109の電力を制御して、継続的な高電力化(高温化)に起因するモータ104やインバータ103の異常状態や故障を避けることができるところにある。以下に具体的に説明する。線1101は推定勾配角θの履歴、点線1102はその車両が実際に走行している路面勾配角の履歴、線1104は冷却装置109の電力Pc、点線1103は冷却装置109の上限電力値、線1106はモータ104の冷却水温Twの履歴、線1105は本実施例の電動車両における設定冷却水温の上限値、点線1107は冷却装置109の電力を点線1103(上限電力値)付近で運転し続けた場合の冷却水温の履歴である。   FIG. 11 shows an example of a history of estimated vehicle weight, estimated gradient, cooling device power, and cooling water temperature during travel of the electric vehicle 101 when the third embodiment of the present invention is applied. In contrast to the first and second embodiments of the present invention shown in FIGS. 6 and 9, map information and road surface gradient information are directly used for calculation of road surface gradient estimation, so that the current road surface gradient is in an uphill state. Even if not, in consideration of the future climbing situation, the power of the cooling device 109 is controlled in advance to avoid an abnormal state or failure of the motor 104 or the inverter 103 due to continuous high power (high temperature). Is where you can. This will be specifically described below. Line 1101 is a history of estimated slope angle θ, dotted line 1102 is a history of road surface slope angle that the vehicle is actually traveling, line 1104 is power Pc of cooling device 109, dotted line 1103 is an upper limit power value of cooling device 109, line 1106 is the history of the cooling water temperature Tw of the motor 104, the line 1105 is the upper limit value of the set cooling water temperature in the electric vehicle of this embodiment, and the dotted line 1107 is the operation of the electric power of the cooling device 109 near the dotted line 1103 (upper limit electric power value). It is the history of the cooling water temperature in the case.

まず時刻t0において、電動車両101をキーONし、走行をスタートする。この時、まず冷却装置電力Pcは一旦上限電力に近いところに設定し、冷却水温Twを下げる(もしくは上昇を抑制する)。これは、上述のように、冷却装置が機器冷却する時定数は、モータ104やインバータ103の急峻な温度上昇に対応できないため、なるべく起動初期の冷却水温Twを低く保っておくことで、走行中のモータ104やインバータ103の温度上昇を抑えることを目的としている。この後推定勾配角θに基づいて、冷却装置電力Pcを制御するが、図10の路面勾配推定部1001に入力される地図情報や車載カメラ情報などから、時刻t11において、登り勾配があると判定される場合、冷却水温Twも鑑みて、時刻t10の時点から冷却装置電力Pcを上げて、冷却を強化する。その後、推定勾配θに応じて線1104のように冷却装置電力Pcを制御するが、時刻t14において、再び推定勾配θが大きくなるという情報を地図情報や車載カメラ情報から判定されれば、時刻t14以前の時刻t13において冷却装置電力Pcを上げて、冷却を強化するものである。なお、冷却装置109が、線1104のような連続的な電力制御が不可能で、例えば電力のON・OFFのみを制御するタイプの場合でも、現在走行中の推定勾配θ、地図情報、車載カメラ情報に基づき、例えば登り勾配で冷却装置電力PcをON、下りもしくは平坦路で水温Twが所定値以下の場合にOFF、といった制御を実施すればよく、これも本発明の範疇の技術であることは言うまでもない。また、登り勾配だけでなく、車速が所定値以上(例えば図2の領域206)の場合も、継続的な高電力化が必要な領域である。よって、車速に応じて冷却装置電力Pcを制御し、モータ104やインバータ103の異常状態や故障を避けつつ、電力消費を抑制することができることから、これも本発明の範疇の技術であることは明白である。   First, at time t0, the electric vehicle 101 is turned on to start running. At this time, first, the cooling device power Pc is once set near the upper limit power, and the cooling water temperature Tw is lowered (or the rise is suppressed). This is because, as described above, the time constant for cooling the equipment by the cooling device cannot cope with the rapid increase in temperature of the motor 104 or the inverter 103. Therefore, by keeping the cooling water temperature Tw as early as possible as low as possible, This is intended to suppress the temperature rise of the motor 104 and the inverter 103. Thereafter, the cooling device power Pc is controlled based on the estimated gradient angle θ, but it is determined that there is an ascending gradient at time t11 based on the map information and in-vehicle camera information input to the road surface gradient estimation unit 1001 in FIG. In the case where the cooling water temperature Tw is taken into consideration, the cooling device power Pc is increased from the time t10 to enhance the cooling. Thereafter, the cooling device power Pc is controlled in accordance with the estimated gradient θ as indicated by a line 1104. If it is determined from the map information and the in-vehicle camera information that the estimated gradient θ is increased again at time t14, the time t14 is reached. The cooling device power Pc is increased at the previous time t13 to enhance the cooling. Even when the cooling device 109 is not capable of continuous power control as shown by the line 1104, for example, in a type that controls only ON / OFF of power, the estimated gradient θ currently being traveled, map information, an in-vehicle camera, etc. Based on the information, for example, control may be performed such that the cooling device power Pc is turned on with an ascending slope, and is turned off when the water temperature Tw is below a predetermined value on a down or flat road, which is also a technique within the scope of the present invention. Needless to say. Further, not only the climb slope but also the vehicle speed is a predetermined value or higher (for example, the area 206 in FIG. 2) is an area that requires continuous high power. Therefore, it is possible to control the cooling device power Pc according to the vehicle speed and suppress the power consumption while avoiding the abnormal state or failure of the motor 104 or the inverter 103. Therefore, this is also a technology within the scope of the present invention. It is obvious.

図12は、第三の実施例において、走行履歴を活用した場合の制御ブロック図である。   FIG. 12 is a control block diagram when the travel history is utilized in the third embodiment.

この特徴は、図10および図11で述べた第三の実施例において、さらに電動車両制御装置である車両ECU102や通信可能な車両外部の記憶装置(図示していない)などに、これまでの走行履歴や機器情報を格納し、この結果も冷却装置電力演算部1002に入力して、冷却装置109への電力指令を決定するものである。つまり、冷却装置電力演算部1002は、路面勾配推定部1001で推定された路面勾配角と、モータ104及びインバータ103の温度と、入力された車両の走行履歴又機器情報に基づいて、冷却装置109の電力指令値を演算する。この効果は、モータ104の機器劣化や電動車両101のユーザの運転特性等をも鑑みることで、モータ104やインバータ103などが高温化する条件を履歴的にも判定して冷却制御できるところにあり、走行中の路面勾配や車速以外の要因も含めることによって、より高精度にモータ104やインバータ103の異常状態や故障を避けることができるところにある。この走行履歴の活用については、第三の実施例だけでなく、第一の実施例や第二の実施例に適用しても本発明の技術の範疇として効果があることは言うまでもない。   This feature is the same as that of the third embodiment described with reference to FIGS. 10 and 11, such as the vehicle ECU 102 that is an electric vehicle control device and a storage device (not shown) outside the vehicle that can communicate. The history and device information are stored, and the result is also input to the cooling device power calculation unit 1002 to determine the power command to the cooling device 109. In other words, the cooling device power calculation unit 1002 determines the cooling device 109 based on the road surface gradient angle estimated by the road surface gradient estimation unit 1001, the temperatures of the motor 104 and the inverter 103, and the input vehicle travel history or device information. The power command value is calculated. This effect is that the cooling control can be performed by also judging the conditions under which the motor 104, the inverter 103, etc. are heated in a historical manner by considering the equipment deterioration of the motor 104 and the driving characteristics of the user of the electric vehicle 101. By including factors other than the road surface gradient and the vehicle speed during traveling, it is possible to avoid the abnormal state or failure of the motor 104 or the inverter 103 with higher accuracy. It goes without saying that the use of the travel history is effective not only in the third embodiment but also in the first embodiment and the second embodiment as a category of the technology of the present invention.

101 電動車両
102 車両ECU
103 インバータ
104 モータ
105 減速ギア
106 バッテリ
107 バッテリECU
108 ブレーキECU
109 冷却装置
111a、111b、111c 冷却水通路
112 加速度センサ
201 登坂走行の代表点
202 市街地走行の代表点
203 高出力領域
204 市街地走行領域
205 回生領域
401、801、1001 路面勾配推定部
402、802、1002 冷却装置電力演算部
501 平坦路を走行する電動車両
502 登坂路を走行する電動車両
101 electric vehicle 102 vehicle ECU
103 Inverter 104 Motor 105 Reduction gear 106 Battery 107 Battery ECU
108 Brake ECU
109 Cooling device 111a, 111b, 111c Cooling water passage 112 Acceleration sensor 201 Representative point of uphill traveling 202 Representative point of urban traveling 203 High output region 204 Urban traveling region 205 Regenerative region 401, 801, 1001 Road surface gradient estimation unit 402, 802, 1002 Cooling device power calculation unit 501 Electric vehicle 502 traveling on a flat road Electric vehicle traveling on an uphill road

Claims (13)

電動車両を駆動するモータと、前記モータを駆動するモータ駆動装置と、前記モータ及び前記モータ駆動装置を冷却する冷却装置と、共に用いられる電動車両を制御する電動車両制御装置において、
入力されたアクセル開度と、ブレーキポジションと、自車速と、セレクタポジションと、に基づいて前記電動車両が停止又は走行する路面の路面勾配角を推定する路面勾配推定部と、
前記路面勾配推定部で推定された路面勾配角と、前記モータ及び前記モータ駆動装置の温度と、に基づいて、前記冷却装置の電力指令値を演算する冷却装置電力演算部と、を有し、
前記電動車両が登坂で停止中又は走行中の場合の路面勾配角における前記冷却装置の電力指令値が、前記電動車両が平坦路で停止中又は走行中の場合の車速及び路面勾配角における前記冷却装置の電力指令値よりも大きい値となることを特徴とする電動車両制御装置。
In an electric vehicle control device for controlling an electric vehicle used together, a motor for driving an electric vehicle, a motor driving device for driving the motor, a cooling device for cooling the motor and the motor driving device,
A road surface gradient estimator that estimates the road surface gradient angle of the road surface on which the electric vehicle stops or travels based on the input accelerator opening, brake position, host vehicle speed, and selector position;
A cooling device power calculation unit that calculates a power command value of the cooling device based on the road surface gradient angle estimated by the road surface gradient estimation unit and the temperature of the motor and the motor driving device;
The power command value of the cooling device at the road surface gradient angle when the electric vehicle is stopping or traveling on an uphill is the cooling at the vehicle speed and road surface inclination angle when the electric vehicle is stopped or traveling on a flat road. An electric vehicle control device having a value larger than a power command value of the device.
請求項1に記載の電動車両制御装置において、
前記電動車両がキーオンした直後の前記冷却装置の電力指令値が、前記電動車両が平坦路で停止中又は走行中の場合の車速及び路面勾配角における前記冷却装置の電力指令値よりも大きい値となることを特徴とする電動車両制御装置。
In the electric vehicle control device according to claim 1,
The power command value of the cooling device immediately after the electric vehicle is keyed on is greater than the power command value of the cooling device at the vehicle speed and road surface slope angle when the electric vehicle is stopped or traveling on a flat road, An electric vehicle control device characterized by comprising:
請求項1に記載の電動車両制御装置において、
前記電動車両が停止中又は走行中の路面の路面勾配角と、前記冷却装置の電力指令値とは、比例の関係にあることを特徴とする電動車両制御装置。
In the electric vehicle control device according to claim 1,
An electric vehicle control apparatus characterized in that a road surface gradient angle of a road surface when the electric vehicle is stopped or traveling and a power command value of the cooling device are in a proportional relationship.
請求項1に記載の電動車両制御装置において、
前記路面勾配推定部は、入力されたアクセル開度と、ブレーキポジションと、自車速と、セレクタポジションと、加速度センサで検知した出力値と、に基づいて前記電動車両が停止又は走行する路面の路面勾配角を推定することを特徴とする電動車両制御装置。
In the electric vehicle control device according to claim 1,
The road surface gradient estimation unit is configured to detect the road surface on which the electric vehicle stops or travels based on the input accelerator opening, brake position, host vehicle speed, selector position, and output value detected by an acceleration sensor. An electric vehicle control device that estimates a gradient angle.
請求項1に記載の電動車両制御装置において、
前記路面勾配推定部は、入力されたアクセル開度と、ブレーキポジションと、自車速と、セレクタポジションと、地図情報と、電動車両の周囲の画像情報と、に基づいて前記電動車両が停止又は走行する路面の路面勾配角を推定することを特徴とする電動車両制御装置。
In the electric vehicle control device according to claim 1,
The road surface gradient estimation unit stops or travels the electric vehicle based on the accelerator opening, brake position, host vehicle speed, selector position, map information, and image information around the electric vehicle. An electric vehicle control device characterized by estimating a road surface gradient angle of a road surface to be operated.
請求項5に記載の電動車両制御装置において、
前記路面勾配推定部で推定された走行予定ルートの路面勾配角が所定値以上、且つ走行時間が所定値以上と判断される場合の前記冷却装置の電力指令値が、前記電動車両が平坦路で停止中又は走行中の場合の車速及び路面勾配角における前記冷却装置の電力指令値よりも大きい値となることを特徴とする電動車両制御装置。
In the electric vehicle control device according to claim 5,
The power command value of the cooling device when the road surface gradient angle of the planned travel route estimated by the road surface gradient estimation unit is greater than or equal to a predetermined value and the travel time is greater than or equal to a predetermined value is the electric vehicle is a flat road An electric vehicle control device characterized by having a value larger than a power command value of the cooling device at a vehicle speed and a road surface gradient angle when the vehicle is stopped or traveling.
請求項5に記載の電動車両制御装置において、
前記地図情報は、走行する道路の制限速度情報を含み、
走行予定ルートにおける自車速が所定値以上と判断される場合の前記冷却装置の電力指令値が、前記電動車両が平坦路で停止中又は走行中の場合の車速及び路面勾配角における前記冷却装置の電力指令値よりも大きい値となることを特徴とする電動車両制御装置。
In the electric vehicle control device according to claim 5,
The map information includes speed limit information of the road on which the vehicle travels,
The power command value of the cooling device when the vehicle speed on the planned travel route is determined to be equal to or higher than a predetermined value is the vehicle speed and the road surface gradient angle when the electric vehicle is stopped or traveling on a flat road. An electric vehicle control device having a value larger than an electric power command value.
請求項1に記載の電動車両制御装置において、
入力された前記モータ及び前記モータ駆動装置の温度が、予め定めた期間、持続的な上昇を示す場合の前記冷却装置の電力指令値は、前記電動車両が平坦路で停止中又は走行中の場合の車速及び路面勾配角における前記冷却装置の電力指令値よりも大きい値となることを特徴とする電動車両制御装置。
In the electric vehicle control device according to claim 1,
The power command value of the cooling device when the temperature of the input motor and the motor driving device shows a continuous increase for a predetermined period is when the electric vehicle is stopped or running on a flat road An electric vehicle control device having a value larger than a power command value of the cooling device at a vehicle speed and a road surface gradient angle.
請求項1に記載の電動車両制御装置において、
前記冷却装置電力演算部は、前記路面勾配推定部で推定された路面勾配角と、前記モータ及び前記モータ駆動装置の温度と、入力された車両の走行履歴に基づいて、前記冷却装置の電力指令値を演算し、
前記車両の走行履歴から、前記モータ及び前記モータ駆動装置の温度が持続的な上昇を示すと予想される場合の前記冷却装置の電力指令値は、前記電動車両平坦路で停止中又は走行中の場合の車速及び路面勾配角における前記冷却装置の電力指令値よりも大きい値となることを特徴とする電動車両制御装置。
In the electric vehicle control device according to claim 1,
The cooling device power calculation unit is configured to determine the power command of the cooling device based on the road surface gradient angle estimated by the road surface gradient estimation unit, the temperature of the motor and the motor driving device, and the input travel history of the vehicle. Calculate the value
The power command value of the cooling device when the temperature of the motor and the motor driving device is expected to show a continuous rise from the running history of the vehicle is stopped or running on the electric vehicle flat road In this case, the electric vehicle control device has a value larger than the power command value of the cooling device at the vehicle speed and the road surface slope angle.
電動車両を駆動するモータと、
前記モータを駆動するモータ駆動装置と、
前記モータ及び前記モータ駆動装置を冷却する冷却装置と、
電動車両を制御する電動車両制御装置と、を有し、
前記電動車両制御装置は、
入力されたアクセル開度と、ブレーキポジションと、自車速と、セレクタポジションと、に基づいて前記電動車両が停止又は走行する路面の路面勾配角を推定する路面勾配推定部と、
前記路面勾配推定部で推定された路面勾配角と、前記モータ及び前記モータ駆動装置の温度と、に基づいて、前記冷却装置の電力指令値を演算する冷却装置電力演算部と、を有し、
前記電動車両制御装置は、前記電動車両が登坂で停止中又は走行中の場合の路面勾配角における前記冷却装置の電力指令値が、前記電動車両が平坦路で停止中又は走行中の場合の車速及び路面勾配角における前記冷却装置の電力指令値よりも大きい値となることを特徴とする電動車両。
A motor for driving an electric vehicle;
A motor driving device for driving the motor;
A cooling device for cooling the motor and the motor driving device;
An electric vehicle control device for controlling the electric vehicle,
The electric vehicle control device includes:
A road surface gradient estimator that estimates the road surface gradient angle of the road surface on which the electric vehicle stops or travels based on the input accelerator opening, brake position, host vehicle speed, and selector position;
A cooling device power calculation unit that calculates a power command value of the cooling device based on the road surface gradient angle estimated by the road surface gradient estimation unit and the temperature of the motor and the motor driving device;
The electric vehicle control device is configured such that an electric power command value of the cooling device at a road surface gradient angle when the electric vehicle is stopped or traveling on an uphill is a vehicle speed when the electric vehicle is stopped or traveling on a flat road. And an electric vehicle having a value larger than a power command value of the cooling device at a road surface gradient angle.
請求項10に記載の電動車両において、
加速度を検知する加速度センサを有し、
前記電動車両制御装置の前記路面勾配推定部は、入力されたアクセル開度と、ブレーキポジションと、自車速と、セレクタポジションと、前記加速度センサで検知した出力値と、に基づいて前記電動車両が停止又は走行する路面の路面勾配角を推定することを特徴とする電動車両。
The electric vehicle according to claim 10,
It has an acceleration sensor that detects acceleration,
The road surface gradient estimation unit of the electric vehicle control device is configured to determine whether the electric vehicle is based on an accelerator opening, a brake position, a host vehicle speed, a selector position, and an output value detected by the acceleration sensor. An electric vehicle characterized by estimating a road surface gradient angle of a road surface that stops or travels.
請求項10に記載の電動車両において、
電動車両の周囲の画像情報を取得する車載カメラと、
地図情報が記憶された記憶装置と、を有し、
前記電動車両制御装置の前記路面勾配推定部は、入力されたアクセル開度と、ブレーキポジションと、自車速と、セレクタポジションと、前記地図情報と、前記電動車両の周囲の画像情報と、に基づいて前記電動車両が停止又は走行する路面の路面勾配角を推定することを特徴とする電動車両。
The electric vehicle according to claim 10,
An in-vehicle camera that acquires image information around the electric vehicle;
A storage device storing map information;
The road surface gradient estimation unit of the electric vehicle control device is based on the input accelerator opening, brake position, host vehicle speed, selector position, the map information, and image information around the electric vehicle. An electric vehicle characterized by estimating a road surface gradient angle of a road surface on which the electric vehicle stops or runs.
請求項10に記載の電動車両において、
車両の走行履歴が記憶された記憶装置を有し、
前記電動車両制御装置の前記冷却装置電力演算部は、前記路面勾配推定部で推定された路面勾配角と、前記モータ及び前記モータ駆動装置の温度と、入力された車両の走行履歴に基づいて、前記冷却装置の電力指令値を演算し、前記車両の走行履歴から、前記モータ及び前記モータ駆動装置の温度が持続的な上昇を示すと予想される場合の前記冷却装置の電力指令値は、前記電動車両平坦路で停止中又は走行中の場合の車速及び路面勾配角における前記冷却装置の電力指令値よりも大きい値となることを特徴とする電動車両。
The electric vehicle according to claim 10,
Having a storage device in which the running history of the vehicle is stored;
The cooling device power calculation unit of the electric vehicle control device is based on the road surface gradient angle estimated by the road surface gradient estimation unit, the temperature of the motor and the motor driving device, and the input traveling history of the vehicle. The power command value of the cooling device when the power command value of the cooling device is calculated and the temperature of the motor and the motor driving device is expected to show a continuous increase from the traveling history of the vehicle is An electric vehicle characterized by having a value larger than a power command value of the cooling device at a vehicle speed and a road surface gradient angle when the electric vehicle is stopped or running on a flat road.
JP2012019414A 2012-02-01 2012-02-01 Electric vehicle control device and electric vehicle using the same Expired - Fee Related JP5846943B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012019414A JP5846943B2 (en) 2012-02-01 2012-02-01 Electric vehicle control device and electric vehicle using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012019414A JP5846943B2 (en) 2012-02-01 2012-02-01 Electric vehicle control device and electric vehicle using the same

Publications (2)

Publication Number Publication Date
JP2013158221A true JP2013158221A (en) 2013-08-15
JP5846943B2 JP5846943B2 (en) 2016-01-20

Family

ID=49052888

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012019414A Expired - Fee Related JP5846943B2 (en) 2012-02-01 2012-02-01 Electric vehicle control device and electric vehicle using the same

Country Status (1)

Country Link
JP (1) JP5846943B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085709A (en) * 2015-10-23 2017-05-18 三菱自動車工業株式会社 Start control mechanism of four-wheel-drive electric automobile
WO2018061814A1 (en) * 2016-09-29 2018-04-05 パナソニックIpマネジメント株式会社 Power supply device
WO2022138092A1 (en) * 2020-12-23 2022-06-30 株式会社デンソー Control device
CN115331478A (en) * 2022-08-11 2022-11-11 富赛汽车电子有限公司 Control method and device for avoiding vehicle parking on slope, electronic equipment and medium
WO2023145259A1 (en) * 2022-01-31 2023-08-03 株式会社デンソー Moving body control system and program

Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596977A (en) * 1991-10-09 1993-04-20 Hitachi Ltd Road condition recognizing method
JP2001182690A (en) * 1999-12-22 2001-07-06 Io Industry Kk Axial blower
JP2002343396A (en) * 2001-05-17 2002-11-29 Denso Corp Fuel cell automobile
JP2003042594A (en) * 2001-07-27 2003-02-13 Matsushita Electric Ind Co Ltd Temperature regulating device
JP2005094928A (en) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd Cooling control unit for battery for vehicle
JP2005287149A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Temperature regulator and temperature regulating method
JP2006312353A (en) * 2005-05-06 2006-11-16 Toyota Motor Corp Vehicular control device
JP2008037334A (en) * 2006-08-09 2008-02-21 Nissan Motor Co Ltd Radiator fan controller for hybrid car
JP2008072818A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Cooling system and vehicle equipped with same
JP2008271712A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Cooling system
JP2008296881A (en) * 2007-06-04 2008-12-11 Toyota Motor Corp Vehicle and control method thereof
JP2010000884A (en) * 2008-06-19 2010-01-07 Denso Corp Control device for hybrid vehicle
JP2010155532A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Hybrid vehicle and its controlling method
JP2010241325A (en) * 2009-04-08 2010-10-28 Aisin Ai Co Ltd Vehicular power transmission control apparatus
WO2011125865A1 (en) * 2010-04-05 2011-10-13 本田技研工業株式会社 Control device for hybrid vehicle
JP2011211868A (en) * 2010-03-30 2011-10-20 Honda Motor Co Ltd Cooling control method
JP2011235695A (en) * 2010-05-07 2011-11-24 Clarion Co Ltd Onboard device and method for estimation of gradient
JP2012005321A (en) * 2010-06-21 2012-01-05 Toyota Motor Corp Device for control of vehicle

Patent Citations (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0596977A (en) * 1991-10-09 1993-04-20 Hitachi Ltd Road condition recognizing method
JP2001182690A (en) * 1999-12-22 2001-07-06 Io Industry Kk Axial blower
JP2002343396A (en) * 2001-05-17 2002-11-29 Denso Corp Fuel cell automobile
JP2003042594A (en) * 2001-07-27 2003-02-13 Matsushita Electric Ind Co Ltd Temperature regulating device
JP2005094928A (en) * 2003-09-17 2005-04-07 Nissan Motor Co Ltd Cooling control unit for battery for vehicle
JP2005287149A (en) * 2004-03-29 2005-10-13 Toyota Motor Corp Temperature regulator and temperature regulating method
JP2006312353A (en) * 2005-05-06 2006-11-16 Toyota Motor Corp Vehicular control device
JP2008037334A (en) * 2006-08-09 2008-02-21 Nissan Motor Co Ltd Radiator fan controller for hybrid car
JP2008072818A (en) * 2006-09-13 2008-03-27 Toyota Motor Corp Cooling system and vehicle equipped with same
JP2008271712A (en) * 2007-04-20 2008-11-06 Toyota Motor Corp Cooling system
JP2008296881A (en) * 2007-06-04 2008-12-11 Toyota Motor Corp Vehicle and control method thereof
JP2010000884A (en) * 2008-06-19 2010-01-07 Denso Corp Control device for hybrid vehicle
JP2010155532A (en) * 2008-12-26 2010-07-15 Toyota Motor Corp Hybrid vehicle and its controlling method
JP2010241325A (en) * 2009-04-08 2010-10-28 Aisin Ai Co Ltd Vehicular power transmission control apparatus
JP2011211868A (en) * 2010-03-30 2011-10-20 Honda Motor Co Ltd Cooling control method
WO2011125865A1 (en) * 2010-04-05 2011-10-13 本田技研工業株式会社 Control device for hybrid vehicle
JP2011235695A (en) * 2010-05-07 2011-11-24 Clarion Co Ltd Onboard device and method for estimation of gradient
JP2012005321A (en) * 2010-06-21 2012-01-05 Toyota Motor Corp Device for control of vehicle

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017085709A (en) * 2015-10-23 2017-05-18 三菱自動車工業株式会社 Start control mechanism of four-wheel-drive electric automobile
WO2018061814A1 (en) * 2016-09-29 2018-04-05 パナソニックIpマネジメント株式会社 Power supply device
WO2022138092A1 (en) * 2020-12-23 2022-06-30 株式会社デンソー Control device
JP7480696B2 (en) 2020-12-23 2024-05-10 株式会社デンソー Control device
WO2023145259A1 (en) * 2022-01-31 2023-08-03 株式会社デンソー Moving body control system and program
CN115331478A (en) * 2022-08-11 2022-11-11 富赛汽车电子有限公司 Control method and device for avoiding vehicle parking on slope, electronic equipment and medium

Also Published As

Publication number Publication date
JP5846943B2 (en) 2016-01-20

Similar Documents

Publication Publication Date Title
JP6056789B2 (en) Electric vehicle regenerative braking control device
JP5912705B2 (en) Vehicle control system
KR101923933B1 (en) Hybrid vehicle and method of changing operation mode for the same
JP6134863B2 (en) Energy control system for non-railroad vehicles
JP5609898B2 (en) Travel control device
JP5846943B2 (en) Electric vehicle control device and electric vehicle using the same
US20180141552A1 (en) Vehicle Systems and Methods for Electrified Vehicle Battery Thermal Management Based on Anticipated Power Requirements
CN109747627B (en) Hybrid vehicle and heating control method for the hybrid vehicle
WO2017098799A1 (en) Vehicle control device
US10780877B2 (en) Heat exchange system for vehicle, heat exchange method for vehicle, and storage medium
KR101836250B1 (en) Method and apparatus of controlling output voltage of dc converter for vehicle including driving motor
JP2016117389A (en) Hybrid vehicle control device
JP2017189051A (en) Control apparatus of motor
US20140262195A1 (en) System and method for controlling flow rate of coolant of green car
JP6021776B2 (en) Battery cooling system for electric vehicles
JP2015059639A (en) Control device for vehicle
US20120169358A1 (en) Control method and a control apparatus in a hybrid type construction apparatus
US20170087994A1 (en) Control device of electric vehicle
JP5104708B2 (en) Control device and control method for hybrid vehicle
US20130338875A1 (en) Method and device for determining a power reserve of an electric drive
JP2016113040A (en) Vehicular battery temperature control system
JP5919012B2 (en) Control device for motor for driving vehicle
JP2007202222A (en) Controller of vehicle motor
JP4055733B2 (en) Temperature control device and temperature control method
US9994123B2 (en) Controlling apparatus for vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140818

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150518

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150727

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20151027

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151124

R150 Certificate of patent or registration of utility model

Ref document number: 5846943

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees